Automated Game-theoretic
Verification for Probabilistic Systems

Dave Parker

University of Birmingham

Joint work with:
Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, Aistis Simaitis

Imperial College London, December 2012

Verifying stochastic systems

- Quantitative verification
— probability, time, costs/rewards, ...
— in particular: systems with stochastic behaviour
— e.g. due to unreliability, uncertainty, randomisation, ...
- 8 — often: subtle interplay between probability/nondeterminism

- Automated verification
— probabilistic model checking
— efficiency and scalable algorithms/techniques
— tool support: PRISM model checker

£ - Practical applications

— wireless communication protocols, security protocols,
systems biology, DNA computing, robotic planning, ...

Competitive/collaborative behaviour

Open systems

— need to account for the behaviour of system components not
under our control, possibly with differing/opposing goals

— giving rise to competitive/collaborative behaviour

Many occurrences in practice

— e.g. security protocols, algorithms for distributed consensus,
energy management or sensor network co-ordination

Natural to adopt a game-theoretic view
— widely used in computer science, economics, ...

- This talk

— verifying systems with stochastic and game-theoretic aspects
— stochastic multi-player games
— temporal logic, model checking, tool support, case studies

Overview

- Probabilistic model checking

; - Stochastic multi-player games (SMGs)
— strategies, probabilities, rewards

- Property specification: rPATL
— syntax, semantics, subtleties

- rPATL model checking
— algorithms, tool support

- Case study: Energy management in microgrids

Probabilistic model checking

Probabilistic model
e.g. Markov chain, —) Result

System Markov decision process / x

— Quantitative
Probabilistic I results

model checker

—) A
e.g. PRISM y
trigger -
) | P 999 [F<2° dEPIOY || e
e System Count
mqents Probabilistic example

temporal logic

specification ~oso 30

e.g. PCTL, CSL, LTL, ...

Probabilistic model checking

Usually focus on quantitative (numerical) properties:

— P_, [F=20 deploy] - “what is the probability
of the airbag deploying within 20ms?”

- Then analyse trends in quantitative
= properties as system parameters vary

— looking for flaws, anomalies, ...

Unlike (non-probabilistic) model checking

— often investigate effect of (known) failures,
rather than identifying existence of (unknown) bugs

- Strength: combines numerical and exhaustive aspects

— “worst-case (maximum) probability of the airbag failing to
deploy within 20ms, from any possible crash scenario”

— “worst-case (maximum) expected algorithm execution time
for any possible scheduling of system components”

Stochastic multi-player games

- Stochastic multi-player game (SMGs)
— nondeterminism + multiple players + probability

.~ - A (turn-based) SMG is a tuple (TT, S, <Sp..r, A, A, L):
— TTis a set of n players
s — Sis a (finite) set of states
= — (S)icr is a partition of S
— Ais a set of action labels
— A :S X A — Dist(S) is a (partial)
transition probability function
— L:S — 277 is a labelling with
atomic propositions from AP

Strategies, probabilities & rewards

Strategy for player i: resolves choices in S, states
— based on execution history, i.e. o, : (SA)*S; — Dist(A)

— can be: deterministic (pure), randomised,
memoryless, finite—-memory, ...

— 2, denotes the set of all strategies for player i

- Strategy profile: strategies for all players: o=(o0,,...,0,)
— induces a set of (infinite) paths from some start state s
— a probability measure Pr.° over these paths

Rewards (or costs)
— hon-negative integers on states/transitions

— e.g. elapsed time, energy consumption,
number of packets lost, net profit, ...

— this talk: expected cumulated value of rewards

AR

Property specification: rPATL

New temporal logic rPATL:
— reward probabilistic alternating temporal logic

- CTL, extended with:

— coalition operator «(C)) of ATL
— probabilistic operator P of PCTL
— generalised (expected) reward operator R from PRISM

In short:
— zero-sum, probabilistic reachability + expected total reward

Example:
_ <<{] ,3}>> P<0.O] [FS1O error]

— “players 1 and 3 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.01,
regardless of the strategies of other players”

rPATL syntax/semantics

- Syntax:
™ du=Tlal -l dAdd|LOHP W] | UCHR ., [F*d]
s Y:=Xd|dUD[FP|CP|dUkd|Fkd|C=kd
- where:
el — a€AP is an atomic proposition, C<TT is a coalition of players,

<E{<,<,>,>}, q€[0,1]nQ, xeQ. 4, k € N
r is a reward structure and *€{0,00,c} is a reward type

- Semantics:

- P operator: s = (C)P_, [w] iff:

— “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path
formula P being true from state s satisfies > q”

Examples

<<O>>PZ%[F V]
true in initial state

CONP.y [F V]

Examples

COMP.ylF v]

true in initial state

KOMP.y, [F V]
false in initial state

Examples

COMP.ylF v]

true in initial state

CONP.y [F V]

false in initial state

true in initial state

rPATL semantics (rewards)

