
SMT-Based Bisimulation Minimisation
of Markov Models

Christian Dehnert1, Joost-Pieter Katoen1, David Parker2

1 RWTH Aachen University, Germany
2 University of Birmingham, United Kingdom

Abstract. Probabilistic model checking is an increasingly widely used
formal verification technique. However, its dependence on computation-
ally expensive numerical operations makes it particularly susceptible to
the state-space explosion problem. Among other abstraction techniques,
bisimulation minimisation has proven to shorten computation times sig-
nificantly, but, usually, the full state space needs to be built prior to
minimisation. We present a novel approach that leverages satisfiability
solvers to extract the minimised system from a high-level description
directly. A prototypical implementation in the framework of the proba-
bilistic model checker Prism provides encouraging experimental results.

1 Introduction

Markov chains are omnipresent. They are used in reliability analysis, randomised
algorithms and performance evaluation. In the last decade, probabilistic model
checking has emerged as a viable and efficient alternative to classical analysis
techniques for Markov chains, which typically focus on transient and long-run
probabilities. This growing popularity is mainly due to the availability of ever
improving software tools such as Prism [15] and Mrmc [11]. Like traditional
model checkers, these tools suffer from the curse of dimensionality—the state
space grows exponentially in the number of system components and variables.
As numerical computations are at the heart of verifying Markov chains, several
numerical values need to be stored for each (reachable) state in addition to the
model itself, making the state space explosion problem even more pressing.

A variety of techniques has been recently developed to reduce the state space
of probabilistic models prior to verification. These include symmetry reduc-
tion [14], bisimulation minimisation [10] and abstraction, e.g., in the abstraction-
refinement paradigm [13,9]. Bisimulation [16] (also known as ordinary lump-
ing [3]) is of particular interest as it preserves widely used logics such as PCTL*,
PCTL and probabilistic LTL [1], and its coarsest quotient can be efficiently
computed [5,18]. In contrast to traditional model checking [6], it has proven
to significantly shorten computation times [10]. The main drawback of bisim-
ulation quotienting algorithms, however, is that they typically require the en-
tire reachable state space. Techniques to alleviate this effect include the use
of data structures based on binary decision diagrams (BDDs) to reduce storage

2 Christian Dehnert, Joost-Pieter Katoen, David Parker

costs [21,20,17], and compositional minimisation techniques [4]. This paper takes
a radically different approach: we extract the bisimulation quotient directly from
a high-level description using Smt (satisfiability modulo theories) solvers.

The starting-point of our approach is to take a probabilistic program rep-
resenting a Markov chain, described in the Prism modelling language. This
probabilistic program consists of guarded commands, each of which includes a
probabilistic choice over a set of assignments that manipulate program variables.
The main idea is to apply a partition-refinement bisimulation quotienting in a
truly symbolic way. Each block in the partition is represented by a Boolean ex-
pression and weakest preconditions of guarded commands yield the refinement
of blocks. All these computation steps can be dispatched as standard queries to
an Smt solver. The quotient distribution, over blocks, for a state is obtained by
summing up the probabilities (given by a command) attached to assignments
that lead into the respective blocks. This is determined using an AllSat enu-
meration query by the Smt solver. Whereas similar techniques have been used
for obtaining over-approximations of Markov models [19,12] —yielding sound
abstractions for a “safe” fragment of PCTL properties— this is (to the best of
our knowledge) the first bisimulation quotienting approach based on satisfiabil-
ity solvers. This paper focuses on bisimulation for discrete-time Markov chains
(DTMCs), but the techniques are also directly applicable to continuous-time
Markov chains (CTMCs). In addition, in Section 4, we discuss how to extend
them to models that incorporate nondeterminism, such as MDPs or CTMDPs.

Experiments on probabilistic verification benchmarks show encouraging re-
sults: speed-ups in total verification time by up to two orders of magnitude over
Prism on one example, and, on another, scalability to models that go far beyond
the capacity of current verification engines such as Prism and Mrmc. A com-
parison with the symbolic bisimulation engine Sigref [21] also yields favourable
results. Although —like for BDD-based quotienting— there are examples with
smaller improvements or where this approach is inferior, we believe that Smt-
based quotienting offers clear potential. Other advantages of our approach are
that it is applicable to infinite probabilistic programs whose bisimulation quo-
tient is finite and that it is directly applicable to parametric Markov chains [8].

Related Work. For non-probabilistic models, Graf and Säıdi [7] pioneered pred-
icate abstraction, which uses Boolean predicates and weakest precondition op-
erations to compute abstractions. This technique is rather en vogue in software
model checking, as is the use of SAT/SMT solvers to build abstractions [2].
Predicate abstraction has been adapted to the probabilistic setting [19,12] and
used to obtain abstractions of probabilistic models, e.g., through CEGAR [9]
or game-based abstraction refinement [13]. However, these methods usually only
focus on a specific subset of PCTL* and do not compute precise abstractions but
over-approximations. While the latter can be beneficial in some cases, in general
it requires a separate abstraction for each property to be verified. In contrast,
bisimulation minimisation is a precise abstraction, which coincides with PCTL*
equivalence [1], so all properties that can be formulated in that logic are pre-
served. Another important difference is that probabilistic abstraction-refinement

SMT-Based Bisimulation Minimisation of Markov Models 3

techniques [9,13] usually require an expensive numerical solution phase to per-
form refinement, whereas partition refinement for bisimulation is comparatively
cheap. Omitting numerical analysis also makes our approach easily extendable
to systems with continuous time and parameters. Wimmer et al. [21] use BDDs
to symbolically compute the bisimulation quotient. However, this requires the
construction of a BDD representation of the state space of the full, unreduced
model prior to minimisation, which we deliberately try to avoid.

2 Preliminaries

We begin with some brief background material on discrete-time Markov chains,
bisimulation minimisation and the Prism modelling language.

Markov models. Markov models are similar to transition systems in that they
comprise states and transitions between these states. In discrete-time Markov
chains, each state is equipped with a discrete probability distribution over suc-
cessor states. Let DistS be the set of discrete probability distributions over S.

Definition 1 (Discrete-time Markov chain (DTMC)). A DTMC is a tuple
D = (S,P, sinit, AP, L) where (i) S is a countable, non-empty set of states,
(ii) P : S × S → [0, 1] is the transition probability function that assigns to each
pair (s, s′) of states the probability P(s, s′) of moving from state s to s′ in one
step such that P(s, ·) ∈ DistS, (iii) sinit ∈ S is the initial state, (iv) AP is a
set of atomic propositions, and (v) L : S → 2AP is the labelling function that
assigns a (possibly empty) set of atomic propositions L(s) to a state s ∈ S.

For quantitative reasoning over DTMCs, we focus on the logic PCTL*, a proba-
bilistic extension of CTL* which subsumes other common logics such as PCTL
and probabilistic LTL. Instead of the path quantifiers (A and E) of CTL*, it
features the P./p(ϕ) operator, which asserts that the probability mass of paths
satisfying ϕ satisfies ./ p, where ./ ∈ {<,≤, >,≥}. For example, the property
“the probability that the system eventually fails lies below 70%” can be ex-
pressed as P<0.7(♦fail). Let s |=D Φ denote that state s of a DTMC D satisfies a
formula Φ. If sinit |=D Φ, the DTMC D satisfies Φ and we denote this by D |= Φ.

