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Abstract—Certificate transparency is a promising log-based
system designed to audit internet certificates publicly and is
currently supported by Google Chrome. However, it is potentially
vulnerable to split-world attacks, where certain users are directed
to a fake version of the log. So, to ensure that users are seeing
the same version of a log, gossip protocols have been designed in
which users share data sourced from the log. In this paper, we
propose a new way of evaluating these protocols using probabilistic
model checking, a technique for formally verifying quantitative
properties of computer systems. We describe our approach to
modelling and verifying the protocols, including a novel approach
to determine worst-case model parameters. We analyse several
aspects of the protocols, including the success rate of detecting
inconsistencies in gossiped data and the efficiency in terms of
bandwidth, comparing different protocol variants and also our
own proposals to improve protocol performance.

I. INTRODUCTION

Public key infrastructures are a crucial ingredient of secure
communication and are of growing importance as we see ever
increasing numbers of network-enabled devices and cloud-
based services. In the past, there have been many security
incidents as a result of weaknesses in public key infrastructures
[22], [23] and this has motivated security researchers to find al-
ternatives that do not rely on the trust of certificate authorities to
distribute certificates correctly. Out of all previously proposed
solutions [6], [19], [8], certificate transparency (CT) has been
the most promising [15].

CT uses an append-only log, based a Merkle hash tree data
structure, that stores certificates in such a way that it can
produce two types of proofs, in the form of a list of hashes,
upon request: an audit proof is used to show that a certificate
has been properly added to the log, and a consistency proof
shows how a previous snapshot of the log can be extended to
the current one. CT is currently part of the Google Chrome
web browser and is in active development.

An open problem is how to ensure that the view of a
log used for CT is kept consistent for each internet user. A
powerful adversary with an abundance of skill and resources
at its disposal, such as a totalitarian government, could issue
fake certificates to perform man-in-the-middle attacks on a large
population and have them contact a forked version of the log
that they control. This is known as a split-world attack. Without
a way for the targeted users to share their view of the log
with everyone else, they will never know whether they are the
victims of such attacks.

In an attempt to prevent this, gossip protocols have been
designed [4], [18] which make users distribute data in the
form of signed tree heads, all sourced from a public CT
log. However, as yet, there is insufficient analysis of their
effectiveness to justify their deployment. For example, while
large-scale realistic simulations have been used to measure the
connection overhead and data spread produced by some of these
protocols (see [4]), there is no rigorous analysis of how reliable
they are in detecting split-world attacks; this is a hard problem
since the detection rate depends on a number of factors such
as how users browse the internet and the information they have
cached from a log.

To overcome these issues, in this paper, we apply formal
verification to CT gossiping. In particular, we use probabilistic
model checking, a verification technique designed for analysing
systems that exhibit stochastic behaviour. In the context of
CT gossip protocols, stochastic modelling is needed to capture
uncertainty about the way that traffic flows through a network,
which has a significant effect on the effectiveness of the
protocols. By exhaustively exploring the possible ways that
gossiping nodes can behave and the possible configurations of
the network that can arise, and then numerically solving the
resulting model, model checking can provide precise results
for quantitative system properties such as the probability of an
attack being detected or the expected time taken for information
to propagate across the network. We use the PRISM tool [14]
to model CT gossip protocols as discrete time Markov chains,
and then verify the protocols and study the trade-offs between
such quantitative properties.

Our main objective is to demonstrate how we can evaluate the
effectiveness of CT gossip protocols via model checking, using
the Chuat et al. [4] protocols as a case study. We describe how
to model the protocols and capture the quantitative properties of
interest in the temporal logic used by PRISM. We also describe
a novel combination of probabilistic model checking with
sequential model-based global optimisation, which determines
appropriate worst-case parameters for our models. By studying
a variety of quantitative properties over several different proto-
col scenarios, we show the benefits and drawbacks of deploying
these protocols, comparing them in regards to the security they
provide for users and their efficiency. Additionally, we suggest
how the original protocol designs could be improved by having
servers gossip with each other and justify our claims using the
techniques presented in this paper.



II. RELATED WORK

CT gossip protocols other than the ones by Chuat et al. [4]
have been considered, such as those by Nordberg et al. [18].
These differ in that they rely on a dedicated auditor to collect
information from across the internet and contact the log for
proofs on a regular basis.

