

BRUNO LACERDA
University of Oxford

Lectures 1-3

Dave Parker

University of Oxford

Introduction

Sequential decision making under uncertainty

- Sequential decision making
- iterative interaction with an environment to achieve a goal
- sequential process of making observations and executing actions
- applications in: health, energy, transportation, robotics, ...
- Sequential decision making under uncertainty
- noisy sensors, unpredictable conditions, lossy communication,
 human behaviour, hardware failures, ...
- Trustworthy, safe and robust decision making
- e.g. for safety-critical applications
- needs rigorous/systematic quantification of uncertainty

Reasoning about uncertainty

- Markov decision processes (MDPs) and variants
- standard models for sequential decision making under uncertainty
- stochastic processes quantify uncertainty
- but parameters of these often need to be estimated from data

- We will distinguish between:
- Aleatoric uncertainty (randomness intrinsic to environment)
- e.g., sensor noise, actuator failure, human decisions
- Epistemic uncertainty (quantifies lack of knowledge)
- reducible: can reduce by collecting more data/observations
- e.g., poor model quality due to low number of measurements
(2)

Applications \& challenges

- Radiation measuring

- Unmanned aerial vehicle
- robust control in the presence of turbulence

[Badings et al.'23]
- Autonomous underwater vehicle
- effective navigation against unknown ocean currents

[Budd
et al.'22]
- safe navigation and task completion in unknown environments

- Upper Safety Bound
nili $\begin{aligned} & \text { Environmental } \\ & \text { feature value }\end{aligned}$

Known (x, y) State
State Transition
[Budd
et al.'22]
- Mine exploration
- Safe exploration and mapping (avoiding radiation)

- Shared autonomy
- learning belief over uncertainty on unobservable human state
[Costen et al.'22]

This course

- Model uncertainty in sequential decision making
- model-based techniques (probabilistic planning, not reinforcement learning)
- discrete time, discrete space
- fully observable environments (mostly)
- rigorous/precise/systematic quantification of uncertainty

Course contents

- Markov decision processes (MDPs) and stochastic games
- MDPs: key concepts and algorithms
- stochastic games: adding adversarial aspects

Lecture 2

- Uncertain MDPs
- MDPs + epistemic uncertainty, robust control, robust dynamic programming, interval MDPs, uncertainty set representation, challenges, tools
- Sampling-based uncertain MDPs

Lecture 4

- removing the transition independence assumption
- Bayes-adaptive MDPs

Lecture 3

- maintaining a distribution over the possible models

Markov decision processes

Markov decision processes

- Markov decision processes (MDPs)
- standard model for sequential decision making under uncertainty
- An MDP is of the form $\mathscr{M}=\left(S, s_{0}, A, P\right)$ where:
- S is a (finite) set of states
- $s_{0} \in S$ is an initial state
- A is a (finite) set of actions
- $P: S \times A \times S \rightarrow[0,1]$ is a transition probability function

- where $\Sigma_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \in\{0,1\}$

Markov decision processes

- For an MDP $\mathscr{M}=\left(S, s_{0}, A, P\right)$:
- the enabled actions $A(s) \subseteq A$ in each state s - are $A(s)=\left\{a \in A: P\left(s, a, s^{\prime}\right)>0\right.$ for some $\left.s^{\prime}\right\}$
- a path is a sequence $\omega=s_{0} a_{0} s_{1} a_{1}, \ldots$

- such that $s_{i} \in S, a_{i} \in A\left(s_{i}\right)$ and $P\left(s_{i}, a_{i}, s_{i+1}\right)>0$ for all i
- We also use:
- $P^{a}: S \times S \rightarrow[0,1]$ is the transition probability matrix for each $a \in A$
- $P_{s}^{a} \in \operatorname{Dist}(S)$ is the successor distribution for each state s and action $a \in A(s)$
- (where $\operatorname{Dist}(S)$ is the set of discrete probability distributions over set S)

Policies for MDPs

- Policies (or strategies) π resolves the choice of action in each state
- based on the execution of the MDP so far
- formally: a policy is a mapping $\pi:(S \times A)^{*} \times S \rightarrow \operatorname{Dist}(A)$
- such that $\pi\left(s_{0} a_{0} \ldots s_{n}\right)\left(a_{n}\right)>0$ implies $a_{n} \in A\left(s_{n}\right)$
- $\pi\left(s_{0} a_{0} \ldots s_{n}\right)\left(a_{n}\right)$ is the probability of picking a_{n} after observing MDP history $s_{0} a_{0} \ldots s_{n}$

- $\Pi_{\mathscr{M}}$ (or just Π) is the set of all (deterministic) policies for MDP \mathscr{M}
- Policies can be classified by (i) use of randomisation; (ii) use of memory
- which matter for optimality, computation, practicality, ...

Classes of policies for MDPs

- Randomisation

- π is deterministic (or pure) if it always picks a single action with probability 1
- and randomised (or probabilistic) otherwise
- for now, we'll mostly assume deterministic policies and assume $\pi:(S \times A)^{*} \times S \rightarrow A$
- Memory
- π is memoryless (or stationary, or Markovian) if $\pi\left(s_{0}, \ldots, s_{n}\right)=\pi\left(s_{0}^{\prime}, \ldots, s_{n}^{\prime}\right)$ when $s_{n}=s_{n}^{\prime}$
- in which case we write it in the form $\pi: S \rightarrow A$
- $\Pi_{m} \subseteq \Pi$ is the set of all memoryless policies
- otherwise π is history dependent
- π is finite-memory if it suffices to distinguish a finite number of "modes" based on the history
- sometimes write a (time-dependent) policy as tuple $\pi=\left(\pi_{0}, \pi_{1}, \ldots\right)$ where $\pi_{i}: S \rightarrow A$

MDPs and policies

- A policy for an MDP yields an induced Markov chain
- and set of (infinite) paths

(finite-memory, deterministic)

Running example (and objectives)

- Example MDP: robot moving through terrain divided in to 3×2 grid

- Objectives (or properties) define an optimisation problem for an MDP
- MaxProb: maximise the probability of reaching goal $\subseteq S$
- SSP (stochastic shortest path): minimise the cost of reaching goal $\subseteq S$
we'll focus mainly on these two

Defining objectives for MDPs

- Execution of an MDP under a policy
- for a policy $\pi \in$ П on MDP \mathscr{M}^{\ldots}..
- $P r_{s}^{\pi}$ is a probability measure over all (infinite) paths from state s of \mathscr{M}
- $\mathbb{E}_{s}^{\pi}(X)$ is the expected value of X (with respect to $P r_{s}^{\pi}$)
- where $X:(S \times A)^{\omega} \rightarrow \mathbb{R}_{\geq 0}$ is a random variable over (infinite) paths
- Value function: $V^{\pi}: S \rightarrow \mathbb{R}$
- gives the value of an objective under π starting from each state of the MDP
- define optimal value, e.g.: $V^{*}(s)=\max _{\pi \in \Pi} V^{\pi}(s)$
- and optimal policy, e.g.: $\pi^{*}=\operatorname{argmax}_{\pi \in \Pi} V^{\pi}\left(s_{0}\right)$

