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Coverage with Self-Induced Obstacles on Grids

Sarah Frenkel!, David Parker2, and Masoumeh Mansouri

Abstract—Modelling environments as grids is a common ap-
proach in robotics, particularly for coverage path planning
tasks, where the goal is to fully traverse an area or visit key
points. In this paper, we introduce a new variant of coverage
planning, inspired by applications such as open-pit mining,
harvesting, and painting, where the robot’s own actions modify
the environment. Specifically, self-induced obstacles arise as a
result of task execution, e.g. piles of rubble from drilling, and
must be avoided in all future motion planning. We formally model
these constraints by assuming that once a vertex is visited, it
becomes non-traversable, and define an obstacle as self-induced
if its existence depends on the set of previously visited vertices.
This situation has not been addressed in existing formulations,
which assume static obstacle placement. We provide a formal
analysis of how the existence of solutions is affected by geometric
constraints, such as vertex distances and robot turning radius,
as defined by the Dubins vehicle. We also propose modelling the
problem using self-deleting graphs based on the line graph of
the grid. This provides a sufficient representation that captures
the problem’s dynamics and enables the use of general graph
search algorithms. Qur experimental evaluation demonstrates
that our approach outperforms classical coverage path algorithms
in terms of computation time and solution quality.

Index Terms—Motion and Path Planning; Task and Motion
Planning; Formal Methods in Robotics and Automation

I. INTRODUCTION AND RELATED WORK

OVERAGE path planning is the problem of finding a

path that fully traverses a given area. Current coverage
planners can handle both static obstacles and dynamic ob-
stacles, where the source of the dynamics is external to the
robots, for example, a moving human [1]. In this paper, we
consider a different kind of challenge: self-induced obstacles,
which are created by the robot itself during operation, e.g. a
pile of rubble generated by a drilling robot. Although these
obstacles are not initially present, they appear in a somewhat
predictable manner. For instance, consider the situation in
an open-pit mine where a drilling operation creates a heap
of rubble that obstructs the robot’s movement later on. We
refer to these obstacles, which arise in the environment as a
result of the robot’s previous actions, as self-induced obstacles.
Self-induced obstacles are common in applications such as
automated harvesting [2], [3], open-pit mining [4], [5], or lawn
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Fig. 1: Obstacles (blue) appear when the robot (pink) leaves
their position. The illustrated path, starting at the centre, does
not overlap with obstacles at previously visited positions.

mowing [6]. An illustration of such an environment with self-
induced obstacles is shown in Fig. 1.

The initial step in addressing coverage path planning
typically involves decomposing the environment. Some ap-
proaches split the environment into several differently shaped
areas [7], [8], others use a grid overlay to decompose the
environment [9], [10]. The idea behind using decomposition
is that each decomposed area, e.g. a grid cell, can be covered
easily; hence, the challenge lies in determining the order in
which the decomposed areas are visited. In this paper, we use a
grid-based decomposition. This approach is particularly useful
if the the motion pattern of a robot dictates some type of grid
(e.g. in lattice-based planning [11]) or when the environment
contains points of interest that are distributed in a grid-like
fashion (e.g., in open-pit mining [5]). Grid-based coverage
has been addressed using wavefront methods [9] or spanning
tree strategies [10], but these methods do not consider the
challenges posed by self-induced obstacles.

The problem of finding a path that visits every cell in a
grid exactly once is the Hamiltonian path problem on grids.
This problem has been extensively studied and, depending on
the grid structure, is either polynomial-time solvable or NP-
complete [12], [13]. However, these works assume a static
environment and do not address obstacles that depend on
the path itself. In this paper, we study the Hamiltonian path
problem on grids with self-induced obstacles and with motion
constraints: we approximate the robot as a Dubins vehicle,
which can only move forward and has a minimal turning
radius [14]. Hence, a turn may require space that overlaps with
a previously created obstacle, making the move impossible.
Fig. 2 illustrates this: the first path is invalid as it collides
with an earlier created obstacle.

Classical coverage-search methods operate on a fixed adja-
cency. In our setting, every visited vertex creates a self-induced
obstacle whose geometry interacts with the motion constraints,
so the set of feasible successors depends on the entire path
history. Thus, classical methods cannot ensure that a chosen
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(a) Invalid path. (b) Valid path.