There is also significant interest in gossip being used in trans-
parency systems to verify consistency. As part of CONIKs [17],
which is designed to publicly audit encryption keys used for
peer-to-peer communication systems, Melara et al. mention
how gossip protocols can be used by auditors (the identity
providers that run CONIKs servers) to detect non-equivocation
of a log by sharing snapshots of it. Building upon CONIKs,
Etemad and Küpçü introduce KAS (key authentication service)
which they show to be more efficient in regards to storage and
computation while still using gossip [5].

Formal verification of protocols in general is a broad field,
but our focus here is specifically on quantitative or probabilistic
approaches. Probabilistic model checking has been used in the
past to analyse the effectiveness of gossip protocols in non-
security settings. Fehnker and Gao [7] analysed the perfor-
mance of gossiping and flooding protocols in a small network
using model checking while considering cases where network
collisions and data loss occurs, combining this with large-scale
simulations in order to see if the results were consistent for
more realistic network models. Kwiatkowska et al [13] provided
quantitative analysis of a gossip protocol that uses random peer
sampling in very small networks. It included a scheduler which
determined the order in which node executes the protocol, also
keeping track of the nodes which have already exchanged data.
Unlike the models found in previous work, the models used for
this paper are based on a client-server network model where
clients are unable to communicate with each other and must
gossip information through servers.

More recently, Webster et al. [21] applied verification via
PRISM to analyse the Firefly-Gossip (FiGo) algorithm used
in IoT devices to communicate with nearby devices and syn-
chronise their internal clocks. They discussed the abstraction
process of the algorithm and design assumptions to significantly
reduce the size of the PRISM model e.g. the speed the clock
‘ticks’ are kept constant for each node due to the homogeneity
of the hardware. By taking account into the ‘clock drift’
phenomena caused by the temperature of the node’s hardware,
they were able to find the steady-state probability of the clocks
being synchronised at varying levels of temperature. However,
at most four sensor nodes are present in the models and
modelling for larger networks still presents a challenge due
to the state space explosion problem.

III. BACKGROUND

A. Gossiping for Certificate Transparency

The protocols of Chuat et al. [4] make clients and servers
exchange log-sourced data which we call gossip messages, with
servers acting as proxies for clients to talk to each other across
different areas of the internet. Signed tree heads (STHs), the

main pieces of data that are gossiped in the protocol, contain
the unique object identifier of the log they are generated from,
the root hash of the log’s Merkle tree, the corresponding tree
size when the hash was generated, a timestamp from when it
was created and a public signature.

We briefly explain how the protocol works. Firstly, af-
ter a client connects to an HTTPS-enabled server and fin-
ishes the negotiation phase of the TLS handshake, it calls
getClientMessage() to generate the gossip message m1

which is piggy-backed on an HTTPS request. The server
receives m1 and checks to see if it is valid, meaning that
all the STHs included in the message are correctly signed
by a known log and contain the root hash of a Merkle tree
with at least one certificate appended. Then, the server replies
in kind by calling getServerMessage() to generate the
gossip message m2 which is sent back to the client using an
HTTPS response. With data from both parties now successfully
exchanged, after performing the necessary consistency checks,
both the client and server must refresh their knowledge of the
log if the messages they retrieved have newer information.
Since the gossiping was done via HTTPS, no-one can know
whether any gossip happened without breaking the encryption
used.

The two variants of this protocol that were given by Chuat
et al. are called STH-Only gossiping, where both m1 and m2

consist of only one STH, and STH and consistency proof
gossiping, where messages contain a pair of STHs with a
consistency proof between their respective tree sizes; for the
rest of the paper, we will refer to the latter version as STH-and-
proof. The idea behind gossiping proofs as well as messages
is to reduce the amount of connections an entity needs to
make to a public log when requesting proofs as part of the
protocol execution. The updating procedure for the client is
very similar in both versions: using the server’s message, it
requests a consistency proof from the log whenever the tree size
in m2 is distinct from what the client already knows, updating
itself when necessary using the contents of m2. Next, if the
server’s signed certificate timestamp (SCT), a ‘promise’ from
the log to append the corresponding certificate sent to the client
beforehand through the TLS handshake, has not been audited
yet, then the client will request both inclusion and consistency
proofs from the log to check if the certificate exists in the log
and updates its local state by retrieving the latest STH from the
log.

