Task Scheduling and Execution
for Long-Term Autonomy

Nick Hawes Dave Parker

University of Birmingham

Part 2: Formal Guarantees for
Robotic Navigation Planning

ICAPS Summer School, June 2016

Overview

Formal verification
— probabilistic model checking

Markov decision processes (MDPs)
— verification vs. strategy synthesis

Linear temporal logic (LTL)
— probabilistic model checking + MDPs + LTL

Multi-objective probabilistic model checking
— partially satisfiable task specifications

Formal verification

- Formal verification

— the application of rigorous, mathematics-based techniques
to check the correctness of computerised systems

- Verifying probabilistic systems...
— unreliable or unpredictable behaviour

. e.g. failures, message loss, delays,
unreliable sensors/actuators

— randomisation in algorithms/protocols

. e.g. random back-off in communication protocols

- We need to verify quantitative system properties

— “the probability of the airbag failing to deploy
within 0.02 seconds of being triggered is at most 0.001”

— not just correctness: reliability, timeliness, performance, ...

— not just verification: correctness by construction 3

Probabilistic model checking

- Construction and analysis of probabilistic models

— state-transition systems labelled with probabilities
(e.g. Markov chains, Markov decision processes)

— from a description in a high-level modelling language

- Properties expressed in temporal logic, e.g. PCTL:
— trigger — P.g.999 [F=20 deploy]

— “the probability of the airbag deploying within
20ms of being triggered is at at least 0.999”

— properties checked against models using
exhaustive search and numerical computation

Probabilistic model checking

Key benefits
— exact results: guarantees, optimality, ...
— fully automated, tools available (e.g. PRISM)
— wide range of models, properties expressible

Key challenges
— scalability! state space explosion problem
— results are only as good as the model

- Application domains

— network /communication protocols, security, biology,
power management, robotics & planning, ...

Markov decision processes (MDPs)

Markov decision processes (MDPs)
— model nondeterministic as well as probabilistic behaviour

Nondeterminism for:
— control: decisions made by a controller or scheduler
— adversarial behaviour of the environment
— concurrency/scheduling: interleavings of parallel components
— abstraction, or under-specification, of unknown behaviour

Strategies

- A strategy (or “policy”, “adversary”, “scheduler”)
— is a resolution of nondeterminism, based on history
— i.e. a mapping from finite paths to (distributions over) actions
— induces (infinite-state) Markov chain (and probability space)

. Classes of strategies:
— memory: memoryless, finite-memory, or infinite-memory
— randomisation: deterministic or randomised

Verification vs. Controller synthesis

1. Verification

— quantify over all possible
strategies (i.e. best/worst-case)

— P_o1 [F err]: “the probability of an
error occurring is < 0.1 for all strategies”

with 14

o — applications: randomised communication {err}
protocols, randomised distributed algorithms, security, ...

2. Controller synthesis
— generation of "correct-by-construction" controllers

— P_o1 [F err]: "does there exist a strategy for which the
probability of an error occurring is < 0.17”

A

— applications: robotics, power management, security, ...

- Two dual problems; same underlying computation:
— compute optimal (minimum or maximum) values

Running example

- Example MDP
— robot moving through terrain divided in to 3 x 2 grid

Larger example

cheduler enerator

¢ &

Navigation planner

Example — Reachability

Verify: P_g¢ [F goal;]

or

Synthesise for: P.g 4 [F goal;]

J
Compute: Ppax—2[F goal;]

Optimal strategies:
memoryless and deterministic

Computation:

graph analysis + numerical soln.
(linear programming, value
iteration, policy iteration)

11

Example — Reachability

Optimal strategy:

So

. east
: south

. east

Verify: P_g¢ [F goal;]
or

Synthesise for: P.g 4 [F goal;]

J
Compute: Ppax—2[F goal;]= 0.5

Optimal strategies:
memoryless and deterministic

Computation:
graph analysis + numerical soln.
(linear programming, value
iteration, policy iteration)

12

Linear temporal logic (LTL)

Logic for describing properties of executions [Pnueli]

LTL syntax:

