
Robust Verification of
Concurrent Stochastic Games

Angel Y. He and David Parker

Department of Computer Science, University of Oxford, Oxford OX1 2JD, UK
angel.he@balliol.ox.ac.uk, david.parker@cs.ox.ac.uk

Abstract. Autonomous systems often operate in multi-agent settings
and need to make concurrent, strategic decisions, typically in uncertain
environments. Verification and control problems for these systems can be
tackled with concurrent stochastic games (CSGs), but this model requires
transition probabilities to be precisely specified — an unrealistic require-
ment in many real-world settings. We introduce robust CSGs and their
subclass interval CSGs (ICSGs), which capture epistemic uncertainty
about transition probabilities in CSGs. We propose a novel framework for
robust verification of these models under worst-case assumptions about
transition uncertainty. Specifically, we develop the underlying theoreti-
cal foundations and efficient algorithms, for finite- and infinite-horizon
objectives in both zero-sum and nonzero-sum settings, the latter based
on (social-welfare optimal) Nash equilibria. We build an implementation
in the PRISM-games model checker and demonstrate the feasibility of
robust verification of ICSGs across a selection of large benchmarks.

Keywords: Robust quantitative verification · Probabilistic model check-
ing · Concurrent stochastic games · Epistemic uncertainty.

1 Introduction

Autonomous and intelligent systems are increasingly deployed in environments
that are nondeterministic, stochastic and concurrent, such as autonomous vehicle
coordination, robotic exploration and networked market interactions. In these
settings, decision-making involves simultaneous strategic interactions between
multiple agents, often within uncertain and dynamic environments.

Concurrent stochastic games (CSGs) [47], also known as Markov games, pro-
vide a powerful framework for modelling such multi-agent systems. Unlike the
simpler model of turn-based stochastic games (TSGs) [15], CSGs allow players
to select their actions simultaneously, without knowledge of each other’s choices.
The outcomes depend probabilistically on the players’ joint actions.

Formal verification techniques for CSGs provide a means to establish quanti-
tative guarantees on the behaviour of these stochastic multi-agent systems, e.g.,
ensuring that “a drone can safely reach its target with at least 95% probability,
regardless of the actions of other aircraft”. They can also be used to automat-
ically synthesise controllers or strategies that achieve these guarantees. Early

http://orcid.org/0009-0008-6481-0754
http://orcid.org/0000-0003-4137-8862


2 A. Y. He & D. Parker

work on these models focused on the zero-sum setting (e.g., [9, 17, 18]), whilst
more recent work has added support for various temporal logics and the use of
nonzero-sum game-theory solution concepts such as Nash equilibria (NE) and
their variants [34,35], along with widely used tool support [31].

Despite their modelling effectiveness, a limitation of CSGs is that they as-
sume transition probabilities are precisely known. In reality, system dynamics
are often only partially known due to abstraction, modelling inaccuracies, noise,
or limited data in learned statistical models. This is particularly evident in data-
driven contexts like (model-based) reinforcement learning (RL), where transition
probabilities are estimated from data. These issues limit the reliability of guar-
antees from verification and can make synthesised strategies sub-optimal.

In recent years, there has been growing interest in principled approaches
to reasoning about epistemic uncertainty in probabilistic models for verifica-
tion [3]. For the simpler, single-agent setting, where decision making is per-
formed using Markov decision processes (MDPs), a well studied approach is
robust MDPs (RMDPs) [28,41,54], which capture model uncertainty via a set of
possible transition probability functions. A common subclass is interval MDPs
(IMDPs) [22], where transition probabilities are bounded within intervals. Veri-
fication techniques then provide guarantees or synthesise optimal controllers in
a robust manner, i.e., making worst-case assumptions about model uncertainty.

However, analogous frameworks for stochastic multi-agent systems remain
underdeveloped. In this paper, we address that gap and propose robust concur-
rent stochastic games (RCSGs), a novel verification framework that augments
CSGs with transition uncertainty and robust solution concepts. In fact, RMDPs
already have a link to stochastic games: they can be interpreted as a zero-sum
TSG between the agent and an adversarial nature player that resolves uncer-
tain transition probabilities; this view underlies many algorithms for solving
RMDPs [10, 28, 39, 41]. However, extending this framework to multi-agent, and
especially concurrent settings, is non-trivial, as the interplay between transition
uncertainty and simultaneous player actions significantly complicates both the
reasoning and the very definition of robustness.

Contributions and challenges. In this work, we develop a framework for ro-
bust verification of CSGs under adversarial transition uncertainty, covering both
zero-sum and nonzero-sum settings with finite- and infinite-horizon objectives.
We focus primarily on the subclass of interval CSGs (ICSGs) characterised by
transition probability intervals. Extending robustness from MDPs to concurrent
multi-agent games introduces fundamental challenges: optimality requires mixed
strategies; equilibria definitions must incorporate uncertainty resolutions; and, in
the nonzero-sum case, the adversarial role of nature differs from standard best-
response reasoning. To address these, we: introduce robust equilibrium notions;
establish theoretical results, e.g., on value preservation under player/nature ac-
tion ordering; and present novel reductions from ICSGs to (non-robust) CSGs by
adding an adversarial nature player. The latter yields a 2-player game in the zero-
sum case, and a more subtle 3-player construction in the nonzero-sum case where
nature minimises social welfare. Building on these results, we derive tractable al-
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gorithms for solving ICSGs and implement them in PRISM-games [31]. We show
their practicality via empirical evaluations on a set of large benchmarks: veri-
fication for zero-sum ICSGs performs comparably to CSGs, while nonzero-sum
methods scale effectively but also provide insights into the intrinsic challenges
of robust multi-agent reasoning.

Related work. In the single-agent setting, RMDPs are solvable via robust
dynamic programming (RDP) [28, 41, 54]. Recent work develops generic algo-
rithms for polytopic [10, 53] and more general RMDPs with constant support
(e.g., [39]) via reduction to TSGs. Robust methods for multi-agent settings are
more limited, restricted to turn-based polytopal stochastic games [8], qualitative
verification [5]; or sampling-based, learning-driven algorithms (e.g., [19, 45, 48])
for the similar problem of distributionally robust Markov games [21, 37, 47] in
RL, without model-checking capabilities or verification guarantees.

2 Preliminaries

Let D(X) denote the set of discrete probability distributions over a finite set X,
and let 1[A] be the indicator function that equals 1 if A holds and 0 otherwise.

2.1 Robust Markov Decision Processes

A core model for verification and control tasks in the context of uncertainty is
Markov decision processes (MDPs) [4, 27].

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s̄, A, P ), where S is a finite set of states with initial state s̄ ∈ S; A is a finite
set of actions; and P : S ×A ⇀ D(S) is a probabilistic transition function.

