
Automated Game-theoretic
Verification for Probabilistic Systems  

Dave Parker  
University of Birmingham

Dagstuhl, November 2012

Overview

•  Automatic verification (model checking) of systems with:

•  1. Probabilistic behaviour
−  unreliability, uncertainty, randomisation, …

•  2. Other quantitative aspects
−  time, costs (e.g. energy), rewards (e.g. profit), …

•  3. Competitive/collaborative behaviour
−  open systems, controller synthesis, …

•  Focus:
−  probabilistic model checking of stochastic multi-player games
−  scalable/efficient techniques/tools for modelling real systems

•  Applications:
−  e.g. security protocols, algorithms for distributed consensus,

sensor network co-ordination or energy management

This talk

•  Probabilistic model checking

•  Stochastic multi-player games (SMGs)

•  Property specification: rPATL

•  rPATL model checking

•  Tool support: PRISM-games

•  Case study: energy management in microgrids

Probabilistic model checking

Probabilistic model
e.g. Markov chain,

Markov decision process

Probabilistic
temporal logic
specification

e.g. PCTL, CSL, LTL, …

Result

Quantitative
results

System

Witness/  
counter-
example

System
 require-

ments

P≤0.01 [F crash]

0.5
0.1

0.4

Probabilistic
model checker

e.g. PRISM

Stochastic multi-player games

•  Stochastic multi-player game (SMGs)
−  nondeterminism + multiple players + probability

•  A (turn-based) SMG is a tuple (Π, S, ⟨Si⟩i∈Π, A, Δ, L):
−  Π is a set of n players
−  S is a (finite) set of states
−  ⟨Si⟩i∈Π is a partition of S
−  A is a set of action labels
−  Δ : S × A → Dist(S) is a (partial)

 transition probability function
−  L : S → 2AP is a labelling with

 atomic propositions from AP
b
a ¼

¼
¼

½

¼

✓

1

1
½

1 a
b

1
a
b

Strategies, probabilities & rewards

•  Strategy for player i: resolves choices in Si states
−  based on execution history, i.e. σi : (SA)*Si → Dist(A)
−  can be: deterministic (pure), randomised,  

memoryless, finite-memory, …
−  Σi denotes the set of all strategies for player i

•  Strategy profile: strategies for all players: σ=(σ1,…,σn)
−  induces a set of (infinite) paths from some start state s
−  a probability measure Prs

σ over these paths

•  Rewards (or costs)
−  non-negative integers on states/transitions
−  e.g. elapsed time, energy consumption,  

number of packets lost, net profit, …
−  this talk: expected cumulated value of rewards

Property specification: rPATL

•  New temporal logic rPATL:
−  reward probabilistic alternating temporal logic

•  CTL, extended with:
−  coalition operator ⟨⟨C⟩⟩ of ATL
−  probabilistic operator P of PCTL
−  generalised (expected) reward operator R from PRISM

•  In short:
−  zero-sum, probabilistic reachability + expected total reward

•  Example:
−  ⟨⟨{1,2}⟩⟩ P<0.01 [F≤10 error]
−  “players 1 and 2 have a strategy to ensure that the probability

of an error occurring within 10 steps is less than 0.01,
regardless of the strategies of other players”

rPATL syntax/semantics

•  Syntax:
 φ ::= ⊤ | a | ¬φ | φ ∧ φ | ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr

⋈x [F⋆φ]
 ψ ::= X φ | φ U φ | F φ | G φ | φ U≤k φ | F≤k φ | G≤k φ

•  where:
−  a∈AP is an atomic proposition, C⊆Π is a coalition of players,

 ⋈∈{≤,<,>,≥}, q∈[0,1]∩ℚ, x∈ℚ≥0, k ∈ ℕ
 r is a reward structure and ⋆∈{0,∞,c} is a reward type  

•  Semantics:

•  P operator: s ⊨ ⟨⟨C⟩⟩P⋈q[ψ] iff:
−  “there exist strategies for players in coalition C such that,  

for all strategies of the other players, the probability of path
formula ψ being true from state s satisfies ⋈ q”

rPATL semantics (rewards)

•  R operator: s ⊨ ⟨⟨C⟩⟩Rr
⋈x [F⋆φ] iff:

−  “there exist strategies for players in coalition C such that,  
for all strategies of the other players, the expected  
cumulated reward r to reach a φ-state (type ⋆) satisfies ⋈ x” 

•  3 reward types ⋆ ∈ {∞,c,0}
−  defining reward if a φ-state is never reached
−  reward is: infinite (⋆=∞), cumulated sum (⋆=c), zero (⋆=0)
− ∞: e.g. expected time for algorithm execution
−  c: e.g. expected resource usage (energy, messages sent, …)
−  0: e.g. reward incentive awarded on algorithm completion

•  Note: F0 operator needs finite-memory strategies
−  (for P and other R operators, pure memoryless strat.s suffice)

Model checking rPATL

•  Main task: checking individual P and R operators
−  reduction to solution of zero-sum stochastic 2-player game
−  (probabilistic reachability + expected total reward)
−  e.g. ⟨⟨C⟩⟩P≥q[ψ] ⇔ supσ1∈Σ1

 infσ2∈Σ2
 Prs

σ1,σ2 (ψ) ≥q
−  complexity: NP ∩ coNP (without any R[F0] operators)
−  complexity for full logic: NEXP ∩ coNEXP (due to R[F0] op.)