MaxProb \& SSP (stochastic shortest path)

- MaxProb: Maximise the probability of reaching a target state set goal $\subseteq S$
- maximise $V^{\pi}(s)=\operatorname{Pr}_{s}^{\pi}\left(\left\{s_{0} a_{0} s_{1} a_{1} s_{2} \ldots: s_{i} \in\right.\right.$ goal for some $\left.\left.i\right\}\right)$
- SSP: Minimise the expected cost of reaching a target state set goal $\subseteq S$
- for a cost function $C: S \times A \rightarrow \mathbb{R}_{\geq 0}$
- minimise $V^{\pi}(s)=\mathbb{E}_{s}^{\pi}\left(X^{C}\right)$ where $X^{C}\left(s_{0} a_{0} s_{1} a_{1} \ldots\right)=\sum_{i=0}^{\infty} C\left(s_{i}, a_{i}\right)$
- Assumptions for SSP
- goal states are absorbing and zero-cost
- there is a proper policy (i.e., which reaches goal with probability 1 from all states)
- every improper policy incurs an infinite cost from every state from which it does not reach goal with probability 1

Running example: MaxProb

- What is the optimal policy for objective MaxProb(goal ${ }_{1}$)?

Other objectives

- Some other common objectives for MDPs:
- Finite-horizon variants, e.g., of MaxProb:
- MaxProbsk: Maximise the probability of reaching goal $\subseteq S$ within time horizon k
- maximise $V^{\pi}(s)=P r_{s}^{\pi}\left(\left\{s_{0} a_{0} s_{1} a_{1} s_{2} \ldots: s_{i} \in\right.\right.$ goal for some $\left.\left.i \leq k\right\}\right)$
- Discounting infinite-horizon objectives
- DiscSum: Maximise the expected discounted total reward sum
- for a reward function $R: S \times A \rightarrow \mathbb{R}$ and discount factor $\gamma \in(0,1)$
- maximise $V^{\pi}(s)=\mathbb{E}_{s}^{\pi}\left(X^{R}\right)$ where $X^{R}\left(s_{0} a_{0} s_{1} a_{1} \ldots\right)=\sum_{i=0}^{\infty} \gamma^{i} R\left(s_{i}, a_{i}\right)$

Temporal logic objectives

- Specification languages from formal verification
- probabilistic extensions of temporal logics, e.g., PCTL, PLTL
- Examples
- $P_{\max =?}[F$ goal 1] - "probabilistic reachability"
- $P_{\max =? ~}\left[F \leq 10\right.$ goal $_{1}$] - "probabilistic bounded reachability"
- $P_{\max =? ~[~ G ~}^{\text {-hazard] - "probabilistic safety/invariance" }}$

- $P_{\text {max }}=$? [\neg hazard U goal 1] - "probabilistic reach-avoid"
- $P_{\max =\text { ? }}\left[(G \neg h a z a r d) \wedge\left(G F\right.\right.$ goal $\left.\left._{1}\right)\right]$ - "maximise probability of avoiding hazard and also visiting goal 1 infinitely often"
 zone 3) then zone 4"
- Rtime,min=? $\left[\neg\right.$ zone $_{3} \cup\left(\right.$ zone $_{1} \wedge\left(F\right.$ zone $\left.\left._{4}\right)\right)$] - "minimise the expected time to patrol zone 1 (whilst avoiding zone 3) then zone 4"

Solving MDPs

- We will mainly focus on MaxProb (techniques are very similar for SSP)
- Key result: memoryless (deterministic) policies suffice

$$
\max _{\pi \in \Pi} V^{\pi}(s)=\max _{\pi \in \Pi_{m}} V^{\pi}(s)
$$

- The optimal value function satisfies the Bellman equation:

$$
V^{*}(s)= \begin{cases}1 & \text { if } s \in \text { goal } \\ \max _{a \in A(s)} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot V^{*}\left(s^{\prime}\right) & \text { otherwise }\end{cases}
$$

- Solution methods
- value iteration (dynamic programming)
- linear programming
- and many more (e.g., policy iteration, Monte Carlo tree search, BRTDP, ...)

MaxProb via value iteration

- Optimal values can be obtained using dynamic programming
- from the limit of the vector sequence defined below
- $V^{*}(s)=\lim _{k \rightarrow \infty} x_{s}^{k}$ where:

$$
x_{s}^{k}= \begin{cases}1 & \text { if } s \in \text { goal } \\ 0 & \text { if } s \notin \text { goal and } k=0 \\ \max _{a \in A(s)} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}^{k-1} & \text { otherwise }\end{cases}
$$

- Known as value iteration (VI)
- the Bellman operator is (i) monotonic (ii) a contraction in the L_{∞} norm
- optimal values are the least fixed point of the Bellman operator

MaxProb via value iteration

- Optimise via graph-based pre-computation
- potentially improves accuracy / convergence, resolves uniqueness
- compute state sets:
- $\quad S^{0}=($ all $)$ states for which all policies reach goal with probability 0 (i.e., $\max =0$)
- $S^{1} \supseteq$ goal $=($ some $)$ states for which a policy reaches goal with probability 1 (i.e., max $=1$)
- $S^{?}=S \backslash\left(S^{0} \cup S^{1}\right)$
- Then value iteration becomes:
$x_{s}^{k}= \begin{cases}1 & \text { if } s \in S^{1} \\ 0 & \text { if } s \in S^{0} \\ 0 & \text { if } s \in S^{?} \text { and } k=0 \\ \max _{a \in A(s)} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}^{k-1} & \text { otherwise }\end{cases}$

Implementation details:

- Extract optimal policy after/during:

$$
\pi^{*}(s)=\operatorname{argmax}_{a \in A(s)} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}^{k-1}
$$

- Terminate when $\left\|x^{k+1}-x^{k}\right\|<\varepsilon$
- Choose order to update states s

Running example: Value iteration

- Example: $\operatorname{MaxProb(goa/1)~}$

- Fix $x_{4}=x_{5}=1$ and $x_{2}=x_{3}=0$, just solve for x_{0}, x_{1}
- Iteration $\mathrm{k}=0$: $\mathrm{x}_{0}=\mathrm{x}_{1}=0$
- Iteration $\mathrm{k}=1: \mathrm{x}_{0}:=\max (0.4 \cdot 0+0.6 \cdot 0,0.1 \cdot 0+0.5 \cdot 0+0.4 \cdot 1)$

$$
\begin{aligned}
& =\max (0,0.4) \\
& =0.4
\end{aligned}
$$

$$
\begin{aligned}
x_{1} & :=\max (1 \cdot 0,0.5 \cdot 0+0.5 \cdot 1) \\
& =\max (0,0.5) \\
& =0.5
\end{aligned}
$$

- Iteration $\mathrm{k}=2: \mathrm{x}_{0}:=\max (0.4 \cdot 0.4+0.6 \cdot 0.5,0.1 \cdot 0.5+0.5 \cdot 0+0.4 \cdot 1)$

$$
\begin{aligned}
& =\max (0.46,0.45) \\
& =0.46 \\
x_{1}: & :=0.5 \text { (as before) }
\end{aligned}
$$