A(s) denotes the enabled actions in state s. We write Psa = P (s, a) for the
next-state distribution at s under action a and Psas′ = Psa(s

′) for the cor-
responding transition probability to s′. A path is a finite or infinite sequence
π = s0

a0−→ s1
a1−→ . . . such that s0 = s̄, ai ∈ A(si) and Psiaisi+1

> 0 for all i. We
write π(i) = si, π[i] = ai, and let FPathsM and IPathsM be the sets of finite
and infinite paths in M , respectively.

A strategy (or policy) of M is a function σ : FPathsM → D(A) that resolves
the choices of action in each state. Typically, we aim to find an optimal strategy
for an MDP, e.g., one that maximises the probability of a target state set being
reached or the expected value of some reward function.

In order to reason about MDPs robustly in the context of (epistemic) uncer-
tainty about the model itself, we can use robust MDPs.

Definition 2 (RMDP). A robust MDP (RMDP) is a tuple MR = (S, s̄, A,P),
where S, s̄ and A are as for MDPs (Definition 1), and P : S ×A ⇀ 2D(S) is an
uncertain probabilistic transition function.
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Intuitively, an RMDP captures unknown transition dynamics: for each state s
and action a ∈ A(s), the uncertainty set Psa = P(s, a) represents the set of pos-
sible next-state distributions. Selecting a single Psa ∈ Psa for each (s, a) yields
a probabilistic transition function P : S × A → D(S), giving a specific MDP.
Abusing notation slightly, we also treat P as a set and write P ∈ P, referring to
each P as an uncertainty resolution. Typically, we aim to find a robust optimal
strategy, i.e., one that is optimal against the worst-case uncertainty resolution.

An RMDP MR can be viewed as a zero-sum TSG, i.e., a game which alter-
nates between an agent choosing an a ∈ A(s) in each state s and then an adver-
sarial player nature resolving the choices Psa ∈ Psa. Assumptions or restrictions
on the strategies for nature dictate the kind of uncertainty considered: 1) rect-
angularity [28,41], i.e., whether transition uncertainty is resolved independently
across different states (s-rectangular) or state-action pairs ((s, a)-rectangular);
2) static (stationary) vs. dynamic (time-varying) semantics [28,41], i.e., whether
nature follows a memoryless strategy that has to make consistent choices at each
(s, a) over time. We can also restrict the nature of the uncertainty sets Psa, no-
tably whether they are polytopic, i.e., next-state distributions in Psa form a
polytope. In this work, we focus on (s, a)-rectangular, polytopic uncertainty.
This setting includes the well-studied class of IMDPs [22,41], where each Psa is
defined by independent intervals over transition probabilities.

2.2 Concurrent Stochastic Games

CSGs [47] provide the semantic basis for the class of games we introduce.

Definition 3 (CSG). An (n-player) concurrent stochastic game (CSG) is a
tuple G = (N,S, s̄, A,∆, P ) where N = {1, . . . , n} is a finite set of players;
S, s̄ ∈ S and P : S × A → D(S) are as defined for an MDP (Definition 1);
A = ×i∈N (Ai ∪ {⊥}) where Ai is the set of actions for player i and ⊥ is an idle
action disjoint from ∪i∈NAi; ∆ : S → 2∪i∈NAi is an action assignment function.

A CSG G begins in the initial state s̄. At each state s ∈ S, each player i ∈ N
simultaneously selects an action ai ∈ Ai(s), where Ai(s) = ∆(s)∩Ai if ∆(s) ∩Ai

̸= ∅ and Ai(s) = {⊥} otherwise. The game then transitions to state s′ following
the distribution Psa, where a = (a1, . . . , an) ∈ A(s) :=×i∈N

Ai(s).
To allow quantitative analysis of G, we augment CSGs with reward structures.

Definition 4 (Reward structure). A reward structure for a CSG G is a
tuple r = (rA, rS) where rA : S × A → R is the action reward function, and
rS : S → R is the state reward function. We denote the total reward associated
with a state-action pair (s, a) as rsa = r(s, a) := rA(s, a) + rS(s).

A strategy for player i is a function σi : FPathsG → D(Ai) mapping finite
histories to distributions over actions. A strategy profile (or just profile) is a tuple
of strategies for each player, denoted σ = (σ1, . . . , σn) ∈ Σ :=×i∈N

Σi. An ob-
jective (or utility function) of player i is a random variable Xi : IPathsG → R. In
a zero-sum game, which is 2-player by definition, players have directly opposing
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objectives, i.e., X1 = −X2. In this case, we will represent their objectives using a
single variable X := X1, so that X2 = −X. In the nonzero-sum (or general-sum)
case, we write X = (X1, . . . , Xn) for the tuple of all player objectives.

In this paper we focus on the four common objectives below, two of which are
finite-horizon and two infinite-horizon. We assume a set of target states T ⊆ S
and, for the finite-horizon case, a time horizon k ∈ N.
– Bounded probabilistic reachability : X(π) = 1 [∃j ≤ k. π(j) ∈ T ];
– Bounded cumulative reward : X(π) =

∑k−1
i=0 r(π(i), π[i]);

– Probabilistic reachability : X(π) = 1 [∃j ∈ N. π(j) ∈ T ]; and
– Reachability reward : X(π) =

∑kmin−1
i=0 r(π(i), π[i]) if ∃j ∈ N. π(j) ∈ T and

X(π) = ∞ otherwise, where kmin = min {j ∈ N | π(j) ∈ T}.

We denote the expected utility of player i from state s under profile σ in G as
ui(σ | s,X) := V i

G(s | σ,X) := Eσ
G,s[Xi], with the index i omitted in the zero-sum

case. In zero-sum games, the value of G with respect to X exists if the game
is determined, i.e., the maximum payoff that player 1 can guarantee equals the
minimum payoff player 2 can enforce; the corresponding strategies are said to
be optimal. For nonzero-sum games where players may cooperate or compete,
we use the concept of a Nash equilibrium (NE): a profile in which no player
can improve their utility by unilaterally deviating. A social-welfare optimal NE
(SWNE) [34] refers to an NE that also maximises the players’ total utility.

A special, degenerate “one-shot” case of a CSG is a normal form game (NFG),
which consists of a single state and a single decision round. Thus, an NFG can
be represented as a simplified tuple Z = (N,A, u), where N and A are as defined
for a CSG, and u = (u1, . . . , un) with ui : A → R defining player i’s utility for
each joint action. A 2-player NFG can be represented as a bimatrix game, defined
by two matrices Z1,Z2 ∈ Rl×m with entries z1ij = u1(ai, bj) and z2ij = u2(ai, bj),
where A1 = {a1, . . . , al} and A2 = {b1, . . . , bm}. The game is called zero-sum if
∀a ∈ A. u1(a) + u2(a) = 0, in which case we can represent it as a single matrix
game Z ∈ Rl×m with zij = u1(ai, bj) = −u2(ai, bj), i.e., Z = Z1 = −Z2.