Whenever someone receives an STH either through gos-
siping or by directly contacting the log, the protocol uses
the checkSTH() method to check for consistency between
multiple STHs when they are passed as parameters. To explain
how this method works, suppose that we have two STHs sa
and sb sourced from the same log, which are both associated
with tree sizes ta, tb ∈ N respectively. checkSTH(sa,sb)
will verify two things: (i) If ta = tb, check the root hashes of
sa and sb are the same; (ii) If the timestamp of sa is older
then the timestamp of sb, check that ta ≤ tb. If either of these
conditions are not met, then the protocol treats this as a security



incident and the log cannot be trusted. Otherwise, the protocol
can be executed normally.

When a node does detect log inconsistency, either by
checkSTH() failing or the log providing nothing when given
a proof request, the node will start to propagate a warning
message that encapsulates the issue that was discovered instead
of STHs or proofs. A recipient of the warning message will
pass it onto a log monitor for them to investigate further and
determine if the log is misbehaving. The updating procedures
for the server in the two versions work very differently. In STH-
Only gossiping, the server is required to only store one STH,
whereas in STH-and-proof the server will record the messages
it receives using a ‘map’ and will gossip them depending on
the message it receives from clients.

B. Probabilistic Model Checking

Probabilistic model checking is a formal verification tech-
nique that has been used to analyse computer and control
systems and many other phenomena that exhibit random be-
haviour [12]. By mathematically describing every possible type
of behaviour in an exhaustive manner, model checking gives us
a way to capture the possible states a system can be in and how
it may evolve between states. In this paper we use discrete time
Markov chains (DTMCs), where a transition between abstract
states occur with a prescribed probability.

In order to analyse or verify system properties, we specify
them formally using temporal logic; for our purposes we use
probabilistic computational tree logic (PCTL) [9], extended
with operators to reason about costs and rewards [12]. For
example, the PCTL formula P=?[F≤t “attack successful” ] rep-
resents the probability of a system being attacked successfully
within t ∈ N time steps. We also augment DTMCs with reward
structures that assign numerical values to states or transitions.
These are useful, for example, to measure how many times a
client needs to contact a log to request a proof or how many
nodes have the latest STH. PRISM provides various reward-
based properties. Examples are:
• Rqueue

=? [I=t] - the expected size of a queue after exactly t
steps (instantaneous reward).

• Rpower
=? [C≤t] - the expected cumulative amount of power

used within t steps (cumulative reward).
• Rrequests

=? [F end] - the expected number of requests before
a protocol terminates (reachability reward).

For precise details of the semantics of these, and the algorithms
required to model check them, see for example [12].

C. Sequential Model-based Global Optimisation

Finding the maxima or minima of complex, multivariate
functions can be a costly process. Furthermore, the analytic
form of the function itself may not be known, and so it is
necessary to optimise it using only a series of inputs and
outputs. Given an infinite set χ and a real-valued objective
function F : χ → R, black-box optimisation finds a point
x∗ ∈ χ that best minimises (or maximises) F . The function
can only be called a finite number of times using an input x to
obtain F (x).

Sequential model-based global optimization (SMBO) [10]
is a form of Bayesian optimisation which uses a cheaper
surrogate function in place of F . It continuously tunes the
surrogate with each received output of F (x∗), with x∗ being
the input suggested by the surrogate model proposes, until we
reach the maximum number of trials permitted SMBO is a
popular method in the field of machine learning when neural
networks but can be equally applied to similar problems where
a parameter space needs to be explored in order to optimise a
particular function [10].

SMBO algorithms can be generally described as follows:
given an objective function F : χ → R, we replace it
with a surrogate model M and repeatedly perform two tasks:
optimise a criterion function S, which measures the ‘interest’
of asking F which points to evaluate, and reconfigure M
after expanding our dataset with a new data point (x∗, F (x∗)).
In this paper, we use the tree-structured Parzen estimator
(TPE) algorithm implemented by the Hyperopt library (see
subsection V) which creates two non-parametric probability
density functions formed by previous observations when the
output of F is above or below a threshold chosen by the
algorithm. In other words, it creates two sets where one of them
consists of all the “good” points that sufficiently minimises F .
TPE chooses the next point by drawing from the density formed
by these “good” points and evaluating the ratio between these
two densities [1].

IV. MODELLING AND VERIFICATION

A. Network Abstraction

Recall that clients gossip STHs using servers as staging posts
that will distribute them to other clients. For the purposes of
modelling and verification, we define an abstraction of the
network comprising the clients and the servers they regularly
connect with. We distinguish between several types of client
and servers, based on their behaviour, and aggregate the be-
haviour of clients or servers of the same type.

