

Automatic Verification of Competitive Stochastic Systems

Dave Parker

University of Oxford

Joint work with:

Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, Aistis Simaitis

University of Edinburgh, March 2012

Verifying stochastic systems

Quantitative verification

- of systems with stochastic behaviour
- e.g. due to unreliability, uncertainty, randomisation, ...
- probability, costs/rewards, time, ...
- often: subtle interplay between probability/nondeterminism

Automated verification

- probabilistic model checking
- tool support: PRISM model checker
- techniques for improving efficiency, scalability

Practical applications

 wireless communication protocols, security protocols, systems biology, DNA computing, robotic planning, ...

Adding competitive behaviour

Open systems

- need to account for the behaviour of components not under our control, possibly with differing/opposing goals
- giving rise to competitive behaviour

Many occurrences in practice

- e.g. security protocols, algorithms for distributed consensus, energy management or sensor network co-ordination
- Natural to adopt a game-theoretic view
 - widely used in computer science, economics, ...
 - also used in model checking, e.g. security/comm. protocols

This talk

- systems with competitive and stochastic behaviour
- stochastic multi-player games
- temporal logic, model checking, tool support, case studies

Overview

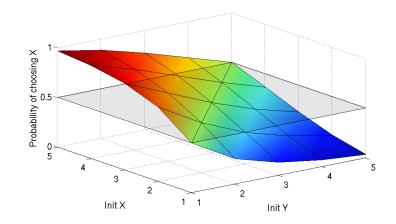
- Probabilistic model checking
 - probabilistic models, property specifications
- Stochastic multi-player games (SMGs)
 - the model, probability spaces, rewards
- Property specification: rPATL
 - syntax, semantics, subtleties
- rPATL model checking
 - algorithm, numerical computation, tool support
- Case study: energy management in microgrids

Probabilistic models

- Discrete-time Markov chains (DTMCs)
 - discrete states + probability
 - for: randomisation, unreliable communication media, ...
- Continuous-time Markov chains (CTMCs)
 - discrete states + exponentially distributed delays
 - for: component failures, job arrivals, molecular reactions, ...
- Markov decision processes (MDPs)
 - probability + nondeterminism (e.g. for concurrency)
 - for: randomised distributed algorithms, security protocols, ...
- Probabilistic timed automata (PTAs)
 - probability, nondeterminism + real-time
 - for wireless comm. protocols, embedded control systems, ...

Probabilistic model checking

- Property specifications based on temporal logic
 - PCTL, CSL, probabilistic LTL, PCTL*, ...
- Simple examples:
 - P_{<0.01} [F "crash"] "the probability of a crash is at most 0.01"
 - $-S_{>0.999}$ ["up"] "long-run probability of availability is >0.999"
- Usually focus on quantitative (numerical) properties:
 - P_{=?} [F "crash"]
 "what is the probability of a crash occurring?"
 - then analyse trends in quantitative properties as system parameters vary

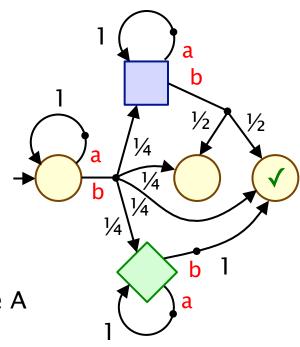


Probabilistic model checking

- Typically combine numerical + exhaustive aspects
 - $P_{max=?}$ [$F^{\le 10}$ "fail"] "worst-case probability of a failure occurring within 10 seconds, for any possible scheduling of system components"
 - $P_{=?}$ [$G^{\le 0.02}$!"deploy" {"crash"}{max}] "the maximum probability of an airbag failing to deploy within 0.02s, from any possible crash scenario"
 - model checking: graph analysis + numerical solution + ...
- Reward-based properties (rewards = costs = prices)
 - $-R_{\text{"time"}}=?$ [F "end"] "expected algorithm execution time"
 - $R_{\text{"energy"}}$ [$C^{≤7200}$] "worst-case expected energy consumption during the first 2 hours"