Fig. 2: Two different paths through a grid, starting from vertex
B. The path in (a) is invalid, since it collides with the obstacle
(in grey) created at vertex B.

next vertex will remain reachable, and these history-dependent
reachability changes place the problem outside the scope of
existing coverage techniques.

Problems involving dynamic environments have been ap-
proached through frameworks like dynamic graphs [15], [16]
or the Canadian Traveller Problem [17], where edges are
blocked or available based on exogenous conditions. In con-
trast, our model involves obstacle creation, where the robot’s
own traversal determines future obstructions.

A naive idea is to replan the path after each step, adapting
to the newly created obstacles. However, such local strategies
often fail to anticipate how early decisions constrain future
movement, leading to dead ends. Even choosing the wrong
start-vertex can lead to failure. This highlights the need to
consider interactions between motion primitives and obstacle
creation at an early stage of the planning.

To address this, we build on the framework of self-deleting
graphs [18], where the traversal of a vertex can delete edges.
In our model, we interpret the motion constraints of the
Dubins vehicle and the placement of self-induced obstacles as
a special case of self-deleting graphs. Earlier work has used
a random function [18] or circular obstacles [19] that delete
edges. Our model uses geometry-informed deletion rules based
on motion primitves and obstacle placement.

Contributions. We formally define the Hamiltonian path
problem on grids with self-induced obstacles for Dubins
vehicles and study how geometric parameters such as turning
radius, grid spacing, and obstacle size influence solveability.
We evaluate classical coverage strategies and highlight their
limitations in this setting. We then propose a novel graph-
theoretic formulation using self-deleting line graphs, enabling
general search algorithms. We demonstrate the applicability
of this model through a depth-first search approach which
guarantees that an offline solution will be found whenever one
exists and removes the need for any online replanning.

II. PRELIMINARIES

In this section, we introduce the terms that will be used
throughout the paper. A graph G is a simple undirected graph
consisting of vertices V(G) and edges E(G). The line graph
of G has a vertex for every edge in G and two vertices in the
line graph are connected if the corresponding edges in G share
a vertex. A complete graph on n vertices K, is the graph with
n vertices, where every pair of distinct vertices is connected
by an edge.

Let a triangular grid graph T be an embedded graph, where
every face, except the outer face, is an equilateral triangle. The
shape of a grid T refers to the shape of the outer face of 7.

To account for the motion constraints of a robot we use the
model of a Dubins vehicle. This is a vehicle that can only move
forward and has a fixed turning radius. The optimal path for
a Dubins vehicle given a start and end-position and direction
has been widely studied [14], [20], [21]. In this paper we
assume any change in the direction of the vehicle happens at a
vertex, thus start and end point are identical, only the direction
the vehicle changes. An optimal Dubins path which results in
a left-turn with identical start and end point is described by
a LRL-movement, that is a left-turning circle arc, followed
by a right-turning circle arc and finished with another left-
turning circle arc. A right turn can be obtained by mirroring the
movements. We pre-compute the optimal paths for a Dubins
vehicle for every turn, that a robot would have to make to
traverse the grid. This gives a set of two motion primitives;
two examples of which are shown in Fig. 3b and 3c.

III. PROBLEM DESCRIPTION

In this section, we formally describe the central problem
addressed in this paper. We limit the analysis of this paper
to the movement primitives of a Dubins vehicle. Alternative
motion primitives could be obtained by sampling the motions
of an actual vehicle or by applying different theoretical ap-
proximations of movements, e.g. Reeds-Shepp [21]. We finish
this section with some theoretical observations and explain
interesting cases.

Problem 1. Given a grid graph G on n vertices, a turning
radius v and a radius o, the Coverage Path problem of
a Dubins vehicle on a Grid with Obstacle Creation (CP-
DGO), described by the the tuple (G,r,0), is to find a path
P = (p1, ..., pn), where the p; are vertices of G such that:

o every vertex of G is visited exactly once;

o the movement between two adjacent vertices p; and p;11
on P consists of an optimal turning Dubins’s path with
turning radius r, and a straight line motion from p; and
Dit1, and

o the movement between every pair of adjacent vertices p;
and p;y1 on P does not intersect the obstacle at any
previously visited vertex p; with j < i, given by a disk
of radius o centered at p;.

