Verification of Probabilistic
Real-time Systems

Dave Parker

University of Birmingham

ETR'T1 3, Toulouse, August 2013

What is probabilistic model checking?

- Formal verification...

— is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems

- Probabilistic model checking...

— is an automated formal verification
technique for modelling and analysis
of systems with probabilistic behaviour

AR

System

Model checking

Finite-state
model

System
require-
ments

—EF fail

Temporal logic
specification

—

Model checker

e.g. SMV, Spin

~

)

Result

” X

Counter-
example

—-+0O0—+>0—+>0—+0

Probabilistic model checking

Probabilistic model —) Result

e.g. Markov chain 7 x

Quantitative
results

e e)
Probabilistic
model checker
—> e.g. PRISM —

QO:: Poi [Ffail]| mm—

- © —>
‘: dystem —» Counter-
require- Probabilistic example
ments temporal logic
specification ~owo 0

e.g. PCTL, CSL, LTL 4

Why probability?

- Many real-world systems are inherently probabilistic...

- - Unreliable or unpredictable behaviour
— failures of physical components
i — message loss in wireless communication

+ Use of randomisation (e.g. to break symmetry)
— random back-off in communication protocols
— in gossip routing to reduce flooding

— in security protocols, e.g. for anonymity

WA

- And many others...

— biological processes, e.g. DNA computation
— quantum computing algorithms

Probabilistic real-time systems

Many systems combine probability and real-time
— e.g. wireless communication protocols
— e.g. randomised security protocols

Randomised back-off schemes
— Ethernet, WiFi (802.11), Zigbee (802.15.4)
Random choice of waiting time
— Bluetooth device discovery phase
— Root contention in IEEE 1394 FireWire
Random choice over a set of possible addresses
— IPv4 dynamic configuration (link-local addressing)
Random choice of a destination
— Crowds anonymity, gossip—-based routing

Verifying probabilistic systems

- We are not just interested in correctness

— “the probability of an airbag failing to deploy
within 0.02 seconds of being triggered is at most 0.001

- We want to be able to reason about:
— reliability, dependability
— performance, resource usage, e.g. battery life
— security, privacy, trust, anonymity, fairness
— and much more...

- We want to reason in a quantitative manner:
— how reliable is my car’s Bluetooth network?

AR

— how efficient is my phone’s power management policy?
— how secure is my bank’s web-service?

AN

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Discrete Markov chains processes (MDPs)
time
(DTMCS) (probabilistic automata)
Probabilistic timed
Conti Continuous-time automata (PTAS)
or1tti|rrr1ltéous Markov chains

(CTMCs)

CTMDPs/IMCs/ ...

WA

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete
time

Discrete-time
Markov chains

(DTMCs)

Markov decision
processes (MDPs)

(probabilistic automata)

Continuous
time

Continuous-time
Markov chains

(CTMCs)

Probabilistic timed
automata (PTAS)

CTMDPs/IMCs/ ...

Contents

- Case study: the FireWire protocol

. Discrete-time Markov chains + the logic PCTL

- Adding nondeterminism: Markov decision processes
- Adding real time: probabilistic timed automata

- Probabilistic model checking in practice: PRISM

- More here: http://www.prismmodelchecker.org/lectures/

10

Contents

- Case study: the FireWire protocol

11

AN

Case study: FireWire protocol

FireWire (IEEE 1394)

— high-performance serial bus for networking
multimedia devices; originally by Apple

— "hot-pluggable” - add/remove
devices at any time

&

— no requirement for a single PC (but need acyclic topology)

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses randomisation (electronic coin tossing) and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership
— random choice: "fast"/"slow" delay before retry

12

FireWire example

wil' |/

13

FireWire leader election

FireWire root contention

15

FireWire root contention

16

FireWire analysis

- Detailed probabilistic model:
— probabilistic timed automaton (PTA), including:

; . concurrency: messages between nodes and wires
- . timing delays taken from official standard
- . underspecification of delays (upper/lower bounds)
'8 : : -
¥ — maximum model size: 170 million states ()
i -m
. Probabilistic model checking (with PRISM) = - B
— verified that root contention always e ™))\ \ed
resolved with probability 1 =D = W m“
. P_, [F (end A elected)] G /A
> — investigated worst-case expected time - R I
: taken for protocol to complete L T
. Ri.or [F (end A elected)] =

didie |)

