Automated Game-theoretic
Verification for Probabilistic Systems

Dave Parker

University of Birmingham

Joint work with:
Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, Aistis Simaitis

Dagstuhl, November 2012

Overview

- Automatic verification (model checking) of systems with:

1. Probabilistic behaviour

— unreliability, uncertainty, randomisation, ...
2. Other quantitative aspects

— time, costs (e.g. energy), rewards (e.g. profit), ...
3. Competitive/collaborative behaviour

— open systems, controller synthesis, ...

Focus:
— probabilistic model checking of stochastic multi-player games
— scalable/efficient techniques/tools for modelling real systems

- Applications:

— e.g. security protocols, algorithms for distributed consensus,
sensor network co-ordination or energy management

This talk

- Probabilistic model checking

- Stochastic multi-player games (SMGs)
- Property specification: rPATL

- rPATL model checking
- Tool support: PRISM-games

- Case study: energy management in microgrids

AR

System

° =P | P_go [F crash]| =——
System

require- Probabilistic
ments

Probabilistic model checking

Probabilistic model
e.g. Markov chain,
Markov decision process

temporal logic
specification
e.g. PCTL, CSL, LTL, ...

Probabilistic

—) Result

v X

N model checker

~ Quantitative
results

e.g. PRISM p

—p Withess/
counter-
example

-

Stochastic multi-player games

- Stochastic multi-player game (SMGs)
— nondeterminism + multiple players + probability

~ - A (turn-based) SMG is a tuple (TT, S, <Sp..r, A, A, L):
— TTis a set of n players
s — Sis a (finite) set of states
= — (S)icr is a partition of S
— Ais a set of action labels
— A :S X A — Dist(S) is a (partial)
transition probability function
— L:S — 277 is a labelling with
atomic propositions from AP

Strategies, probabilities & rewards

Strategy for player i: resolves choices in S, states
— based on execution history, i.e. o, : (SA)*S; — Dist(A)

— can be: deterministic (pure), randomised,
memoryless, finite—-memory, ...

— 2, denotes the set of all strategies for player i

- Strategy profile: strategies for all players: o=(o0,,...,0,)
— induces a set of (infinite) paths from some start state s
— a probability measure Pr.° over these paths

Rewards (or costs)
— hon-negative integers on states/transitions

— e.g. elapsed time, energy consumption,
number of packets lost, net profit, ...

— this talk: expected cumulated value of rewards

AR

Property specification: rPATL

New temporal logic rPATL:
— reward probabilistic alternating temporal logic

- CTL, extended with:

— coalition operator «(C)) of ATL
— probabilistic operator P of PCTL
— generalised (expected) reward operator R from PRISM

In short:
— zero-sum, probabilistic reachability + expected total reward

Example:
— (1,21 P_y o1 [F=10error |

— “players 1 and 2 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.01,
regardless of the strategies of other players”

rPATL syntax/semantics

- Syntax:
™ du=Tlal -l dAdd|LOHP W] | LCHR , [F*d]
s =X |dUD[FP|CP|dUkd|Fkd|C=kd
- where:
el — a€AP is an atomic proposition, C<TT is a coalition of players,

<E{<,<,>,>}, q€[0,1]nQ, xeQ. 4, k € N
r is a reward structure and *€{0,00,c} is a reward type

- Semantics:

- P operator: s = (C)P_, [w] iff:

— “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path
formula P being true from state s satisfies > q”

rPATL semantics (rewards)

R operator: s = ((C)R", [F*d] iff:

— “there exist strategies for players in coalition C such that,
for all strategies of the other players, the expected
cumulated reward r to reach a ¢p-state (type *) satisfies b x”

. - 3 reward types * € {c0,c,0}

' — defining reward if a ¢-state is never reached

— reward is: infinite (*=), cumulated sum (*=c), zero (*=0)

— o0: e.g. expected time for algorithm execution

— C: e.g. expected resource usage (energy, messages sent, ...)
— 0: e.g. reward incentive awarded on algorithm completion

Note: FO operator needs finite—-memory strategies
— (for P and other R operators, pure memoryless strat.s suffice)

Model checking rPATL

Main task: checking individual P and R operators
— reduction to solution of zero-sum stochastic 2-player game
— (probabilistic reachability + expected total reward)
— e.g. (CHP_ W] < SUPg es, inf(Izezz Pr.o1:92 () >q

a4 — complexity: NP N coNP (without any R[F°] operators)

— complexity for full logic: NEXP N coNEXP (due to R[F°] op.)

In practice though:
— (usual approach taken in probabilistic model checking tools)
— evaluation of numerical fixed points (“value iteration”)
— and more: graph-algorithms, sequences of fixed points, ...

