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Verification of stochastic systems

• Formal verification needs stochastic modelling

faulty sensors/actuators unpredictable/unknown
environments

randomised protocols
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are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4
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(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].
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Verification with stochastic games

• How do we verify stochastic systems with…
− multiple autonomous agents acting concurrently
− competitive or collaborative behaviour between agents, 

possibly with differing/opposing goals
− e.g. security protocols, algorithms for distributed consensus, 

energy management, autonomous robotics, auctions

• This talk: verification with stochastic multi-player games
− verification (and synthesis) of strategies that are robust

in adversarial settings and stochastic environments
− models, logics, algorithms, tools, examples
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Overview

• Markov decision processes

• Stochastic multi-player games

• Concurrent stochastic games

• Equilibria-based properties
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Probabilistic models

• Discrete-time Markov chains
− e.g. what is the probability

of reaching state ✓?

• Markov decision processes (MDPs)
− strategies (or policies) resolve actions based on history
− e.g. what is the maximum probability of

reaching ✓ achievable by any strategy σ?
− and what is an optimal strategy?

• Formally:
− we write: supσ Prsσ (F✓)
− where Prsσ denotes the probability

from state s under strategy σ
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Solving MDPs

• Various techniques exist to solve MDPs
− (and to perform strategy synthesis)

• Here, we focus on value iteration
− dynamic programming approach
− common for probabilistic model checking

• For example:
− maximum probability p(s) to reach ✓ from s
− values p(s) are the least fixed point of:

− basis for iterative numerical computation
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p(s) = 1 if s⊨✓
maxa Σs’ δ(s,a)(s’)·p(s’) otherwise

let p(s)
=

supσ Prsσ (F✓)

transition
probabilities:

δ : S x Act → Dist(S)



Stochastic
games
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Stochastic multi-player games

• Stochastic multi-player games
− strategies + probability + multiple players
− for now: turn-based (player i controls states Si)
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Property specification: rPATL

• rPATL (reward probabilistic alternating temporal logic)
− branching-time temporal logic for stochastic games

• CTL, extended with:
− coalition operator ⟨⟨C⟩⟩ of ATL
− probabilistic operator P of PCTL
− generalised (expected) reward operator R from PRISM

• In short:
− zero-sum, probabilistic reachability + expected total reward

• Example:
− ⟨⟨{robot1,robot3}⟩⟩ P>0.99 [ F≤10 (goal1∨ goal3) ]
− “robots 1 and 3 have a strategy to ensure that the probability 

of reaching the goal location within 10 steps is >0.99, 
regardless of the strategies of other players”
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rPATL syntax/semantics

• Syntax:
φ ::= true | a | ¬φ | φ ∧ φ | ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈x [ρ]
ψ ::= X φ | φ U≤k φ | φ U φ
ρ ::= I=k | C≤k | F φ

• where:
− a∈AP is an atomic proposition, C⊆N is a coalition of players,
⋈ ∈ {≤,<,>,≥}, q ∈ [0,1]∩ℚ, x ∈ ℚ≥0, k ∈ ℕ
r is a reward structure

• Semantics:
• e.g. P operator: s ⊨ ⟨⟨C⟩⟩P⋈q[ψ] iff:

− “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path 
formula ψ being true from state s satisfies ⋈ q” 
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Model checking rPATL

• Main task: checking individual P and R operators
− reduces to solving a (zero-sum) stochastic 2-player game
− e.g. max/min reachability probability: supσ1

infσ2
Prsσ1,σ2 (F✓)

− complexity: NP ∩ coNP (if we omit some reward operators)

• We again use value iteration
− values p(s) are the

least fixed point of:

− and more: graph-algorithms, sequences of fixed points, …

p(s) = 
1 if s⊨✓
maxa Σs’ δ(s,a)(s’)·p(s’) if s⊭✓ and s∈S1

mina Σs’ δ(s,a)(s’)·p(s’) if s⊭✓ and s∈S2
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t1 w2
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w2
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s5



15

PRISM-games

• PRISM-games: prismmodelchecker.org/games
− extension of PRISM modelling language
− explicit state (and prototype symbolic) implementation

• Example application domains
− collective decision making and team formation protocols 
− security: attack-defence trees; network protocols
− human-in-the-loop UAV mission planning
− autonomous urban driving
− self-adaptive software architectures

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9

0.1

fast

http://www.prismmodelchecker.org/games
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Concurrent stochastic games

• Motivation:
− more realistic model of components operating concurrently, 

making action choices without knowledge of others
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Concurrent stochastic games

• Concurrent stochastic games (CSGs)
− players choose actions concurrently & independently
− jointly determines (probabilistic) successor state
− δ : S×(A1∪{⊥}) × … × (An∪{⊥}) → Dist(S)
− generalises turn-based stochastic games

• We again use the logic rPATL for properties

• Same overall rPATL model checking algorithm [QEST’18]
− key ingredient is now solving (zero-sum) 2-player CSGs
− this problem is in PSPACE
− note that optimal strategies are now randomised
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rPATL model checking for CSGs

• We again use a value iteration based approach
− e.g. max/min reachability probabilities
− supσ1

infσ2
Prsσ1,σ2 (F ✓) for all states s

− values p(s) are the least fixed point of:

− where Z is the matrix game with zij = Σs’ δ(s,(ai,bj))(s’)·p(s’)

• So each iteration solves a matrix game for each state
− LP problem of size |A|, where A = action set