—pi=truelalwAaw | -p|Xp U |Fy |Gy
Propositional logic + temporal operators:

— a is an atomic proposition (labelling a state)

— X P means "Y is true in the next state”

— F Y means “¢ is eventually true”

— G Y means “P remains true forever”

— Y; U Y, means "Y, is true eventually and @, is true until then”

Simple examples

— G—(critical; A critical,) - "the two processes never enter the
critical section simultaneously”

— —error U end - "the program terminates without any errors” 13

Linear temporal logic (LTL)

- LTL syntax:

—pu=true|la|lPpAyYp || XYp YUY |FyY |Gy

- Commonly used LTL formulae:

— G (a— F b) - "balways eventually follows a"

— G (a — X b) - "b always immediately follows a”

— G Fa-"ais true infinitely often”

— F G a - "a becomes true and remains true forever"

- Robot task specifications in LTL

— (G—hazard) A (G F goal;) - "avoid hazard and visit goal;
infinitely often”

— —zones U (zone; A (F zoney) - "patrol zone 1 then 4, without
passing through 3".

14

LTL for robot navigation

Probabilistic LTL on MDPs

— e.g. P.o7 [(G—hazard) A (GF goaly)] - "is the probability of
avoiding hazard and visiting goal; infinitely often > 0.7?"

— €.9. Phax=2 [mzones U (zone; A (F zoney)] - "max. probability
of patrolling zones 1 then 4, without passing through 37"

LTL + expected costs/times on MDPs
— minimise expected time to satisfy (co-safe) LTL formulas

Benefits of the approach
— LTL: flexible, unambiguous property specification
— guarantees on performance ("correct by construction")

— meaningful properties: probabilities, time, energy,...
. ¢.f. ad-hoc reward structures, e.g. with discounting
— efficient, fully-automated techniques
. LTL-to-automaton conversion, MDP solution 15

Probabilistic model checking LTL

Probabilistic model checking of LTL on MDPs

— convert LTL formula to deterministic automaton A,
(Buchi, Rabin, finite, ...)

— build/solve product MDP M®A,,
(i.e. reduce to simpler problem)

— optimal strategies are deterministic, finite-memory

__

Det. Buchi automaton A,
for = G—h A GF g;

16

Example: Product MDP construction

Example: Product MDP construction

LI)ZGﬂh/\GFg]

Co-safe LTL (and expected cost)

Often focus on tasks completed in finite time
— can restrict to co-safe fragment(s) of LTL
— (any satisfying execution has a "good prefix")
— €.9. Ppax=2[7zone3 U (zone; A (F zoney)]
— for simplicity, can restrict to syntactically co-safe LTL

Expected cost/reward to satisfy (co-safe) LTL formula

— e.g. Rmin=2 [7zonez U (zone; A (F zoney)] - "minimise exp.
time to patrol zones 1 then 4, without passing through 3".

Solution:
— product of MDP and DFA

— expected cost to reach
accepting states in product

19

Probabilistic model checking

Further use of probabilistic model checking...
— (various probabilistic models, query languages)

Nested queries

— e.9. Ryin=? [safe U (zone; A (F zoney)] - "minimise exp. time
to patrol zones 1 then 4, passing only through safe".

— where safe denotes states satisfying ((ctrl)) R., [F base] -
"there is a strategy to return to base with expected time < 2"

- Analysis of generated controllers
— expected power consumption to complete tasks?

— conditional expectation, e.g. expected time to complete task,
assuming it is completed successfully?

— more detailed timing information (not just mean time)

20

Multi-objective model checking

Multi-objective probabilistic model checking
— investigate trade-offs between conflicting objectives
— in PRISM, objectives are probabilistic LTL or expected costs

- Achievability queries: multi(P-¢ 95[F send], Rime_,,[C1)

— e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

Numerical queries: multi(Pmax-2 [F send], Rtime_,,[C 1)

— e.g. “maximum probability of message transmission,
assuming expected battery life-time is > 10 hrs?”