In our model, network traffic occurs in a sequence of
‘rounds’, during which clients make connections with servers.
We assume that all clients are capable of gossiping. The average
rate at which these clients gossip with servers, which we call the
gossiping rate, is defined as the average proportion of outgoing
connections to these servers where gossip is being used. The
average rates at which at which these clients connect to each
domain given that it will gossip with them, called the client
profile, is the average proportion of outgoing connections to
each server where gossip is being used out of the total number
of outgoing connections to these servers where gossip is used.
We discuss how we derive suitable values for these parameters
in Section V.

Formally, we define a network topology to be a triple
(C,S,P,G), where:

i) C is the set of clients types,
ii) S is the set of server types,

iii) P : C × S → [0, 1] is the client profile, where, for each
c ∈ C, we have

∑
s∈S P(c, s) = 1,



iv) G : C → [0, 1] is the gossiping rate function.
We assume that there exists a log server that everyone in the

network can contact which is operated by a maintainer. The
maintainer can either be honest or malicious depending on the
scenario; we describe this in more detail later.

B. Modelling the Protocol

The basic structure of our models can be described as
follows: first, clients randomly decide whether to participate
in a round of gossiping depending on their gossip rate. If
they decide not to, they do nothing until the next round of
gossiping commences. Otherwise, they choose which server to
connect with using their client profile and ‘gossip’ their STH.
Afterwards, everyone in the round updates their local state by
comparing against the states of the entity they are connected
with and changes their own internal state accordingly. After the
round is complete the clients reset themselves by disconnecting
but remember their stored messages before a new round begins.

We can initialise the states of our clients and servers in many
ways to have different STHs and SCTs stored, bringing more
complexity to our model. Therefore, to avoid these problems
we impose the following design restrictions:

i) Every client and server in the network will contact only
one log; clients that are victims of a split-world attack are
redirected to a forked version of the log.

ii) Clients and servers already have valid and non-empty data
(i.e., the tree sizes of stored STHs are non-zero) before
gossiping begins.

iii) All clients and servers are gossip-enabled.
iv) All the clients have previously audited the SCTs for the

servers they can contact.
The state of each client in the model comprises several

variables. First, cg indicates which stage they are at in the
protocol execution. A connection state cs records the server
they are currently connected with (cs = 0 means that the client
is not connecting with anyone) and cskip denotes whether or not
a client decides to skip a round. Note that cs is different from
cskip because if the latter is true then nothing gets altered in a
round apart from cg . A variable csth keeps track of the STH
the client has stored, where its usage depends on the scenario
we are looking at. Each server has one variable ssth that has
an equivalent purpose to csth.

Normal and Split-World Scenarios. We want to analyse
how well the protocols adapt under normal conditions and
during a split-world attack; the log maintainer is honest in the
former situation, while in the latter it attempts to fork the log
for malicious purposes.

For the normal scenario, the nodes in the network start with
an old STH sl that was generated before the rounds of gossiping
begin. We let the one server and one client have the newest STH
sm to start with, where tl < tm. The reason for this is that, for
corporations who provides service to millions of users, it will
want to have the latest information of the log for the purposes of
security and a client may, for example, act as a self-designated
CT auditor who contacts the log server outside of gossiping.

Our second scenario looks at the case when the log main-
tainer decides to target a single client by forking the log and
using fake certificates to steal sensitive information regardless
if someone discovers what happened afterwards (a ‘smash-and-
grab’ attack). We describe the threat model as follows. Before
gossiping in the model begins, the log commences a split world
attack and by maintaining two separate ledgers forked from
the original log at tree size tl (the current size everybody in
the network knows) - the genuine log and a ‘rogue’ log. This
rogue log has appended to it fake certificates which are used for
servers hosting spoof websites and one of the websites being
mimicked includes one present in our network topology. The
new STHs corresponding to the genuine and rogue logs are sm
and s′n respectively, where tm, t′n ∈ N are the respective tree
sizes, tm < t′n and timestamp(sm) < timestamp(s′n) - that way,
the checkSTH() function used in the protocols that checks for
inconsistency can be bypassed. Up to tree size tl, both logs have
the same list of certificates, implying that consistency between
tl, tm and tl, t′n can be proven.

The rogue log is in collusion with the spoof server previously
mentioned using a fake certificate, their goal being to steal
information from a particular user when they connect to the
server. If somehow a client can be targeted by having their
internet connections controlled so that any proof/STH requests
they make is redirected to the rogue log, then after gossiping
with the spoof server the clients update themselves using the
STH s′n. Suppose that this does happen, meaning that at the
beginning we have one updated server with data sm and a
client has s′n. Everyone else in the network has the old STH
sl such that tl < tm < t′n. The spoof server is never contacted
again (or the probability of being contacted in the future is so
small it is negligible).