3 Robust Concurrent Stochastic Games

We now propose the model of robust CSGs (RCSGs), which unifies the notions
of robustness from RMDPs and concurrent decision-making from CSGs.

Definition 5 (RCSG). A robust CSG (RCSG) is a tuple G = (N,S, s̄, A,∆,P)
where P is an uncertain transition function defined as for RMDPs in Defini-
tion 2, and all other components are as defined for CSGs in Definition 3.

Similar to the way that fixing the transition function in an RMDP induces an
MDP, fixing the transition function in an RCSG to a particular P ∈ P induces
a CSG GP = (N,S, s̄, A,∆, P ). We parametrise the corresponding notation with
P . Notably, for a state s of G and a strategy profile σ (defined as for CSGs), we
write ui(σ, P | s,X) := Eσ,P

G,s [X]1 for the expected value of an objective X under
σ applied to GP .
1 We use these interchangeably and omit parameters that are clear from the context.
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By contrast to the uncertainty semantics in RMDPs (see Section 2.1), multi-
player RCSGs introduce an additional dimension: whether uncertainty is re-
solved adversarially or is controlled by players [8]. In the adversarial case, na-
ture resolves uncertainty against the players: in zero-sum games, where players
have directly opposing objectives, nature aligns with one player to minimise the
other’s payoff; in nonzero-sum games, it acts against both by minimising a joint
objective such as social welfare or cost.

The controlled case assumes that one or more players resolve uncertainty to
optimise their own objectives. This corresponds to optimistic reasoning in single-
agent or zero-sum settings and can be seen as the dual of the adversarial case.
However, in nonzero-sum games, assigning control to a single player can under-
mine fairness by attributing uncertainty to that player’s decisions, while shared
control would require principled coordination among players. We therefore focus
on the adversarial resolution in both zero- and nonzero-sum games.

Next, we define the robust analogue of several game-theoretic concepts in the
context of RCSGs. In general, we enforce that their defining properties hold un-
der every P ∈ P, or equivalently under the worst case P ∗ := argminP∈P Eσ,P

G,s [X].

Zero-sum RCSGs. We first adapt classical minimax concepts for (2-player)
zero-sum games, assuming that player 1 maximises an objective X.

Definition 6 (Robust determinacy and optimality). A zero-sum RCSG
G is robustly determined with respect to an objective X, if for any state s ∈ S:

sup
σ1∈Σ1

inf
σ2∈Σ2

inf
P∈P

E(σ1,σ2),P
G,s [X] = inf

σ2∈Σ2

sup
σ1∈Σ1

inf
P∈P

E(σ1,σ2),P
G,s [X] =: VG(s,X)

where we call VG(s,X) the robust value of G in s with respect to X. Also, σ∗
1 ∈ Σ1

is a robust optimal strategy of player 1 with respect to X if E(σ∗
1 ,σ2),P

G,s [X] ≥
VG(s,X) for all s ∈ S, σ2 ∈ Σ2, P ∈ P; similarly σ∗

2 ∈ Σ2 is a robust optimal
strategy of player 2 if E(σ1,σ

∗
2 ),P

G,s [X] ≤ VG(s,X) for all s ∈ S, σ1 ∈ Σ1, P ∈ P.

Nonzero-sum RCSGs. In the nonzero-sum case, each player i ∈ N has a
distinct objective Xi. For this setting, we adopt the concept of a robust Nash
equilibrium (RNE) [1, 30, 43], which refers to a profile σ∗ that remains a Nash
equilibrium under any uncertainty resolution. Note that, in the zero-sum case,
RNE coincide with the notion of robust optimal strategies.

As is common for CSGs, we use subgame-perfect NE [42], which require equi-
librium behaviour in every state of the game, not just the initial one. We call
these subgame-perfect RNE but, for brevity, often refer to them simply as RNE.
In standard CSGs with infinite-horizon objectives, NE may not exist [6], but
ε-NE do exist for any ε > 0 under the objectives we consider. We therefore work
with subgame-perfect ε-RNE for infinite-horizon properties.

Definition 7 (Subgame-perfect ε-RNE). A profile σ∗ is a subgame-perfect
robust ε-NE (ε-RNE) iff ε+ infP∈P

[
ui(σ

∗
−i[σ

∗
i ], P )− ui(σ

∗
−i[σi], P )

]
≥ 0 for all

σi ∈ Σi, i ∈ N at every state s ∈ S. We define ⟨infP∈P ui(σ
∗, P )⟩i∈N as the

corresponding ε-RNE values. A subgame-perfect robust NE (RNE) is an ε-RNE
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with ε = 0. We write Σε-RNE for the set of all ε-RNE and ΣRNE for the set of
all RNE.

Even if all induced CSGs GP of an RCSG G have an NE (ε-NE), there may not
exist an RNE (ε-RNE). This is because a profile that is an NE in one induced
CSG may not be an NE across all others. See the extended version of this
paper [24] for an illustration.

Next, we propose the robust counterparts of SWNE [34, 46] as RNE that
maximise the robust (worst-case) total utility of the players, denoted u+(σ, P ) :=∑

i∈N ui(σ, P ) for a given profile σ ∈ Σ and P ∈ P.

Definition 8 (RSWNE). An RNE σ∗ of G is a robust social-welfare opti-
mal NE (RSWNE) if it maximises the robust social welfare amongst all RNE,
i.e., σ∗ ∈ argmaxσ∈ΣRNE u+(σ, P

∗
σ ) where P ∗

σ := arg infP∈P u+(σ, P ). We define
⟨ui(σ

∗, P ∗
σ∗)⟩i∈N as the corresponding RSWNE values.

Like RMDPs, various uncertainty models are applicable in RCSGs, such as
those characterised by Lp-balls [26,49] and non-rectangular sets. However, value
computation is often computationally intractable under these models, even in
single-agent settings [54]. By contrast, interval uncertainty yields convex uncer-
tainty sets, enabling tractable computation while effectively capturing bounded
but unstructured estimation errors, e.g., those derived from confidence inter-
vals [50]. Hence, for the remainder of the paper we focus on interval CSGs, as a
natural and scalable foundation for incorporating robustness into CSGs.

Definition 9 (ICSG). An interval CSG (ICSG) is a tuple G = (N,S, s̄, A,∆,
P̌ , P̂ ) where P̌ , P̂ : S×A×S ⇀ [0, 1] are partial functions that assign lower and
upper bounds, respectively, to transition probabilities, such that P̌sas′ ≤ P̂sas′ .
All other components are defined as for CSGs (Definition 3).