We will use the following as a running example throughout
the paper.

Example 1. We now describe an instance (G,r,0) of CP-
DGO. Let G be a triangular grid graph on six vertices
A, B, ..., F, as shown in Fig. 3a. Two adjacent vertices have
distance 1. The vehicle used to traverse the grid is a Dubins
vehicle with a fixed turning radius of 1. To traverse the grid,
the vehicle will make two types of turns at vertices, 27 /3-turn
and a 7/3-turn. The pre-computed set of motion primitives
M is shown in Fig. 3b and 3c. After visiting a vertex v, an
obstacle with radius o = 0.5 is created.
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(a) (b) 2?Tr-turn (c) 3-turn

Fig. 3: The grid G and the motion primitives M of Example 1

Solving Problem 1 on (G, r,0) is to find a path visiting all
vertices in the grid, that does not collide with any obstacles.
A valid path and an invalid path are shown in Fig. 2(b).

Given an instance of Problem 1 we analyse the relation
between vertex distance, turning radius of the Dubins vehicle
and size of the created obstacle for triangular grids. This
gives us insight into which setups do not cause obstacles that
obstruct the motion primitives. We then prove which shapes
of grids can be solved, even if turns are obstructed.

A. The relation between grid, turning radius and obstacle size
in a triangular grid

In this section, we geometrically analyse how turning radius,
grid spacing and obstacle size affect collisions between motion
primitives and obstacles. If the creation of obstacles at the
vertices does not obstruct later movements, the problem of
finding a path through the grid reduces to the classic Hamil-
tonian cycle problem on grids. For results on Hamiltonicity of
grids we refer to [13].

We remind the reader that, throughout this paper, we assume
that a turning action does not happen on the path between two
vertices but during the visit to a vertex. This turning action is
given through the motion primitives. We compute the motion
primitives by finding optimal paths for a Dubins vehicle.

Lemma 1. Let r be the turning radius of a Dubins vehicle, d
the distances between two adjacent vertices in a triangular
grid, and o the radius of the obstacles, that centers at a
vertex. Let further r < d, o < d/2 and a constant f =

\/ (8 =/3)/2 — 1/2. Then the obstacles do not obstruct the
turning movement at a vertex if the following two inequalities

hold: /3
7 3
d—0><1+\/;_2>7",

V3
2

Proof. We analyse left-turns of a Dubins vehicle; right-
turns are symmetric. At a vertex O the vehicle performs an
Left-Right-Left (LRL) path, consisting of three arcs of radius
r, as seen in Fig. 4b. The first and last arcs lie on circles Ly, Lo
tangent to the incoming and outgoing edges. The middle arc
lies on a circle R of radius r, tangent to both L; and L.

The center B of R lies at distance 2r from both A; and As.
Let /3 be the turning angle and o = ’T—;ﬁ the angle between
A0 and OB. Using the law of cosines we obtain for the
5 -turn:

\OB|:f§rj:r 471: (\/7\/§>r
2 2 2 2

(r+0)% > d* + (rf)? rfd

(a) A deconstructed 2?”-turn.

(b) A deconstructed %-turn.

Fig. 4: Deconstructed LRL-turn at vertex O, with variable
names as used in the proof. The vehicle approaches from the
left and leaves the vertex towards the upper right or left.

Let d be the distance from O to a neighbouring vertex C'
and o the obstacle radius. A circular obstacle at C' does not
intersect the motion primitive if

7 V3
d—0><1—|—\/;—2>r. (1)

For the 2?’T-turn (Fig. 4a), we obtain

3 V3

8—\/3_1

2 2

We set f =4/ 8’2‘/3 -3

Let D be the nearest vertex to circle R. Due to the law
of cosine we get [BD|? = d* + rf? — rfdcos % and for the
circle R to not be intersect by an obstacle around D we get

|BD| > r + o. Hence,

?r td )

If the inequalities (1) and (2) hold, a circular obstacle of
radius 7 at a vertex does not obstruct any turning motion. [

(r+o)?<d®+rf*—

The previous lemma helps us to characterise instances of
the CP-DGO which are solvable with traditional approaches.

Corollary 2. The problem of solving Problem 1 on (G,r,0)
reduces to the classic Hamiltonian cycle problem on grids,if
the grid G is triangular and the inequalities of Lemma 1 hold.