In our model, detection occurs when either a client retrieves
both sm and s′n through gossiping and receives no response to
its request for an extension proof (the log will not be able to
provide a valid proof between the real and fake data) or receives
a warning message from a server that has already discovered
that an inconsistency was found.

The variables csth and ssth are integers that represent the
data type each entity possesses, and are summarised in Table I.
The rounds of gossiping end when at least one client detects that
something is wrong for the reasons mentioned previously. In
addition, we use Boolean variables cd and sd as ‘detection flags’
which are true when a client or server have already detected
something, respectively.

Protocol Variations. As previously mentioned in Section III,
the format of the gossip messages is different between the
STH-Only and STH-and-Proof versions of the Chuat et al. [4]
protocols. Each client stores only one message in both versions,
but in STH-and-Proof a server stores multiple messages and
gossips them depending on what it receives. However, by
having everyone in the network possess a baseline knowledge of
the log, we make servers gossip only the messages represented
by ssth in the model. Table I shows which messages correspond
to the values that csth/ssth can take in both our normal and
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Fig. 1: An abstract representation of the growth of the log in (a) a
normal scenario and (b) during a split-world attack.

Normal case Gossip message format
csth/ssth Data Type STH-Only STH-and-Proof
False Old data sl (sa, sl, pa,l)
True New data sm (sl, sm, pl,m)

Split world case Gossip message format
csth/ssth Data Type STH-Only STH-and-Proof

0 Old data sl (sa, sl, pa,l)
1 Real data sm (sl, sm, pl,m)
2 Fake data s′n (sl, s

′
n, pl,n)

TABLE I: Summary of what the csth/ssth variables represent in the
models for each value for both the normal and split-world cases.

split-world models.
We are interested in how often the protocols make clients

contact the log during their execution. To measure this in our
models we use reward structures to count how many times a
consistency proof is requested from clients. Each variation of
the protocol has different requirements for the clients to call
the log depending what gossip messages they receive:
• STH-Only - the tree size of the received message is

different from what the client already knows, regardless
of how old it is. In regards to our models, this means that
between a connected client/server pair the log is ‘called’
when the value of csth is not equal to ssth.

• STH-and-Proof - if we let the client’s message be
(sa, sb, pa,b) and the obtained message (sc, sd, pc,d),
where ta, tb, tc, td ∈ N are tree sizes, it is required that
tb 6= tc and tb 6= td. Due to our model design, this
condition can occur if a client has already updated but
the server it is gossiping with in a round has not. The
client will also request a proof when it obtains both the
real and fake data which will trigger a detection.

C. Protocol Properties

We want to evaluate certain quantitative properties that will
help us determine if the protocols provide good security and do
not place a burden on internet bandwidth. To be more precise,
we will look at three desired properties:

i) Data dissemination: How effectively do the protocols
spread the latest data to each client in the network?

ii) Protocol efficiency: How much demand does the protocol
put on the log?

iii) Rate of detection: How quickly can the protocols detect a
split-world attack occurring in the network?

To evaluate property i) using our models, we will measure
the expected proportion of clients to possess the new STH per
round, computed using reward structures that track the current
proportion after round r ∈ N. In PRISM, this is written:

Rclient proportion
=? [I=r]. (1)

Alternatively, we can find the expected amount of gossiping
rounds it takes until every client in the network has the latest
data, i.e., csth is set to true for every client:

Rrounds
=? [F clients_all_updated].

Likewise, we can measure ii) using reward structures, distin-
guishing between the conditions for each variation to request a
proof, and find the cumulative amount of log connections made
from clients per round. We use the property:

Rlog connections
=? [C≤r]

Property iii) is exclusive to the split-world model and can be
written using the P operator which is used to compute the
likelihood of the occurrence of a specified event:

P=?[F≤r detect]. (2)

Finally, to find the expected number of rounds that will take
place before the detect event occurs, then we can use the
property Rrounds

=? [F detect].

V. MODELLING PARAMETERS

Our models include a number of parameters that need to
be defined, primarily those relating to the network abstraction
described in Section IV-A. We now summarise those parameters
and our approach to choosing suitable values for them. Our
approach is based on defining potential ranges for these param-
eters and then using sequential model-based global optimisation
(SMBO; see Section III-C) to determine worst-case values in
terms of the reliability or security of the protocol. This means
the results we generate for quantitative aspects of the protocol’s
behaviour can represent guarantees on its performance over a
range of network scenarios.

