

PRISM 4.0

Verification of Probabilistic Real-time Systems

Dave Parker

University of Oxford

CAV'11, Snowbird, Utah, July 2011

Joint work with: Marta Kwiatkowska, Gethin Norman, ...

PRISM – An overview

PRISM is a probabilistic model checker

- automatic verification of systems with stochastic behaviour
- e.g. due to unreliability, uncertainty, randomisation, ...
- Construction/analysis of probabilistic models...
 - discrete- and continuous-time Markov chains, Markov decision processes, probabilistic timed automata
 - modelling language, case study repository, benchmark suite
- Verification of properties in probabilistic temporal logics...
 - PCTL, CSL, LTL, PCTL*, quantitative extensions, costs/rewards
- Various model checking engines and techniques...
 - symbolic (multi-terminal BDDs), explicit-state data structures, symmetry reduction, quantitative abstraction refinement, simulation-based (approximate/statistical model checking), ...

PRISM – Probabilistic models

- Discrete-time Markov chains (DTMCs)
 - discrete states + probability
 - for: randomisation, unreliable communication media, \dots
- Continuous-time Markov chains (CTMCs)
 - discrete states + exponentially distributed delays
 - for: component failures, job arrivals, molecular reactions, ...
- Markov decision processes (MDPs)
 - in fact: probabilistic automata [Segala]
 - probability + nondeterminism (e.g. for concurrency)
 - for: randomised distributed algorithms, security protocols, ...
- Probabilistic timed automata (PTAs) [new in PRISM 4.0]
 - probability, nondeterminism + real-time
 - for wireless comm. protocols, embedded control systems, ...

PRISM – Property specification

- Temporal logic-based property specification language
 - subsumes PCTL, CSL, probabilistic LTL, PCTL*, ...
- Simple examples:
 - $P_{\leq 0.01}$ [F "crash"] "the probability of a crash is at most 0.01"
 - $S_{>0.999}$ ["up"] "long-run probability of availability is >0.999"

Usually focus on quantitative (numerical) properties:

- P_{=?} [F "crash"]
 "what is the probability of a crash occurring?"
- then analyse trends in quantitative properties as system parameters vary

PRISM – Property specification

- Properties can combine numerical + exhaustive aspects
 - $P_{max=?}$ [$F^{\leq 10}$ "fail"] "worst-case probability of a failure occurring within 10 seconds, for any possible scheduling of system components"
 - $P_{=?}$ [$G^{\leq 0.02}$!"deploy" {"crash"}{max}] "the maximum probability of an airbag failing to deploy within 0.02s, from any possible crash scenario"
- Reward-based properties (rewards = costs = prices)
 - R_{{"time"}=?} [F "end"] "expected algorithm execution time"
 - $R_{\{"energy"\}max=?}$ [$C^{\leq 7200}$] "worst-case expected energy consumption during the first 2 hours"
- Properties can be combined with e.g. arithmetic operators
 e.g. P_{=?} [F fail₁] / P_{=?} [F fail_{any}] "conditional failure prob."

Probabilistic timed automata (PTAs)

- Probability + nondeterminism + real-time
 - timed automata + discrete probabilistic choice, or...
 - probabilistic automata + real-valued clocks
- PTA example: message transmission over faulty channel

States

locations + data variables

Transitions

guards and action labels

Real-valued clocks

• state invariants, guards, resets

Probability

discrete probabilistic choice

PRISM modelling language

- textual language, based on guarded commands

pta const int N; module transmitter s : [0..3] init 0; tries : [0..N+1] init 0; x : clock; invariant (s=0 \Rightarrow x≤2) & (s=1 \Rightarrow x≤5) endinvariant [send] s=0 & tries $\leq N$ & $x \geq 1$ $\rightarrow 0.9$: (s'=3) + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0); $[retry] s=1 \& x \ge 3 \rightarrow (s' = 0) \& (x' = 0);$ [quit] $s=0 \& tries > N \rightarrow (s' = 2);$ endmodule **rewards** "energy" (s=0) : 2.5; endrewards

PRISM modelling language

- textual language, based on guarded commands

PRISM modelling language

- textual language, based on guarded commands

PRISM modelling language

- textual language, based on guarded commands

Model checking PTAs in PRISM

- Properties for PTAs:
 - min/max probability of reaching X (within time T)
 - min/max expected cost/reward to reach X
 (for "linearly-priced" PTAs, i.e. reward gain linear with time)
- PRISM has two different PTA model checking techniques...
- "Digital clocks" conversion to finite-state MDP
 - preserves min/max probability + expected cost/reward/price
 - (for PTAs with closed, diagonal-free constraints)
 - efficient, in combination with PRISM's symbolic engines
- Quantitative abstraction refinement
 - zone-based abstractions of PTAs using stochastic games
 - provide lower/upper bounds on quantitative properties
 - automatic iterative abstraction refinement

Also new in PRISM 4.0

- Discrete-event simulation engine
 - newly rewritten for PRISM 4.0
- Approximate/statistical model checking
 - approximate results (and confidence interval) for e.g. $\mathbf{P}_{=?}$ [...]
 - acceptance sampling (SPRT) for approximating e.g. $P_{<p}$ [...]
 - offers improved scalability for fully-probabilistic models
- Generation of optimal strategies (schedulers, adversaries)
 - for MDPs (and, via digital clocks, for PTAs)
- New components for developers
 - explicit-state probabilistic model checking library
 - quantitative abstraction refinement component
 - discrete-event simulation engine

The PRISM benchmark suite

PRISM models are widely used for testing/benchmarking

- but there are many case studies in several locations
- can be hard to find the right type of examples for testing

The PRISM benchmark suite

- collection of probabilistic model checking benchmarks
- designed to make it easy to test/evaluate/compare tools
- currently, approx. 20 models, of various types and sizes
- wide range of model checking properties, grouped by type
- PRISM can also export built models in various formats

• See: <u>www.prismmodelchecker.org/benchmarks</u>

More information...

More info and resources at: <u>www.prismmodelchecker.org</u>

- download PRISM (free, open source, runs on all major OSs)
- documentation, tutorials, case studies
- related papers, teaching material, benchmarks
- Tool demo session: Tue pm
 - or just ask any time...

Coming soon:

- probabilistic counterexample generation
- multi-objective probabilistic model checking
- assume-guarantee model checking
- and more...