Stochastic multi-player games

- Stochastic multi-player game (SMGs)
 - probability + nondeterminism + multiple players
- A (turn-based) SMG is a tuple (Π , S, $\langle S_i \rangle_{i \in \Pi}$, A, Δ , L):
 - $-\Pi$ is a set of n players
 - S is a (finite) set of states
 - $-\langle S_i \rangle_{i \in \Pi}$ is a partition of S
 - A is a set of action labels
 - $-\Delta: S \times A \rightarrow Dist(S)$ is a (partial) transition probability function
 - L: S → 2^{AP} is a labelling with atomic propositions from AP
- Notation:
 - A(s) denotes available actions in state A

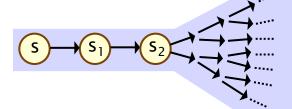


Paths, strategies + probabilities

- A path is an (infinite) sequence of connected states in SMG
 - i.e. $s_0 a_0 s_1 a_1 \dots$ such that $a_i \in A(s_i)$ and $\Delta(s_i, a_i)(s_{i+1}) > 0$ for all i
 - represents a system execution (i.e. one possible behaviour)
 - to reason formally, need a probability space over paths
- A strategy for player $i \in \Pi$ resolves choices in S_i states
 - based on history of execution so far
 - − i.e. a function σ_i : (SA)*S_i → Dist(A)
 - $-\Sigma_i$ denotes the set of all strategies for player i
- A strategy profile is tuple $\sigma = (\sigma_1, ..., \sigma_n)$
 - combining strategies for all n players
 - deterministic if σ always gives a Dirac distribution
 - memoryless if $\sigma(s_0 a_0 ... s_k)$ depends only on s_k

Paths, strategies + probabilities...

- For a strategy profile or:
 - the game's behaviour is fully probabilistic
 - essentially an (infinite-state) Markov chain
 - yields a probability measure Pr_s^σ over set of all paths Path_s from s



- Allows us to reason about the probability of events
 - under a specific strategy profile σ
 - e.g. any $(\omega$ -)regular property over states/actions
- Also allows us to define expectation of random variables
 - i.e. measurable functions X : Path_s → $\mathbb{R}_{\geq 0}$
 - $E_s^{\sigma}[X] = \int_{Path_s} X dPr_s^{\sigma}$
 - used to define expected costs/rewards...

Rewards

- Rewards (or costs)
 - real-valued quantities assigned to states (and/or transitions)
- Wide range of possible uses:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- We use:
 - state rewards: $r: S \to \mathbb{N}$ (but can generalise to $\mathbb{Q}_{>0}$)
 - expected cumulative reward until a target set T is reached
- 3 interpretations of rewards
 - 3 reward types * $\in \{\infty, c, 0\}$, differing where T is not reached
 - reward is assumed to be infinite, cumulated sum, zero, resp.
 - ∞: e.g. expected time for algorithm execution
 - c: e.g. expected resource usage (energy, messages sent, …)
 - 0: e.g. reward incentive awarded on algorithm completion

Property specification: rPATL

- New temporal logic rPATL:
 - reward probabilistic alternating temporal logic
- CTL, extended with:
 - coalition operator ⟨⟨C⟩⟩ of ATL
 - probabilistic operator P of PCTL
 - generalised version of reward operator R from PRISM
- Example:
 - $-\langle\langle\{1,2\}\rangle\rangle$ P_{<0.01} [F^{≤10} error]
 - "players 1 and 2 have a strategy to ensure that the probability of an error occurring within 10 steps is less than 0.1, regardless of the strategies of other players"

rPATL syntax

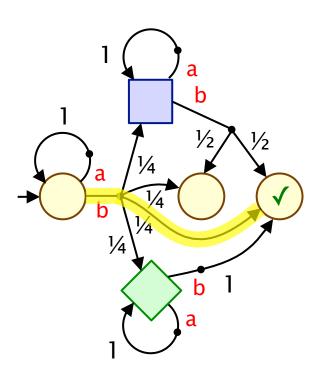
Syntax:

- where:
 - a∈AP is an atomic proposition, C⊆Π is a coalition of players, \bowtie ∈{≤,<,>,≥}, q∈[0,1] \cap ℚ, x∈ℚ $_{\geq 0}$, k ∈ \aleph ∪{∞} r is a reward structure and *∈{0, ∞ ,c} is a reward type
- $\langle\langle C \rangle\rangle P_{\bowtie q}[\psi]$
 - "players in coalition C have a strategy to ensure that the probability of path formula ψ being true satisfies \bowtie q, regardless of the strategies of other players"
- $\langle\langle C \rangle\rangle R^r_{\bowtie_X} [F^* \varphi]$
 - "players in coalition C have a strategy to ensure that the expected reward r to reach a ϕ -state (type *) satisfies $\bowtie x$, regardless of the strategies of other players"

rPATL semantics

- Semantics for most operators is standard
- Just focus on P and R operators...
 - present using reduction to a stochastic 2-player game
 - (as for later model checking algorithms)
- Coalition game G_C for SMG G and coalition C⊆Π
 - 2-player SMG where C and $\Pi \setminus C$ collapse to players 1 and 2
- $\langle\langle C \rangle\rangle P_{\bowtie q}[\psi]$ is true in state s of G iff:
 - in coalition game G_C:
 - − $\exists \sigma_1 \in \Sigma_1$ such that $\forall \sigma_2 \in \Sigma_2$. $Pr_s^{\sigma_1,\sigma_2}(\psi) \bowtie q$
- Semantics for R operator defined similarly...

Examples



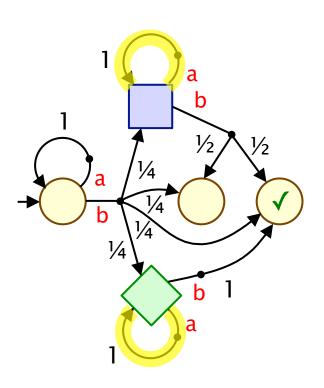
$$\langle\langle \bigcirc\rangle\rangle P_{\geq 1\!\!/_{\!\!4}}[\ F\ \checkmark\]$$

true in initial state

$$\langle\langle\bigcirc\rangle\rangle P_{\geq\frac{1}{3}}[F\checkmark]$$

$$\langle\langle\bigcirc,\square\rangle\rangle P_{\geq\frac{1}{3}}[F\checkmark]$$

Examples



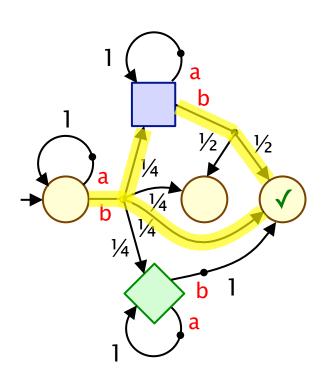
$$\langle\langle \bigcirc \rangle\rangle P_{\geq 1/4}[F \checkmark]$$
 true in initial state

$$\langle\langle\bigcirc\rangle\rangle P_{\geq\frac{1}{3}}[F\checkmark]$$

false in initial state

$$\langle\langle\bigcirc,\square\rangle\rangle P_{\geq\frac{1}{3}}[F\checkmark]$$

Examples



$$\langle\langle \bigcirc \rangle\rangle P_{\geq 1/4}[\ F \ \checkmark \]$$
 true in initial state

$$\langle\langle \bigcirc \rangle\rangle P_{\geq \frac{1}{3}}[F \checkmark]$$
 false in initial state

$$\langle\langle\bigcirc,\square\rangle\rangle P_{\geq \frac{1}{3}}[F \checkmark]$$

true in initial state

Equivalences + extensions

- Two useful equivalences:
- $\langle\langle C \rangle\rangle P_{\geq q}[\neg \psi] \equiv \langle\langle C \rangle\rangle P_{\leq 1-q}[\psi]$
 - easy to derive path properties e.g. G a $\equiv \neg F \neg a$
 - model checking essentially just focuses on reachability
- $\langle\langle C \rangle\rangle P_{\geq q}[\psi] \equiv \neg \langle\langle \Pi \setminus C \rangle\rangle P_{<q}[\psi]$
 - thanks to standard determinacy results
 - model checking focuses on min/max values for P1/P2
- Quantitative (numerical) properties:
 - best/worst-case values
- e.g. $\langle\langle C \rangle\rangle P_{\text{max}=?}[\psi] = \sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} Pr_s^{\sigma_1,\sigma_2}(\psi)$