B. Analysing different grid shapes

In this section, we investigate the grid shapes that allow
Problem 1 to be solvable, even when the geometric constraints
outlined in Lemma 1 are not satisfied.

Lemma 3. Let G be a triangular grid in the shape of a
triangle. Then we can solve Problem 1 over (G,r,0).

Proof. We proceed by induction on the side length n of the
triangular grid 7,,. For n = 1, the path consists of the single
vertex, which is a corner.

Assume T}, admits a covering path ending in a corner. For
T,+1, remove n+ 1 boundary vertices to obtain 7;, and apply
the induction hypothesis. Adding the boundary back (Fig. 5),
the path ends at a boundary vertex v of 7},. From v the path can
be extended to a neighbour u, where a turning move (outside
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the triangle) allows us to proceed along the new boundary. This
extension covers all remaining vertices, ending at a corner of
T7L+1 . 0

Fig. 5: How to extend a path covering a triangle 7;, with side
length n to cover a triangle 7;, 1 with side length n + 1.

Remark 4. We can cover any triangular grid shaped like a
regular hexagon or a parallelogram in a corresponding way.

C. Fixed obstacles

Real-world environments can have fixed obstacles, for ex-
ample, a table in a room or a boulder in an outdoor setting.
Environments with fixed obstacles can still be approximated
with a grid graph. To account for the obstacles we delete those
vertices from the grid that coincide with the obstacles, this
results in a “hole” in the grid. A hole in a triangular grid is
an inner face that is not a small triangle.

Lemma 5. If a triangular grid graph G is in the shape of a
triangle, a regular hexagon or a parallelogram and it contains
a single central hole in the same shape as the grid we can
solve Problem 1 over (G,r,0).

Sketch.. Analogue to the proof of Lemma 3. [

Our proofs do not extend to multiple holes or to holes
that are not centrally positioned. In fact, our experiments in
Section VII suggest that complete coverage is only possible
when a single obstacle lies centrally. In the remaining cases
our solver provides a maximal coverage path.

IV. MODELLING USING SELF-DELETING GRAPHS

In the previous sections, we discussed cases where the CP-
DGO is “easy” to solve. Corollary 2 characterises cases of CP-
DGO that reduce to the classical Hamiltonian Path Problem
(HPP) on grids. In these cases, we can use algorithms that
solve the HPP on grids to solve Problem 1. The HPP on
grids is hard in general but there are several grid-types that
have polynomial time algorithms [13]. The proofs presented in
Section III-B indicate procedures with which we can quickly
solve the CP-DGO when the underlying triangular grid is in
the shape of a triangle, a hexagon or a parallelogram. Since
the number of shapes that can be solved “easily” is highly
limited, we need a more general approach.

In this section, we introduce a novel way of modelling
Problem 1 that is general and not limited to the above cases.
In particular, we propose using self-deleting graphs [18]. This
graph class allows us to model the dependencies between visits
to vertices and the resulting changes in the traversability of the
grid. In the following section, we describe in detail how the
modelling is done. We start by reiterating the definition of self-
deleting graphs and then explain how to model the CP-DGO
with self-deleting graphs.

Definition 1. [/8] A self-deleting graph S is a tuple S =
(G, f) where G = (V, E) is a simple, undirected graph and
f:V = 2F. The function f specifies for every vertex v €
V' which edges f(v) are deleted from E if the vertex v is
processed. We refer to f as the delete-function.

If a vertex v is processed, we delete edges f(v) from G.
For a self-deleting graph S and set X C V of vertices, the
residual graph Gx of S after processing X is defined as:

Gx =G\ | f).
veX
We call a simple path p = (vy,...,v,) in a self-deleting
graph f-conforming if for every 1 < ¢ < xz the edge
e; = {vi,vip1} is in the residual graph Gy, . .,
f-conforming simple path p traverses the graph G while
processing every vertex on p when it is visited.

To model CP-DGO through a self-deleting graph S =
(L(Q), f) we define the underlying graph L(G) and a delete-
function f as follows.

a) The underlying graph L(G): To model how the
traversability of the grid changes as the path gets longer, we
use the line graph L(G) of the grid as the underlying graph of a
self-deleting graph. Every possible transition at a vertex in the
original graph is represented by an edge in the line graph. The
line graph of a grid graph consists of a Ky for every vertex v
in the original grid, where d is the degree of vertex v, and two
K4 share a vertex if the vertices they represent are connected
by an edge in the original grid. The process is shown in Fig. 6.
Here, vertex A in the original grid is represented by the K
consisting of AB, AD, AC' in the line graph.