Bisimulation minimisation. Given a DTMC D = (S,P, sinit, AP, L) and an
equivalence relation R on S, the set of equivalence classes of S under R is denoted
S/R and [s]R is the equivalence class of s ∈ S under R.

Definition 2 (Quotient distribution). For equivalence relation R and dis-
tribution µ ∈ DistS, the quotient distribution of µ with respect to R, denoted
[µ]R ∈ DistS/R, is defined by [µ]R(C) =

∑
s∈C µ(s) for all C ∈ S/R.

Definition 3 ((Strong) probabilistic bisimulation). An equivalence rela-
tion R on S is a (strong) bisimulation on D if, for all (s1, s2) ∈ R:

L(s1) = L(s2) and P(s1, C) = P(s2, C) for all C ∈ S/R

where P(s, C) denotes the sum
∑
s′∈C P(s, s′).

4 Christian Dehnert, Joost-Pieter Katoen, David Parker

States s1, s2 ∈ S are (strongly) bisimilar, denoted s1 ∼ s2, if there exists a
bisimulation on D that relates s1 and s2. Note that ∼ is the coarsest bisimulation
on D. Intuitively, bisimilar states can stepwise simulate each other, meaning that
they can be merged while preserving important properties.

Definition 4 (Bisimulation quotient). For a DTMC D = (S,P, sinit, AP, L),
the bisimulation quotient is defined as D/∼ = (S/∼,P′, [sinit]∼, AP, L′), where

P′([s]∼, [t]∼) = P(s, [t]∼) and L′([s]∼) = L(s).

Note that D/∼ is well-defined. The preservation theorem of Aziz et al. [1] states
that strong bisimulation is sound and complete with respect to PCTL*:

Proposition 1. s |=D Φ ⇐⇒ [s]∼ |=D/∼ Φ for all PCTL* formulae Φ.

This implies D |= Φ if and only if D/∼ |= Φ for all PCTL* formulae Φ. Put
differently, a given formula may be verified on the (possibly much smaller) bisim-
ulation quotient while preserving the verification result of the original model.

The Prism modelling language. Prism is a widely used, state-of-the-art
probabilistic model checker. It features a high-level modelling language, adopted
by several other tools. We focus on a subset of this language whose semantics
corresponds to DTMCs. Let Var be a finite set of variables, each of which is
typed as either Boolean or bounded integer, and Σ(Var) be the set of all valua-
tions of variables in Var that respect these types. Furthermore, let ExprVar and
BExprVar denote the set of all expressions over Var and the Boolean expressions
thereof, respectively. For e ∈ ExprVar and s ∈ Σ(Var), let JeKs be the value of e
in s, i.e. the value of e when all occurring variables are replaced by their values in
s. Let s |= b for b ∈ BExprVar iff JbKs = 1 and let JbK be the set of all valuations
that assign the truth value 1 to b, i.e., JbK = {s ∈ Σ(Var) | s |= b}.

Definition 5 (Assignment). An assignment over a set of variables Var is a
function E : Var → ExprVar that complies with the respective types.

For a valuation s ∈ Σ(Var) and an assignment E over Var , we write s
E−→ s′

if and only if for all v ∈ Var we have JvKs′ = JE(v)Ks with the intuition that s
is transformed into s′ by updating the values of all variables according to E. If

s
E−→ s′, we will say that the execution of E in s leads to state s′.

Definition 6 (Guarded command). A guarded command c = (a, g, (p1, E1),
. . . , (pn, En)) over Var and a set Act of actions consists of (i) an action a ∈ Act,
(ii) a guard g = guard(c) ∈ BExprVar and (iii) probabilities pi ∈ [0, 1] associated
with assignments Ei over Var for 1 ≤ i ≤ n such that

∑
1≤i≤n pi = 1.

Syntactically, we write c as [a] g −→ p1 : (Var ′=E1) + . . . + pn : (Var ′=En),
where Var ′=Ei is short for a list of entities of the form v′=e for v ∈ Var
and e = Ei(v). Intuitively, a guarded command can be executed in every state
that satisfies its guard. If it is executed, the ith assignment is executed with
probability pi. A probabilistic program comprises a set of guarded commands.

SMT-Based Bisimulation Minimisation of Markov Models 5

pc : int[1, 4] init 1; h, f, r : bool init false;

[coin] pc=1 → 0.5 : (pc
′
=pc+ 1)&(h

′
=¬h) + 0.5 : (pc

′
=pc+ 1)&(h

′
=h);

[proc] pc=2 → 0.2 : (pc
′
=pc+ 1)&(f

′
=¬f) + 0.8 : (pc

′
=pc+ 1)&(f

′
=f);

[rtn1] pc=3 ∧ h ∧ ¬f → 0.2 : (pc
′
=pc+ 1)&(r

′
=0)&(f

′
=1) + 0.8 : (pc

′
=pc+ 1)&(r

′
=1);

[rtn2] pc=3 ∧ ¬h ∧ ¬f → 0.5 : (pc
′
=pc+ 1)&(r

′
=0)&(f

′
=1) + 0.5 : (pc

′
=pc+ 1)&(r

′
=1);

[rest] pc=3 ∧ f → 0.99 : (pc
′
=1)&(h

′
=0)&(f

′
=0)&(r

′
=0) + 0.01 : (pc

′
=pc+ 1);

[done] pc=4 → 1 : (pc
′
=pc);

Fig. 1. Running example: The probabilistic program PEx .

Definition 7 (Probabilistic program). A probabilistic program P = (Var ,
sinit, Act, Comm) consists of (i) a finite set Var of variables, (ii) an initial state
sinit ∈ Σ(Var), (iii) a finite set of actions Act and (iv) a finite set of guarded
commands Comm over Var and Act. (v) Additionally, for each s ∈ Σ(Var),
there must exist exactly one c ∈ Comm with s |= guard(c).

Example 1. Fig. 1 shows our running example: a probabilistic program PEx over
variables VarEx = {pc, h, f, r}, modelling a randomised algorithm with 4 phases
(indicated by pc). The algorithm starts by throwing a coin (h) before a process-
ing step that has certain probability (0.2) to fail (f). In case of a failure, the
algorithm restarts with high probability (0.99) and terminates in error other-
wise. If there is no failure, it returns a result r that is either true or false with
a certain probability that depends on the coin flip. As false is the (supposedly)
incorrect result, the fail flag is set in this case. Note that all variables v that
are not assigned any value in an assignment keep their previous value, i.e. have
v′ = v. For the sake of clarity, we sometimes include these superfluous assign-
ments. In further examples in this paper, we refer to the command with name
a by ca (for instance, the coin flip command will be referred to as ccoin) and we
denote the ith assignment of command ca by Ea,i.

