Quantitative Verification:

Formal Guarantees for Timeliness,
Reliability and Performance

Dave Parker
University of Birmingham

FMICS 2014, Florence, September 2014

ation:
eliness,
nce

Outline

Quantitative verification
Probabilistic model checking
Case studies

Challenges & current directions

Verification vs. controller synthesis

Quantitative verification

Adds quantitative aspects (to models and properties)
— probability, time, costs, rewards, ...

Probability
— physical components can fail
— communication media are unreliable

— algorithms/protocols use randomisation
Time
— delays, time-outs, failure rates, ...

Costs & rewards

— energy consumption, resource usage, ...

— profit, incentive schemes, ...

Quantitative verification

* Correctness properties are quantitative

— “the probability of an airbag failing to deploy
within 0.02 seconds of being triggered is at most 0.001”

— “with probability 0.99, the packet arrives within 10 ms”

* Beyond correctness:
— reliability, timeliness, performance, efficiency, ...
— “the expected energy consumption of the sensor is...”
— “the probability of the robot visiting all sites in < 10 min...”

Probabilistic
model checking

Model checking

 Automated verification: model checking
— exhaustive construction/analysis of finite-state model
— correctness properties expressed in temporal logic
— very successful in practice |

e Why it works
— temporal logic: expressive, tractable /

— fully automated, tools available EKI 7]

— not just verification, but falsification
(bug hunting) via counterexamples

A[G (trigger > X deploy)]

Probabilistic model checking

e Construction and analysis of probabilistic models
— for example: discrete-time Markov chains (DTMCs)
— transitions labelled with probabilities
— from a description in a high-level modelling language

* Correctness properties expressed in
probabilistic temporal logic, e.g. PCTL
— trigger = P,g 999 [F<% deploy |

— “the probability of the airbag
deploying within 2 time units of
being triggered is at least 0.999”

Probabilistic model checking

A (brief) early history
— late 80s, early 90s: first underlying theory developed
— late 90s: first PROBMIV workshops
— 2000: first versions of PRISM and MRMC released

What advances have been made?
What are the strengths and weaknesses?

Where and why does it work well?

Probabilistic model checking

* Flexible and widely applicable
— techniques developed for many probabilistic models

— and many types of properties, temporal logics, etc.

discrete-time Markov chains (DTMCs)
continuous-time Markov chains (CTMCs)
Markov decision processes (MDPs)

probabilistic automata (PAs) PCTL, LTL, PCTL*,
probabilistic timed automata (PTAs) CSL, aCSL, PTCTL,
continuous-time MDPs (CTMDPs) MiTL, PATL, rPATL, ...

interactive Markov chains (IMCs)
Markov automata (MAs)

probabilistic hybrid automata (PHAS)
stochastic multiplayer games (SMGs)

Probabilistic model checking

Flexible and widely applicable
— techniques developed for many probabilistic models

— and many types of properties, temporal logics, etc.

Draws upon many different methods

— and overlaps with many different disciplines

graph algorithms, linear equations, linear model checking, performance analysis,
programming, numerical fixed points, optimisation, artificial intelligence &
integral equations, differential equations, planning, control theory, machine

numerical approximations, ... learning, ...

Probabilistic model checking

* Flexible and widely applicable
— techniques developed for many probabilistic models

— and many types of properties, temporal logics, etc.

* Draws upon many different methods
— and overlaps with many different disciplines

* Usable and efficient tool support available

— PRISM, MRMC, Modest Toolset, ...
— applied in many different application domains

Key strengths

* As for conventional model checking:
— fully automated techniques and tools

— precise, unambiguous models/properties

* Yields numerical results

— (probabilities, response times, etc.)
— results show trends, flaws, anomalies

— numerical results are "exact"

e Combines numerical & exhaustive analysis

— e.g. exhaustive search over reachable states
or resolutions of nondeterminism

— also: probabilistic counterexamples | trigger > P,q450 [F<* deploy]

Case studies

Case study: Bluetooth

e Device discovery between a pair of BIuetoat_h";”\d;e’vtces

— performance essential for this phase

freq‘~—‘|fCLK16‘u+k+

e Complex discovery process (CLKypo-ClKiain)

— two asynchronous 28-bit clocks
— pseudo-random hopping between 32 frequencies

mod 16] mad 32

— random waiting scheme to avoid collisions
— 17,179,869,184 initial configurations

—exact
- ==derived

* Probabilistic model checking (PRISM) S

sec)

4 5

— “probability discovery time exceeds 6s is always < 0.001”

— “worst-case expected discovery time is at most 5.17s”

Case study: An airbag system

e Failure analysis for a car airbag system
— TRW Automotive + Uni Konstanz/Swinburne [Aljazzar et al.'09]