•  In practice though:
−  (usual approach taken in probabilistic model checking tools)
−  evaluation of numerical fixed points (“value iteration”)
−  and more: graph-algorithms, sequences of fixed points, …

•  See: [TACAS’12], [CONCUR’12]

rPATL extensions

•  Quantitative (numerical) properties:
−  numerical rather than boolean-valued queries

•  Example:
−  ⟨⟨{1,2}⟩⟩ Pmax=? [F error]
−  “what is the maximum probability of reaching an error state

that players 1 and 2 can guarantee?”
−  i.e. supσ1∈Σ1

 infσ2∈Σ2
 Prs

σ1,σ2 (F error)

•  Other extensions:
−  rPATL* (i.e. support for LTL formulae in P operator)
−  reward-bounded operators
−  exact probability/reward bounds

Tool support: PRISM-games

•  Model checker for stochastic multi-player games
−  PRISM-games: extension of PRISM model checker
−  using new explicit-state model checking engine

•  Features:
−  modelling language for SMGs
−  rPATL model checking
−  strategy synthesis and analysis
−  GUI: model editor, simulator, graph-plotting, strategies, …

•  Availability
−  download: http://www.prismmodelchecker.org/games/
−  free, open source (GPL)
−  benchmark suite

Tool support: PRISM-games

•  Extended PRISM modelling language for SMGs
−  guarded command language
−  probabilistic extension of (simplified) Reactive Modules
−  finite data types, parallel composition, proc. algebra op.s, …

•  Strategy synthesis and analysis
−  synthesise strategy for an rPATL query
−  export, simulate, analyse (verify second rPATL property on)

•  Evaluated on several case studies:
−  team formation protocol [CLIMA’11]
−  futures market investor model [McIver & Morgan]
−  collective decision making for sensor networks [TACAS’12]
−  energy management in microgrids [TACAS’12]

Energy management in microgrids

•  Microgrid: proposed model for future energy markets
−  localised energy management

•  Neighbourhoods use and  
store electricity generated  
from local sources
−  wind, solar, …

•  Needs: demand-side 
management
−  active management 

of demand by users
−  to avoid peaks

Microgrid demand-side management

•  Demand-side management algorithm [Hildmann/Saffre’11]
−  N households, connected to a distribution manager
−  households submit loads for execution
−  execution cost/step = number of currently running loads

•  Simple algorithm:
−  upon load generation, if cost is below an agreed limit clim,  

execute it, otherwise only execute with probability Pstart

•  Analysis of [Hildmann/Saffre’11]
−  load submission probability: daily demand curve
−  load duration: random, between 1 and D steps
−  define household value as V=loads_executing/execution_cost
−  simulation-based analysis shows reduction in peak demand

and total energy cost reduced, with good expected value V
−  (if all households stick to algorithm)

Microgrid demand-side management

•  The model
−  SMG with N players (one per household)
−  analyse 3-day period, using piecewise  

approximation of daily demand curve
−  fix parameters D=4, clim=1.5
−  add rewards structure for value V

•  Built/analysed models
−  for N=2,…,7 households

•  Step 1: assume all households 
follow algorithm of [HS’11] (MDP)
−  obtain optimal value for Pstart

•  Step 2: introduce competitive behaviour (SMG)
−  allow coalition C of households to deviate from algorithm

N States Transitions
5 743,904 2,145,120
6 2,384,369 7,260,756
7 6,241,312 19,678,246

Results: Competitive behaviour

•  Expected total value V per household
−  in rPATL: ⟨⟨C⟩⟩RrCmax=? [F0 time=max time] / |C|
−  where rC is combined rewards for coalition C

All follow alg.

No use of alg.

Deviations of 
varying size

Strong
incentive to

deviate

Results: Competitive behaviour

•  Algorithm fix: simple punishment mechanism
−  distribution manager can cancel some loads exceeding clim

All follow alg.

Deviations of 
varying size

Better to
collaborate
(with all)

Conclusions

•  Conclusions
−  game-theoretic verification for probabilistic systems
−  modelled as stochastic multi-player games
−  new temporal logic rPATL for property specification
−  rPATL model checking algorithm based on num. fixed points
−  model checker PRISM-games
−  case studies: energy management for microgrid

•  Future work
−  more realistic classes of strategy, e.g. partial observation, …
−  further objectives, e.g. multiple objectives, Nash equilibria, …
−  more application areas: security, randomised algorithms, …

•  PRISM-games: http://www.prismmodelchecker.org/games/

