

Verification of Probabilistic Real-time Systems

Dave Parker

University of Birmingham

ETR'13, Toulouse, August 2013

What is probabilistic model checking?

Formal verification...

- is the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems
- Probabilistic model checking...
 - is an automated formal verification technique for modelling and analysis of systems with probabilistic behaviour

Model checking

Probabilistic model checking

Why probability?

- Many real-world systems are inherently probabilistic...
- Unreliable or unpredictable behaviour
 - failures of physical components
 - message loss in wireless communication
- Use of randomisation (e.g. to break symmetry)
 - random back-off in communication protocols
 - in gossip routing to reduce flooding
 - in security protocols, e.g. for anonymity
- And many others...
 - biological processes, e.g. DNA computation
 - quantum computing algorithms

Probabilistic real-time systems

- Many systems combine probability and real-time
 - e.g. wireless communication protocols
 - e.g. randomised security protocols
- Randomised back-off schemes
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
 - Bluetooth device discovery phase
 - Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)
- Random choice of a destination
 - Crowds anonymity, gossip-based routing

Verifying probabilistic systems

• We are not just interested in correctness

- "the probability of an airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001"
- We want to be able to reason about:
 - reliability, dependability
 - performance, resource usage, e.g. battery life
 - security, privacy, trust, anonymity, fairness
 - and much more...
- We want to reason in a quantitative manner:
 - how reliable is my car's Bluetooth network?
 - how efficient is my phone's power management policy?
 - how secure is my bank's web-service?

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (CTMCs)	Probabilistic timed automata (PTAs)
		CTMDPs/IMCs/

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (<mark>CTMCs</mark>)	Probabilistic timed automata (PTAs)
		CTMDPs/IMCs/

Contents

- Case study: the FireWire protocol
- Discrete-time Markov chains + the logic PCTL
- Adding nondeterminism: Markov decision processes
- Adding real time: probabilistic timed automata
- Probabilistic model checking in practice: PRISM

More here: <u>http://www.prismmodelchecker.org/lectures/</u>

Contents

Case study: the FireWire protocol

• Discrete-time Markov chains + the logic PCTL

Adding nondeterminism: Markov decision processes

Adding real time: probabilistic timed automata

• Probabilistic model checking in practice: PRISM

Case study: FireWire protocol

- FireWire (IEEE 1394)
 - high-performance serial bus for networking multimedia devices; originally by Apple
 - "hot-pluggable" add/remove devices at any time

- no requirement for a single PC (but need acyclic topology)
- Root contention protocol
 - leader election algorithm, when nodes join/leave
 - symmetric, distributed protocol
 - uses randomisation (electronic coin tossing) and timing delays
 - nodes send messages: "be my parent"
 - root contention: when nodes contend leadership
 - random choice: "fast"/"slow" delay before retry

FireWire example

FireWire leader election

FireWire root contention

FireWire root contention

FireWire analysis

- Detailed probabilistic model:
 - probabilistic timed automaton (PTA), including:
 - concurrency: messages between nodes and wires
 - timing delays taken from official standard
 - underspecification of delays (upper/lower bounds)
 - maximum model size: 170 million states
- Probabilistic model checking (with PRISM)
 - verified that root contention always resolved with probability 1

+ $P_{\geq 1}$ [F (end \land elected)]

investigated worst-case expected time taken for protocol to complete

• $R_{max=?}$ [F (end \land elected)]

- investigated the effect of using biased coin

"minimum probability of electing leader by time T"

(short wire length)

Using a biased coin

Contents

- Case study: the FireWire protocol
- Discrete-time Markov chains + the logic PCTL
 Adding nondeterminism: Markov decision processes
 Adding real time: probabilistic timed automata
 Probabilistic model checking in practice: PRISM

Discrete-time Markov chains (DTMCs)

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- States
 - discrete set of states representing all possible configurations of the system being modelled
- Transitions
 - transitions between states occur in discrete time-steps
- Probabilities
 - probability of making transitions between states is given by discrete probability distributions

Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - **S** is a finite set of states ("state space")
 - $\boldsymbol{s}_{\text{init}} \in \boldsymbol{S}$ is the initial state
 - $\mathbf{P} : \mathbf{S} \times \mathbf{S} \rightarrow [0,1]$ is the transition probability matrix
 - $L : S \rightarrow 2^{AP}$ is function labelling states with atomic propositions
- A (finite or infinite) path through a DTMC
 - is a sequence of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \forall i$
 - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
- To reason formally about the DTMC
 - we define a probability measure over paths, Pr_s
 - via a sigma algebra over the set of all infinite paths