- Finally: $x_{0}=0.5, x_{1}=0.5$

MaxProb via linear programming

- Optimal values can be computed using linear programming (LP):
- $V^{*}(s)$ equals the solution x_{s} to:
minimise $\Sigma_{s \in S} x_{s}$ subject to the constraints:

$$
\begin{array}{ll}
x_{s}=1 & \text { for } s \in S^{1} \\
x_{s}=0 & \text { for } s \in S^{0} \\
x_{s} \geq \Sigma_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}} & \text { for } s \in S^{?}, a \in A(s)
\end{array}
$$

Minimise $x_{0}+X_{1}$ s.t.:

$$
\begin{aligned}
& x_{0} \geq x_{1} \\
& x_{0} \geq 0.1 x_{1}+0.4 \\
& x_{1} \geq 0.5
\end{aligned}
$$

Minimise $x_{0}+X_{1}$ s.t.:
$x_{0} \geq 0.4 x_{0}+0.6 x_{1}$
$x_{0} \geq 0.1 x_{1}+0.5 x_{3}+0.4 x_{4}$
$x_{1} \geq x_{2}$
$x_{1} \geq 0.5 x_{2}+0.5 x_{4}$

Solving SSP for MDPs

- Value iteration:

$$
x_{s}^{k}= \begin{cases}0 & \text { if } s \in \text { goal } \\ \min _{a \in A(s)}\left[C(s, a)+\sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}^{k-1}\right] & \text { otherwise }\end{cases}
$$

- Linear programming
maximise $\Sigma_{s \in S} x_{s}$ subject to the constraints:

$$
\begin{array}{ll}
x_{s}=0 & \text { for } s \in \text { goal } \\
x_{s} \leq C(s, a)+\Sigma_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}} & \text { for } s \in S_{?}, a \in A(s)
\end{array}
$$

- Pre-computation:
- we can also use graph-based pre-computation to identify/collapse states and relax SSP assumptions

MDP solution methods

- Solving MaxProb (or SSP) on MDPs (focusing on "exact" algorithms):
- Value iteration (VI)
- simple, and effective in practice, but care needed with convergence detection
- complexity unclear (depends on accuracy)
- Linear programming
- polynomial complexity
- in principle, can yield exact (arbitrary precision) optimal values; likely scales worse than VI
- Various other algorithms / optimisations
- Policy iteration, VI + prioritisation, topological partitioning, parallelisation, ...
- Heuristics (e.g., BRTDP), sampling (e.g., Monte Carlo tree search), ...

MaxProb over a finite horizon

- Finite-horizon variant solvable with value iteration (without pre-computation)
, $V^{*}(s)=x_{s}^{k}$ where:

$$
x_{s}^{k}= \begin{cases}1 & \text { if } s \in \text { goal } \\ 0 & \text { if } s \notin \text { goal and } n=0 \\ \max _{a \in A(s)} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}^{k-1} & \text { otherwise }\end{cases}
$$

- Running example
- MaxProb ${ }^{\leq k}\left(\left\{S_{4}, S_{5}\right\}\right)$
- optimal policy is not memoryless

\mathbf{k}	\mathbf{x}_{0}	\mathbf{x}_{1}
0	0	0
1	0.4	0.5
2	0.46	0.5
3	0.484	0.5

Beyond MDPs

- How do we go beyond the assumptions made so far?
- Full observability (of state, costs, ...)
- partially observable MDPs, beliefs over hidden state
- Finite state spaces, action spaces
- continuous state/action, dynamic systems
- Full knowledge of the model
- epistemic uncertainty, also sampling-based models
- Fully controllable model
- adversarial (or collaborative) scenarios: stochastic game models

Summary (lecture 1)

- Introduction
- aleatoric vs. epistemic uncertainty
- Markov decision processes (MDPs)
- sequential decision making under uncertainty
- policies and objectives
- MaxProb, SSP, finite-horizon, temporal logic
- solving MDPs (optimal policy generation)
- linear programming (PTIME)

- or dynamic programming (value iteration)

Stochastic games

Running example

- Interaction with a second robot

(s_{i} Player $1 \quad \mathrm{~s}_{\mathrm{j}}$ Player 2

Stochastic games

- MDPs model sequential decision making
- for a single agent, under stochastic uncertainty
- we may need adversarial (uncontrollable) decisions
- or collaborative decision making for multiple agents
- A (turn-based, two-player) stochastic game
- takes the form $\mathscr{G}=\left(\{1,2\}, S,\left\langle S_{1}, S_{2}\right\rangle, s_{0}, A, P\right)$ where:
- states S, initial state s_{0} and actions A are as for MDPs
- $S_{1}, S_{2} \subseteq S$ are the (disjoint) states controlled by players 1 and 2
- transition function $P: S \times A \times S \rightarrow[0,1]$ is also as for MDPs

turn-based stochastic game
concurrent
stochastic game

- with $P: S \times\left(A_{1} \times A_{2}\right) \times S \rightarrow[0,1]$

Turn-based stochastic games

Strategies for stochastic games

- Strategies (policies) for turn-based stochastic games
- a strategy for player i is a mapping $\pi_{i}:(S \times A)^{*} \times S_{i} \rightarrow \operatorname{Dist}(A)$
- a strategy profile $\left(\pi_{1}, \pi_{2}\right)$ defines strategies for both players
- For state s of game \mathscr{G} and strategy profile $\left(\pi_{1}, \pi_{2}\right)$:
- we can define probability space $\operatorname{Pr}_{S}^{\pi_{1}, \pi_{2}}$, random variables $\mathbb{E}_{S}^{\pi_{1}, \pi_{2}}(X)$ and value functions $V^{\pi_{1}, \pi_{2}}(s)$
- Strategies

- can again be deterministic / randomised or memoryless / history-dependent
- Π_{i} is the set of all strategies for player $i \in\{1,2\}$

Objectives for stochastic games

- Objectives $\mathrm{V}_{1}, \mathrm{~V}_{2}$ for players 1 and 2 can be distinct
- simple, useful scenario: zero-sum (directly opposing), i.e., $\mathrm{V}_{1}=-\mathrm{V}_{2}$
- so we assume a single objective V which one player maximises and the other minimises
- Consider MaxProb for player 1 (other cases are similar):

$$
\max _{\pi_{1} \in \Pi_{1}} \min _{\pi_{2} \in \Pi_{2}} V^{\pi_{1}, \pi_{2}}(s) \quad \text { where } V^{\pi_{1}, \pi_{2}} \text { is exactly as for MDP MaxProb }
$$

- Games are determined, i.e., for all states s :

$$
\max _{\pi_{1} \in \Pi_{1}} \min _{\pi_{2} \in \Pi_{2}} V^{\pi_{1}, \pi_{2}}(s)=\min _{\pi_{2} \in \Pi_{2}} \max _{\pi_{1} \in \Pi_{1}} V^{\pi_{1}, \pi_{2}}(s)
$$