AB

AD

Fat AC
AC AC P Y/ BD
BD BD CD
/1 \ go
D cé| D
PEN r P DF
o DF ce & CE

E EF F E EF F EF
(@ (b) ©
Fig. 6: Constructing the line graph of the grid in Example 1:

(a) add vertices for each edge, (b) connect those sharing a
vertex, (c) final line graph.

b) The delete-function f: A vertex xy in the line graph
represents an edge xy of the grid. When the path visits zxy,
edges are deleted for two reasons:

1) Strict deletes: to ensure each grid vertex is visited at
most once, all edges in the Kys of x or y not incident
with xy are removed.

2) Motion deletes: to model how visiting one vertex blocks
transitions at others, single edges are removed depending
on the obstacle and its overlap with motion primitives.

Observation 1. If a CP-DGO instance satisfies the ratios of
Lemma 1, the corresponding SDG has no motion deletes.

Observation 2. Consider a CP-DGO with grid distance d,
turning radius v < 0.5d, and obstacle size violating Lemma 1.
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Fig. 7: Turns at vertex w obstructed by an obstacle at v.
The edges from ni,ny,n3 to w form the set N,,. The blue
curve describes the Dubins path performing the 7/3-turn at
w, coming from ni to ng. The red curves describe the two
7 /3-turns.

Then the SDG S contains motion deletes: an obstacle at vertex
v can obstruct up to three turns at each of its (up to six)
neighbours, as shown in Fig. 7.

Let N, be the edges incident to w but not to other
neighbours of v. The obstacle at v blocks every turn at w
that transitions between edges of Ny, so f deletes all of these
combinations.

To solve a CP-DGO instance, we construct the correspond-
ing self-deleting graph and search for an f-conforming path
of length n, the number of grid vertices.

Example 1. (continued) In Fig. 2a we see, that after visiting
vertex B the turn at vertex D is obstructed. We can model
this by adding the edge between CD and DF in the line
graph to the delete-function of any vertex of the line graph
that represents the vertex B of the original grid.

Lemma 6. Let D = (G, r,0) be an instance of a CP-DGO
and S = (line(QG), f) the corresponding self-deleting graph
to D. Then an f-conforming path through S is equivalent to
a valid path through D.

Sketch.. The proof results from the construction of the delete-
function. O

Corollary 7. A path of length n through S corresponds to a
coverage path through D.

A. How to model fixed obstacles

We can model a fixed obstacle in the environment by
preprocessing the vertices which correspond to the position
of the obstacle. So, if we have grid G and a fixed obstacle is
present at a vertex v, we delete all edges from the line graph
of G that would be deleted by the motion deletes of any vertex
w in the line graph, that corresponds to an edge incident to v.
Since the final path will not visit the vertex v we also delete
all vertices of the line graph, that correspond to edges incident
to vertex v.

Example 2. We add to Example 1 a fixed obstacle at vertex
C. The vertex C obstructs the transition from B to F via D.
So we remove the edge BD and DF from the line graph.
Additionally, we remove all vertices from the line graph that
correspond to edges incident to C: AC,CE,CD.

V. SOLVING THE CP-DGO

In this section, we introduce different approaches for solving
the CP-DGO. We consider three classical approaches to cov-

Fig. 8: Run of the wavefront algorithm. Vertices are labelled
with the distance to the goal vertex X. The start vertex
S is furthest away. The middle figure depicts the visiting
order of the vertices. The last figure shows the Dubins path,
highlighting the obstruction at the first vertex.

erage path planning: two grid-based methods, the wavefront
algorithm and the path transform algorithm [9], and a hybrid
planner based on the Boustrophedon method. Additionally, we
use a depth-first search (DFS) approach on the corresponding
self-deleting graph of a CP-DGO. We describe and analyse
each algorithm and end this section with an experimental
comparison.