— investigated the effect of using biased coin

FireWire: Analysis results

l_
.)
o
- =)
2 (4]
208
(4]
- = “minimum probability
¥ B0s of electing leader
G by time T~
S]
204
=
(4]
0
o
a0.2
% - shor wire
- £ — |ong wire
. S 0
: = 2 4 g A 10
T (10° ns)

18

FireWire: Analysis results

'—
> 1
o)
< 308 “minimum probability
) Q .
¥ 205. | of electing leader
5 by time T
o 04-
o)
©
5 0.2+ _
5 (short wire length)
£ 0
£ 1

10 Using a biased coin

19

FireWire: Analysis results

: 2 x10
L T
)2 (]
E o
kS
o 8 ‘ .
=< 15 maximum expected
¥ - time to elect a leader”
S 6
O
£
o 4 _
I3 (short wire length)
Q.
>
o 2
é Using a biased coin
‘j -g 0 1
£ 0.2 0.4 0.6 0.8

probability of choosing fast

20

FireWire: Analysis results

R
S
N 93850
. 0
~ 3800
W T “maximum expected
g © time to elect a leader”
2 3750}
()]
£
g 3700
&é (short wire length)
X 3650(
E : Using a biased coin
| E 3600f is beneficiall
| E 045 05 055 06 065 0.7

probability of choosing fast

21

Contents

. Discrete-time Markov chains + the logic PCTL

22

Discrete-time Markov chains (DTMCs)

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

- States

-- — discrete set of states representing all possible
configurations of the system being modelled

- Transitions

— transitions between states occur
in discrete time-steps

Probabilities

— probability of making transitions
between states is given by
discrete probability distributions

AN

23

Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s,;;,P,L) where:
— Sis a finite set of states (“state space”)
— Si,it € Sis the initial state
— P:S xS —[0,1] is the transition probability matrix
=< — L : S — 2AP s function labelling states with atomic propositions

- A (finite or infinite) path through a DTMC
— is a sequence of states s,5;5,55... such that P(s;,s;.;) > 0 Vi
— represents an execution (i.e. one possible behaviour) of

the system which the DTMC is modelling e

/\—}

OR On O«fuet:
{ - Toreason formally about the DTMC \;i,;;_-_-_-

.
‘.,
.

— we define a probability measure over paths, Pr,

— via a sigma algebra over the set of all infinite paths
24

PCTL: temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H)94,BdA95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P_y 45 [F='0 deliver]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

25

PCTL syntax

. W is true with

- Syntax of PCTL formula ¢: / orobability ~p

» — ¢ u=truelaldbad | -d| P, [W] (state formulae)

= - =X | dUkd | dUD (path formulae)

e e I

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=}and k € N

- Can derive other useful operators
— logical: false, &, v ¢,, ¢, — P,
— Fd =trueU d ("eventually”) and G = —(F =) ("always")
— bounded variants, e.g. F=k & = true U=k ¢ 26

PCTL semantics (for DTMCs)

- PCTL formulae interpreted over states of a DTMC
— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of logical operators: standard meanings

- Semantics of the probabilistic operator P

— informally, s=P_ [w]lmeans: M)y
“the probability, from states, L J) =< . A
that | is true for outgoing paths v
satisfies the bound ~p” (A~ —~A 7"

— formally: O—... — E

sEPylwl = Prob(s,¢)~p A, na
: — where:
Prob(s, @) = Pr,{ w € Path(s) | w = Y }

27

AN

Quantitative (numerical) properties

Consider a PCTL formula P_, []
— if the probability is unknown, how to choose the bound p?

- We also allow the numerical form P_, [Y]

— when the outermost operator of a PTCL formula is P
— “what is the probability that path formula @ is true?”

Model checking is no harder
— compute the values anyway

Useful to spot patterns, trends

Example
— P_, [F err/total>0.1]

— “what is the probability
that 10% of the NAND

gate outputs are erroneous?”

Probability

’ o A
’ —‘-0____0___‘0___ 2P

PRISM [21]

—e—) =0.01
—a—) =0.02
—&— A =0.03
—o— A =0.04
Analytical [7]

&t %-e- 1-001

o
o

-8- 1=0.02
-4- 1 =0.03
-9~ A=0.04

2 3 4 5 6 7

Number of restorative stages

L0

Some real PCTL examples

NAND multiplexing system
— P_, [F err/total>0.1]

— “what is the probability that 10% of the NAND gate outputs are
erroneous?”

--

e . . . performance
¥ . Bluetooth wireless communication prot0c0|/ ... :

— P_, [F=treply_count=k]

— “what is the probability that the sender has received k
acknowledgements within t clock-ticks?”

fairness

o Secur|ty EGL Contract Slgnlng protocol
— P_, [F (pairs_a=0 & pairs_b>0)] /

— “what is the probability that the party B gains an unfair
advantage during the execution of the protocol?”