- So we define:
- optimal value: $V^{*}(s)=\max _{\pi_{1} \in \Pi_{1}} \min _{\pi_{2} \in \Pi_{2}} V^{\pi_{1}, \pi_{2}}(s)$
- optimal strategy (for player 1): $\pi^{*}=\operatorname{argmax}_{\pi_{1} \in \Pi_{1}} \min _{\pi_{2} \in \Pi_{2}} V^{\pi_{1}, \pi_{2}}\left(s_{0}\right)$

Solving stochastic games

- Memoryless deterministic strategies suffice (for both players)
- Complexity worse than for MDPs: NP \cap co-NP, rather than P
- LP approach does not adapt (but strategy improvement is possible)
- In practice: dynamic programming (value iteration) works well

- e.g., for MaxProb:

$$
x_{s}^{k}= \begin{cases}1 & \text { if } s \in \text { goal } \\ 0 & \text { if } s \notin \text { goal and } k=0 \\ \max _{a \in A(s)} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}^{k-1} & \text { if } s \notin \text { goal }, s \in S_{1} \text { and } k>0 \\ \min _{a \in A(s)} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}^{k-1} & \text { if } s \notin \text { goal }, s \in S_{2} \text { and } k>0\end{cases}
$$

Running example

- Optimal player 1 strategy changes:

(s_{i} Player $1 \quad \boxed{\mathrm{~s}_{\mathrm{j}}}$ Player 2

Zero-sum concurrent stochastic games

- Concurrent stochastic games: strategies, value functions defined similarly
- games are still determined: $\max _{\pi_{1} \in \Pi_{1}} \min _{\pi_{2} \in \Pi_{2}} V^{\pi_{1}, \pi_{2}}(s)=\min _{\pi_{2} \in \Pi_{2}} \max _{\pi_{1} \in \Pi_{1}} V^{\pi_{1}, \pi_{2}}(s)$
- but optimal strategies still memoryless but now randomised
- Value iteration can be extended: $x_{s}^{k}= \begin{cases}1 & \text { if } s \in \text { goal } \\ 0 & \text { if } s \notin \text { goal } \text { and } k=0 \\ \operatorname{val}(Z) & \text { otherwise }\end{cases}$

- where $\operatorname{val}(Z)$ is the value of the matrix game with payoffs: $z_{a, b}=\sum_{s^{\prime} \in S} P_{s}^{a, b}\left(s^{\prime}\right) \cdot x_{s^{\prime}}^{k-1}$
- solved via the linear program \longrightarrow
- p_{a} gives the probability of player 1 picking action a in its optimal strategy

Maximise game value v subject to:

$$
\begin{array}{lr}
\Sigma_{a \in A_{1}} p_{a} \cdot z_{a, b} \geq v & \text { for } b \in A_{2} \\
p_{a} \geq 0 & \text { for } a \in A_{1} \\
\Sigma_{a \in A_{1}} p_{a}=1 &
\end{array}
$$

Sequential decision making with stochastic games

- UAV road surveillance
- with partial human control (varying operator accuracy)

- Futures market investment
- market is part stochastic, part adversarial

Turn-based game too pessimistic (unrealistic adversary)

- Multi-robot control
- adversarial (worst-case) vs. collaborative

等

Uncertain MDPs

MDPs + epistemic uncertainty

- We can use MDPs for sequential decision making under (aleatoric) uncertainty
- modelled here using transition probabilities (often learnt from data)

MDPs + epistemic uncertainty

- We can use MDPs for sequential decision making under (aleatoric) uncertainty
- modelled here using transition probabilities (often learnt from data)
- Policies can be sensitive to small perturbations in transition probabilities
- so "optimal" policies can in fact be sub-optimal

MDPs + epistemic uncertainty

- We can use MDPs for sequential decision making under (aleatoric) uncertainty
- modelled here using transition probabilities (often learnt from data)
- Policies can be sensitive to small perturbations in transition probabilities
- so "optimal" policies can in fact be sub-optimal
- Uncertain MDPs: MDPs + epistemic uncertainty (model uncertainty)
- we focus here on uncertainty in transition probabilities
- Key questions:
- how to model (and solve for) epistemic uncertainty?
- what guarantees do we get?
- is it statistically accurate?
- how computationally efficient is it?

Uncertain MDPs

- An uncertain MDP (uMDP) takes the form $\mathscr{M}=\left(S, s_{0}, A, \mathscr{P}\right)$ where:
- states S, initial state s_{0} and actions A are as for MDPs
- \mathscr{P} is the transition function uncertainty set
- i.e., each $P \in \mathscr{P}$ is a transition function $P: S \times A \times S \rightarrow[0,1]$
- The uncertainty set $\mathscr{P}_{s}^{a} \subseteq \operatorname{Dist}(S)$
- for each $s \in S, a \in A(s)$
- is $\mathscr{P}_{s}^{a}=\left\{P_{s}^{a}: P \in \mathscr{P}\right\}$
- similarly: $\mathscr{P}^{a}=\left\{P^{a}: P \in \mathscr{P}\right\}$

- (\mathscr{P}_{s}^{a} sometimes "ambiguity sets")

Uncertain MDPs

- Semantics of a uMDP $\mathscr{M}=\left(S, s_{0}, A, \mathscr{P}\right)$
- \mathscr{M} can be seen as a (usually infinite) set of MDPs: $\llbracket \mathscr{M} \rrbracket=\{\mathscr{M}[P]: P \in \mathscr{P}\}$
- where $\mathscr{M}[P]=\left(S, s_{0}, A, P\right)$ is \mathscr{M} instantiated with $P \in \mathscr{P}$
- But other views are possible
- dynamic, Bayesian, ...
- Some examples of uMDPs
Interval MDPs (IMDPs)

Likelihood MDPs

Sampled MDPs

Uncertainty set dependencies

- Can we allow dependencies between uncertainty sets?
- implications for computational tractability and modelling accuracy
- Rectangularity
- transition function uncertainty set \mathscr{P} is (s, a)-rectangular
- if we have $\mathscr{P}=\times_{(s, a) \in S \times A} \mathscr{P}_{s}^{a}$

- i.e., if there are no dependencies between uncertainty sets for each s, a
- interval MDPs are (s,a)-rectangular ("sampled MDPs" might not be)
- we will assume (s, a)-rectangularity for now (and later relax it)
- We can also define s-rectangularity [Wiesemann et al.]
- $\mathscr{P}=\times_{s \in S} \mathscr{P}^{s}$ where $\mathscr{P}_{s}=\left\{\left(P_{s}^{a}\right)_{a \in A}: P \in \mathscr{P}\right\}$

Non-rectangular uMDPs

- When might dependences between uncertainties arise?