In this paper, we demonstrate our methodology using artifi-
cial network data, starting with the presumption that our clients
are grouped into three abstract types with differing behaviours,
which we will call C1, C2 and C3; we also use five server
types S1, . . . , S5. Each (honest or split-world) model is then
characterised by the following parameters:

i) type_freq - The number of clients of each type;
ii) init_states - The initial states of the clients/servers,

in particular which have the latest log data;
iii) gsp_rates - The gossip rates for each client type;
iv) intervals - The collection of real-valued intervals for

each client type profile, specifying the range of values each
probability can take.



Server
Client type

C1 C2 C3

S1 [0.01, 0.1] [0.01, 0.1] [0.01, 0.1]
S2 [0.2, 0.4] [0.2, 0.4] [0.2, 0.4]
S3 [0.2, 0.3] [0.4, 0.5] [0.15, 0.25]
S4 [0.3, 0.4] [0.2, 0.3] [0.15, 0.25]
S5 [0, 0.29] [0, 0.19] [0, 0.49]

TABLE II: Probability intervals used for each of our three client types,
denoted as C1, C2 and C3. We assume that they can connect with five
distinct services in the network.

For our experiments, we fix a representative set of intervals
for the client profile probabilities, shown in Table II. Here,
for simplicity, we will also fix gossip rates at 0.5. For other
model parameters, we aim to determine (using SMBO) values
that produce the worst-case result for properties we identify
as important; for the normal case this is the data dissemination
rate and for split-world this is the detection rate (see subsection
IV-C). The main idea here is to show evidence of good results
for server gossip in the worst-case and then take it as evidence
of good results in all cases.

We developed a Python application which uses the Hyperopt
library [2], [3] to search over our parameter space and suggest
the parameters to use after a number of evaluations. The code
and the full set of results produced for this paper are available
from [24]. The objective function we optimise first constructs
a PRISM model description according to the parameter inputs
given and afterwards calls PRISM to analyse the model. A
number of options are given to the user to customise how the
objection function is executed, for example the PRISM property
to use during verification. The objective function outputs a real-
valued result related to the property we want to investigate.

VI. SERVER-TO-SERVER GOSSIP

We also define a variant of the gossip protocols in which
servers gossip directly with each other instead of behaving as
static entities. Server-to-server gossiping can help spread STHs
to different regions of the internet quickly. This mitigates the
need for users to venture outside their typical activity to obtain
fake data from potentially malicious sources, which we rely on
in the case of client-server-only gossip.

Some design decisions arise when deciding how to make the
servers gossip. We need to find the correct balance between data
sharing and servicing clients and decide how many servers a
server should contact in each session; having millions of servers
gossip with each other at the same time will place a strain on
bandwidth and will result in dissatisfied customers.

We suggest some ways in which servers can discover peers
that they can gossip with, inspired by existing mechanisms used
by the Tor anonymity network and BitTorrent:
• Directory authority - Tor clients contact a directory

authority in order to discover any relay points that can
be used to create secure channels [20]. To apply this to
our extended protocols, we can establish similar authorities
that keep track of a list of selected servers for gossiping

• Distributed Hash Table (DHT) - BitTorrent uses a
DHT mechanism which removes the need for a point of

a)

Parameter Best suggestion
type_freq C1: 1, C2: 1, C3: 3

init_states
Client of type C1

and server S1 has new data
C1 distribution [0.087, 0.205, 0.283, 0.391, 0.034]
C2 distribution [0.012, 0.377, 0.408, 0.202, 0.001]
C3 distribution [0.02, 0.223, 0.152, 0.24, 0.365]

Worst result 9.146

b)

Parameter Best suggestion
type_freq C1: 1, C2: 1, C3: 3

init_states
Client of type C3 has fake

data; server S1 has real data
C1 distribution [0.012, 0.201, 0.287, 0.382, 0.118]
C2 distribution [0.014, 0.359, 0.406, 0.206, 0.014]
C3 distribution [0.01, 0.202, 0.154, 0.164, 0.47]

Worst result 36.007

TABLE III: The worst-case parameters discovered for a) the data
dissemination rate for the honest case and b) the detection rate in
the split-world case. Values rounded to 3 d.p

authority (a ‘tracker’) that keeps track of all the clients in
the network. Clients store a DHT, which in practice acts
as a sort of routing table, for a small number of ‘good’
nodes that can respond to requests successfully [16].