An ICSG is an RCSG where Psa = {Psa ∈ D(S) | ∀s′ ∈ S. Psas′ ∈ [P̌sas′ , P̂sas′ ]}.
We also require that P̌sas′ = 0 ⇐⇒ P̂sas′ = 0, i.e., each transition is either ex-
cluded or assigned a non-degenerate interval with a strictly positive lower bound.
This enables the standard graph preservation constraint [12, 39], which requires
that all P ∈ P share the same support. This property is essential for ensuring
the tractability of RDP [28,41] over (s, a)-rectangular uncertainty models.

4 Zero-sum ICSGs

We now establish the theoretical foundations for robust verification of ICSGs,
starting with the zero-sum case. We fix an ICSG G = (N,S, s̄, A,∆, P̌ , P̂ )
where N = {1, 2} and in which player 1 maximises an objective X. For now,
we assume that X is infinite-horizon: either probabilistic/reward reachability.

At a high level, analogously to the stochastic game view of an RMDP, we
will reduce ICSG G to a CSG GA extended with a third player, nature, who
resolves transition uncertainty adversarially against player 1. Since player 2 and
3 (nature) share the same objective, they can be merged into a single coalition,
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making GA a 2-player CSG between coalitions {1} and {2, 3}. We refer to GA as
the adversarial expansion of G. We will establish a one-to-one correspondence
between optimal values and strategies in GA and their robust counterparts in G,
allowing us to reduce robust verification of zero-sum ICSGs to solution of zero-
sum CSGs. The latter can be performed with value iteration [34] although, as
for RMDPs, explicit construction of the full CSG GA is not required.

Player-first vs. nature-first semantics. In the CSG reduction, a natural
question to consider is the order in which uncertainty is resolved relative to
players’ moves. Under the player-first semantics, nature acts after both play-
ers have chosen their actions. While this aligns closely with the adversarial in-
terpretation of robustness (see Definition 6), it requires nature’s minimisation
problem (against player 1’s objective) to be solved separately for every player
profile σ ∈ Σ, which is computationally demanding. By contrast, the nature-
first semantics assumes that nature first commits to a realisation of P before
any player acts, thereby inducing a fixed CSG upfront. This formulation allows
the use of efficient dynamic programming techniques, such as robust value iter-
ation (RVI) [28,41], which we adopt for solving these games.

This distinction corresponds to the difference between agent first and nature
first semantics for robust partially observable MDPs in [7]. While in general this
assumption can affect the game value, we establish in Theorem 1 that both se-
mantics yield the same value in our setting (finitely-branching zero-sum ICSGs).

Theorem 1 (Player/nature-first Value Equivalence). From any s ∈ S,
VG(s) is invariant under the player-first or nature-first semantics:

sup
σ1∈Σ1

inf
σ2∈Σ2

inf
P∈P

E(σ1,σ2),P
G,s [X] = inf

P∈P
sup

σ1∈Σ1

inf
σ2∈Σ2

E(σ1,σ2),P
G,s [X].

Proof (Sketch). We prove the result top-down via construction of the adversarial
expansion GA (Definition 10) and subsequent determinacy and value preservation
results (Corollary 1) established in this section. Specifically, determinacy of the
finite CSG GA justifies exchanging the order of optimisation between players
and nature without changing the game value. Full proof in [24]. ⊓⊔

This value equivalence justifies using the nature-first semantics in implemen-
tations, so that nature’s minimisation problem is solved only once per step,
after which player strategies are derived from the minimising distributions P ∗

sa.
Henceforth, without loss of generality, we focus on the player-first semantics.

We next observe that optimal strategies for ICSGs with infinite-horizon ob-
jectives admit a memoryless form, which allows the game to be analysed via
fixed-point equations over the state space.

Lemma 1 (Strategy class sufficient for optimality). Given an infinite-
horizon objective X for G, each player has a memoryless robust optimal strategy,
and nature has a deterministic memoryless optimal strategy.

Proof (Sketch). Under (s, a)-rectangularity, nature’s optimal resolution and
players’ continuation values depend only on the current state, so histories ending
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in the same state can be collapsed. Further, nature’s independent choices across
state–action pairs define a single transition function, so nature deterministically
commits to one such function. Full proof in [24]. ⊓⊔

Henceforth in the zero-sum setting, we let Σi denote the set of memoryless
strategies for each player i ∈ {1, 2}, and interpret P as the set of transition
functions resulting from memoryless nature strategies.

Using also the (s, a)-rectangularity of ICSGs, the robust Bellman equation
for G (proved in [24]) is given by:

V (s) = sup
σ1∈D(A1(s))

inf
σ2∈D(A2(s))

rσs +
∑

a∈A(s)

σsa inf
Psa∈Psa

∑
s′∈S

Psas′ · V (s′)

 (1)

where σsa = σ1(s, a1)σ2(s, a2) with a = (a1, a2) and rσs =
∑

a∈A(s) σsarsa.
This characterises the fixed-point that our game solving algorithms will later

compute iteratively. We remark that, unlike the standard Bellman equation for
CSGs, Equation (1) includes nature’s inner problem infPsa∈Psa , which captures
transition uncertainty and is solved using a greedy algorithm adapted from the
IMDP setting [41]; details are provided in [24]. Furthermore, whereas the Bell-
man equations for TSGs and RMDPs [28,41] optimise over deterministic player
strategies by selecting pure actions, here we optimise over randomised (memory-
less) strategies, i.e., distributions over actions. This reflects the added complexity
of concurrent multi-agent interaction.

The CSG reduction. We now formally define the adversarial expansion GA for
ICSG G, which is a CSG containing intermediate states representing state–action
pairs of G. In the following, we use the operator ·A to denote a structure associ-
ated with GA. We write V(K) for the vertices of a polytope K and use notation
such as “sA = s ∈ S” as shorthand for “∃s ∈ S. sA = s”.

Definition 10 (Adversarial expansion). We define the adversarial expan-
sion of ICSG G as a 2-player CSG GA = ({1, 2}, SA, s̄, AA, ∆A, PA) where:
– SA = S ∪ S′, with S′ = {(s, a) | s ∈ S, a ∈ A};
– AA = (AA

1 ∪{⊥})×(AA
2 ∪{⊥}), with AA

1 = A1, AA
2 = A2∪

(⋃
s∈S,a∈A V[Psa]

)
;

– ∆A : SA → 2A
A
1 ∪AA

2 , such that if sA = s ∈ S then ∆A(sA) = ∆(s), else if
sA = (s, a) ∈ S′ then ∆A(sA) = V[Psa], else ∆A(sA) = ∅;

– PA : SA × AA → D(SA) such that if sA = s ∈ S ∧ s′ = (s, a) ∈ S′ then
PA(sA, aA, s′) = 1, else if sA = (s, a) ∈ S′ ∧ aA = (⊥, Psa) ∧ s′ ∈ S then
PA(sA, aA, s′) = Psas′ , and PA(sA, aA, s′) = 0 otherwise.