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

p(s) = 
1 if s⊨✓
val(Z) if s⊭✓
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CSGs in PRISM-games

• CSG model checking implemented in PRISM-games 3.0

• Further extension of PRISM modelling language

• Explicit engine implementation
− plus LP solvers for matrix game solution
− this is the main bottleneck
− experiments with CSGs up to ~3 million states

• Case studies:
− future markets investor,

trust models for user-centric networks,
intrusion detection policies,
multi-robot planning, …
jamming radio systems 
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Example: Future markets investor

• Model of interactions between:
− stock market, evolves stochastically
− two investors i1, i2 decide when to invest
− market decides whether to bar investors

• Modelled as a 3-player CSG
− extends simpler model originally from [McIver/Morgan’07]
− investing/barring decisions are simultaneous
− profit reduced for simultaneous investments
− market cannot observe investors’ decisions

• Analysed with rPATL model checking & strategy synthesis
− distinct profit models considered: ‘normal market’, ‘later 

cash-ins’ and ‘later cash-ins with fluctuation’
− comparison between TSG and CSG models
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Example: Future markets investor

• Example rPATL query:
− ⟨⟨investor1,investor2⟩⟩ Rmax=? [ F finished1,2 ]
− i.e. maximising joint profit

• Results: with (left) and without (right) fluctuations
− optimal (randomised) investment strategies synthesised
− CSG yields more realistic results (market has less power

due to limited observation of investor strategies)

profit1,2

Too pessimistic:
unrealistic strategy

for adversary
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Equilibria-based properties

• Motivation:
− players/components may have distinct objectives

but which are not directly opposing (non zero-sum)

• We use Nash equilibria (NE)
− no incentive for any player to unilaterally change strategy
− actually, we use ε-NE, which always exist for CSGs
− a strategy profile σ=(σ1,…,σn) for a CSG

is an ε-NE for state s and objectives X1,…,Xn iff:
− Prsσ (Xi) ≥ sup { Prsσ’ (Xi) | σ’=σ-i[σi’] and σi’∈ Σi } – ε for all i

Zero-sum
properties

Equilibria-based
properties

⟨⟨robot1⟩⟩max=? P [ F≤k goal1 ]
⟨⟨robot1:robot2⟩⟩max=?
(P [ F≤k goal1 ]+P [F ≤k goal2])
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Social-welfare Nash equilibria

• Key idea: formulate model checking (strategy synthesis)
in terms of social-welfare Nash equilibria (SWNE)
− these are NE which maximise the sum Esσ (X1) + … Esσ (Xn)
− i.e., optimise the players combined goal

• We extend rPATL accordingly

Zero-sum
properties

Equilibria-based
properties

⟨⟨robot1⟩⟩max=? P [ F≤k goal1 ]
⟨⟨robot1:robot2⟩⟩max=?
(P [ F≤k goal1 ]+P [F ≤k goal2])

find a robot 1 strategy
which maximises

the probability of it
reaching its goal,

regardless of robot 2

find (SWNE) strategies for robots 1 and 2
where there is no incentive to change actions

and which maximise joint goal probability
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Model checking for extended rPATL

• Model checking for CSGs with equilibria
− first: 2-coalition case [FM’19]
− needs solution of bimatrix games
− (basic problem is EXPTIME)
− we adapt a known approach

using labelled polytopes, and
implement with an SMT encoding

• We further extend the value iteration approach:

− where Z1 and Z2 encode matrix games similar to before

p(s) = 

(1,1) if s ⊨ ✓1∧✓2

(pmax(s,✓2),1) if s ⊨ ✓1∧¬✓2

(1,pmax(s,✓1)) if s ⊨ ¬✓1∧✓2

val(Z1,Z2) if s ⊨ ¬✓1∧¬✓2

s0

t1,t2

w1,t2w1,w2

✓1

✓2
t1,w2

standard
MDP analysis

bimatrix game
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PRISM-games support

• Implementation in PRISM-games 3.0
− bimatrix games solved using Z3/Yices encoding
− optimised filtering of dominated strategies
− scales up to CSGs with ~2 million states
− extended to n-coalition case in [QEST’20]

• Applications & results
− robot navigation in a grid, medium access control,

Aloha communication protocol, power control 
− SWNE strategies outperform those found with rPATL
− ε-Nash equilibria found typically have ε=0
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Example: multi-robot coordination

• 2 robots navigating an l x l grid
− start at opposite corners, goals are

to navigate to opposite corners
− obstacles modelled stochastically: navigation

in chosen direction fails with probability q

• We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k
− ⟨⟨robot1:robot2⟩⟩max=? (P [ F≤k goal1 ]+P [F ≤k goal2])

• Results (10 x 10 grid)
− better performance obtained

than using zero-sum methods,
i.e., optimising for robot 1,
then robot 2



Future
challenges
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Challenges

• Partial information/observability
− we need realisable strategies
− leverage progress on POMDPs?

• Managing model uncertainty
− integration with learning
− robust verification

• Accuracy of model checking results
− value iteration improvements; exact methods

• Scalability & efficiency
− e.g. symbolic methods, abstraction, symmetry reduction
− sampling-based strategy synthesis methods
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PRISM-games

• See the PRISM-games website for more info
− prismmodelchecker.org/games/

− documentation, examples, case studies, papers

− downloads:                   +  CAV’20 artefact VM

− open source (GPLV2): 

http://www.prismmodelchecker.org/games/