We extend our models with server-server gossip using a
simple abstraction: when a server has the latest log data it
gossips this outside the update phase, i.e. before clients connect
with them. To make sure that a server rarely shares data with
everyone and not strain its performance, we fix a probability
for it choosing another server to gossip with (including itself)
at 0.2. To reduce the complexity in our models, gossiping
is conducted using unidirectional channels, i.e. servers send
messages but do not receive replies.

VII. RESULTS

In total, we studied four protocol variants:
• STH-Only protocol without servers gossiping,
• STH-Only protocol with servers gossiping,
• STH-and-proof protocol without servers gossiping,
• STH-and-proof protocol with servers gossiping.

The first and third are the original designs presented in [4],
which we will refer to as the initial designs. The others are
our modified versions, which we call the extended designs. We
model both types of design under normal conditions and when
a split-world attack is taking place, both described previously
in Section IV.

We used PRISM’s symmetry reduction functionality [11] to
improve scalability where clients exhibited the same behaviour.
We also use (simulation-based) statistical model checking to
generate approximate results. In the following graphs we give
the 99% confidence interval using error bars. We will also use
statistical model checking to find estimates for larger models
where there are many clients in the network while still fixing
our number of servers to five.

Using our Python application (see Section V), we performed
200 trials each on our normal and split-world models to find
parameters that produce the worst-case result for our properties.
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Fig. 2: Plots of the model checking results for the normal scenario.

The properties we used for the normal and split-world models
are the expected number of rounds it takes to completely spread
the latest data to all clients, respectively, so we want to try and
maximise them. Table III provides information on the resulting
parameter values for each model type.

A. Normal Scenario

Next, using the parameters described above, we analysed
several properties of our models, looking at the first twenty
rounds of gossiping.

Data Dissemination. We measure the expected proportion
of clients that have the latest log data (see Fig. 2(a)). It is clear
that having servers gossip ameliorates the data spread; as there
are more chances of a server being updated per round, this will
impact the client’s chance of obtaining the latest data too. For
both versions of the Chuat et al. [4] protocol, we expect the
dissemination rate to remain the same as the updating procedure
for both of them are very similar.

Client Log Connections. We measure the number of con-
nections made to the log to determine the inefficiency of the
protocol. Fig. 2(b) shows that STH-and-Proof requires less
log connections from clients. This is because in STH-Only the
events where a server’s gossip message has a different tree size
to what the connected client has is very frequent. However,
for STH-and-proof the conditions to request a proof are very
specific so the chances of a client calling the log is very small.
Server-to-server gossip slightly improves efficiency for both

(a) Detection rate

(b) Log connections

Fig. 3: Model checking results for the split-world scenario.

versions in the long term, most likely because servers will
update themselves sooner than clients.

B. Split-World Scenario

Detection Rate of Attack. We expect that the chances of
detection per gossiping round to be the same for both versions
of the protocol; in the context of our PRISM model design, the
conditions for detection in STH-Only and STH-and-Proof are
exactly the same. From Fig. 3(a) we see that using the initial
design of the protocol to detect attacks takes a while, where
after twenty rounds there will only be about a 42% chance for
a client to notice that something is wrong. However, making
servers gossip will significantly improve the detection rate as
the legitimate data will be spread through the network very
quickly and result in an inconsistency being found when fake
data is gossiped. We should make aware that the results we
obtained does largely depend on the initial conditions in our
network; if we let a client with a high connectivity rate be
targeted, then it would be more likely for someone to detect an
attack in only a few rounds.

Client Log Connections. The patterns in the results from
Fig. 3(b) are very similar to what we have observed previously
in the normal scenario but we expected that slightly more
connections will be made on average due to the addition of
more types of data being passed around in the network.
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Fig. 4: Statistical model checking results for the normal scenario.

C. Estimating Quantitative Properties for Large Networks

We investigate the gossip protocols when deployed in larger
networks; this is very hard to achieve through standard model
checking so we rely on PRISM’s statistical model checking
methods (which are based on discrete-event simulation) to find
approximate values. Taking our original models with five clients
and servers each, we scaled them to include 50, 100 and 200
clients while still fixing the number of of servers at five and
preserving the proportions of each type of client. For all our
results, we use the statistical methods to find our estimations
with their respective 99% confidence interval by generating
2000 path samples. The amount of time it took to output results
did often fluctuate but in general we found that it took longer
to find results for our split-world models.