As discussed earlier, player 2 in GA acts as a coalition of nature and player 2 in
G, such that the original player 2 acts at the S-states and nature moves at the
S′-states. Given a choice Psa ∈ Psa of nature, a G-transition s

a−→ s′ corresponds
to the two-step GA-transition s

a−→ (s, a)
(⊥,Psa)−−−−−→ s′, and vice versa. In essence,

the dynamics at S-states are unchanged. At an auxiliary state (s, a) ∈ S′, both
players receive zero reward; and player 1 stays idle whilst player 2 determinis-
tically selects a next-state distribution Psa ∈ Psa, with P ∗

sa being an optimal



10 A. Y. He & D. Parker

such choice as characterised by Lemma 1. The notion of adversarial expansion
naturally extends to strategies, paths, rewards, and objectives (see [24]).

We highlight that GA is a finite-state, finite-action CSG. As formalised in [24],
since an ICSG is polytopic, we can restrict player 2’s actions to the vertices of the
polytope Psa at each S′-state without loss of optimality. The following results
formalise the relationship between G and GA.

Lemma 2 (Utility-preserving strategy bijection). For any G-profile σ =
(σ1, σ2), there exists a corresponding GA-profile σA = (σA

1 , σA
2 ) and vice versa,

such that infP∈P u1(σ, P ) = uA
1 (σ

A) and supP∈P u2(σ, P ) = uA
2 (σ

A), where
uA
i (σ

A) denotes player i’s expected utility in GA under σA.

Proof . As shown in [24], GA preserves the set of possible paths, their probabil-
ities and objective values. It follows directly that:

u1(σ, P ) =
∑

π∈IPathsG,s

Pσ(π) ·X(π) =
∑

πA∈IPathsGA,s

Pσ(πA) ·XA(πA) = uA
1 (σ

A)

where Pσ is the path probability function under profile σ. Then by the zero-sum
structure: supP u2(σ, P ) = u2(σ, P

∗) = −u1(σ, P
∗) = −uA

1 (σ
A) = uA

2 (σ
A).

⊓⊔
Corollary 1 (Determinacy and Value Preservation). G is determined iff
GA is determined. Further, if both games are determined, then the robust value
of G is equal to the value of GA, i.e., VG(s,X) = VGA(s,XA). (Proof in [24])

Theorem 2 (RNEG ⇔ NEGA). In a determined zero-sum ICSG G, for any
G-profile σ ∈ Σ, σ is an RNE in G with value VG(s,X) iff σA is an NE in GA

with value VGA(s,XA) = VG(s,X).

Proof (Sketch). Both directions follow from Definition 7 of RNE. The forward
case additionally uses utility preservation (Lemma 2); the reverse relies on Defi-
nition 6 of the game value and value preservation (Corollary 1). Full proof in [24].

⊓⊔
Solving zero-sum ICSGs. Finally, combining the above results, since GA is
finite-state and finitely-branching, it is determined for all the objectives we con-
sider [38]. By Corollary 1, the original game G is therefore also robustly deter-
mined with the same value. Moreover, since G is zero-sum, any RNE profile and
its value coincides with an optimal profile and the game value.

Hence, by Theorem 2, we can perform robust verification of an ICSG G by
solving the 2-player CSG GA, e.g, with the value iteration approach from [34].
In fact, we do not need to explicitly construct GA, nor its auxiliary states S′

corresponding to the possible (s, a) pairs. Instead, for each state s, we first solve
an inner optimisation problem over uncertainty set Psa for each joint action a,
and then solve a linear programming (LP) problem of size |A| using the resulting
values. We discuss this further in Section 6 and give full details in [24].

Finite-horizon properties. When X is a bounded probabilistic reachabil-
ity or cumulative reward objective, the previous results still hold under two
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changes: 1) Robust optimal strategies are now time-varying, i.e., with the ex-
tended signature σ : S × H ⇀ A and P ∗ : S × A × H ⇀ D(S), where H
represents finite-memory used to track the time-step. Accordingly, we extend
GA with time-augmented states. 2) Finite-horizon objectives are evaluated over
k < ∞ steps, thus exact game values can be computed via robust backward in-
duction (RBI) [28,41], noting that G is always determined due to the finite game
tree. We provide the detailed construction of GA in this setting in [24].

5 Nonzero-sum ICSGs

Next, we consider nonzero-sum 2-player ICSGs, where each player i maximises a
distinct objective Xi, assuming for now that both objectives are infinite-horizon.2
As in the zero-sum case, we continue to focus on player-first semantics and
memoryless strategies, as both Theorem 1 and Lemma 1 extend to the nonzero-
sum setting (see proofs in [24]).

We again reduce a 2-player ICSG G to its adversarial expansion GA, which
is a 3-player CSG, but in which the nature player now acts adversarially against
both other players, aiming to minimise their social welfare. The reduction is
more complex than the zero-sum case and requires an additional filtering step
per iteration to identify robust equilibria. This reduction again allows us to build
on standard CSG solution methods [34].

Our goal for nonzero-sum ICSGs is to find subgame-perfect ε-RNE (Defini-
tion 7), and more specifically, ε-RSWNE (Definition 8), which consider the sum
of the utilities for the two players. We add a subscript + to the relevant game
notation (e.g., r, u,X, V ) to indicate this. The robust Bellman equation is:

V+(s) = sup
σ∈Σε-RNE

inf
P∈P

Eσ,P
G,s [X+] = sup

σ∈Σε-RNE

[
r+(s, σ) +

∑
a∈A

inf
Psa∈Psa

fσ,P
sa

]
(2)

where fσ,P
sa := σsa

∑
s′∈S Psas′V+(s

′) and Σε-RNE denotes the set of one-shot ε-
RNE. The second equality follows from a similar proof to the zero-sum case (see
[24]). In this formulation, nature’s inner problem is now to minimise the social
welfare u+ := u1 + u2, while each player i ∈ {1, 2} maximises their individual
expected payoff ui. Consequently, we maximise over the set of ε-RNE, capturing
equilibrium behaviour under worst-case uncertainty.

The adversarial expansion GA of ICSG G for the nonzero-sum case follows
a similar construction to the zero-sum setting (Definition 10), but now models
nature as an explicit third player distinct from player 2. Henceforth, if a =
(a1, a2), let ∗a denote the flattened tuple a1, a2.