Independence of strategies

- · Strategies for each coalition operator are independent
 - for example, in: $\langle\langle 1\rangle\rangle$ P_{≥1}[G ($\langle\langle 1,2\rangle\rangle$ P_{≥½}[F ✓])]
 - no dependencies in player 1/2 strategies in quantifiers
 - branching-time temporal logic (like ATL, PCTL, ...)
- Introducing dependencies is problematic
 - e.g. subsumes existential semantics for PCTL on MDPs, which is undecidable
 - (does there exist a single adversary satisfying one formula?)
 - $-\langle\langle 1\rangle\rangle P_{>1}[G\langle\langle 1\rangle\rangle P_{>1/2}[F\checkmark]]$
- But nested properties still have natural applications
 - e.g. sensor network, with players: sensor, repairer
 - $-\langle\langle sensor\rangle\rangle P_{\langle 0.01}[F(\neg\langle\langle repairer\rangle\rangle P_{\geq 0.95}[F"operational"])]$

Why do we need multiple players?

- SMGs have multiple (>2) players
 - but semantics (and model checking) reduce to 2-player case
 - due to (zero sum) nature of queries expressible by rPATL
 - so why do we need multiple players?
- 1. Modelling convenience
 - and/or multiple rPATL queries on same model
- 2. May also exploit in nested queries, e.g.:
 - players: sensor1, sensor2, repairer
 - $-\langle\langle sensor1\rangle\rangle P_{\langle 0.01}[F(\neg\langle\langle repairer\rangle\rangle P_{\geq 0.95}[F"operational"])]$

Model checking rPATL

- Basic algorithm: as for any branching-time temporal logic
 - recursive descent of formula parse tree
 - compute $Sat(φ) = { s∈S | s⊨φ }$ for each subformula φ
- Main task: checking P and R operators
 - reduction to solution of stochastic 2-player game G_C
 - $-\text{ e.g. } \langle\langle C\rangle\rangle P_{\geq q}[\psi] \ \Leftrightarrow \ sup_{\sigma_{1}\in\Sigma_{1}} \ inf_{\sigma_{2}\in\Sigma_{2}} \ Pr_{s}^{\sigma_{1},\sigma_{2}}(\psi) \geq q$
 - complexity: NP \cap coNP (without any R[F⁰] operators)
 - compared to, e.g. P for Markov decision processes
 - complexity for full logic: NEXP \cap coNEXP (due to R[F⁰] op.)
- In practice though:
 - evaluation of numerical fixed points ("value iteration")
 - up to a desired level of convergence
 - usual approach taken in probabilistic model checking tools

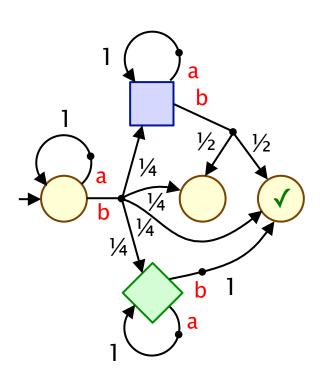
Probabilities for P operator

- E.g. $\langle\langle C \rangle\rangle P_{\geq q}[F \varphi]$: max/min reachability probabilities
 - compute $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1, \sigma_2} (F \varphi)$ for all states s
 - deterministic memoryless strategies suffice
- Value is:
 - 1 if s ∈ Sat(ϕ), and otherwise least fixed point of:

$$f(s) = \begin{cases} \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\ \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_2 \end{cases}$$

- Computation:
 - start from zero, propagate probabilities backwards
 - guaranteed to converge

Example



rPATL: $\langle\langle \bigcirc, \square \rangle\rangle P_{\geq \frac{1}{3}}[F \checkmark]$

Player 1: ○, ■ Player 2: ♦

Compute: $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1, \sigma_2} (F \checkmark)$

Rewards for R[F^c] operator

- E.g. $\langle\langle C \rangle\rangle R^r_{\geq q}[F^c \varphi]$: max/min expected rewards for P1/P2
 - again: deterministic memoryless strategies suffice
- Value is:
 - ∞ if $s ∈ Sat(\langle\langle C \rangle\rangle P_{>0}[GF"pos_rew"]),$
 - 0 if s ∈ Sat(ϕ), and otherwise least fixed point of:

$$f(s) = \begin{cases} r(s) + \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\ r(s) + \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_2 \end{cases}$$