The Prism modelling language also supports parallel composition of modules,
where some commands are executed synchronously. We deal with such models by
flattening them into one module, using a symbolic composition of the commands
that need to synchronise. While this may increase the number of commands in
the program, this is always possible in a totally automatic way and is thus no
restriction on the expressivity of the probabilistic programs considered.

The semantics of a probabilistic program P is a DTMC JP K whose state space
is Σ(Var) and whose transitions are defined by the guarded commands. The
additional constraint (see Def. 7 (v)) assures that a guarded command induces
a probability distribution over the successor states and that there are neither
deadlock states nor states that have multiple guarded commands enabled. Note
that this is no restriction. If there exists a state that satisfies no guard, the
state has no outgoing transition and is thus equipped with a self-loop for model
checking purposes. This can already be done at the language level by introducing
a loop command for states that do not have any outgoing transition. On the other
hand, if there is a state that satisfies multiple guards, this corresponds to a non-
deterministic choice in that state. Hence, the semantics of the program would be

6 Christian Dehnert, Joost-Pieter Katoen, David Parker

〈1, 0, 0, 0〉start

〈2, 1, 0, 0〉 〈2, 0, 0, 0〉

〈3, 1, 1, 0〉

〈3, 1, 0, 0〉 〈3, 0, 0, 0〉

〈3, 0, 1, 0〉

〈4, 1, 1, 0〉

〈4, 1, 0, 1〉 〈4, 0, 0, 1〉

〈4, 0, 1, 0〉

1

1 1

1

0.99

0.01

0.99

0.01
0.5 0.5

0.2

0.8 0.8

0.2

0.2

0.8 0.5

0.5

Fig. 2. The (reachable) fragment of JPEx K, with states of the form 〈pc, h, f, r〉.

an MDP instead of a DTMC. The extension of our approach to non-deterministic
models is possible (see Section 4), but not the main concern of this paper.

Example 2. The reachable part of the state space of the probabilistic program
PEx (see Fig. 1) is depicted in Fig. 2, where the states are of the form 〈pc, h, f, r〉.

3 SMT-based Bisimulation Minimisation

We now give our Smt-based approach to bisimulation minimisation. We first
summarise how to perform minimisation using partition refinement, and then
describe its symbolic implementation using weakest preconditions and Smt.

Partition refinement. The standard approach to deriving a bisimulation quo-
tient algorithmically prior to verification is to use partition refinement [5,18].
This technique starts with an initially coarse partition of the state space S and
successively splits (refines) blocks containing states that have different behaviour
with respect to the current partition until no more refinement is necessary. If
the initial partition is chosen based on the atomic propositions, this results in
the coarsest partition of S that induces a bisimulation, i.e., S/∼.

In the probabilistic setting, a block B of partition Π needs to be split if it
contains two states that possess different quotient distributions with respect to
the current partition, i.e. if there exist s1, s2 ∈ B such that [P(s1, ·)]R(Π) 6=
[P(s2, ·)]R(Π) where R(Π) is the equivalence relation induced by the partition
Π. In other words, in order to implement a partition refinement approach, we
need to: (i) determine if B contains states with different quotient distributions
and (ii) if so, identify the subsets of B which agree on the quotient distribution,
because these form the blocks into which B is split.

In our work, a partition Π = {B1, . . . , Bk} of the state space S = Σ(V ar) is
represented symbolically by corresponding Boolean expressions π = {b1, . . . , bk}
such that Bi = JbiK for each 1≤i≤k. In the sections below, we describe how to
reason symbolically, using weakest preconditions, about: (i) whether a state’s
successors are contained in a particular block; and (ii) the quotient distribution
of a state. Once the partition refinement algorithm terminates (i.e., there are
no further blocks in the current partition to split), the quotient DTMC is con-
structed as follows: its state space is taken as the set Π of blocks in the final

SMT-Based Bisimulation Minimisation of Markov Models 7

partition; and the transition probabilities for each block B ∈ Π are then given
by the (unique) corresponding quotient distribution for that block.

Weakest preconditions. To reason symbolically about the effect of an assign-
ment E in a command of a probabilistic program, we use the weakest precondi-
tion operation. The weakest precondition of bi ∈ BExprVar with respect to E,
denoted wp(bi, E), characterizes exactly the valuations s of Σ(Var) for which
the successor valuation after assignment E satisfies bi:

s |= wp(bi, E) ⇐⇒ s
E−→ s′ with s′ |= bi.

We can determine wp(bi, E) through a purely syntactic modification of bi by
simultaneously replacing each occurrence of each variable v ∈ Var in bi by E(v).

Example 3. Consider the first assignment of the command ccoin in Example 1:

Ecoin,1(pc) = pc+ 1, Ecoin,1(h) = ¬h, Ecoin,1(f) = f, Ecoin,1(r) = r

and let b1=¬h. Then wp(b1, Ecoin,1) = ¬¬h ≡ h. This reflects the fact that
exactly the states s with s |= h are transformed into a state s′ by Ecoin,1 such
that s′ |= ¬h. Intuitively, this is because Ecoin,1 flips the truth value of h. �

We fix, from now on, a command c = [a] g −→ p1 : (Var ′=E1) + . . . + pn :
(Var ′=En) with n assignments. Given n Boolean expressions bi1 , . . . , bin for
indices i1, . . . , in ∈ {1, . . . , k}, observe that, for s ∈ Σ(V ar):

s |=
∧n

j=1
wp(bij , Ej) ⇐⇒ for all 1 ≤ j ≤ n . s Ej−→ sj such that sj |= bij .

Note, however, that the command c is not necessarily enabled in all the states
s since some might fail to satisfy the guard g of c. If, in addition, such a state
satisfies g, we know that in the semantics of the probabilistic program, state s has
an outgoing probability distribution that goes with probability pj to a state sj
satisfying bij . We say that the jth assignment of c will lead into block Bij , which

we write as s
c−→ (Bi1 , . . . , Bin). If, on the other hand, ϕ = g∧

∧n
j=1 wp(bij , Ej)

is unsatisfiable, i.e. there is no s ∈ Σ(V ar) such that s |= ϕ, then there exists

no state s for which s
Ej−→ sj such that sj |= bij for all 1 ≤ j ≤ n.

Example 4. Consider the command ccoin and its two assignments Ecoin,1 and
Ecoin,2 (see Fig. 1) and let b1 = ¬h and b2 = h. Then:∧2

i=1
wp(bi, Ecoin,i) = ¬¬h ∧ h ≡ h .