Definition 11 (Adversarial expansion). We define the adversarial expan-
sion of G as a 3-player CSG GA = (NA, SA, s̄, AA, ∆A, PA) where:

2 Following the usual approach for nonzero-sum CSGs [34], we focus on ICSGs that
can be seen as a variant of stopping games [14], where each player’s target set is
reached with probability 1 from all states under all profiles.
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– NA = {1, 2, 3}, with player 3 representing nature;
– SA = S ∪ S′, with S′ = {(s, a) | s ∈ S, a ∈ A};
– AA = ×3

l=1(A
A
l ∪ {⊥}) where AA

1 = A1, AA
2 = A2 and AA

3 = ∪s∈S,a∈AV[Psa];
– ∆A : SA → 2∪

3
i=1A

A
i , such that if sA = s ∈ S then ∆A(sA) = ∆(s), else if

sA = (s, a) ∈ S′ then ∆A(sA) = V[Psa] and ∅ otherwise.
– PA : SA×AA → D(SA), such that if sA = s ∈ S∧aA = (∗a,⊥)∧s′ = (s, a) ∈

S′ then PA(sA, aA, s′) = 1, else if sA = (s, a) ∈ S′∧aA = (⊥,⊥, Psa)∧s′ ∈ S
then PA(sA, aA, s′) = Psas′ , and PA(sA, aA, s′) = 0 otherwise.

Under this definition of GA, a G-transition s
(a1,a2)−−−−→ s′ corresponds to a two-

step GA-transition s
(a1,a2,⊥)−−−−−−→ (s, (a1, a2))

(⊥,⊥,Ps(a1,a2))−−−−−−−−−−→ s′. Adversarial ex-
pansions of paths, strategies, rewards and objectives follow analogously to the
zero-sum case, and are formalised in [24]. The following results relate G and GA.
Their proofs mirror the zero-sum case, with adaptations to the nonzero-sum
definition of GA.

Lemma 3 (Utility-preserving strategy bijection). For any G-profile σ
under nature’s choice of P ∈ P, there exists a corresponding GA-profile σA,P

and vice versa such that ui(σ, P ) = uA
i (σ

A,P ) for i ∈ {1, 2}. Further, for
any σ ∈ Σ, there exists a corresponding σA ∈ ΣA and vice versa such that
infP∈P u+(σ, P ) = uA

+(σ
A) = uA

1 (σ
A) + uA

2 (σ
A).

Lemma 4 (ε-RNEG ⇒ ε-NEGA). For any G-profile σ ∈ Σ, if σ is an ε-RNE
in G then σA ∈ ΣA is an ε-NE in GA. (Proof in [24])

Unlike the zero-sum setting, for Lemma 4 the converse does not necessarily
hold: if σA is an ε-NE in GA, σ need not be an ε-RNE in G. This is because
σA
3 selects a transition function P ∗ that minimises the total utility of player 1

and 2, rather than each player’s utility individually as required by the ε-RNE
condition (see Definition 7). Therefore, any ICSG where nature’s minimisation
of the sum induces asymmetric incentives suffices as an example (see [24]).

Consequently, before identifying the RSWNE, for each state s ∈ S we filter
the set of ε-NE in GA to retain only those that correspond to an ε-RNE in G, i.e.,
ΣA

ε-RNE := {σA ∈ ΣA | σ ∈ Σε-RNE}. Note that filtering is applied separately at
each state since we construct subgame-perfect equilibria.

Filtering ΣA
ε-NE for Σε-RNE. Our method of filtering is based on a notion of

deviations made by players. In this section, we fix a state s ∈ S and candidate
ε-RNE profile σ ∈ Σ. We designate player i as the deviator, whose strategy
deviations σ′

i ∈ Σi from σ will be evaluated. Further, we define the deviation
gain of player i under its deviation σ′

i and nature’s choice of P ∈ P as:

u∆
i (σ′

i, P ) := ui(σ−i[σ
′
i], P )− ui(σ, P ). (3)

Lemma 5 (ε-RNE condition over pure deviations). Let Σdet
i denote the

set of (memoryless) deterministic strategies for player i ∈ N = {1, 2}. A profile
σ ∈ Σ is an ε-RNE iff the following condition holds:

V i,σ := sup
P∈P

sup
σ′
i∈Σdet

i

u∆
i (σ′

i, P ) ≤ ε ∀i ∈ N.
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Proof (Sketch). The ε-RNE condition for σ (Definition 7) can be rewritten as
supP supσ′

i∈Σi
u∆
i (σ′

i, P ) ≤ ε. Since the expected utility (from any state s) is
linear in the deviation σ′

i, the maximal gain is attained by a deterministic devi-
ation. So it suffices to consider pure deviations. Full proof in [24]. ⊓⊔

Observe that V i,σ corresponds exactly to the optimistic value of an IMDP
GD
i,σ in which player i acts as the agent. We refer to this IMDP as the deviation

IMDP and formalise it in [24]. The value correspondence relies on the IMDP’s
construction whereby, given state space SA = S ∪ S′ of GA, transitions from
states in S to S′ depend exclusively on the fixed player’s strategy, whilst those
from S′ to S are governed by nature’s choice of P ∈ P. Further, the reward
assigned to each state s ∈ S corresponds to the expected reward gain at s if
player i deviates from σi to σ′

i.
Therefore, following Lemma 5, if the deviation IMDP has optimistic value

V i,σ ≤ ε for both players i ∈ {1, 2}, then the candidate profile σ constitutes an
ε-RNE profile of G. We can thus characterise our goal in solving G as identifying:

Σε-RNE =
{
σ ∈ Σ

∣∣ σA ∈ ΣA
ε-NE ∧ ∀i ∈ {1, 2}. V i,σ ≤ ε

}
. (4)

Solving nonzero-sum ICSGs. Altogether, a profile σ ∈ Σ is an ε-RSWNE
in G iff its corresponding σA ∈ ΣA

ε-RNE maximises uA
+ in GA. Hence, computing

ε-RSWNE in the 2-player ICSG G reduces to finding SWNE in the 3-player CSG
GA over ΣA

ε-RNE. While this would in principle require a general 3-player CSG
solver (e.g., [33]), such algorithms rely on nonlinear programming and are com-
putationally expensive. However, by exploiting the zero-sum coalitional structure
of GA, the trimatrix game at each state s ∈ S can be reduced to a bimatrix game
(see [24]). This can thus be solved more efficiently using the 2-player nonzero-
sum CSG solution approach from [34], together with the inner-problem solution
algorithm in [24] to ensure robustness. As in the zero-sum case, this computation
does not require explicit construction of GA.

Once we have the set of one-shot ε-NE of GA at each s ∈ S, we filter for the
ε-RNE equivalents: for each profile σA ∈ ΣA

ε-NE, we: 1) compute V i,σ for each
player i ∈ {1, 2} on the deviation IMDP GD

i,σ; and 2) retain σ if all V i,σ ≤ ε. The
resulting profiles correspond to the ε-RNE in G, from which we select the one
maximising u+. This gives an ε-RSWNE profile and values in G (by Lemma 3).