WA

29

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,H)94,CY95]
— inputs: DTMC D=(5,s;,,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s E ¢} =setof states satisfying ¢
— or: compute result of e.g. P_, [F=k error]

.- Basic algorithm proceeds by induction on parse tree of ¢
— e.g. ¢ = (—fail A try) = P_y 495 [—fail U succ]

— logical operators: straightforward =
- For the P_, [] operator / \
— need to compute probabilities A Poogs[-U-]

v Prob(s, @) for all states s € S / /
— combination of graph algorithms - —
: and numerical computation

- Linear in |®| and polynomial in |S| (il @

30

PCTL model checking: Until

- Example: computation of probabilities for "until” formula
— i.e. Prob(s, ¢, U ¢,) foralls € S

- First, execute graph-based analysis to identify all states
- where the probability is exactly 1 or O:
— Sves = Sat(P., [, U,])
— S"° = Sat(P_,[¢, U ¢,])

- Then, solve linear equation system for remaining states:

1 if s€S™
Prob(s, ¢; U ¢,) = 1 0 if s&S™
EP(s,s')- Prob(s’, ¢, U ¢,) otherwise

s'eS

— solved with standard methods, e.g. Gaussian elimination

(iterative numerical methods preferred in practice) 31

PCTL until - Example

- Example: P.gg [~aUDb]

32

PCTL until - Example

- Example: P.gg [~aUDb]

Sno —

Sat(P_, [-aUb])

07 Sat(p

Syes —

>1 [~aUb])

33

PCTL until - Example

Example: P.,5["aUb]

Sho —
. - Letx;, = Prob(s, —a U Db)
1 0.3
£ . a
g Solve: B E Syes —
0.1 0.7 Sat(P., [-aUb])

X; =X3=0

Xo = 0.1%,+0.9x, = 0.8
X; = 0.1%,+0.1x3+0.3x5;+0.5x, = 8/9
Prob(-aUb)=x=1[0.8,0,8/9,0,1, 1]

Sat(P.os[~aUDb]) ={s,,54,55} "

Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in T, passing only
through states in T' (and within k time-steps)

= - More expressive logics can be used, for example:

— LTL [Pnu77] - linear-time temporal logic

— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow temporal operators to be combined

LTL properties:

— P_y o1 [(Ftmp_fail,) A (F tmp_fail,)] - “both servers eventually
fail with probability at most 0.01”

— P_, [G F ready | - “with probability 1, the server always
eventually returns to a ready-state”

— P_, [F G error] - “probability of an irrecoverable error?”

WA

35

Costs and rewards

- Another direction: extend DTMCs with costs and rewards...

8 — to measure: elapsed time, power consumption, number of
messages successfully delivered, net profit, ...

— add expected reward operator R to PCTL logic

Cost/reward-based properties:

— Reneray_, o [C=60] - “the expected energy consumption over 60
seconds is at most 40 J”

— Rime__ [F end] - “the expected time for protocol execution”

AN

36

Contents

- Adding nondeterminism: Markov decision processes

37

AN

Nondeterminism

Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

Concurrency - scheduling of parallel components

— e.g. randomised distributed algorithms — multiple probabilistic
processes operating asynchronously

Unknown environments or controllers
— e.g. probabilistic security protocols - unknown adversary
— e.g. controller synthesis & planning

Underspecification and abstraction

— e.g. a probabilistic communication protocol designed for
message propagation delays of between d,;, and d, .,

38

AN

Markov decision processes (MDPs)

Markov decision processes (MDPs)
— extension of DTMCs which allow nondeterministic choice

Like DTMCs:

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur in discrete time-steps

Probabilities and nondeterminism 1 restart
— in each state, a nondeterministic 0.01 {fai|}
choice between several actions ttry}t 9

— each of which gives a probability
distributions over successor states

— formally: 6 : S X Act — Dist(S) 1 wait ggucq)
— instead of P: S x S — [0,1]

AN

Adversaries

How to reason about probabilities for MDPs?
— need to separate nondeterminism and probability

- An adversary resolves nondeterministic choice in an MDP

— based on the history of execution so far

N 1

— also known as “schedulers”, “strategies” or “policies”

— formally: an adversary o of an MDP is a function mapping
every finite path sya,s,a,...s, to an action available in s_

- Adversary o induces a probability measure Pr_° over paths

— via construction of an (infinite-state) DTMC

40

Adversaries — Examples

- Consider the simple MDP below
— s, is the only state for which an adversary makes a choice

- Adversary o,
- — picks action c the first time
— 0,(5057)=CcC

- Adversary o,
— picks action b the first time, then c
— 05(5051)=b, 0,(545,51)=C, 05(5¢5:5¢S7)=C

41

Adversaries — Examples

- Fragment of DTMC for adversary o,
— 0, picks action c the first time

42

Adversaries — Examples

- Fragment of DTMC for adversary o,

— 0, picks action b, then ¢

{heads}

{init} 3 1 O!S ‘E!E!!"