Pareto queries: o
. 0

— Multi(Ppax=2[F send], R 2 [C D) © Po=ma_

— e.g. "Pareto curve for maximising RAN:
probability of transmission and . X
expected battery life-time” ° . i)

P i - —> o0bj;

21

with 14

Multi-objective model checking

~ 1
o —
Q O
@) e,
\\\
(0] \\
19)
© %
o
\ -
\\E
0 O \\:
A
:\
© ' ©
|
3
‘\
© \
}
)
© © \‘
1
—

Multi-objective model checking

Optimal strategies:
— usually finite-memory (e.g. when using LTL formulae)

— may also need to be randomised

Computation:

— construct a product MDP (with several automata),
then reduces to linear programming [TACAS'07,TACAS'11]

— can be approximated using iterative numerical methods,
via approximation of the Pareto curve [ATVA'l 2]

Extensions [ATVA'12]

— arbitrary Boolean combinations of objectives
. e.g. Y=y, (all strategies satisfying P, also satisfy y,)
. (e.g. for assume-guarantee reasoning)
— time-bounded (finite—horizon) properties 53

Example - Multi-objective

. P, = G —hazard
044 >~~_ Ww2=CGFgoal
0.3 \\‘~\
0.2_ ": \\\
0.1 -
O : T > LI)]

| I D N R BN N B
0O 02 04 06 08 1

- Achievability query
— P.o7[G —hazard] A P.g> [GF goal;]? True (achievable)

Numerical query
— Prmax=2 [GF goal;] such that P.g7[G —hazard] ? ~0.2278
Pareto query

— for Ppax=? [G —hazard] A Ppax=2 [GF goal;]17? 24

Example - Multi-objective

Strategy 1
(deterministic)
Sp . east
S; : south
B . —
ED . —
S4 . east
Ss : west

¥,

0_51 P, = G —hazard

04d ~~~_ W2=CGFgoal

0.3 T

0.2_ ? \\

0.1 B

O : T T ’ l'IJ]

T T T T T 11
O 02 04 06 0.8 1 25

Example - Multi-objective

Strategy 2
(deterministic)
So : south
S; : south
8D . —
ED . —
S, : east
Ss : west

W,

0_51 y; =G —hazard

04d ~~~_ W2=CGFgoal

0.3 T

0.2_ ? \\

0.1 B

O : T T > l'IJ]

T T T T T 11
O 02 04 06 0.8 1 26

Example - Multi-objective

0.4 {hazard} {goal>} Optimal strategy:

(randomised)

So . 0.3226 : east
0.6774 : south

s; : 1.0 : south

Sy & -

Siz) i
S4 . 1.0 : east

w, Ss . 1.0 : west
0_51 P, = G —hazard
04d ~~~_ W2=CGFgoal
0.3 T
0.2_ ? \\
0.1 B
O : T |> LIJ]

T T T T T 11
O 02 04 06 0.8 1 27

Application: Partially satisfiable tasks

Partially satisfiable task specifications
— via multi-objective probabilistic model checking [IJCAI'15]
— e.9. Pmax=2 [=zones U (room; A (F room4 A F rooms)] < 1

- Synthesise strategies that, in decreasing order of priority:
— maximise the probability of finishing the task;
— maximise progress towards completion, if this is not possible;
— minimise the expected time (or cost) required

Progress metric constructed from DFA
— (distance to accepting states, reward for decreasing distance)

Encode prioritisation using multi-objective queries:

— P = Pmax—2 [task]
— I = mU|ti(er3nr;)?:? [C], P>=p [taSk])

— multiRym; [task 1, P._, [task] A RZZZ[C D) s

Conclusion

Rigorous probabilistic guarantees for robot navigation
— formal verification + probabilistic model checking
— Markov decision processes (MDPs)
— linear temporal logic (LTL)
— multi-objective model checking

More details

— Lacerda/Parker/Hawes. Optimal & Dynamic Planning for Markov
Decision Processes with Co-Safe LTL Specifications, IROS'14

— Lacerda/Parker/Hawes. Optimal Policy Generation for Partially
Satisfiable Co-Safe LTL Specifications, IJCAI'15

— PRISM: www.prismmodelchecker.org

29