PCTL

- PCTL: temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94,BdA95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator ${\bf P}$
 - quantitative extension of CTL's A and E operators
- Example
 - send \rightarrow P_{≥ 0.95} [F^{≤ 10} deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

PCTL syntax

- where a is an atomic proposition, used to identify states of interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥} and k ∈ N
- Can derive other useful operators
 - logical: false, $\phi_1 \lor \phi_2$, $\phi_1 \rightarrow \phi_2$
 - $F \phi \equiv true U \phi$ ("eventually") and $G \phi \equiv \neg(F \neg \phi)$ ("always")
 - bounded variants, e.g. $F^{\leq k} \varphi \equiv true U^{\leq k} \varphi$

PCTL semantics (for DTMCs)

- PCTL formulae interpreted over states of a DTMC
 - $\mathbf{s} \models \mathbf{\phi}$ denotes $\mathbf{\phi}$ is "true in state s" or "satisfied in state s"
- Semantics of logical operators: standard meanings
- Semantics of the probabilistic operator P
 - informally, $s \models P_{\sim p} [\psi]$ means: "the probability, from state s, that ψ is true for outgoing paths satisfies the bound $\sim p$ "
 - formally:

 $s \vDash P_{\sim p} \ [\psi] \ \Leftrightarrow \ Prob(s, \psi) \sim p$

– where:

 $Prob(s, \psi) = Pr_s \{ \omega \in Path(s) \mid \omega \vDash \psi \}$

Quantitative (numerical) properties

- Consider a PCTL formula P_{-p} [ψ]
 - if the probability is unknown, how to choose the bound p?
- We also allow the numerical form $P_{=?}$ [ψ]
 - when the outermost operator of a PTCL formula is P
 - "what is the probability that path formula ψ is true?"
- Model checking is no harder
 - compute the values anyway
- Useful to spot patterns, trends
- Example
 - $P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"

Some real PCTL examples

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D=(S,s_{init},P,L), PCTL formula ϕ
 - output: Sat(ϕ) = { s \in S | s $\models \phi$ } = set of states satisfying ϕ
 - or: compute result of e.g. $P_{=?}$ [$F^{\leq k}$ error]
- Basic algorithm proceeds by induction on parse tree of $\boldsymbol{\varphi}$
 - e.g. ϕ = (¬fail \land try) \rightarrow P_{>0.95} [¬fail U succ]
 - logical operators: straightforward
- For the $P_{\sim p}$ [ψ] operator
 - need to compute probabilities $Prob(s, \psi)$ for all states $s \in S$
 - combination of graph algorithms and numerical computation
- Linear in $|\Phi|$ and polynomial in |S|

PCTL model checking: Until

- Example: computation of probabilities for "until" formula
 - i.e. Prob(s, $\varphi_1 \cup \varphi_2$) for all $s \in S$
- First, execute graph-based analysis to identify all states where the probability is exactly 1 or 0:
 - $S^{yes} = Sat(P_{\geq 1} [\varphi_1 U \varphi_2])$
 - $\ S^{no} = Sat(P_{\leq 0} \left[\ \varphi_1 \ U \ \varphi_2 \ \right])$
- Then, solve linear equation system for remaining states:

$$Prob(s, \phi_1 \cup \phi_2) = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ \sum_{s' \in S} P(s, s') \cdot Prob(s', \phi_1 \cup \phi_2) & \text{otherwise} \end{cases}$$

 solved with standard methods, e.g. Gaussian elimination (iterative numerical methods preferred in practice)

PCTL until – Example

• Example: P_{>0.8} [¬a U b]

PCTL until – Example

• Example: P_{>0.8} [¬a U b]

PCTL until – Example

Sat($P_{>0.8}$ [$\neg a \cup b$]) = { s_2, s_4, s_5 }

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in T, passing only through states in T' (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow temporal operators to be combined
- LTL properties:
 - $P_{\leq 0.01}$ [(F tmp_fail₁) \land (F tmp_fail₂)] "both servers eventually fail with probability at most 0.01"
 - $P_{\geq 1}$ [G F ready] "with probability 1, the server always eventually returns to a ready-state"
 - P_{=?} [F G error] "probability of an irrecoverable error?"