So, for a state s where s |= guard(ccoin), i.e. s |= (pc = 1), and s |= h, we
conclude that command c is enabled, assignment Ecoin,1 will lead into a state
satisfying ¬h (b1) and assignment Ecoin,2 will lead into one satisfying h (b2). We

denote this by s
ccoin−→ (B1, B2). �

8 Christian Dehnert, Joost-Pieter Katoen, David Parker

Quotient distributions. Reasoning in a similar way, we can also determine the
quotient distribution for a state s with respect to the current partition. From
above, if s ∈ Σ(V ar) with s |= guard(c) and s |=

∧n
j=1 wp(bij , Ej), we have

that s
c−→ (Bi1 , . . . , Bin). Since command c has n assignments, each leading

into a block, we have an n-tuple (Bi1 , . . . , Bin) of target blocks per state. These
blocks Bij are not necessarily distinct. Accordingly, to determine the quotient
probability distribution of s with respect to the partition Π, we sum up the
probabilities that lead into the same blocks.

Note, however, that the probabilities do not appear in the formulas. Depend-
ing on whether or not a state satisfies the conjunction of weakest preconditions
for certain blocks, we know whether the corresponding assignments will take
that state to the associated blocks. Based on this knowledge, the probability
distribution is directly given by the probabilistic program.

Example 5. Consider again Example 4 and note that b1 = ¬h and b2 = h induce
a partition of Σ(V ar). From the (fixed) probabilities associated with the two
assignments, Ecoin,1 and Ecoin,2 in the program (Fig. 1), we can conclude that,
for all states s with s |= (pc = 1) and s |= h, there is a 0.5 probability to move
to block B1 in the next step and the same holds for B2.

In contrast, consider the partition Π ′ induced by b′1 = (pc 6= 2) and b′2 =
(pc = 2). Then all states satisfying guard(ccoin) = (pc = 1) and∧2

i=1
wp(b′2, Ecoin,i) = (pc+ 1 = 2) ∧ (pc+ 1 = 2) ≡ (pc = 1)

will move to B′2 with both assignments. In other words, the quotient probability
distribution for all states s with s |= (pc = 1) is given by P(s,B′2) = 1.0 and
P(s,B′1) = 0.0. This can also be seen by looking at the probabilistic program:
starting in a state with (pc = 1) will result in a state with (pc = 2) with
probability 1.0 after one step, because only ccoin is available in these states and
all assignments of that command increase pc by one. �

Refinement of a block using SMT. Recall from the start of this section that
the key operation required to perform bisimulation minimisation using partition
refinement is to split a block B by identifying the different possible quotient
distributions for states within B. We now explain, building on the above, how
to perform this using queries executed by an Smt solver.

Suppose again, that the current partition is Π = {B1, . . . , Bk}, where each
block Bi is represented by a Boolean expression bi, i.e. Bi = JbiK, and that we
are to refine block B = JbK ∈ Π. We now formulate this computation step as
a series of queries to an Smt solver. Given a command c = [a] g −→ p1 :
(Var ′=E1) + . . .+ pn : (Var ′=En) as before, observe that there is a state s ∈ B
where c is enabled and the jth assignment of c leads into block Bij for all

1 ≤ j ≤ n, i.e. s
c−→ (Bi1 , . . . , Bin), if and only if the formula

b ∧ g ∧
∧n

j=1
wp(bij , Ej) (1)

SMT-Based Bisimulation Minimisation of Markov Models 9

is satisfiable. While the first conjunct ensures that the state is in block B, the
rest of the formula guarantees that the state in question exhibits the appropriate
behaviour.

Example 6. Recall the partition given by b1=¬h, b2=h of Example 4. Since:

¬h︸︷︷︸
b1

∧ (pc = 1)︸ ︷︷ ︸
guard(ccoin)

∧ ¬h︸︷︷︸
wp(b2,Ecoin,1)

∧ h︸︷︷︸
wp(b2,Ecoin,2)

is unsatisfiable, we can conclude that there are no states in B1 that have ccoin
enabled such that both assignments lead into block B2. Intuitively, this is because
the first assignment flips the value of h while the second one leaves the value
untouched. Therefore, there exists no possible value of h such that after executing
either one of the assignments h (b2) always holds. In contrast, because:

¬h︸︷︷︸
b1

∧ (pc = 1)︸ ︷︷ ︸
guard(ccoin)

∧ ¬h︸︷︷︸
wp(b2,Ecoin,1)

∧ ¬h︸︷︷︸
wp(b1,Ecoin,2)

≡ ¬h ∧ (pc = 1)

is satisfiable, we know that there is a state s ∈ B1 with s
ccoin−→ (B2, B1). Futher-

more, these states are exactly characterized by ¬h ∧ (pc = 1). �

Now, we can determine all possible target block tuples (and hence quotient
distributions) for a block B under c by checking the corresponding formulas for
satisfiability. The problem with this naive approach is the sheer number of satisfi-
ability queries. Consider a guarded command with n assignments and a partition
of k blocks. Then there are nk different block tuples the command might lead
into, and we would therefore need as many Smt queries in order to determine all
target block tuples, despite the fact that almost all of them will be unsatisfiable.
The latter observation justifies the key idea of our approach: we determine the
different quotient probability distributions available in B via c using an AllSat
enumeration query answered by an Smt solver. That is, we present a formula
system to the Smt solver whose solutions correspond to available target block
tuples and let the Smt solver enumerate all possible solutions. This means that
we only need to create the formula system once and the solver will only enu-
merate as many solutions as there are. This observation justifies the key idea
of our approach: we determine the different quotient probability distributions
available in B via c using an AllSat enumeration query answered by an Smt
solver. That is, we present a formula system to the Smt solver whose solutions
correspond to available target block tuples and let the Smt solver enumerate all
possible solutions. This means that we only need to create the formula system
once and the solver will only enumerate as many solutions as there are.

To that end, we construct a formula system SΠ,c that uses unique auxiliary
variables zi,j for each weakest precondition wp(bj , Ei) with the intention that
the values of these variables in a satisfying assignment encode the behaviour of
some states in B. More concretely, we assert that zi,j implies wp(bi, Ej) and,
additionally, for each assignment Ej we require at least one of the corresponding

10 Christian Dehnert, Joost-Pieter Katoen, David Parker

zi,j to be true. This results in the following formula system SΠ,c:

b (2)

g (3)

zi,j → wp(bi, Ej) for all 1 ≤ i ≤ k and all 1 ≤ j ≤ n (4)∨k

i=1
zi,j for all 1 ≤ j ≤ n (5)

Observe that this yields a correspondence between satisfying assignments for the
variables zi,j and target block tuples under command c available in B as follows.

Example 7. Assume the solver returns a solution (i.e. a valuation s ∈ Σ(V ar)
such that all formulas evaluate to true) to the formula system SΠ,c with z1,j = 1
for all 1 ≤ j ≤ n. Obviously s ∈ B, because s |= b. Then, because of (3), the
command c is enabled in s. Also, due to (4), we have s |=

∧n
j=1 wp(b1, Ej). Stated

differently, there exists an s ∈ B such that s
c−→ (B1, . . . , B1).