Underwater vehicle control in unknown ocean currents

Task scheduling in the presence of faulty processors

Non-rectangular uMDPs

- Example MDP (in fact, just a single policy) with parameter p

- Worst-case probability to reach \checkmark ?
- $\min \{p(1-p): p \in[0.4,0.6]\}=0.4 \cdot(1-0.4)=0.24$
- Worst-case probability to reach \checkmark under rectangularity assumptions?
, $\min \left\{p_{1}\left(1-p_{2}\right): p_{1}, p_{2} \in[0.4,0.6]\right\}=0.4 \cdot(1-0.6)=0.16$ (too conservative)

Policies in uMDPs

- For uMDPs, as for MDPs, we can define
- policies $\pi:(S \times A)^{*} \times S \rightarrow A$, or
- memoryless policies $\pi_{m}: S \rightarrow A$
- (depending on the set \mathscr{P}, some care is needed to make sure policies can be applied)

- For policy $\pi \in \Pi$ and transition probabilities $P \in \mathscr{P}$:
- we can define probability space $P r_{s}^{\pi, P}$, random variables $\mathbb{E}_{s}^{\pi, P}(X)$ and value functions $V^{\pi, P}(s)$
- which correspond to the MDP $\mathscr{M}[P]$

Robust control

- For now, we consider a robust view of uncertainty
- i.e., we focus on worst-case (adversarial, pessimistic) scenarios
- Robust policy evaluation:
- worst-case scenario for (maximising) policy π, i.e.: $\min _{P \in \mathscr{P}} V^{\pi, P}(s)$
- Robust control (policy optimisation):
- optimal worst-case value $V^{*}(s)=\max _{\pi \in \Pi} \min _{P \in \mathscr{P}} V^{\pi, P}(s)$
- optimal worst-case policy $\pi^{*}=\operatorname{argmax}_{\pi \in \Pi} \min _{P \in \mathscr{P}} V^{\pi, P}(s)$
- Other cases:

- for a minimising objective (e.g. SPP), we use: $V^{*}(s)=\min _{\pi \in \Pi} \max _{P \in \mathscr{P}} V^{\pi, P}(s)$
- we may also consider optimistic scenarios, e.g. $V^{*}(s)=\max _{\pi \in \Pi} \max _{P \in \mathscr{P}} V^{\pi, P}(s)$

Running example: Robust control

- An IMDP for the robot example
- uncertainty added to two state-action pairs

- Note: the degree of uncertainty (e)
in states s_{1} and s_{2} is correlated here
(but the actual transition probabilities are not)
- Robust control
- for any e, we can pick a "robust" (optimal worst-case) policy
- and give a safe lower bound on its performance

Summary (lecture 2)

- Stochastic games
- unknown parts of the system can be modelled adversarially
- zero-sum turn-based (or concurrent) stochastic games

- dynamic programming (value iteration) generalises
- Uncertain MDPs
- MDPs plus epistemic uncertainty: set of transition functions
- each $P \in \mathscr{P}$ is a transition function $P: S \times A \times S \rightarrow[0,1]$
- control policies + robust control

$$
V^{*}(s)=\max _{\pi \in \Pi} \min _{P \in \mathscr{P}} V^{\pi, P}(s)
$$

Un

- rectangularity (dependencies)

Uncertain MDPs

Resolving uncertainty

- Now we consider a more dynamic approach to resolving uncertainty
- (which we will need to extend dynamic programming to this setting)
- An environment policy (or nature policy, or adversary) $\tau \in \mathscr{T}$
- is a mapping $\tau:(S \times A)^{*} \times(S \times A) \rightarrow \operatorname{Dist}(S)$
- such that $\tau\left(s_{0}, a_{0}, \ldots, s_{n}, a_{n}\right) \in \mathscr{P}_{s}^{a}$

- note: this assumes (s, a)-rectangularity!
- Policies π, τ yield
- a probability space $\operatorname{Pr}_{s}^{\pi, \tau}$
- random variables $\mathbb{E}_{s}^{\pi, \tau}(X)$
- and value functions $V^{\pi, \tau}$

Dynamic vs. static uncertainty

- Quantifying over environment policies $\tau \in \mathscr{T}$ is more exhaustive
- than quantifying over transition probabilities $P \in \mathscr{P}$
- $\left\{P r_{s}^{\pi, P}: P \in \mathscr{P}\right\} \subseteq\left\{P r_{s}^{\pi, \tau}: \tau \in \mathscr{T}\right\}$
- Memoryless (stationary) environment policies $\tau_{m} \in \mathscr{T}_{m}$

- are mappings $\tau_{m}: S \times A \rightarrow \operatorname{Dist}(S)$ such that $\tau_{m}(s, a) \in \mathscr{P}_{s}^{a}$
- in this case, the semantics now coincide:
- $\left\{P r_{s}^{\pi, P}: P \in \mathscr{P}\right\}=\left\{P r_{s}^{\pi, \tau_{m}}: \tau_{m} \in \mathscr{T}_{m}\right\}$
- We call this dynamic uncertainty $(\tau \in \mathscr{T})$ vs. static uncertainty $(P \in \mathscr{P})$
- which to use is a modelling decision (e.g., on the timing of events)
- but there are also implications for tractability
- similar situation to rectangularity (uncertainty set independence)

Robust control (revisited)

- Robust control
- but quantifying over policies (rather than uncertainty sets)
- Now we have

- optimal worst-case value

$$
V^{*}(s)=V^{\Pi, \mathscr{T}}(s)=\max _{\pi \in \Pi} \min _{\tau \in \mathscr{T}} V^{\pi, \tau}(s)
$$

notation for optimal value for sets of control/environment policy sets Π, \mathscr{T}

- optimal worst-case policy

$$
\pi^{*}=\underset{\pi \in \Pi}{\operatorname{argmax}} \min _{\tau \in \mathscr{T}} V^{\pi, \tau}(s)
$$

- Note that we may want to quantify over mismatching sets of policies, e.g.:

$$
V^{\Pi, \mathscr{T}_{m}}(s)=\max _{\pi \in \Pi} \min _{\tau_{m} \in \mathscr{T}_{m}} V^{\pi, \tau_{m}}(s)=\max _{\pi \in \Pi} \min _{P \in \mathscr{P}} V^{\pi, P}(s) \quad \text { e.g. for static uncertainty }
$$

uMDPs vs stochastic games

Robust dynamic programming

- Let's again focus on optimising MaxProb (the situation is similar for SSP)
- and recall: we need to assume (s,a)-rectangularity
- Memoryless policies suffice, for both the controller and the environment

$$
V^{\Pi, \mathscr{T}}\left(s_{0}\right)=V^{\Pi_{m}, \mathscr{T}_{m}}\left(s_{0}\right)=V^{\Pi_{m}, \mathscr{T}}\left(s_{0}\right)=V^{\Pi, \mathscr{T}_{m}}\left(s_{0}\right)
$$

- Perfect duality:

$$
V^{\Pi, \mathscr{F}}\left(s_{0}\right)=\max _{\pi \in \Pi} \min _{\tau \in \mathscr{F}} V^{\pi, \tau}\left(s_{0}\right)=\min _{\tau \in \mathscr{\mathscr { F }}} \max _{\pi \in \Pi} V^{\pi, \tau}\left(s_{0}\right)
$$