Rewards for R[F[∞]] operator

- E.g. $\langle\langle C \rangle\rangle R^r_{\geq q} [F^{\infty} \varphi]$: max/min expected rewards for P1/P2
 - again: deterministic memoryless strategies suffice
- Value is:
 - ∞ if $s ∈ Sat(\langle\langle C \rangle\rangle P_{>0}[GF"pos_rew"]),$
 - − 0 if $s \in Sat(\phi)$, and otherwise greatest fixed point over \mathbb{R} of:

$$f(s) = \begin{cases} r(s) + \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\ r(s) + \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_2 \end{cases}$$

- Computation:
 - 1. set zero rewards to ϵ , compute least fixed point
 - 2. evaluate greatest fixed point, downwards from step 1

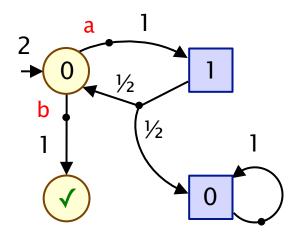
Rewards for R[F⁰] operator

- E.g. $\langle\langle C \rangle\rangle R^r_{\geq q}[F^0 \varphi]$: max/min expected rewards for P1/P2
 - now: deterministic memoryless strategies do not suffice
 - there exists a finite-memory optimal strategy for P1
 - there exists a bound B, beyond which strategy is memoryless
 - B is exponential in worst-case, but can be computed...

Computation:

- compute bound B (using simpler rPATL queries)
- perform value iteration for each level 0,...,B; combine results

Example: Finite memory for R[F0]



$$\langle\langle \bigcirc, \square \rangle\rangle R^r_{\geq \frac{1}{2}} [F^0 \checkmark]$$

b: reward 0

a, b: expected reward 0.5a, a, b: expected reward 0.5

a, a, b: expected reward 0.375

What if incoming reward is 2?

b: reward 2

a, b: expected reward 1.5

Tool support: PRISM-games

- Prototype model checker for stochastic games
 - integrated into PRISM model checker
 - using new explicit-state model checking engine

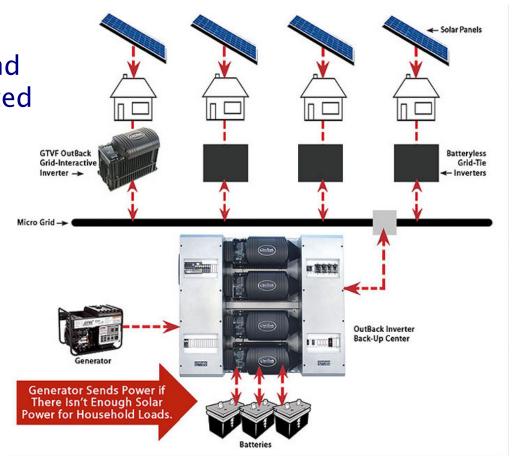
- SMGs added to PRISM modelling language
 - guarded command language, based on Reactive modules
 - finite data types, parallel composition, proc. algebra op.s, ...
- rPATL added to PRISM property specification language
 - implemented value iteration based model checking
- Available now:
 - http://www.prismmodelchecker.org/games/

Case studies

- Evaluated on several case studies:
 - team formation protocol [CLIMA'11]
 - futures market investor model [McIver & Morgan]
 - collective decision making for sensor networks [TACAS'12]
 - energy management in microgrids [TACAS'12]

Energy management in microgrids

- Microgrid: proposed model for future energy markets
 - localised energy management
- Neighbourhoods use and store electricity generated from local sources
 - wind, solar, ...
- Needs: demand-side management
 - active management of demand by users
 - to avoid peaks



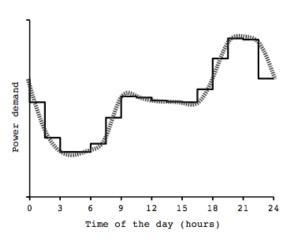
Microgrid demand-side management

- Demand-side management algorithm [Hildmann/Saffre'11]
 - N households, connected to a distribution manager
 - households submit loads for execution
 - load submission probability: daily demand curve
 - load duration: random, between 1 and D steps
 - execution cost/step = number of currently running loads
- Simple algorithm:
 - upon load generation, if cost is below an agreed limit c_{lim} , execute it, otherwise only execute with probability P_{start}
- Analysis of [Hildmann/Saffre'11]
 - define household value as V=loads_executing/execution_cost
 - simulation-based analysis shows reduction in peak demand and total energy cost reduced, with good expected value V
 - (if all households stick to algorithm)