In general, given a satisfying assignment α, (5) guarantees that there exist
indices 1 ≤ i1, . . . , in ≤ k such that α(zi1,1) = . . . = α(zin,n) = 1. Then, be-
cause of (4), it follows that s |=

∧n
j=1 wp(bij , Ej). Together with (2) and (3) this

implies s |= b ∧ g ∧
∧n
j=1 wp(bij , Ej) (cf. formula (1)). In other words, we can

conclude that there exists s ∈ B with s
c−→ (Bi1 , . . . , Bin). Note that we are

only interested in the values of the zi,j in a satisfying assignment returned by
the solver, as they alone enumerate the target block tuples. Also, in (4), impli-
cations rather than equivalencies suffice, because wp(bik , Ej) and wp(bil , Ej) are
mutually unsatisfiable for ik 6= il. Intuitively, this is because the jth assignment
cannot lead to two different blocks Bik and Bil from one state. Hence, because
of 5), in each satisfying assignment exactly one of the zi,j is assigned true for all
1 ≤ j ≤ n and each solution corresponds to one target block tuple. The solution
found can easily be ruled out by additionally asserting

∧n
j=1 ¬zij ,j and the solver

can then be used to retrieve the next solution if there is any.

The SmtRefine Algorithm. Algorithm 1 presents an abstract implementation
of SmtRefine, our Smt-based block refinement procedure. It takes as input
a partition Π of Σ(V ar) given by Boolean expressions and a block B ∈ Π
given by Boolean expression b. It returns a partition ΠB of B given by Boolean
expressions, such that all states in each block of ΠB share the same quotient
distribution wrt. Π. In other words, ΠB is a stable partition of B wrt. Π.

The algorithm computes a (partial) mapping sig : DistΠ → 2BExprV ar from
DistΠ , the probability distributions over Π, to a set of (mutually unsatisfiable)
Boolean expressions. This is done such that a state s ∈ B has the quotient
probability distribution µ iff it satisfies one of the expressions in sig(µ), i.e.:

[P(s, ·)]R(Π) = µ ⇐⇒ there exists bµ ∈ sig(µ) such that s |= bµ (6)

where R(Π) is the equivalence relation induced by the partition Π. Put differ-
ently, sig maps all available quotient probability distributions in B to Boolean

SMT-Based Bisimulation Minimisation of Markov Models 11

expressions that characterize exactly the states having these distributions. Then,
upon termination of SmtRefine, ΠB is given by the expressions:{∨

bµ∈sig(µ)
bµ | µ ∈ keys(sig)

}
(7)

where keys(sig) denotes the domain of sig, i.e. the quotient distributions in B.
The algorithm works as follows. We start by initialising the mapping sig to

the empty mapping. Then, for each command c in the probabilistic program, we
build the formula system SΠ,c and pass it to the solver (assert(SΠ,c)). As long
as the solver finds any solutions (hasNextSolution()), we retrieve that solution,
say α, via getSolution() from the Smt solver. Note that α is a mapping of all
the variables in V ar and the auxiliary variables zi,j to their respective domains
such that all formulas of SΠ,c evaluate to true. As we are only interested in the
values of the variables zi,j , we can drop the other parts of the assignment.

As previously shown, such a solution implies that there exists a state s ∈ B
with s

c−→ (Bi1 , . . . , Bin) for certain indices ij , 1 ≤ j ≤ n. Given a solution
α to the formula system, the function getBlockCombination(α) can compute
these indices. As there may be different assignments of c leading s into the same
block, we need to determine the quotient distribution µ by summing up the
corresponding probabilities given by c. This is done by the function compDist(),
which obviously needs to take the target block tuple as a parameter. Now that we
know that there exists (at least) one state s ∈ B whose quotient distribution is µ,
we need to update the mapping sig accordingly. This is done by adding to sig(µ)
the expression characterizing exactly those states that lead into the current
target block tuple via c. Finally, we rule out the solution α previously found
by the solver. More precisely, we rule out that particular combination of the zi,j
being set to 1, because we do not want to enumerate this target block tuple again.
If the solver now still finds possible target block tuples, we repeat the whole
procedure. Note that the while-loop in Alg. 1 realises an AllSat procedure, as
all solutions of the formula system are first found (via getSolution()) and ruled
out later (via ruleOutSolution(α)) as long as there exists another solution. After
all target block tuples have been enumerated, we need to determine whether the
block needs to be split. This is the case, if there is more than one quotient
probability distribution available in B, i.e. if the domain of sig consists of more
than one element. In that case, a stable partition of B is given by sig according
to equation (7). If there is exactly one quotient distribution available, we don’t
need to split B and just return b itself.

The correctness of the Smt-based refinement algorithm is captured by the
following theorem:

Theorem 1 (Correctness). Given a partition Π = {B1, . . . Bk} represented
by a set of Boolean expressions {b1, . . . , bk} and a block B = JbK ∈ Π, SmtRe-
fine returns a partition ΠB of B given by mutually unsatisfiable Boolean ex-
pressions {b′1, . . . , b′m} such that for all s1, s2 ∈ B:

P(s1, T) = P(s2, T) for all T ∈ S/Π iff s1 |= b′i ⇔ s2 |= b′i for all 1 ≤ i ≤ m

12 Christian Dehnert, Joost-Pieter Katoen, David Parker

Algorithm 1 Smt-based block refinement

Require: partition Π given by π = {b1, . . . , bk}, block B = JbK ∈ Π
Ensure: returns stable (wrt. Π) partition ΠB of B

procedure SmtRefine(b, π = {b1, . . . , bk}) . Refines B wrt. Π
sig = ∅ . Initialize mapping of DistΠ to set of expressions in BExprVar

for each c = [a] g −→ p1 : Var ′ = E1 + . . .+ pn : Var ′ = En ∈ Comm do
assert(SΠ,c)
while hasNextSolution() do

α← getSolution() . Retrieve solution from solver

(Bi1 , . . . , Bin)← getBlockCombination(α) . Compute a target block
combination induced by α

µ← compDist(Bi1 , . . . , Bin) . Compute the corresponding distribution
sig(µ)← sig(µ)∪ {b∧ g ∧

∧n
j=1 wp(bij , Ej)} . Update signature mapping

ruleOutSolution(α) . Rule out current solution for solver
end while

end for

if |keys(sig)| > 1 then
return {

∨
bµ∈sig(µ)

bµ | µ ∈ keys(sig)} . Split block only if necessary

else
return {b} . Otherwise return input block

end if
end procedure

Example 8. Let PEx be the probabilistic program in Fig. 1. Furthermore, let the
initial partition be Πinit = {Jpc 6= 4K, Jpc = 4K} given by the Boolean expressions
b1 = (pc 6= 4) and b2 = (pc = 4). Now assume that the first block that is to be
refined is B1 = Jb1K.