Costs and rewards

- Another direction: extend DTMCs with costs and rewards...
 - to measure: elapsed time, power consumption, number of messages successfully delivered, net profit, ...
 - add expected reward operator R to PCTL logic
- Cost/reward-based properties:
 - $R^{energy}_{\leq 400}$ [$C^{\leq 60}$] "the expected energy consumption over 60 seconds is at most 40 J"
 - R^{time} [F end] "the expected time for protocol execution"
Contents

- Case study: the FireWire protocol
- Discrete-time Markov chains + the logic PCTL
- Adding nondeterminism: Markov decision processes
- Adding real time: probabilistic timed automata
- Probabilistic model checking in practice: PRISM

Nondeterminism

- Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Unknown environments or controllers
 - e.g. probabilistic security protocols unknown adversary
 - e.g. controller synthesis & planning
- Underspecification and abstraction
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}

Markov decision processes (MDPs)

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several actions
 - each of which gives a probability distributions over successor states
 - formally: δ : $S \times Act \rightarrow Dist(S)$
 - instead of $P : S \times S \rightarrow [0,1]$

Adversaries

- How to reason about probabilities for MDPs?
 - need to separate nondeterminism and probability
- An adversary resolves nondeterministic choice in an MDP
 - based on the history of execution so far
 - also known as "schedulers", "strategies" or "policies"
 - formally: an adversary σ of an MDP is a function mapping every finite path $s_0a_0s_1a_1...s_n$ to an action available in s_n
- Adversary σ induces a probability measure Pr_s^{σ} over paths
 - via construction of an (infinite-state) DTMC

Adversaries – Examples

- Consider the simple MDP below
 - s_1 is the only state for which an adversary makes a choice
- Adversary σ_1
 - picks action c the first time
 - $\sigma_1(s_0s_1) = c$

- Adversary σ_2
 - picks action b the first time, then c
 - $\sigma_2(s_0s_1)=b, \sigma_2(s_0s_1s_1)=c, \sigma_2(s_0s_1s_0s_1)=c$

Adversaries – Examples

- Fragment of DTMC for adversary σ_1
 - σ_{1} picks action c the first time

Adversaries – Examples

Model checking for MDPs

- Verification for MDPs quantifies over all adversaries
 - e.g. PCTL: $P_{\geq 0.95}$ [F deliver] "the probability of the message being delivered is at least 0.95 for any possible adversary"
 - formally: $s \models P_{\sim p} [\psi] \iff Pr_s^{\sigma}(\psi) \sim p$ for all adversaries σ
- For model checking, we need min./max. probabilities: $- \Pr_s^{max}(\psi) = \sup_{\sigma} \Pr_s^{\sigma}(\psi)$ and $\Pr_s^{min}(\psi) = \inf_{\sigma} \Pr_s^{\sigma}(\psi)$
- Quantitative (numerical) queries
 - $P_{min=?}$ [ψ] and $P_{max=?}$ [ψ]
 - analyses best-case or worst-case behaviour of the system

PCTL model checking for MDPs

- Basic algorithm same as PCTL model checking for DTMCs
 - recursive procedure, graph-based + numerical solution
 - now: computation of min/max probabilities
 - still linear in size of property, polynomial in size of model
- For example, for "until" formulae
 - either: solve linear programming (LP) problem
 - or: iterative numerical methods (dynamic programming)
 - or: policy iteration

Contents

- Case study: the FireWire protocol
- Discrete-time Markov chains + the logic PCTL
- Adding nondeterminism: Markov decision processes
- Adding real time: probabilistic timed automata
- Probabilistic model checking in practice: PRISM

Probabilistic real-time systems

- Systems with probability, nondeterminism and real-time
 - e.g. communication protocols, randomised security protocols
- Randomised back-off schemes
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
 - Bluetooth device discovery phase
 - Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)
- Random choice of a destination
 - Crowds anonymity, gossip-based routing

Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
 - Markov decision processes (MDPs) + real-valued clocks
 - or: timed automata + discrete probabilistic choice
 - model probabilistic, nondeterministic and timed behaviour

• PTAs comprise:

- clocks (increase simultaneously)
- locations (labelled with invariants)
- transitions (action + guard + probabilities + resets)

Semantics

- PTA represents an infinite-state MDP
- states are location/clock valuation pairs (I,v) $\in Loc \times \mathbb{R}^X$
- nondeterminism: elapse of time + choice of actions