Microgrid demand-side management

The model

- SMG with N players (one per household)
- analyse 3-day period, using piecewise approximation of daily demand curve
- fix parameters D=4, c_{lim} =1.5
- add rewards structure for value V



Built/analysed models

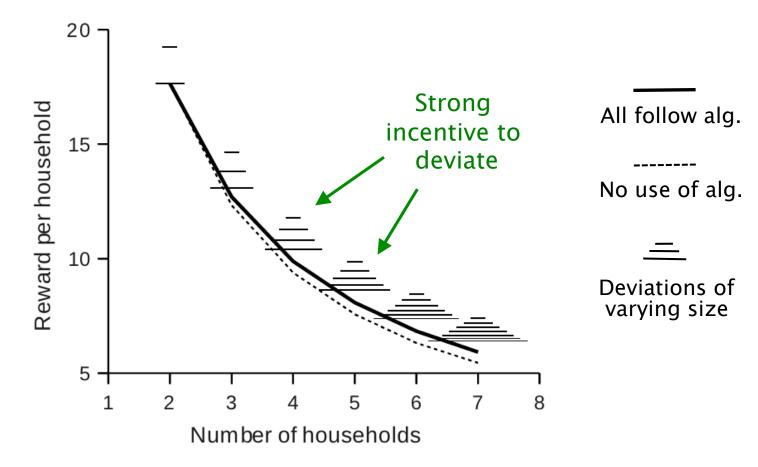
- for N=2,...,7 households
- Step 1: assume all households follow algorithm of [HS'11] (MDP)
 - obtain optimal value for P_{start}

N	States	Transitions
5	743,904	2,145,120
6	2,384,369	7,260,756
7	6,241,312	19,678,246

- Step 2: introduce competitive behaviour (SMG)
 - allow coalition C of households to deviate from algorithm

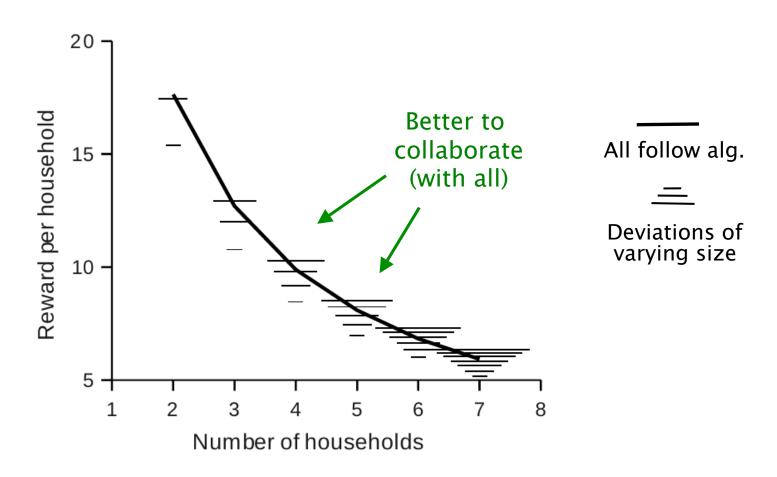
Results: Competitive behaviour

- Expected total value V per household
 - in rPATL: $\langle\langle C \rangle\rangle R^{r}C_{max=?}$ [F⁰ time=max time] / |C|
 - where r_C is combined rewards for coalition C



Results: Competitive behaviour

- Algorithm fix: simple punishment mechanism
 - distribution manager can cancel some loads exceeding clim



Conclusions

Conclusions

- verification for stochastic systems with competitive behaviour
- modelled as stochastic multi-player games
- new temporal logic rPATL for property specification
- rPATL model checking algorithm based on num. fixed points
- prototype model checker PRISM-games
- case studies: energy management for microgrid

Future work

- more realistic classes of strategy, e.g. partial information
- further objectives, e.g. Nash equilibria, multiple objectives, ...
- new application areas, security, randomised algorithms, ...