For the outermost loop in Alg. 1, we consider the commands in the order
in which they appear in PEx. Accordingly, we start with ccoin and build the
formula system SΠ,ccoin as:

pc 6= 4︸ ︷︷ ︸
b1

pc = 1︸ ︷︷ ︸
guard(ccoin)

z1,1 → pc+ 1 6= 4︸ ︷︷ ︸
wp(b1,Ecoin,1)

z1,2 → pc+ 1 = 4︸ ︷︷ ︸
wp(b2,Ecoin,1)

z2,1 → pc+ 1 6= 4︸ ︷︷ ︸
wp(b1,Ecoin,2)

z2,2 → pc+ 1 = 4︸ ︷︷ ︸
wp(b2,Ecoin,2)

z1,1 ∨ z1,2
z2,1 ∨ z2,2

Because the formula pc = 1 is part of the formula system, the value of pc is
fixed to one, which in turn means that z1,2 and z2,2 can never be set to true in

SMT-Based Bisimulation Minimisation of Markov Models 13

a solution of the system. This corresponds to the fact that there all states that
have ccoin enabled (and therefore need to satisfy its guard, namely pc = 1) have
no way of going to block B2 with any of the assignments, because pc is only
increased by 1.

In fact, the solver only returns a solution with z1,1 = 1 and z2,1 = 1, meaning
that, for all states in B1 that have ccoin enabled, both assignments lead into B1.
Accordingly, the quotient distribution µ1 is given by:

µ1(B1) = 1.0 and µ1(B2) = 0.0

We update the previously empty mapping sig to:

sig = {µ1 7→ { pc 6= 4 ∧ pc = 1︸ ︷︷ ︸
s∈B1∧s|=guard(ccoin)

∧ pc+ 1 6= 4 ∧ pc+ 1 6= 4︸ ︷︷ ︸
s|=wp(b1,Ecoin,1)∧wp(b1,Ecoin,2)

}}

and continue with constructing the formula system for command cproc :

pc 6= 4

pc = 2

z1,1 → pc+ 1 6= 4 z1,2 → pc+ 1 = 4

z2,1 → pc+ 1 6= 4 z2,2 → pc+ 1 = 4

z1,1 ∨ z1,2
z2,1 ∨ z2,2

Except for the guard it looks exactly as the previous formula system, because
the assignments of this command do exactly the same transformation to pc as
the assignments of ccoin . Exactly because of this, the solver will once again only
return a solution with z1,1 = 1 and z2,1 = 1, which means that the corresponding
states also possess the same quotient distribution µ1 as before. This yields:

sig = { µ1 7→ {pc 6= 4 ∧ pc = 1 ∧ pc+ 1 6= 4 ∧ pc+ 1 6= 4,

pc 6= 4 ∧ pc = 2 ∧ pc+ 1 6= 4 ∧ pc+ 1 6= 4} }

The next command to consider is crtn1. The formula system looks as follows:

pc 6= 4

pc = 3 ∧ h ∧ ¬f
z1,1 → pc+ 1 6= 4 z1,2 → pc+ 1 = 4

z2,1 → pc+ 1 6= 4 z2,2 → pc+ 1 = 4

z1,1 ∨ z1,2
z2,1 ∨ z2,2

This time, the solver will return z1,2 = z2,2 = 1 as the only solution. Intuitively,
this is due to the fact that all states satisfying the guard of crtn1 must have
pc = 3, which means that, after executing either one of the assignments, the

14 Christian Dehnert, Joost-Pieter Katoen, David Parker

value of pc will be 4 and thus will lead to a state in block B2. As both updates
lead to B2, the corresponding quotient distribution in these states is given by:

µ2(B1) = 0.0 and µ2(B2) = 1.0

which results in:

sig = { µ1 7→ {pc 6= 4 ∧ pc = 1 ∧ pc+ 1 6= 4 ∧ pc+ 1 6= 4,

pc 6= 4 ∧ pc = 2 ∧ pc+ 1 6= 4 ∧ pc+ 1 6= 4},
µ2 7→ {pc 6= 4 ∧ pc = 3 ∧ h ∧ ¬f} } .

Apart from the guard, the formula system for the next command crtn2 is the
same as the one before and also has the same solution, which means that these
states also have µ2 as the outgoing quotient distribution. This updates sig to:

sig = { µ1 7→ {pc 6= 4 ∧ pc = 1 ∧ pc+ 1 6= 4 ∧ pc+ 1 6= 4,

pc 6= 4 ∧ pc = 2 ∧ pc+ 1 6= 4 ∧ pc+ 1 6= 4},
µ2 7→ {pc 6= 4 ∧ pc = 3 ∧ h ∧ ¬f,

pc 6= 4 ∧ pc = 3 ∧ ¬h ∧ ¬f} } .

The next command is crest , which leads to SΠ,crest as follows:

pc 6= 4

pc = 3 ∧ f
z1,1 → 1 6= 4 z1,2 → 1 = 4

z2,1 → pc+ 1 6= 4 z2,2 → pc+ 1 = 4

z1,1 ∨ z1,2
z2,1 ∨ z2,2

for which the solver identifies z1,1 = 1 and z2,2 = 1 as the only solution. Intu-
itively, this says that for all states s ∈ B1 that have this command enabled, the
first assignment will lead back into B1 while the second assignment leads into
B2, which is obvious considering that the first assignment resets pc to 1 and the
second assignment increases pc from 3 to 4. This means that all states s ∈ B1

with s |= guard(crest) possess the quotient distribution µ3 with:

µ3(B1) = 0.99 and µ3(B2) = 0.01

which updates sig to:

sig = { µ1 7→ {pc 6= 4 ∧ pc = 1 ∧ pc+ 1 6= 4 ∧ pc+ 1 6= 4,

pc 6= 4 ∧ pc = 2 ∧ pc+ 1 6= 4 ∧ pc+ 1 6= 4},
µ2 7→ {pc 6= 4 ∧ pc = 3 ∧ h ∧ ¬f,

pc 6= 4 ∧ pc = 3 ∧ ¬h ∧ ¬f},
µ3 7→ {pc 6= 4 ∧ pc = 3 ∧ f ∧ 1 6= 4 ∧ pc+ 1 = 4} } .

SMT-Based Bisimulation Minimisation of Markov Models 15

1start 2

3

4

5 1

1 0.8
0.2

0.99
0.01

1

Fig. 3. The bisimulation quotient JPEx K/∼.

Finally, for the last command, namely cdone, the formula system is as follows:

pc 6= 4 pc = 4

z1,1 → pc 6= 4 z1,2 → pc = 4

z2,1 → pc 6= 4 z2,2 → pc = 4

z1,1 ∨ z1,2
z2,1 ∨ z2,2

where already the two formulas in the first line are (together) unsatisfiable. This
reflects the fact that no state in B1 = Jpc 6= 4K has this command enabled,
because its guard requires pc to be equal to 4. Therefore sig is not updated and
as there are no more commands to consider, the loop terminates.

Consequently, B needs to be split into three sub-blocks according to the
different quotient distributions recorded in sig. Continuing this for all blocks,
we compute the stable partition (expressions have been simplified to improve
readability):

πstaEx = { pc = 1 ∧ ¬f︸ ︷︷ ︸
Bsta1

, pc = 2 ∧ ¬f︸ ︷︷ ︸
Bsta2

, pc = 3 ∧ f︸ ︷︷ ︸
Bsta3

,

pc = 3 ∧ ¬f︸ ︷︷ ︸
Bsta4

, pc = 4︸ ︷︷ ︸
Bsta5

, pc = 1 ∧ f︸ ︷︷ ︸
Bsta6

, pc = 2 ∧ f︸ ︷︷ ︸
Bsta7

}.

