Quantitative Verification:
Correctness, Reliability and Beyond

Dave Parker

University of Birmingham

December 2012

Verification

* Checking the correctness of (computerised) systems
using rigorous, mathematically-sound techniques

— in essence: proving that a piece of software, or hardware,
or a protocol behaves correctly

 Automated verification: model checking

— correctness properties expressed
in temporal logic

— exhaustive construction/analysis CK? 7)
of finite-state model

Vv [O(warn > O trigger)]

Model checking

e Successful in practice
— e.g. Windows device drivers, circuit designs, ...
 Example properties

— “acquire/release of spinlock is always l
done in strict alternation”

— “no array is accessed outside its bounds”

 Why it works 7]
— temporal logic: expressive, tractable R?
— fully automated, tools available

— not just verification, but falsification

o . \/ '
of properties, i.e. bug hunting [Dlwarn > O trigger)]

Quantitative verification

Adds quantitative aspects (to models and properties)

— probability, time, costs, rewards, ...

Probability
— physical components can fail
— communication media are unreliable

— algorithms/protocols use randomisation

Time
— delays, time-outs, failure rates, ...
Costs & rewards

— power consumption, resource usage, ...

— profit, incentive schemes, ...

Probabilistic model checking

e Construction and analysis of probabilistic models

— Markov chains, Markov decision processes, ...

* Correctness properties in probabilistic temporal logic

— P, 090 [O(trigger—> <><2° deploy)]

— “the probability of an airbag always deploying
within 20ms of being triggered is at least 0.999”

— correctness, reliability, performance, ...

 Model checking algorithms (and tools)

— graph algorithms, linear equations, linear programming,
numerical fixed points, numerical approximations, ...

Probabilistic models

o e.g. communic-
i \iKies Markov g

| +% chain ation procotol

D} + exponential ~ continuous- e o systems
) time Markov 6 5
7) biology

time delays chain

+N stochastic e.g. energy

8am
© thG’Ory game management

ki

1) Adding: Probabilities

Model: Markov chain

— add probabilities to transitions
Properties

— probability of airbag failure < 0.001
— numerical queries: what is the probability of failure?
Key ideas:

— exact numerical results

— combines numerical + exhaustive analysis

— results show system flaws, anomalies

Applications

— network protocols, security, biology, robotics & planning,
power management, nanotechnology...

Example: Bluetooth

» Device discovery between a pair of Bluetoet dewces

— performance essential for this phase

freq ~—'[c:|_-|<1(5 Tz+k+

e Complex discovery process (CLK o= CLK 5iy5)

_ mod’ 16] med 32
— two asynchronous 28-bit clocks hd

— pseudo-random hopping between 32 frequencies

—_

— random waiting scheme to avoid collisions
— 17,179,869,184 initial configurations

o
©

o
o

=}
'S
T

o
[

prob. time to hear 2 replies< T

—exact
-==derived

=
IN
[$,]

* Probabilistic model checking
— “worst-case expected discovery time is at most 5.17s”
— “probability discovery time exceeds 6s is always < 0.001”

2) Adding: Exponential delays

e Continuous-time Markov chains

— random delays on transitions between states

— delays are exponentially distributed
— e.g. failure rates, reaction times, ...

* Applications

— network performance models
— biological reactions

* Properties

— probability of disk-failure
within 1 month?

— expected number of molecules of X at time instant T?

Example: Systems biology

e Markov model of reactions

— states represent molecule counts
— transitions correspond to reactions

* Key ideas
— “in-silico” experiments 1
. . . A+B <> AB
— aim: validate biologists’ models @ K K
e : A—>
— probabilistic model checking can be
cheaper than simulation 1 (=i mogeino o]

— small models yield useful results °oY o SPRY

e Case study: FGF pathway

— model developed with biologists

Probability the signal present at time T

— validated against lab experiments 10 20 30 40 80 60

T (minutes)

Multi-player stochastic games

— states controlled by players
— players choose (probabilistic) actions

Key ideas 1

— automated methods essential to reason about complex
player strategies, and interaction with probabilities

Property specifications

— does player 1 have a strategy to ensure that the probability
of is <0.01, regardless of the strategies if players 2 and 37

Applications

— controller synthesis (controller vs. environment),
security (system vs. attacker), distributed algorithmes, ...

Example: Energy management

. : - [Hildmann/
Energy management protocol for Microgrid Saffre 1]

— Microgrid: local energy management
— randomised demand management protocol

— probability: randomisation, demand model, ...

* Existing analysis

— simulation-based

20

— assumes all clients are unselfish Allfollow alg.

15

e Our analysis

Deviations of
varying size

— stochastic multi-player game

10

Reward per household

— clients can cheat (and cooperate)

— exposes protocol weakness =

1 2 3 4 5 6 7 8

— propose/verify Simple ﬁX Number of households

Conclusions

* Quantitative verification
— formal methods to build/analyse probabilistic models
— temporal logics for correctness, reliability, performance, ...
— exact results, combines numerical + exhaustive analysis
— wide range of applications

e Challenges
— scalability + efficiency
— wider property classes, e.g. partial information for games
— richer models: timed games, hybrid automata, ...