A. Using classic coverage path planners

For grids, several coverage path planners have been devel-
oped [9], [22]. In this section, we focus on the wavefront
algorithm and the path-transform algorithm, the latter being
an extension of the former. We evaluate them on CP-DGO
instances by comparing feasibility of the generated paths and
their computation times, and conclude with a discussion of the
boustrophedon method.

The wavefront algorithm was first described in [22]. While
the original algorithm was applied to a square grid, the core
principle of the algorithm, assigning each vertex a distance
to the goal vertex, works on various grid types. During the
initial step of the wavefront algorithm, all vertices are labelled
with their distance to the goal vertex. The coverage path is
determined by selecting a vertex with the highest distance
as the starting point and then iteratively progressing along
neighbouring vertices with the highest distance until reaching
the goal vertex. Fig. 8 shows a coverage path through a
triangular grid computed by the wavefront algorithm.

In Section III-B we have seen that a path that follows the
shape of an environment can lead to a valid coverage path.
However, the wavefront algorithm produces a path with a
significant number of turns [9]. To counteract this, the path
transform algorithm adds a second property to every vertex:
it calculates the shortest distance to any obstacle. A path
transform value for each vertex is then calculated as a function
of the obstacle distance and the paths to the goal vertex.
The coverage path is then created the same way as in the
Wavefront algorithm, beginning at the vertex with the highest
path transform value. An result of the path transform algorithm
is shown in Fig. 9.

These algorithms were designed for grids without self-
induced obstacles. We adopt them for the CP-DGO as shown
in Algorithm 1. We select a random goal vertex and calculate
the vertex labels. Based on this, the algorithms generate a
path. To make the algorithm applicable to the CP-DGO, the
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(b) Path found: start vertex in the
center with max pt. Dubins path
(green) avoids obstacles.

(a) Initial step: pt(v) is the dis-
tance of v to X plus the square of
the distance of v to the boundary.

Fig. 9: Run of the path transform algorithm.

path is then checked for validity. If it fails to cover the
environment a new goal vertex is chosen and the vertex
labels are recomputed. Algorithm 1 shows the path transform
algorithm. The wavefront algorithm differs in line 14. The
wavefront chooses the next vertex on the basis of d(v).

Algorithm 1 Path transform algorithm for CP-DGO

Input: instance of CP-DGO (G, r,0);

Output: Coverage path p of G
1: function PATH-TRANSFORM(G)

obsDist(v) + distance from v to outer face

goals < shuffled stack of V(G)

while p not valid coverage path and goals # @ do
p < empty path; goal < goals.pop
d(v) < dist(v, goal) V v € G using a BFS
pt(v) < d(v) + obsDist(v) ¥ v € G
s < vertex where d(s) is maximal; p + {a}
while |p| < |[V(G)| do

10: Append to p the neighbour of p.last with maximal

pt, not yet on p

11 end while

12 end while

13:  return p

14: end function

R A A S o

Experiments showed that picking a “good” goal vertex
reduces runtime. In particular, choosing a vertex in the middle
of an outer side speeds up finding a solution. We use this
observation as a heuristic and perform a second run of the path
transform algorithm on the dataset with pre-set goal vertices.

B. Hybrid planner

The hybrid planner first computes a global coverage order
of all grid vertices using a back-and-forth sweep, as used
in boustrophedon coverage. For each consecutive pair in this
order, a local planner computes the shortest Dubins trajectory.
This represents a global-local approach where a high-level
sweep pattern is combined with a continuous local motion
planner [1].

C. DFS on the corresponding self-deleting graph

A direct DFS over the CP-DGO is not feasible because
each visited vertex creates an obstacle. This changes the
successors in the DFS after every step and the search cannot
predict which moves remain reachable. To overcome this lack
of predictability, we propose to use the corresponding self-
deleting graph to solve the CP-DGO.

In Section IV, we described how self-deleting graphs can be
used to model a CP-DGO. To find a solution for a CP-DGO
instance, we run a DFS on the corresponding self-deleting
graph, as previously used in [18]. We stop the DFS if a
complete path is found. If no complete path can be found,
the algorithm returns the longest possible path.

The proof of Lemma 3 uses a spiralling coverage path. We
can use this observation and start the DFS at a central vertex
of the grid. In Section VI we will compare this informed
approach - starting from a central vertex - with an uninformed
approach that randomly selects a start vertex.