- See: [TACAS’12], [CONCUR’'12]

rPATL extensions

- Quantitative (numerical) properties:
_ — numerical rather than boolean-valued queries
; - Example:
— {1,2h) P .o [Ferror]

-- — “what is the maximum probability of reaching an error state
that players 1 and 2 can guarantee?”

— i.e.sup; 5. infcrzezz Pr.91:92 (F error)

Other extensions:
— rPATL* (i.e. support for LTL formulae in P operator)
— reward-bounded operators

AR

— exact probability/reward bounds

Tool support: PRISM-games

Model checker for stochastic multi-player games
— PRISM-games: extension of PRISM model checker

— using new explicit-state model checking engine

- - Features:
— modelling language for SMGs
— rPATL model checking
— strategy synthesis and analysis
— GUI: model editor, simulator, graph-plotting, strategies, ...

® . Availability
: — download: http://www.prismmodelchecker.org/games/
— free, open source (GPL)

— benchmark suite

Tool support: PRISM-games

Extended PRISM modelling language for SMGs
— guarded command language
— probabilistic extension of (simplified) Reactive Modules
— finite data types, parallel composition, proc. algebra op.s, ...

- Strategy synthesis and analysis
— synthesise strategy for an rPATL query
— export, simulate, analyse (verify second rPATL property on)

Evaluated on several case studies:
— team formation protocol [CLIMA’T1]

— futures market investor model [Mclver & Morgan]
— collective decision making for sensor networks [TACAS’12]

AR

— energy management in microgrids [TACAS’12]

Energy management in microgrids

- Microgrid: proposed model for future energy markets
— localised energy management

- Neighbourhoods use and
=< store electricity generated
from local sources LB

— wind, solar, ... S

Batteryless
Grid-Tie
- Inverters

- Needs: demand-side
management

— active management
of demand by users

AR

— to avoid peaks

Generator Sends Power if
There Isn’t Enough Solar
Power for Household Loads.

Batteries

Microgrid demand-side management

Demand-side management algorithm [Hildmann/Saffre’11]
) — N households, connected to a distribution manager
; — households submit loads for execution
- — execution cost/step = number of currently running loads

'y - Simple algorithm:

— upon load generation, if cost is below an agreed limit ¢;;,,,,

execute it, otherwise only execute with probability P,

- Analysis of [Hildmann/Saffre’11]
— load submission probability: daily demand curve
— load duration: random, between 1 and D steps
— define household value as V=loads_executing/execution_cost

— simulation-based analysis shows reduction in peak demand
and total energy cost reduced, with good expected value V

— (if all households stick to algorithm)

Microgrid demand-side management

- The model

— SMG with N players (one per household)

; — analyse 3-day period, using piecewise
- approximation of daily demand curve

— fix parameters D=4, ¢;,=1.5
— add rewards structure for value V

Power demand

0 3 6 9 12 15 18 21 24
Time of the day (hours)

Built/analysed models
— for N=2,...,7 households

States Transitions
743,904 2,145,120
2,384,369 7,260,756
6,241,312 19,678,246

- Step 1: assume all households
follow algorithm of [HS’11] (MDP)

— obtain optimal value for P,

N O U | 2

- Step 2: introduce competitive behaviour (SMG)
— allow coalition C of households to deviate from algorithm

Results: Competitive behaviour

- Expected total value V per household
— in rPATL: «C)Rc_ ., _, [FO time=max time] / |C]
— where r- is combined rewards for coalition C

20
s
= _ >trong Al follow alg.
P incentive to
5] 15 =
(g ________
O No use of alg.
-
g _
-E 10 —
% ‘g Deviations of
: O varying size
e ying
S I I T I I T)

1 2 3 4 5 6 7 8
Number of households

Results: Competitive behaviour

- Algorithm fix: simple punishment mechanism
— distribution manager can cancel some loads exceeding ¢,

20 A
s

4 2 Better to
< 15 - - collaborate All follow alg.
2 (with all) _
o —
=
§_ Deviations of
S 10 - varying size
@
=

" @

3 x

5 T |

1 2 3 4 5 6 7 8
Number of households

Conclusions

Conclusions
— game-theoretic verification for probabilistic systems
— modelled as stochastic multi-player games
— new temporal logic rPATL for property specification
. — rPATL model checking algorithm based on num. fixed points
— model checker PRISM-games
— case studies: energy management for microgrid

Future work
— more realistic classes of strategy, e.g. partial observation, ...
— further objectives, e.g. multiple objectives, Nash equilibria, ...
— more application areas: security, randomised algorithmes, ...

PRISM-games: http://www.prismmodelchecker.org/games/