0.05

x := 0

done

true

lost

x≤3

0.95

retry

x > 2

x:=0

0.9

0.1

x := 0

send

x > 1

init

x≤2

PTA – Example

PTA – Example execution

50

Properties of PTAs

- Temporal logic
 - again, can use PCTL to represent properties
 - e.g. $P_{\geq 0.99}$ [$F^{\leq 5}$ deliv] "with probability 0.99 or greater, a data packet will always be delivered within 5 seconds"
 - we verify behaviour over all possible adversaries (actually all time-divergent adversaries)

Timed extensions

- can extend to the logic PTCTL (adds zones + formula clocks)

In practice:

- (min/max) probabilistic reachability often suffices

PTA model checking

Several different approaches developed

- basic idea: reduce to the analysis of a finite-state model
- in most cases, this is a Markov decision process (MDP)
- Region graph construction [KNSS02]
 - shows decidability, but gives exponential complexity
- Digital clocks approach [KNPS06]
 - (slightly) restricted classes of PTAs
 - works well in practice, still some scalability limitations
- Zone-based approaches:
 - (preferred approach for non-probabilistic timed automata)
 - backwards reachability [KNSW07]
 - game-based abstraction refinement [KNP09c]

Contents

- Case study: the FireWire protocol
- Discrete-time Markov chains + the logic PCTL
- Adding nondeterminism: Markov decision processes
- Adding real time: probabilistic timed automata
- Probabilistic model checking in practice: PRISM

The PRISM tool

- PRISM: Probabilistic symbolic model checker
 - developed at Birmingham/Oxford University, since 1999
 - free, open source (GPL), runs on all major OSs
- Support for:
 - discrete-/continuous-time Markov chains (D/CTMCs)
 - Markov decision processes (MDPs)
 - probabilistic timed automata (PTAs)
 - PCTL, CSL, LTL, PCTL*, costs/rewards, ...
- Features:
 - simple but flexible high-level modelling language
 - user interface: editors, simulator, experiments, graph plotting
 - multiple efficient model checking engines (e.g. symbolic)
 - (mostly symbolic BDDs; up to 10^{10} states, 10^7 -10⁸ on avg.)
- See: <u>http://www.prismmodelchecker.org/</u>

PTA example: message transmission over faulty channel

- States
- locations + data variables

Transitions

guards and action labels

Real-valued clocks

• state invariants, guards, resets

Probability

discrete probabilistic choice

PRISM modelling language

- textual language, based on guarded commands

pta const int N; module transmitter s : [0..3] init 0; tries : [0..N+1] init 0; x : clock; invariant (s=0 \Rightarrow x≤2) & (s=1 \Rightarrow x≤5) endinvariant [send] s=0 & tries $\leq N$ & $x \geq 1$ $\rightarrow 0.9$: (s'=3) + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);[retry] $s=1 \& x \ge 3 \rightarrow (s' = 0) \& (x' = 0);$ [quit] $s=0 \& tries > N \rightarrow (s' = 2);$ endmodule **rewards** "energy" (s=0) : 2.5; endrewards

PRISM modelling language

- textual language, based on guarded commands

PRISM modelling language

- textual language, based on guarded commands

PRISM modelling language

- textual language, based on guarded commands

PRISM - Case studies

- Randomised communication protocols
 - Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...
- Randomised distributed algorithms
 - consensus, leader election, self-stabilisation, ...
- Security protocols/systems
 - pin cracking, anonymity, quantum crypto, contract signing, ...
- Planning & controller synthesis
 - robotics, dynamic power management, ...
- Performance & reliability
 - nanotechnology, cloud computing, manufacturing systems, ...
- Biological systems
 - cell signalling pathways, DNA computation, ...
- See: <u>www.prismmodelchecker.org/casestudies</u>

Summary

- Probabilistic model checking
 - automated verification of systems with probabilistic behaviour
 - (randomisation, failures, message losses, ...)

Probabilistic models

- discrete-time Markov chains (fully probabilistic)
- Markov decision processes (plus nondeterminism)
- probabilistic timed automata (plus real-time)
- Property specification
 - probabilistic temporal logics, e.g. PCTL
 - wide range of quantitative properties
- Tool support: PRISM (<u>http://www.prismmodelchecker.org/</u>)
 demonstrations available
 - demonstrations available

Questions?

More info here: www.prismmodelchecker.org