- The optimal value function satisfies the Bellman equation:

$$
V^{*}(s)=V^{\Pi, \mathscr{T}}(s)= \begin{cases}1 & \text { if } s \in \text { goal } \\ \max _{a \in A(s)} \inf _{P_{s}^{a} \in \mathscr{P}} \sum_{s} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot V^{\Pi, \mathscr{T}}\left(s^{\prime}\right) & \text { otherwise }\end{cases}
$$

Robust value iteration

- Optimal values for uMDPs can be obtained using robust value iteration (robust VI)
- from the limit of the vector sequence defined below
- $V^{*}(s)=\lim _{k \rightarrow \infty} x_{s}^{k}$ where:

$$
x_{s}^{k}= \begin{cases}1 & \text { if } s \in S^{1} \\ 0 & \text { if } s \in S^{0} \\ 0 & \text { if } s \in S^{?} \text { and } k=0 \\ \max _{a \in A(s)} \inf _{P_{s}^{a} \in \mathscr{P}_{s}^{a}} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}^{k-1} & \text { otherwise }\end{cases}
$$

- Again, this Bellman operator is (i) monotonic (ii) a contraction in the L_{∞} norm
- needs (s-a)-rectangularity, but no assumptions on convexity
- (it suffices to take convex hull of each \mathscr{P}_{s}^{a})

Uncertainty set representations

- The core step of robust VI comprises two nested optimisation problems:

$$
\max _{a \in A(s)} \inf _{P_{s}^{a} \in \mathscr{P}_{s}^{a}} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}
$$

- Outer problem (optimal control action)
- Inner problem (worst-case transition probabilities)
where x is some vector of values
- Computational cost: robust VI potentially not much more expensive than VI for MDPs
- if the inner problem can solved efficiently
- note: uncertainty sets \mathscr{P}_{s}^{a} are usually infinite
- Definition/representation of uncertainty sets?
- trade off statistical accuracy vs. computation efficiency?

- First example: intervals, a simple uncertainty set representation
- which suit statistical estimates of confidence intervals for individual transition probabilities

Interval MDPs

Interval MDPs

- An interval MDP (IMDP) is of the form $\mathscr{M}=\left(S, s_{0}, A, \underline{P}, \bar{P}\right)$ where:
- states S, initial state s_{0} and actions A are as for MDPs
- $\underline{P}: S \times A \times S \rightarrow[0,1]$ gives transition probability lower bounds
- $\bar{P}: S \times A \times S \rightarrow[0,1]$ gives transition probability upper bounds such that $\underline{P}\left(s, a, s^{\prime}\right) \leq \bar{P}\left(s, a, s^{\prime}\right)$ for all s, a, s^{\prime}
- IMDP uncertainty sets
- $\mathscr{P}_{s}^{a}=\left\{P_{s}^{a} \in \operatorname{Dist}(S) \mid \underline{P}\left(s, a, s^{\prime}\right) \leq P_{s}^{a}\left(s^{\prime}\right) \leq \bar{P}\left(s, a, s^{\prime}\right)\right.$ for all $\left.\mathrm{s}^{\prime}\right\}$
- probabilities are independent (except for the need to sum to 1)
- $\mathscr{P}=\times_{(s, a) \in S \times A} \mathscr{P}_{s}^{a}$
- i.e., IMDPs are (s-a)-rectangular

IMDP uncertainty sets

- Interval uncertainty sets \mathscr{P}_{s}^{a} are convex subsets of $[0,1]^{|S|}$

- We can delimit the intervals
- i.e., trim the interval bounds such that at least one possible distribution takes each extremal value
- e.g., $\underline{P}\left(s^{\prime}\right):=\max \left[\underline{P}\left(s^{\prime}\right), 1-\Sigma_{s \neq s^{\prime}} \bar{P}(s)\right]$
- e.g. [0.1,0.4], [0.5,0.8] \rightarrow [0.2,0.4], [0.6,0.8]

An assumption on IMDPs

- Assumption: IMDPs have a fixed underlying transition graph
- i.e., for each s, a, s^{\prime} either: (i) $\underline{P}\left(s, a, s^{\prime}\right)>0$; or
(ii) $\underline{P}\left(s, a, s^{\prime}\right)=\bar{P}\left(s, a, s^{\prime}\right)=0$
- Otherwise behaviour can be qualitatively different for small changes in $P\left(s, a, s^{\prime}\right)$

- For $\varepsilon>0$, the probability to reach goal is always 1
- For $\varepsilon=0$, the probability to reach goal can be 0
- (contrast to, e.g., a finite-horizon property MaxProbsk(goal)

Robust value iteration for IMDPs

- The inner problem for each iteration, and each (s, a) is: $\inf _{P_{s}^{a} \in \mathscr{P}_{s}^{a}} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}$
- Can be solved via a linear programming problem:
- let $p_{s^{\prime}}$ be $|S|$ variables for the chosen probabilities $P_{s}^{a}\left(s^{\prime}\right)$

$$
\begin{aligned}
& \text { minimise } \Sigma_{s^{\prime}} p_{s^{\prime}} \cdot x_{s^{\prime}} \text { such that: } \\
& \underline{P}_{s}^{a}\left(s^{\prime}\right) \leq p_{s^{\prime}} \leq \bar{P}_{s}^{a}\left(s^{\prime}\right) \text { for all } s^{\prime} \text { and } \Sigma_{s^{\prime}} p_{s^{\prime}}=1
\end{aligned}
$$

- We can also solve this more directly by sorting
- sort the values $x_{s^{\prime}}$ into ascending order
- for increasing values $x_{s_{i}}$ assign the maximum possible value to $p_{s_{i}}$
- which is bounded by 1 - (the sum of actual/min values for other $p_{s_{j}}$)

Running example: IMDPs and robust VI

- Example: $\operatorname{MaxProb}\left(g o a /_{1}\right)$

Running example: IMDPs and robust VI

- Example: $\operatorname{MaxProb}\left(g o a /_{1}\right)$
$e=0.04$

Running example: IMDPs and robust VI

- Example: $\operatorname{MaxProb}\left(g o a /_{1}\right)$

- Fix $x_{4}=1$ and $x_{2}=x_{3}=0$, just solve for x_{0}, x_{1}
- Iteration $\mathrm{k}=0$: $\mathrm{x}_{0}=\mathrm{x}_{1}=0$
- Iteration $\mathrm{k}=1$:

$$
\begin{aligned}
x_{0}: & =\max (\min (0 \cdot 0.4+0 \cdot 0.6), & & \text { subject to: } \\
& \left.\min \left(0 \cdot p_{1}+0 \cdot p_{3}+1 \cdot p_{4}\right)\right) & \begin{array}{l}
0.09 \leq p_{1} \leq 0.11 \\
\\
\end{array} & =\max \left(0,0.49 \leq p_{3} \leq 0.51\right. \\
& =0.39 & & p_{4}=0.39, \ldots
\end{aligned}
$$

$$
\begin{array}{rlrl}
x_{1} & : & =\max (\min (0 \cdot 1), & \\
\left.\min \left(0 \cdot p_{2}+1 \cdot p_{4}\right)\right) & \begin{array}{l}
\text { subject to: } \\
\end{array} & 0.46 \leq p_{2} \leq 0.54 \\
& =\max (0,0.46) & & 0.46 \leq p_{4} \leq 0.54 \\
& =0.46 & p_{4}=0.46, \ldots & p_{2+}+p_{4}=1
\end{array}
$$

Running example: IMDPs and robust VI

- Example: MaxProb(goa/1)

- Iteration $\mathrm{k}=2$:

Running example: IMDPs and robust VI

- Example: MaxProb(goa/1)

- Iteration $\mathrm{k}=2$:

- Finally: $x_{0}=0.46, x_{1}=0.46$

Interval MDPs - so far...