For this final partition, we extract the quotient DTMC depicted in Fig. 3. Note
that the distributions for the blocks can easily be kept track of during the re-
finement steps and are thus known. Also note that we already omitted the un-
reachable blocks Bsta6 and Bsta7 . �

4 Experiments

Implementation. We implemented a C++-based prototype of our algorithm,
using Microsoft’s Z3 as the backend Smt solver and comprising about 5000
lines of code. We restrict our attention to PRISM models in which expressions
involve linear integer arithmetic, which is typically the case in practice. Also, we
use some optimisation techniques to the approach previously described, one of
which passes an additional conjunct to the solver that rules out some unreachable
blocks in the refinement procedure.

16 Christian Dehnert, Joost-Pieter Katoen, David Parker

original DTMC quotient DTMC factor

N K hybrid (default) best low high

states constr. verif. constr. verif. states constr.
4 9 19817 6.00 88.75 5.99 3.18 10 11.40 0.81 7.78
4 11 44107 41.74 543.85 23.91 14.20 10 26.57 1.43 22.04
5 9 236745 414.91 9456.78 483.86 13.48 12 497.91 1.0 18.99
5 11 644983 4083.82 60784.22 3695.16 45.60 12 1945.99 1.92 33.33
6 9 2659233 TO TO 53695.52 643.97 14 28548.85 1.90 −

Table 1. Results for the synchronous leader election protocol.

Case studies. We evaluated our implementation on a set of probabilistic model
checking benchmarks,3 running our experiments on a Core i7 processor with
2.6GHz, and limited to 5GB RAM and 48 hours of runtime. If the experiment
ran out of time or memory, this is marked as TO and MO, respectively. For
the comparisons we considered all three engines of Prism (hybrid, sparse and
MTBDD) and give the times for the default (hybrid) and the respective best
engine for the corresponding example for both construction (column constr.) as
well as verification (column verif.). Please note that the quotient DTMCs were
first computed by our prototype as well as verified by Prism afterwards, but as
the verification of the quotient took negligible time (i.e. less than 5ms) for all
our experiments, we omitted these entries in the tables.

As it is already known that bisimulation minimisation can lead to drastically
smaller state spaces, the key point we want to compare is not the model size
in terms of states, but the time needed to verify the properties of interest. For
this reason, we list time reduction factors: they are the ratio of the total time
consumption of Prism for the given model to the total time needed to minimise
the model using our prototype and verify it afterwards using Prism, where the
verification, as explained earlier, took virtually no time at all. Since the time
Prism needs for the full model strongly depends on the engine used, we list two
reduction factors, where the lower is computed with respect to the best and the
higher with respect to the worst Prism engine for the given model.

Synchronous leader election protocol. In Itai and Rodeh’s protocol, N proces-
sors each probabilistically chose one of K different values to pass synchronously
around a ring in order to determine a unique leader. We computed the prob-
abilities that a leader is eventually elected and that a leader is elected within
L rounds, for L = 3. The results are shown in Table 1. The construction and
verification of the bisimulation quotient is about as fast as the best (i.e., sparse)
Prism engine. However, in comparison to the default Prism engine, we achieve
substantial speed-ups using Smt-based quotienting. Note that the quotient sys-
tem can be used to verify the step-bounded property for arbitrary values of L,
as it preserves all PCTL* formulae and does not depend on L. So, verifying this
property for more values of L will increase the reduction factors roughly linearly.

3 All models are available from http://www.prismmodelchecker.org/casestudies/.

http://www.prismmodelchecker.org/casestudies/

SMT-Based Bisimulation Minimisation of Markov Models 17

original DTMC quotient DTMC factor

N R hybrid (default) best low high

states constr. verif. constr. verif. states constr.
10 5 110562 0.17 0.48 0.17 0.29 73 1.13 0.58 1.76
10 20 4.4 · 109 MO MO 31.18 1623.54 313 21.11 78.39 −
20 5 2036647 174.97 111.59 180.80 8.14 73 2.67 70.71 107.25
20 20 ? MO MO MO MO 313 56.26 − −
25 5 5508402 MO MO MO MO 73 3.74 − −
25 20 ? MO MO MO MO 313 80.03 − −

500 5 ? MO MO MO MO 73 8969.46 − −
500 20 ? MO MO MO MO 313 106724.27 − −
600 5 ? MO MO MO MO 73 18219.01 − −
600 20 ? MO MO MO MO MO MO − −

Table 2. Impact of bisimulation minimisation on the Crowds protocol model.

Crowds protocol. Reiter and Rubin’s Crowds protocol aims to send a message
anonymously to a destination by randomly routing it R times through a crowd of
size N . For this model, we restricted the reachable blocks by over-approximating
the reachable state space by an expression capturing the obvious fact that the
total number of member observations cannot exceed the number of instances the
protocol has been run. Our model is a slight amendment of the model available
on the Prism website with less variables. Table 2 summarizes the results, where
we computed the probability that the original sender was discovered more than
once. Using our technique, we not only outperform Prism in terms of runtime,
but are also able to treat significantly larger model parameters. In fact, for
the parameters where the state space size is indicated as unknown (“?”), using
Prism we were not able to build the state space let alone perform the actual
verification.4 Here, the crucial advantage of the Smt-based quotienting becomes
apparent: since it avoids building the full state space of the original model, it
shortens computation times while reducing the required memory.

Comparison with Sigref. In addition to the comparison with Prism, we com-
pared our prototype to Sigref, a tool that performs bisimulation minimisation
symbolically on a BDD representation of the system [21]. We integrated Sigref
into Prism in a way that works directly on the internal format of the model
checker, which was possible because they share the MTBDD library Cudd. Ta-
ble 3 illustrates the experimental results for both case studies, where the time
reduction factor is the ratio of time needed for minimisation using Sigref plus
the verification using Prism to the time needed for the minimisation using our
Smt-based prototype plus the verification time using Prism. Note that while the
quotient DTMCs are isomorphic, the verification times differ between the two
approaches, because the BDD representing the (same) system is different. For
the first case study, we observe minor speed-ups compared to Sigref. However,
due to memory requirements, Sigref was unable to minimise the state space of

4 We tried to build the state space of the smallest of these models (N=20, R=20) on
a cluster with 196GB of memory, but aborted the experiment after one week.

18 Christian Dehnert, Joost-Pieter Katoen, David Parker

(a) Synchronous leader election

N K constr. verif. red. factor

4 9 18.39 ≈ 0 1.61
4 11 51.57 ≈ 0 1.94
5 9 580.40 ≈ 0 1.17
5 11 MO MO −
6 9 MO MO −

(b) Crowds protocol

N R constr. verif. red. factor

10 5 9.67 ≈ 0 8.51
10 20 6100.093 90.26 293.26
20 5 481.022 ≈ 0 180.02
20 5 MO MO −

Table 3. Comparison with Sigref as the minimisation engine.

the last two models. For the Crowds protocol, note that Sigref needs to build
the full BDD representation of the state space prior to minimisation. As the
time needed for model construction dominates the runtime, there is (almost) no
scope for Sigref to improve on Prism’s runtimes. Even worse, the additional
intermediate BDDs prevented the minimisation for the parameters 20/5 under
the memory restriction.