VI. EXPERIMENTS

In this section, we evaluate the algorithms introduced in
Section V using a synthetic dataset. All experiments were
performed on a Macbook Air with an Apple M1 CPU (3.2
Ghz, 8 cores) and 8GB RAM.

A. Dataset

The dataset consists of 44 triangular grids in the shape of
triangles and parallelograms with between 6 and 40 vertices.
The distance between two vertices is d = 1. We fix the set of
motion primitives M to the optimal path of a Dubins vehicle
with radius d, as pictured in Fig. 3b and 3c. The size of the
obstacles is 0.5d. These parameters are consistent with the
running example presented in Example 1. Lemma 1 implies
that in an instance with these parameters the self-induced
obstacles do obstruct turns. Due to Lemma 3 and Remark 4
all of these instances are solvable.

B. Results

The wavefront algorithm produces a path that contains many
turns. As turns are the critical movement for the Dubins
vehicle is not surprising, that this approach does not lead to a
single viable path in our experiments.

The hybrid planner using a global planner for the vertex
ordering and a local planner to create a Dubins trajectory also
fails to find a solution to a CP-DGO. Since the global planner
fixes an order that does not account for future self-induced
obstacles, the local Dubins step is often asked to reach a vertex
that has already become inaccessible. Fig. 10 illustrates two
such situations, where every locally computed Dubins path to
the next vertex is blocked by the newly created obstacles.

Fig. 10: Two failure scenarios of the hybrid solver. The green
curve shows the trajectory, while the blue curves are the locally
computed Dubins paths toward the next vertex. All of them
are blocked by the newly created obstacles (grey).

Lemma 3 and Remark 4 prove that each problem instance
within the dataset is solvable, so there always exists a valid
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TABLE I: Computing time (s) of path transform vs. DFS
solver for CP-DGO on triangles (top) and parallelograms
(bottom). Runs exceeding 20 min were aborted (TO). The
hybrid solver failed to solve a single instance of the dataset.

DFS Path Transform | Hybrid

Shape Size Uninf. Inf. Uninf. Inf.

Triangle 6 0.00 0.00 0.00 0.00 -
15 0.15 0.04 0.19 0.03 -
21 33 0.90 44.62 2.6 -
28 116.82  26.63 TO TO -
36 TO 795.1 TO TO -

Parallelogram 9 0.00 0.00 0.00 0.00 -
16 0.25 0.08 0.32 0.08 -
20 1.90 0.15 8.50 2.05 -
25 23.32 0.23 8844 1073 -
30 138.68 2.71 TO TO -
35 2976.25  129.0 TO TO -
40 TO 1086 TO TO -

coverage path. The path transform algorithm and the DFS-
approach both succeed in finding a coverage path for every
problem instance. We ran both algorithms twice on each grid,
the first run being an uninformed search and the second an
informed search, as outlined in the relevant sections, the results
are displayed in Table L.

Using an informed search, either with DFS or the path
transform algorithm, significantly improves computing time
for both parallelogram- and triangle-shaped grids. Despite this,
the computing time still grows exponentially, as illustrated in
Figures 11a and 11b. The informed DFS on corresponding the
self-deleting graph consistently outperforms the path transform
method. Both approaches restart if a found path is not valid,
with a changed start or target vertex. However, the DFS has an
advantage here: its self-deleting graph needs to be computed
only once and can be reused across attempts. In contrast, the
path transform method needs to recalculate the vertex labels
for each new run, resulting in considerable computational
overhead.

VII. STATISTICAL ANALYSIS OF OF THE CP-DGO WITH
FIXED OBSTACLES

Runtime
10°{ ¢ Parallelogram, uninformed L]
A Triangle, uninformed *
1024 & Parallelogram, informed ¢
A Triangle, informed A "
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(a) Computing time of the path transform algorithm.

Runtime
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¢ A (34
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(b) Computing time of the DFS approach.

Fig. 11: Computing time comparison for different shaped
grids using different algorithms. Priming the algorithm with
“good” goal vertices (green) outperforms the uninformed
search (black) in both cases.

obstacles are placed adjacently in the center of the grid.
Otherwise, a complete coverage path cannot be found.

TABLE II: Comparison of average runtime (rt) and maximum
path lengths in different grids depending on the number of
fixed obstacles.