— compared design variants with one/two crash evaluators

e Methods used

— probabilistic FMEA (Failure Mode and Effects Analysis)

— probabilistic model checking (CTMCs + PRISM + counter-
examples) used for a more formal and efficient approach

— ASIL D (Automated Safety Integration Level D) for
unintended airbag deployment, formulated in CSL

* Results & conclusions
— detected violations, identified critical aspect (with cex.s)
— language/tools suffice, difficulties with temporal logic

Further case studies

Software reliability evaluation
— e.g. industrial process control system [ABB, Koziolek et al.'12]

Performance analysis & optimisation
— e.g. cloud resource management [Fujitsu, Kikuchi et al.'11]

— e.g. dynamic power management

Network & communication protocols

Probability the signal present at time T
o

Security: e.g. anonymity networks, pin cracking
Robotics: e.g. motion navigation planning
Systems biology & DNA computing

See: www.prismmodelchecker.org/casestudies/

Challenges
& directions

Challenges & directions

1. Scalability and efficiency
— efficient data structures (e.g. symbolic)
— parallelisation, multi-core, GPUs, ...
— statistical model checking (simulation-based)
— abstraction and compositional frameworks

2. Robustness and accuracy
— parametric probabilistic verification
— probabilistic models with uncertainty
— counterexamples/witnesses/certificates

Challenges & directions

3. Mainstream languages

many tools rely on custom modelling languages

increased (e.g. industrial) take-up need better support
for mainstream programming/modelling languages

some work on UML, SysML, AADL (often via translation)

4. Cyber-physical systems

embedded sensing/control + close interaction with
physical environment: automotive, avionics, medical, ...

combination of discrete/continuous aspects brings many
challenges for modelling, analysis and verification

Controller synthesis

Controller synthesis

e Verification vs. synthesis

— verification = check that a (model of) system satisfies a
specification of correctness

— synthesis = build a "correct-by-construction" system
directly from a correctness specification

* Controller synthesis

— generate a controller/scheduler that chooses actions such
that a correctness specification is guaranteed to hold

— build a probabilistic model incorporating both the
controller and the system being controlled

— formally specify correctness properties in temporal logic

Markov decision processes

* Markov decision processes (MDPs)
— generalise DTMCs by adding nondeterminism

e Nondeterminism: unknown behaviour

— concurrency, abstraction, user input, control

e Strategies (or "policies"”, "adversaries", "schedulers")
— resolve nondeterminism based on current history

Verification vs. controller synthesis

 Two (dual) problems:

e 1. Verification

— quantify over all possible
strategies (i.e. worst-case)

— P_, 0. [Ferr]: “the probability of error is always < 0.01”

— applications: randomised communication protocols,
randomised distributed algorithms, security, ...

e 2.Controller (strategy) synthesis

— P_,o. [Ferr]:"does there exist a strategy for which the
probability of an error occurring is < 0.01?”

— applications: robotics, power management, security, ...

Multiple objectives

* Multi-objective controller synthesis
— and/or multi-objective probabilistic model checking
— investigate trade-offs between conflicting objectives

g%
* Examples)
— “is there a strategy such that the
probability of message transmission is > 0.95 .
and the expected battery life > 10 hrs?” : -

obj
11 . ops . o !
— e.g. maximum probability of message transmission,

assuming expected battery life-time is > 10 hrs?”

— e.g. "Pareto curve for maximising probability
of transmission and expected battery life-time”

min power consumption

Applications

e Examples of PRISM-based controller synthesis

Synthesis of dynamic Motion planning Synthesis of team
power management for a service robot formation strategies
controllers [TACAS'11] using LTL [IROS'14] [CLIMA'11, ATVA'1 2]

Ay

= = N N
o v o v
o o o o
o o o o

w
o
o

o

2.0

Sizg 0.5 50

Pareto curve:
x="probability of

Minimise disk drive energy
completing task 1"

consumption, subject) |
to constraints on: y="prob_ab|I|ty of
(i) expected job queue size; completing task 2"

(i) expected number of lost jobs z="expected size of
successful team"

Other extensions

e Controller synthesis with stochastic games

— player 1 = controller (as for MDPs) .
— player 2 = environment ("uncontrollable" actions) \
— more generally: models competitive and/or PRISM-games

collaborative behaviour between multiple players

* Controller synthesis with multi-strategies

— strategies which can choose between
multiple actions at each time step

— flexible/adaptable strategy, whilst
still guaranteeing some property

— uses penalty schemes to measure permissivity

Conclusions

* Quantitative verification
— probabilistic model checking
— formal methods for correctness, reliability, performance, ...
— flexible approach, wide range of applications

— exact numerical results + exhaustive analysis

e Challenges and directions
— scalability + efficiency: state space explosion
— accuracy + robustness
— user friendly languages for model/property specification
— controller synthesis: correctness by construction