- Robust control is computationally efficient (robust value iteration)
- (s,a)-rectangular and inner problem is easy to solve
- another possibility not discussed here: convex optimisation [Puggelli et al.'13]
- For MaxProb (and SSP), optimal policies are memoryless (and deterministic)
- so computed policies are optimal worst case with respect to static uncertainty

```
What about objectives that need memory?
(e.g. finite horizon, or temporal logic)
```

- Intervals are a simple, natural way to model transition probability uncertainty

> How do we generate the intervals?

Are there better models of uncertainty sets?

Policies with memory

- Quantifying over memoryless environment policies
- gives us worst-case behaviour over static uncertainty

$$
V^{\Pi, \mathscr{T}_{m}}(s)=\max _{\pi \in \Pi} \min _{\tau_{m} \in \mathscr{T}_{m}} V^{\pi, \tau_{m}}(s)=\max _{\pi \in \Pi} \min _{P \in \mathscr{P}} V^{\pi, P}(s)
$$

- But for objectives that require non-memoryless control policies
- computation methods typically also assume non-memoryless environment policies

$$
V^{\Pi, \mathscr{T}}(s)=\max _{\pi \in \Pi} \min _{\tau_{m} \in \mathscr{T}} V^{\pi, \tau_{m}}(s)
$$

- i.e., worst-case behaviour over dynamic uncertainty
- which is often (but not always) unrealistic (depends on time-scales)
- This however gives a conservative bound over static uncertainty

$$
V^{\Pi, \mathscr{T}}(s) \leq \max _{\pi \in \Pi} \min _{P \in \mathscr{P}} V^{\pi, P}(s)
$$

Memory (time dependencies)

- Objective: $M a x P r o b=2(g o a l)$, i.e., get to goal in exactly 2 steps
- so we need time-dependent strategies for the controller
- computable via k steps of value iteration
- Worst-case probabilities (time-dependent environment strategies)
- "b,b" 0.2 (optimal)

> from value iteration; dynamic uncertainty; maybe unrealistic

- "a,b": 0
- "a,a": $\min \left\{p_{1}\left(1-p_{2}\right): p_{1}, p_{2} \in[0.4,0.6]\right\}=0.4 \cdot(1-0.6)=0.16$ (too conservative)
- Worst-case probabilities (memoryless environment strategies)
- "b,b": 0.2
- "a,b": 0
, "a,a": $\min \{p(1-p): p \in[0.4,0.6]\}=0.4 \cdot(1-0.4)=0.24$ (better bound) (now optimal)

Memory (temporal logic objectives)

- Temporal logic (in particular LTL) allows more complex objectives, e.g.:
- $P_{\max =\text { ? }}\left[(G \neg\right.$ hazard $) \wedge\left(G F\right.$ goal $\left.\left._{1}\right)\right]$ - "maximise probability of avoiding hazard and also visiting goal 1 infinitely often"
- $P_{\max =? ~}\left[\neg\right.$ zone $_{3} \cup\left(\right.$ zone $\left._{1} \wedge\left(\mathrm{~F}_{\text {zone }}^{4}\right)\right)$)] "maximise probability of patrolling zone 1 (whilst avoiding zone 3) then zone 4"
- For MDPs, we generate optimal policies by:
- converting the LTL formula to a deterministic automaton
- building a product of the MDP and the automaton
- optimising a simpler objective (e.g. MaxProb) on the product MDP
- The techniques extend to uMDPs/IMDPs [Wolff et al.'12]
- but (like for MDPs), optimal policies need memory

Automata for LTL objectives

- For co-safe LTL (satisfaction occurs in finite time), we use finite automata

$$
\neg \text { zone }_{3} \cup\left(\text { zone }_{1} \wedge\left(\text { F zone }_{4}\right)\right)
$$

(avoiding hazard and also visiting goal 1 infinitely often)

- For general LTL, we use e.g. Rabin automata

$$
(G \neg h a z a r d) \wedge\left(G F \text { goal }_{1}\right)
$$

(visit zone 1 (whilst avoiding zone 3) then zone 4)

Optimising for LTL on a product MDP

MDP M

Product MDP $M \otimes \mathscr{A}$

Optimal memoryless policy of $M \otimes \mathscr{A}$ corresponds to finite-memory optimal policy of MDP M

Generating IMDP intervals

- Some examples of IMDP generation

- Unmanned aerial vehicle
- robust control in turbulence
- continuous-space dynamical model with unknown noise
- discrete abstraction + finite "scenarios" of sampled noise yields IMDP abstraction

- Deep reinforcement learning
- worst-case analysis of abstractions of probabilistic policies for neural networks
- intervals between IMDP abstract states constructed by sampling the policy

- Robust anytime MDP learning
- sampled MDP trajectories
- IMDPs constructed and solved periodically to yield robust predictions on current model
- PAC or Bayesian interval learning

Learning IMDP intervals

- One approach: sampling from the (fixed, but unknown) "true" MDP
- generate sample paths and keep separate counts of transition frequencies
- Gives confidence intervals around point estimates for transition probabilities $P_{s}^{a}\left(s_{i}\right)$
- using probably approximately correct (PAC) guarantees
- we fix an error rate γ and compute an error δ
- standard method of maximum a-posteriori probability (MAP) estimation to infer point estimates of probabilities
- For each state s, we have sample counts $N=\#(s, a)$ and $k_{i}=\#\left(s, a, s_{i}\right)$
- point estimate of the transition probability $P_{s}^{a}\left(s_{i}\right)$ is: $\tilde{P}_{s}^{a}\left(s_{i}\right) \approx k_{i} / N$
- confidence interval for the transition probability: $\tilde{P}_{s}^{a}\left(s_{i}\right) \pm \delta$ where $\delta=\sqrt{\log (2 / \gamma) / 2 N}$
- then we have: $\operatorname{Pr}\left(P_{s}^{a}\left(s_{i}\right) \in \tilde{P}_{s}^{a}\left(s_{i}\right) \pm \delta\right) \geq 1-\gamma \quad$ (via Hoeffding's inequality)