Model checking for MDPs

- Verification for MDPs quantifies over all adversaries

— e.g. PCTL: P_, o5 [F deliver] - "the probability of the message
being delivered is at least 0.95 for any possible adversary”

— formally: s E P., [W] < Prow) ~ p for all adversaries o

For model checking, we need min./max. probabilities:
— Pr,ma(p) = sup, Pr.o(p) and Pr.mn(p) = inf Pr.o(W)

- Quantitative (numerical) queries
0.8
o Pmin=? [Y] and I:)max=? [Y] >
v — analyses best-case or worst-case 3 %°
- behaviour of the system 804
(a1
— maximum
0.21 - --average |
——minimum

800 1000 12'00T14'oo 1600 1800

PCTL model checking for MDPs

Basic algorithm same as PCTL model checking for DTMCs
— recursive procedure, graph-based + numerical solution
— now: computation of min/max probabilities
— still linear in size of property, polynomial in size of model

For example, for "until” formulae
— either: solve linear programming (LP) problem
— or: iterative numerical methods (dynamic programming)
— or: policy iteration

AN

45

Contents

- Adding real time: probabilistic timed automata

46

Probabilistic real-time systems

- Systems with probability, nondeterminism and real-time

— e.g. communication protocols, randomised security protocols

Randomised back-off schemes
— Ethernet, WiFi (802.11), Zigbee (802.15.4)
Random choice of waiting time
— Bluetooth device discovery phase
— Root contention in IEEE 1394 FireWire
Random choice over a set of possible addresses
— IPv4 dynamic configuration (link-local addressing)
Random choice of a destination
— Crowds anonymity, gossip-based routing

47

Probabilistic timed automata (PTAS)

Probabilistic timed automata (PTAs)
— Markov decision processes (MDPs) + real-valued clocks
— or: timed automata + discrete probabilistic choice
— model probabilistic, nondeterministic and timed behaviour

PTAs comprise:
— clocks (increase simultaneously)

— locations (labelled with invariants)

— transitions (action + guard +
probabilities + resets)

AN

Semantics
— PTA represents an infinite-state MDP
— states are location/clock valuation pairs (I,v) € LocxRX
— nondeterminism: elapse of time + choice of actions 48

PTA - Example

retryE

x>2 «— 9guard |

49

AN

PTA:

PTA - Example execution

Example (init,x=0)
execution:
lu
(init,x=1.1)
0.9
send 0.1

(done,x=0) (lost,x=0)

18.66 lz.y

(done,x=8.66) (lost,x=2.7)

0.95 0.05
retry

(done,x=0) (lost,x=0)

50

AN

Properties of PTAs

- Temporal logic

— again, can use PCTL to represent properties

— e.g. P_y o9 [F=> deliv] - “with probability 0.99 or greater,
a data packet will always be delivered within 5 seconds”

— we verify behaviour over all possible adversaries
(actually all time-divergent adversaries)

- Timed extensions

— can extend to the logic PTCTL (adds zones + formula clocks)

In practice:
— (min/max) probabilistic reachability often suffices

51

PTA model checking

- Several different approaches developed

— basic idea: reduce to the analysis of a finite-state model
— in most cases, this is a Markov decision process (MDP)

Region graph construction [KNSS02]

— shows decidability, but gives exponential complexity
Digital clocks approach [KNPS06]

— (slightly) restricted classes of PTAs

— works well in practice, still some scalability limitations

- Zone-based approaches:

— (preferred approach for non-probabilistic timed automata)
— backwards reachability [KNSWO07]
— game-based abstraction refinement [KNP0O9c]

52

Contents

- Probabilistic model checking in practice: PRISM

53

AN

- Support for:

The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source (GPL), runs on all major OSs

— discrete-/continuous-time Markov chains (D/CTMCs)
— Markov decision processes (MDPs)
— probabilistic timed automata (PTAS)
— PCTL, CSL, LTL, PCTL*, costs/rewards, ...
Features:
— simple but flexible high-level modelling language
— user interface: editors, simulator, experiments, graph plotting
— multiple efficient model checking engines (e.g. symbolic)
— (mostly symbolic - BDDs; up to 1010 states, 107-108 on avg.)