Possible extensions. We conclude this section with an overview of several ways
that our SMT-based approach to bisimulation can be extended.

Rewards. A Markov Reward Model (MRM) (D, r) is a DTMC D equipped with
a function r : S → R≥0 that assigns a non-negative real value to each state of D.
Upon passing through state s the reward r(s) is gained, providing a quantitative
measure in addition to the probabilities. In the Prism modelling language, state-
based rewards are defined in a similar fashion as commands, essentially attaching
a reward expression e to all states satisfying a given Boolean expression b. If e is
an expression evaluating to a constant, i.e., all states satisfying b share the same
reward value, then rewards can be easily supported by our implementation by
adjusting the initial partition appropriately.

Nondeterminism. In its current form, both the algorithm and the implementa-
tion treat only DTMCs and CTMCs and do not support their nondeterministic
counterparts MDPs and CTMDPs, respectively. Our prototype can be extended
in order to also support these models. For this, we lift the formula system SΠ,c of
section 3 to a system SΠ incorporating all commands with additional auxiliary
variables xc for c ∈ Comm as follows:

b (8)

xc ↔ guard(c) for all c ∈ Comm (9)

zc,i,j → wp(bj , Ec,i) for all c ∈ Comm, all 1 ≤ j ≤ k and all 1 ≤ i ≤ |c| (10)

xc →
∨k

j=1
zc,i,j for all c ∈ Comm and 1 ≤ i ≤ |c| (11)

where the current partition Π = JπK is given by π = {b1, . . . , bk}, |c| refers
to the number of assignments of c and Ec,i denotes the ith assignment of c.
Enumerating the satisfying assignments will now induce sets of simultaneously
enabled commands and the corresponding target block combinations.

SMT-Based Bisimulation Minimisation of Markov Models 19

Parametric Markov chains. If the probabilities in a given probabilistic program
are not concrete values but rather parameters, it corresponds to a parametric
Markov chain [8] instead of a DTMC. As the only part of our algorithm that
deals with probabilities is the computation of the probability distribution in-
duced by a command and a target block combination, it is fairly straightforward
to incorporate parameters. Instead of computing a concrete value associated
with each successor block, we symbolically derive an expression involving the
parameters and only consider two parametric probability distributions equal if
they syntactically coincide (in a certain normal form). This way, the computed
quotient preserves all PCTL* properties for all possible parameter values.

5 Conclusion and Further Work

We have presented an Smt-based approach to extract, from a probabilistic pro-
gram specified in the Prism modelling language, the Markov chain representing
its coarsest bisimulation quotient. No state space is generated—our bisimulation
minimisation is a truly symbolic program manipulation. Experiments yielded
encouraging results, even without optimisations such as formula simplification,
which we plan to incorporate in future work. Application of the Smt-based
approach to either parametric programs or programs with infinite state space
but finite bisimulation quotient is straightforward and the approach can easily
be adapted to perform compositional minimisation. We therefore believe that
this approach represents a promising alternative to enumerative and BDD-based
bisimulation minimisation algorithms.

Acknowledgements. The first two authors are funded by the EU FP7 project
CARP (see http://www.carpproject.eu/) and the work was part-funded by
the ERC Advanced Grant VERIWARE. We also thank Marta Kwiatkowska for
facilitating the first author’s visit to Oxford, where this work was initiated.

References

1. A. Aziz, V. Singhal, and F. Balarin. It usually works: The temporal logic of
stochastic systems. In CAV, volume 939 of LNCS, pages 155–165, 1995.

2. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstraction for
model checking c programs. In T. Margaria and W. Yi, editors, TACAS, volume
2031 of LNCS, pages 268–283. Springer, 2001.

3. P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability, 31:59–75, 1994.

4. N. Coste, H. Garavel, H. Hermanns, F. Lang, R. Mateescu, and W. Serwe. Ten
years of performance evaluation for concurrent systems using CADP. In ISoLA
(2), pages 128–142, 2010.

5. S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal state-space lumping in
Markov chains. Inf. Process. Lett., 87(6):309–315, 2003.

6. K. Fisler and M. Y. Vardi. Bisimulation minimization and symbolic model check-
ing. Formal Methods in System Design, 21(1):39–78, 2002.

http://www.carpproject.eu/

20 Christian Dehnert, Joost-Pieter Katoen, David Parker

7. S. Graf and H. Säıdi. Construction of abstract state graphs with pvs. In O. Grum-
berg, editor, CAV, volume 1254, pages 72–83. Springer, 1997.

8. E. M. Hahn, H. Hermanns, and L. Zhang. Probabilistic reachability for parametric
Markov models. STTT, 13(1):3–19, 2011.

9. H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In A. Gupta and
S. Malik, editors, CAV, volume 5123 of LNCS, pages 162–175. Springer, 2008.

10. J.-P. Katoen, T. Kemna, I. S. Zapreev, and D. N. Jansen. Bisimulation minimisa-
tion mostly speeds up probabilistic model checking. In O. Grumberg and M. Huth,
editors, TACAS, volume 4424 of LNCS, pages 87–101. Springer, 2007.

11. J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The ins
and outs of the probabilistic model checker MRMC. Perf. Ev., 68(2):90–104, 2011.

12. M. Kattenbelt, M. Z. Kwiatkowska, G. Norman, and D. Parker. Game-based
probabilistic predicate abstraction in PRISM. Electr. Notes Theor. Comput. Sci.,
220(3):5–21, 2008.

13. M. Kattenbelt, M. Z. Kwiatkowska, G. Norman, and D. Parker. A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design, 36(3):246–280, 2010.

14. M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic
model checking. In CAV, volume 4144 of LNCS, pages 234–248, 2006.

15. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In CAV, volume 6806 of LNCS, pages 585–591, 2011.

16. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991.

17. M. Mumme and G. Ciardo. A fully symbolic bisimulation algorithm. In Workshop
on Reachability Problems (RP), volume 6945 of LNCS, pages 218–230, 2011.

18. A. Valmari and G. Franceschinis. Simple O(m logn) time Markov chain lumping.
In TACAS, volume 6015 of LNCS, pages 38–52, 2010.

19. B. Wachter, L. Zhang, and H. Hermanns. Probabilistic model checking modulo
theories. In QEST, pages 129–140, 2007.

20. R. Wimmer, S. Derisavi, and H. Hermanns. Symbolic partition refinement with
automatic balancing of time and space. Perform. Eval., 67(9):816–836, 2010.

21. R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and B. Becker. Sigref- a
symbolic bisimulation tool box. In ATVA, volume 4218 of LNCS, 2006.

	SMT-Based Bisimulation Minimisation of Markov Models