Learning IMDP intervals

- If desired, we can lift the PAC guarantee from individual transitions to the uMDP
- Distribute the chosen error rate γ across all transitions:
- $\gamma_{P}=\gamma /\left(\Sigma(s, a) \in S \times A\left|\operatorname{Succ}_{>1}(s, a)\right|\right)$
- where $\operatorname{Succ}_{>1}(s, a)=\left\{s \in S: 0<P_{s}^{a}\left(s^{\prime}\right)<1\right\}$ is the set of successor states of each (s, a) with more than one successor
- To construct the IMDP, we use:

$$
\begin{aligned}
\underline{P}_{s}^{a}\left(s_{i}\right) & =\max \left(\varepsilon, \tilde{P}_{s}^{a}\left(s_{i}\right)-\delta_{P}\right) \\
-\bar{P}_{s}^{a}\left(s_{i}\right) & =\min \left(\tilde{P}_{s}^{a}\left(s_{i}\right)+\delta_{P}, 1\right)
\end{aligned}
$$

- Then we have: $\operatorname{Pr}(P \in \mathscr{P}) \geq 1-\gamma$
[Suilen et al.'22]

Likelihood uncertainty sets

- Likelihood models suit experimentally determined transition probabilities
- and are less conservative than interval representations
- Uncertainty sets are :
- are derived from empirical frequencies $F_{s}^{a}\left(s^{\prime}\right)$ of a transition to s^{\prime} after action a in state s
- are described by likelihood regions: $\left.\mathscr{P}_{s}^{a}=\left\{P_{s}^{a} \in \operatorname{Dist}(S) \mid \sum_{s^{\prime}} F_{s}^{a}\left(s^{\prime}\right) \log \left(P_{s}^{a}\left(s^{\prime}\right)\right) \geq \beta_{s}^{a}\right)\right\}$
- where β_{s}^{a} is the uncertainty level (can be estimated for a desired confidence level)
- $\beta_{s}^{a}<\beta_{s, \text { max }}^{a}$ where $\beta_{s, \text { max }}^{a}=\sum_{s^{\prime}} F_{s}^{a}\left(s^{\prime}\right) \log \left(F_{s}^{a}\left(s^{\prime}\right)\right)$ is the optimal log-likelihood
- Inner optimisation problems

$$
\inf _{P_{s}^{a} \in \mathscr{P}_{s}^{a}} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}
$$

- can be solved (approximately) using a bisection algorithm
- to within an accuracy δ in time $O\left(\log \left(x_{\max } / \delta\right)\right)$ where $x_{\max }$ is the maximum value in vector x

Uncertainty set models - Summary

- Intervals \& likelihood models
- both quite computationally tractable and statistically meaningful
- interval models are more conservative (sometimes projected to as an estimate)
- Finite scenarios ("sampled"): $\mathscr{P}_{s}^{a}=\left\{P_{s, 1}^{a}, \ldots, P_{s, k}^{a}\right\}$
- inner optimisation is simple (min over finite set)

$$
\inf _{P_{s}^{a} \in \mathscr{P}_{s}^{a}} \sum_{s^{\prime} \in S} P_{s}^{a}\left(s^{\prime}\right) \cdot x_{s^{\prime}}
$$

- but worst-case choice can be very conservative
- Many other possibilities, e.g.:
- maximum a posteriori models, entropy models, ellipsoidal models, ...
- most have similar (approximate) optimisation approaches to likelihood models
- see: [Nilim\&Ghaoui'05] for details

Tool support: PRISM

- PRISM: probabilistic model checking tool
- formal modelling and analysis (using temporal logic properties) of:
- Markov chains, Markov decision processes,
- interval Markov chains, interval Markov decision processes,
- stochastic games (via PRISM-games), and much more...
- See: www.prismmodelchecker.org
- download, documentation, tutorials, papers, case studies, ...
- Supporting files for ESSAI examples here:
www.prismmodelchecker.org/courses/essai23/

Summary (lecture 3)

- Uncertain MDPs
- environment policies - static vs dynamic uncertainty
- robust value iteration (robust dynamic programming)
- implementation with interval MDPs (IMDPs)
- non-memoryless policies (static uncertainty)
- generating / learning intervals
- uncertainty set representations
- tool support: PRISM

Advertisement

- ERC-funded project FUN2MODEL, based at Oxford
- lead by Marta Kwiatkowska
- model-based reasoning for learning and uncertainty
- Postdoc position available now
- http://www.fun2model.org/
- http://www.prismmodelchecker.org/news.php

References

- Applications \& challenges
- T. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala, M. Stoelinga and N. Jansen, Robust Control for Dynamical Systems with Non-Gaussian Noise via Formal Abstractions, Journal of Artificial Intelligence Research, 76, pages 341-391, 2023
- M. Budd, P. Duckworth, N. Hawes and B. Lacerda, Bayesian Reinforcement Learning for Single-Episode Missions in Partially Unknown Environments, In CoRL, 2022
- C. Costen, M. Rigter, B. Lacerda and N. Hawes, Shared Autonomy Systems with Stochastic Operator Models, IJCAl'22, 4614-4620, 2022
- Markov decision processes
- Mausam \& A. Kolobov, Planning with Markov Decision Processes: An Al Perspective, Morgan \& Claypool, 2012
- M. Puterman, Markov Decision Processes, Wiley, 1994

References

- Stochastic games

- J. Filar and K. Vrieze, Competitive Markov Decision Processes, Springer, 1997
- M. Kwiatkowska, G. Norman and D. Parker, Probabilistic Model Checking and Autonomy, Annual Review of Control, Robotics, and Autonomous Systems, 5, 2022
- Uncertain MDPs and interval MDPs
- G. N. Iyengar, Robust dynamic programming, Mathematics of Operations Research, 30(2), 2005
- A. Nilim and L. Ghaoui, Robust control of Markov decision processes with uncertain transition matrices, Operations Research, 53(5), 780-798, 2005
- E. Wolff, U. Topcu, and R. Murray, Robust control of uncertain Markov decision processes with temporal logic specifications, In Proc. 51th IEEE Conference on Decision and Control (CDC'12), 2012
- W. Wiesemann, D. Kuhn and B. Rustem, Robust Markov Decision Processes, Math. Oper. Res., 38(1), 153-183, 2013
- A. Puggelli, W. Li, A. Sangiovanni-Vincentelli and S. Seshia, Polynomial-time verification of PCTL properties of MDPs with convex uncertainties, In Proc. 25th International Conference on Computer Aided Verification (CAV'13), LNCS, vol. 8044, Springer, 2013

References

- Learning and using IMDPs
- T. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala, M. Stoelinga and N. Jansen, Robust Control for Dynamical Systems with Non-Gaussian Noise via Formal Abstractions, Journal of Artificial Intelligence Research, 76, pages 341-391, 2023
- E. Bacci and D. Parker, Verified Probabilistic Policies for Deep Reinforcement Learning, In Proc. 14th International Symposium NASA Formal Methods (NFM'22), volume 13260 of LNCS, pages 193-212, Springer, 2022
- M. Suilen, T. D. Simão, N. Jansen and D. Parker, Robust Anytime Learning of Markov Decision Processes, In Proc. 36th Annual Conference on Neural Information Processing Systems (NeurIPS'22), 2022