. See: http://www.prismmodelchecker.org/ 54

Modelling PTAs in PRISM

- PTA example: message transmission over faulty channel

x:=0 retry

States
e locations + data variables

= tries:=0
A

X>3
send
x>1Atries<N

Transitions

x:=0, « guards and action labels

¥ quit tries:=tries+1

tries>N

Real-valued clocks
e state invariants, guards, resets

Probability
« discrete probabilistic choice

AN

55

Modelling PTAs in PRISM

- PRISM modelling language
— textual language, based on guarded commands

pta

const int N;

s module transmitter

- s : [0..3] init O;

tries : [0..N+1] init O;

X : clock;

invariant (s=0 = x<2) & (s=1 = x<5) endinvariant

[send] s=0 & tries<N & x=>1
— 0.9 : (s’=3)
+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x=3 — (s’ =0) & (X’ =0);
[quit] s=0 & tries>N — (s’ =2);
endmodule

rewards “energy” (s=0) : 2.5; endrewards

AN

56

Modelling PTAs in PRISM

- PRISM modelling language
— textual language, based on guarded commands

pta Basic ingredients:
const int N;
5 _ « modules
s module transmitter <«— _ « variables
' s : [0..3] init O; / - commands
tries : [0..N+1] init O; /
X : clock;

invariant (s=0 = x<2) & (s=1 = x<5) endinvariant
[send] s=0 & tries<N & x>1
— 0.9 :(s’=3)
+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x=3 — (s’ =0) & (x’ =0);
[quit] s=0 & tries>N — (s’ =2);
endmodule

rewards “energy” (s=0) : 2.5; endrewards

AN

57

Modelling PTAs in PRISM

- PRISM modelling language
— textual language, based on guarded commands

pta Basic ingredients:
const int N;
« modules
el module transmitter variables
: s : [0..3] init O; « commands
tries : [0..N+1] init O;
x : clock; «— For PTASs:

invariant (s=0 = x<2) & (s=1 = x<5) endinvariant . ¢|ocks

[send] s=0 & tries<N & x=1 q\‘\‘ * invariants
- 0.9:(s’=3) =+ guards/resets
+ 0.1 :(s’=1) & (tries’=tries+1) & (xX’=0); “«— J /
[retry] s=1 & x=3 — (s’ =0) & (x’ =0);
[quit] s=0 & tries>N — (s’ =2);

endmodule
rewards “energy” (s=0) : 2.5; endrewards

AN

58

AR

Modelling PTAs in PRISM

- PRISM modelling language
— textual language, based on guarded comma

nds

pta
const int N;
module transmitter

s : [0..3] init O;
tries : [0..N+1] init O;

x : clock;
invariant (s=0 = x<2) & (s=1 = x<5) endinvariant
[send] s=0 & tries<N & x=>1

— 0.9:(s’=3)

+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x=3 — (s’ =0) & (x’ =0);
[quit] s=0 & tries>N — (s’ =2);

Basic ingredients:

« modules
e variables
e commands

For PTAs:

* clocks
* invariants
* guards/resets

Also:

_ » rewards
(i.e. costs, prices)

endmodule /
rewards “energy” (s=0) : 2.5; endrewards

« parallel composséition

WA

PRISM - Case studies

Randomised communication protocols

— Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...
Randomised distributed algorithms

— consensus, leader election, self-stabilisation, ...
Security protocols/systems

— pin cracking, anonymity, quantum crypto, contract signing, ...
Planning & controller synthesis

— robotics, dynamic power management, ...
Performance & reliability

— nanotechnology, cloud computing, manufacturing systems, ...
Biological systems

— cell signalling pathways, DNA computation, ...

See: www.prismmodelchecker.org/casestudies

60

AN

Summary

Probabilistic model checking
— automated verification of systems with probabilistic behaviour
— (randomisation, failures, message losses, ...)

Probabilistic models
— discrete-time Markov chains (fully probabilistic)
— Markov decision processes (plus nondeterminism)
— probabilistic timed automata (plus real-time)

Property specification
— probabilistic temporal logics, e.g. PCTL
— wide range of quantitative properties

- Tool support: PRISM (http://www.prismmodelchecker.org/)

— demonstrations available

61

Questions ?

More info here:
www.prismmodelchecker.org