In Section III-C, we analysed the impact of fixed obstacles

on the solvability of a CP-DGO from a theoretical point of-
view. In Lemma 5, we showed that full coverage is achievable
for small, centrally located obstacles. In this section, we extend
that analysis with a statistical evaluation of CP-DGO instances

containing one or two fixed obstacles.

To do this, we created a dataset by randomly placing one
or two obstacles on triangular grids shaped as parallelograms
with dimensions 5 X 5 and 5 x 6. Due to the small size, we
exhaustively explored all 1525 possible positions of blocked
vertex. For each instance, we measured the resulting path
length and computation time, as summarised in Table II.

Our analysis reveals that with one obstacle, full coverage is
possible only if it lies centrally, indicating that Lemma 5 is
tight. Hence, only approximately 4% or 7% of the total dataset
have a complete coverage path. If the obstacle is not in the
center, complete coverage cannot be achieved.

Introducing a second fixed obstacle further reduces the
solvability. Full coverage is again only possible when both

Path 0 fixed obs. 1 fixed obs. 2 fixed obs.
Grid length t (s) t (s) % of cases | rt (s) % of cases
25 23.32 - - - -
24 - 0.11 4% - -
5x5 23 - 3.99 80% 0.98 1.3%
22-19 - 4.51 16% 0.57 80%
16-18 - - - 0.20 18.6%
30 138.68 - - - -
29 - 6.97 7% - -
5% 6 28 - 44.22 80% 0.79 0.2%
24-27 - 58.95 13% 2.63 76.8%
21-23 - - - 0.84 23%

VIII. DISCUSSION AND FUTURE WORK

We introduced a new coverage path problem on grids with

obstacle creation. We performed a theoretical analysis on
geometric constraints and solvability of the CP-DGO. Based
on modelling the CP-DGO using self-deleting graphs we
suggest a solver. This solver outperforms classic coverage
path planners. However, neither solver scales to larger en-
vironments with more than 40 vertices. The analysis of the
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CP-DGO with fixed obstacles reveals that optimal solutions
are only achievable in highly specific instances, highlighting
the inherent difficulty of the CP-DGO.

In our paper, we introduced several limitations: We only
studied triangular grids, one motion type and stipulated that the
vehicle can only turn at vertices, not while traversing edges.
In the following we justify these limitations.

a) Types of grid: We work with triangular grids. Square
grids are common in discretisations but restrict movement to
four directions, which oversimplifies real environments. Trian-
gular grids offers six possible directions. By contrast, adding
diagonals to square grids increases flexibility but introduces
unequal edge lengths, turning coverage into a shortest-path
problem.

In a CP-DGO with large obstacles, movements that de-
viate from the six grid directions almost always intersect
the previously created obstacles. Edges at different angles
are removed immediately because their straight-line segments
would collide with obstacles. Hence, restricting headings to
the six grid directions does not remove feasible solutions; it
removes only those edges that are already blocked. Fig. 12
illustrates how previously formed obstacles obstruct straight
edges in additional directions.

.\%
E F

Fig. 12: Additional edges in a triangular grid pass through
self-induced obstacles.

b) Locations of turns: Restricting turns to vertices avoids
combinatorial explosion: the self-deleting graph of a CP-DGO
with n vertices then has 3n vertices and 157 edges. Allowing
turns between vertices yields 36 transition types (by entry
and exit angles), and the approach to one vertex restricts
options at the next. The approaches from this paper would
not be able to adequately model these constraints. Future
work should investigate partial solutions and heuristics that
can handle this complexity. Mid-edge turns are in principle
possible for a Dubins vehicle, but their feasibility depends on
the exact obstacle positions. As obstacles emerge, the space
needed to perform a turn along an edge may or may not be
available, making such manoeuvres unreliable. Constraining
turns to vertices ensures that all motion primitives remain
consistently feasible throughout coverage. Where we relaxed
this requirement for the hybrid planner (Sec. V-B), no feasible
solution was found.

c) Movement constraints: We used a Dubins vehicle as
a running example. However, this can be replaced by another
type of motion constraint vehicle, e.g. Reeds-Shepp [23].
Using different motion primitives will lead to a different
delete-function in the corresponding self-deleting graph. The
algorithm based on the self-deleting graph will remain the
same. To what extent the resulting paths of other algorithms
are still usable is not clear.
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