Normal Scenario. For both the initial and extended designs,
we approximate the data dissemination for the first 20 rounds
of gossiping. In Fig. 4(a), we also provide the confidence
intervals at each round represented by a black bar. We can
clearly see that by having our servers gossip the clients will
get updated quickly. When measuring efficiency, in Fig. 4(b)
we see a similar pattern emerging from when we looked at a
smaller network, with the STH-and-Proof version looking more
scalable as the number of clients increase. However, server
gossip does not appear to affect efficiency significantly.

Split-world. The approximate detection rate for the first 20
rounds is shown in Fig. 5(a), suggesting that server gossip
improves this property. One interesting observation is that the
detection rate for the extended design appears invariant of the

(a) Detection rate

(b) Log connections

Fig. 5: Statistical model checking results for the split-world scenario.

number of clients there are in the network. This is likely
because, as more servers go into the detection phase early,
computing the probability of detection reduces to finding the
chances of at least one client connecting to a server that has
already started to gossip warning messages. Maintaining the
ratios between the types of client may have also had an impact
on the results too. In Fig. 5(b) we see similar outcomes in the
expected cumulative total of log connections as in the normal
scenario but STH-Only produces slightly more connections than
before with server gossip as the number of clients increase to
200.

VIII. DISCUSSION

From our analysis, STH-and-Proof appears to be more adapt-
able to large networks than STH-Only as it requires fewer client-
side connections to check for data consistency. Even at a low
rate of gossiping, our simple server-to-server gossip mechanism
improved the data spread and as a result clients could detect
inconsistencies earlier. In practice, servers will not always be
able to gossip and administrators may object to their machines
talking with other servers they have no control over. Despite
this, we recommend that future gossip protocols for CT make
servers gossip in the same fashion as clients instead of being
static objects in the network.

One of the main challenges in designing our models was
overcoming the state space explosion. We have used several ap-
proaches to improve scalability, notably our grouping of clients
into clusters in our network abstraction, and the combination of
this with symmetry reduction. However, modelling for networks



with much larger networks of clients with diverse behaviours
is still a challenge.

Another limitation to our models is the design compromises
we had to make. In large networks, many devices will have
different levels of knowledge of the log, connecting with many
servers concurrently and will be auditing SCTs as part of the
protocol logic, requiring extra log connections. Apart from
including more nodes in the network and more diverse client
profiles, a further detail we could include in the models are
Boolean flags for each client indicating which SCTs they have
successfully audited or make csth/ssth take a range of integers
indicating the largest tree size the client/server knows. On
the other hand, this will make model checking much more
expensive and, when comparing the SCT audit process in STH-
only and STH-and-Proof, the logic for both of them is identical
so adding this feature will not add a new layer of meaning to
our results.

With the growing prevalence of cloud-based services on the
internet, gossip protocols such as the ones discussed in this
paper will become vital in the future to ensure the protection
of these services against non-equivocation attacks that can
severely affect the users and businesses that rely on them.
By managing a diverse range of connections from across the
globe, cloud services are well suited to act as auditors that pool
large amounts of STH data and perform consistency checks
with them. As soon as a log is deemed untrustworthy, warning
messages can easily be propagated to clients (or other third-
party auditors) that are in constant contact with the cloud which
will quickly gain the attention of a log monitor. Finally, as
we have previously seen, the relatively little overhead some
of these protocols produce indicates that they’re unlikely to
negatively impact bandwidth and thus maintain the availability
of these services. Whilst we used a client-to-server network
topology in this paper, there should be very little change in
our methodology when analysing a “client-to-cloud” network
topology where clients randomly connect with distinct cloud
services.

In the future, we would like to investigate how we can reli-
ably collect internet traffic data so we can establish more unique
client types for our models. It would also be interesting to see
if the techniques presented in this paper can be applied to other
gossip protocols proposed for other log-based systems [17], [5].

IX. CONCLUSION

We have presented a new methodology for formally evaluat-
ing quantitative aspects of the security of gossip protocols for
certificate transparency, using probabilistic model checking. We
explained our abstraction of the network and the properties we
measured. We applied Bayesian optimisation to find the param-
eters for our models that give the worst-case scenarios for our
properties. This means the results we generate for the protocol’s
behaviour can represent guarantees on its performance over a
range of network scenarios.

From our results, it appears that gossiping consistency proofs
with STHs improves the security of users at minimal cost. We
have also proposed a variant of the protocol in which servers

gossip directly with each other (instead of just via clients).
Our verification methods show that this variant improves the
security and efficiency aspects of the protocols.
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