Finite- and mixed-horizon properties. Since players’ objectives are distinct,
they may differ in time horizon. If both X1 and X2 are finite-horizon, then we
define the analysis horizon as the maximum of the two, i.e., k := max(k1, k2). In
mixed-horizon cases, where one objective is finite-horizon and the other infinite-
horizon, we transform the game into an equivalent one with two infinite-horizon
objectives on an augmented model, following [32]. Thus, we focus on cases where
both objectives are either finite- or infinite-horizon.

The infinite-horizon framework generalises to finite-horizon objectives in a
similar way to the zero-sum setting. Additionally, we consider exact RNE and
RSWNE (i.e., ε = 0), and account for potentially different player horizons by
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labelling time-augmented states that record when each player’s target is reached
within their respective horizon. The full construction is detailed in [24].

6 Value Computation for Two-player ICSGs

Sections 4 and 5 have presented the theoretical foundations for solving zero-
sum and non-zero sum ICSGs, respectively, and described how a reduction to
an adversarial expansion CSG provides the basis for iterative solution methods.
In this section, we present some additional implementation details and discuss
correctness and complexity. Full details are provided in [24].

Both approaches use elements of robust dynamic programming for RMDPs,
i.e, robust value iteration (RVI) for infinite-horizon properties and robust back-
ward induction (RBI) for finite-horizon properties, and of value iteration based
methods for CSGs [34]. For both zero-sum and nonzero-sum objectives, the pro-
cedure performed per iteration for each state s ∈ S is:

Algorithm 1 RVI/RBI update for state s ∈ S in G = (N,S, s̄, A,∆, P̌ , P̂ )

1: for all a ∈ A(s) do
2: P ∗

sa ← SolveInnerProblem(s, a, Vprev, P̌ , P̂ ) ▷ see [24]
3: end for
4: Z ← ConstructNFG(P ∗

s , Vprev) ▷ see [24]
5: Vnext[s]← SolveNFG(Z)

The SolveInnerProblem function (line 2) uses an algorithm adapted from
a greedy method for IMDPs [41], which we detail in [24]. At line 4, we build a
normal form game: for zero-sum ICSGs this a matrix game, reusing the zero-
sum CSG algorithms in [34]; for nonzero-sum ICSGs, we build a (general-sum)
bimatrix game using multi-player CSG algorithms in [33], which coincide with
those for nonzero-sum 2-player CSGs in [34]. Our derivations appear in [24],
where we demonstrate how to directly compute values of G without explicit
construction of GA.

At line 5, SolveNFG computes the matrix game value via an LP formula-
tion [40, 52] in the zero-sum case. For nonzero-sum ICSGs, this is a multi-step
procedure which involves: 1) enumerating NE for bimatrix games, using e.g.,
the Lemke-Howson algorithm [36]; and 2) filtering these for RNE as outlined in
Section 5 using deviation IMDPs. The latter can be done using IMDP verifica-
tion algorithms already supported in PRISM-games [31]. If no profiles remain,
our algorithm terminates early; otherwise the value of state s is updated to the
RSWNE value of Z.

Correctness. This relies on the reduction of solving an ICSG G to solving
a standard CSG GA, whose correctness is established in Section 4 (zero-sum)
and 5 (nonzero-sum). Correctness of the underlying CSG algorithm over GA is
inherited from [33,34], which relies on classical results, e.g., correctness of value
iteration and backward induction [44] and solution of matrix games [40, 52].
Robustness is ensured by solving the inner problem, for which the correctness of
our adapted algorithm in [24] follows from [41].
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Complexity. Runtime depends on the number of iterations and per-iteration
cost, both of which are dependent on game size. Finite-horizon objectives require
exactly k iterations, while infinite-horizon ones iterate until convergence, which
may be exponential in |A| in the worst case [11] (even for MDPs [23]). Since line 2
takes O(|S| log |S|) time per execution, the per-iteration cost for zero-sum ICSGs
is O

(
|S|2|A| log |S|+ |S|L|A|

)
, where L|A| is the cost of solving an LP problem of

size |A|. This is polynomial in |S| and |A| with e.g., Karmarkar’s algorithm [29];
or exponential under the simplex algorithm [16], which is PSPACE-complete in
the worst case [20] but performs well on average [51]. For nonzero-sum ICSGs,
each iteration takes worst-case exponential time due to NE enumeration [2].

Strategy synthesis. At each state, solving the NFG yields both the value(s)
and optimal player strategies, while nature’s optimal strategy is given by the
returned values of SolveInnerProblem (line 2 of Algorithm 1). These are
memoryless and taken from the final RVI iteration for infinite-horizon objectives;
but time-varying and taken from each RBI step for finite-horizon objectives.

7 Tool support and Experimentation

We extended PRISM-games [31] to support modelling and solution of 2-player
ICSGs, building on its existing functionality for CSGs and IMDPs. The tool and
case studies are available at [25].

Experimental setup. We evaluate the efficiency and scalability of our tech-
niques, comparing, as a point of reference, to standard (non-robust) CSG solu-
tion from PRISM-games.3 We use the benchmarks from [34], obtaining ICSGs by
perturbing all non-0/1 probability CSG transitions with a two-sided uncertainty
±ϵ. This includes a combination of finite-, infinite- and mixed-horizon proper-
ties specified in the logic rPATL [13,34]. All experiments were run on a 3.2 GHz
Apple M1 with 16 GB memory. Further statistics for benchmark models and an
extended set of results can be found in [24].

Q1. How does verification time for ICSGs compare to CSGs? Results for solving
CSGs and ICSGs under adversarial uncertainty, completed within a 2-hour time
limit, are shown in Table 1 for zero-sum games and Table 2 for nonzero-sum
games. Overall, the increase in verification time when moving from CSGs to
ICSGs is significantly more pronounced in the nonzero-sum setting, highlighting
the added complexity introduced by the nonzero-sum formulation.

Across all benchmarks, verification times for zero-sum ICSGs remained within
a factor of two of their CSG counterparts (see Table 1), with all test instances
(except for User-centric network with K > 4) solved within 2 hours. These in-
clude models with over 2 million states and 10 million transitions. By contrast,
for nonzero-sum ICSGs, verification completes within 2 hours for models up to
0.4 million states and 1.3 million transitions. This aligns with the underlying
reduction framework: in the zero-sum setting, the problem reduces to a 2-player
game, whereas in the nonzero-sum case it is a more complex 3-player game.
3 Due to improvements in PRISM-games, some statistics differ slightly from [34].
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Table 1: Zero-sum verification results, with full statistics in [24].
Case study: [params], ϵ Param. Avg # States Val. Iters Verif. time (s) Value

Property values actions CSG ICSG CSG ICSG CSG ICSG
Robot coordination:

[l], 0.01

⟨⟨rbt1⟩⟩Rmin=?[F g1]

4 2.07,2.07 226 19 18 0.15 0.27 4.55 4.39
8 2.52,2.52 3,970 29 29 2.50 3.61 8.89 8.63

12 2.68,2.68 20,450 39 37 16.22 31.73 13.15 12.84
User centric network:

[K], 0.01; ⟨⟨usr⟩⟩Rmin=?[F f ]
3 2.11,1.91 32,214 60 59 789.66 834.92 0.04 0.03
4 2.31,1.92 104,897 81 81 3525.67 3729.40 4.00 4.00

Aloha:
[bmax], 1/257

⟨⟨u2, u3⟩⟩Rmin=?[F s2,3]

2 1.00120,1.00274 14,230 105 103 5.31 5.61 4.34 4.28
3 1.00023,1.00054 72,566 128 125 18.50 26.39 4.54 4.46
4 1.00004,1.00009 413,035 195 190 225.69 291.72 4.62 4.53
5 1.00001,1.00002 2,237,981 343 327 4669.54 4260.59 4.65 4.54

Jamming radio systems:
[chans, slots], 0.01

⟨⟨u⟩⟩Pmax=?[F (sent ≥ slots/2)]

4,6 2.17,2.17 531 7 7 0.32 0.46 0.84 0.80
4,12 2.49,2.49 1,623 13 13 1.39 2.94 0.77 0.71
6,6 2.17,2.17 531 7 7 0.25 0.45 0.84 0.80

6,12 2.49,2.49 1,623 13 13 1.46 2.37 0.77 0.71

Table 2: Nonzero-sum verification results, with full statistics in [24].
Case study: [params], ϵ Param. Avg # States Val. Iters Verif. time (s) Value

Property values actions CSG ICSG CSG ICSG CSG ICSG

Robot coordination: [l, k], 0.01

⟨⟨r1 : r2⟩⟩max=?

(
P[¬c U≤kg1] + P[¬c U≤kg2]

) 4,4 2.07,2.07 226 4 4 0.26 0.60 1.55 1.50
8,8 2.52,2.52 3,970 8 8 1.03 54.74 0.92 0.84

12,12 2.68,2.68 20,450 12 12 8.55 2895.60 0.49 0.40
Robot coordination: [l, k], 0.01

⟨⟨r1 : r2⟩⟩max=?

(
P[¬c U≤kg1] + P[¬c U g2]

) 4,8 2.10,2.04 226 14 14 1.22 17.54 2.00 2.00
4,16 2.12,2.05 3,970 14 11 2.08 75.23 2.00 2.00

Aloha (deadline): [bmax, D], 1/257

⟨⟨u1 : u2, u3⟩⟩max=? (P[F s1] + P[F s2,3])

1,8 1.0048,1.0111 14,230 23 23 0.45 5.13 1.99 1.99
2,8 1.0012,1.0027 72,566 23 23 1.17 107.63 1.98 1.97
3,8 1.0002,1.0005 413,035 22 22 3.96 3306.24 1.97 1.97

Medium access: [emax, k1, k2], 0.01

⟨⟨p1 : p2, p3⟩⟩max=?

(
R[C≤k1 ] + R[C≤k2 ]

) 10,20,25 1.91,3.63 10,591 25 25 577.60 614.46 26.10 25.88
15,20,25 1.94,3.75 33,886 25 25 1148.02 6109.14 34.35 34.06

While the main overhead arises from solving the inner problem at each it-
eration, in the zero-sum setting this is often offset by faster RVI convergence.
For example, in the Aloha model with bmax = 5, ICSG verification outper-
formed CSGs in runtime and required noticeably fewer iterations to converge.
Additionally, consistent with [34], for both zero- and nonzero-sum CSGs and
ICSGs, verification time appears to depend more on the number of actions per
player/coalition than the number of states. For example, the minimally branched
Aloha instances (averaging close to one action per coalition) are verified rela-
tively efficiently compared to other games with similarly sized state spaces.

Q2. How does ϵ affect verification time? Interestingly, as shown in Figure 1,
verification times are often the lowest when ϵ is very small or close to its maxi-
mum value, while intermediate ϵ values tend to be slower. This non-monotonic
behaviour again reflects the trade-off due to uncertainty: larger ϵ increases the
per-iteration cost by giving nature more choices, but also accelerates convergence
by flattening the value landscape [41], thus reducing the number of iterations
required until convergence. Thus ϵ can be tuned to balance robustness and ef-
ficiency. However, the net effect of ϵ on verification time is model-specific: e.g.,
in the Robot Coordination case with l = 12 from Table 1, ICSG verification
required fewer iterations but still resulted in a longer overall verification time.

Q3. How does ϵ influence the computed value? Increasing ϵ yields more conser-
vative results, as shown in Figure 2. This is to be expected, as expanding the
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Fig. 1: Total verification time relative
to CSG baseline in the first nonzero-
sum Robot coordination case study,
which requires ϵ < 0.05.
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Fig. 2: ICSG values over game size in the
Intrusion Detection case study, under two
resolutions of uncertainty: adversarial (solid
lines) and controlled by coalition 1 (dashed).

uncertainty set enables nature to select “worse” transitions that reduce the game
value. The effect is amplified in larger, more connected models, in which pes-
simistic transitions propagate over longer paths [54]. Figure 2 also illustrates a
practical use of ICSG verification in computing two-sided, ϵ-parametrised bounds
on verification results, which can be interpreted as confidence intervals under
transition uncertainty. This is useful in safety-critical and performance-sensitive
settings, where robustness must be ensured against worst-case security attacks,
while enabling estimation of, e.g., optimistic operational performance.

8 Conclusion

We have introduced robust CSGs, an extension of classical CSGs with transition
uncertainty that enables principled analysis of multi-agent, concurrent stochastic
systems with imprecise dynamics. Focusing on interval uncertainty, i.e., ICSGs,
we developed verification algorithms for the 2-player setting, for both finite- and
infinite-horizon objectives. Our approach relies on a value-preserving reduction
of ICSGs to standard CSGs, thereby allowing reuse of elements of the solution
methods for both CSGs and RMDPs, plus custom adaptations and filtering.
Our implementation in PRISM-games shows that solution in the zero-sum case
scales comparably to standard CSGs, with runtime increases below a factor of
two. In the nonzero-sum case, computational demands are higher but we still
scale successfully to large CSGs. Future work could explore RCSGs with richer
uncertainty models and/or alternative solution concepts (e.g., robust correlated
equilibria), and consider objectives with more general temporal specifications.

Data Availability Statement. The models, tools, and scripts to reproduce
our experimental evaluation are archived and available at [25].
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