R operator: s = (C)R", [F*d] iff:

— “there exist strategies for players in coalition C such that,
for all strategies of the other players, the expected
cumulated reward r to reach a ¢-state (type *) satisfies b x”

. - 3 reward types * € {c0,c,0}

' — defining reward if a ¢-state is never reached

— reward is: infinite (*=), cumulated sum (*=c), zero (*=0)

— o0: e.g. expected time for algorithm execution

— C: e.g. expected resource usage (energy, messages sent, ...)
— 0: e.g. reward incentive awarded on algorithm completion

Note: FO operator needs finite—-memory strategies
— (for P and other R operators, pure memoryless strat.s suffice)

rPATL extensions

- Quantitative (numerical) properties:
_ — numerical rather than boolean-valued queries
; - Example:
— {1 Prayr [Ferror]

- — “what is the maximum probability of reaching an error state
that player 1 can guarantee?” (against player 2)

— i.e. sup; cs. infcrzezz Pr.91:92 (F error)

Other extensions:
— rPATL* (i.e. support for LTL formulae in P operator)
— reward-bounded operators
— exact probability/reward bounds

AR

Model checking rPATL

Main task: checking individual P and R operators
— reduction to solution of zero-sum stochastic 2-player game
— (probabilistic reachability + expected total reward)
— e.g. (CHP_ W] < SUPg es, inf(Izezz Pr,o1:92 () >q

a4 — complexity: NP N coNP (without any R[F°] operators)

— complexity for full logic: NEXP N coNEXP (due to R[F°] op.)

In practice though:
— (usual approach taken in probabilistic model checking tools)
— evaluation of numerical fixed points (“value iteration”)
— and more: graph-algorithms, sequences of fixed points, ...

- See: [TACAS’12], [CONCUR’'12]

Independence of strategies

. Strategies for each coalition operator are independent
— for example, in: (1) P_;[G (1,2 P_, [FVv])]
— no dependencies in player 1 strategies in quantifiers
— branching-time temporal logic (like ATL, PCTL, ...)

Introducing dependencies is problematic

— e.g. subsumes existential semantics for PCTL on
Markov decision processes (MDPs), which is undecidable

— (does there exist a single adversary satisfying one formula?)
— N PG PIFY]]

But nested properties still have natural applications
— e.g. sensor network, with players: sensor, repairer
— ((senson) P_y o[F (—«repairer)) P.4q9s[F “Operational”])]

Why do we need multiple players?

- SMGs have multiple (>2) players
— but model checking (and semantics) reduce to 2-player case
— due to (zero sum) nature of queries expressible by rPATL
— so why do we need multiple players?

1. Modelling convenience
— and/or multiple rPATL queries on same model

2. May also exploit in nested queries, e.g.:
— players: sensorl, sensor2, repairer
- — ((sensor1)) P_y o[F (—«repairer)) P, 5[F “operational™])]

Probabilities for P operator

- E.g. KCHP_[F &]: max/min reachability probabilities
— compute sup; s infc,2622 Pr.91:92 (F ¢) for all states s
— deterministic memoryless strategies suffice

- Value is:
= — 1 if s € Sat(¢), and otherwise least fixed point of:

MaX,cae (E A(s,a)(s’) - f(s')) ifs €S,
f(S) iy s'ES

Min,ca (E A(s,a)(s") - f(s')) ifseS,

- Computation:
— start from zero, propagate probabilities backwards
— guaranteed to converge

rPATL: «O,O0»P.y [F V']

Player 1: O,[0 Player 2:

Compute: SUP;. es, infcrzezz Pr.°1:%2 (F V)

Rewards for R[F¢] operator

-+ E.g. KO)HR" [Fe &] : max/min expected rewards for P1/P2
— again: deterministic memoryless strategies suffice

- Value is:
— oo if s € Sat(«C)P_,[G F “pos_rew” |),
— 0 if s € Sat(d), and otherwise least fixed point of:

r(s) + maXx,cac (2 A(s,a)(s") - f(s')) ifs €S,

s'ES

f(s) =

r(s) +min,c,, (E A(s,a)(s") - f(s')) ifseSs,
L s'ES

Rewards for R[F*] operator

- E.g. KCHR'_,[F* & | : max/min expected rewards for P1/P2
— again: deterministic memoryless strategies suffice

- Value is:
— oo if s € Sat(«C)HP_,[G F “pos_rew”]),
— 0 if s € Sat(¢), and otherwise greatest fixed point over R of:

r(S) + MaX, (E A(s,a)(s") - f(s')) ifseSs,

s'ES

f(s) = -

r(s) + min,c,, (2 A(s,a)(s’) - f(s')) ifses,

- Computation:
— 1. set zero rewards to €, compute least fixed point
— 2. evaluate greatest fixed point, downwards from step 1

Example: Finite memory for R[FO]

E.g. KCHR" [FO & | : max/min expected rewards for P1/P2
— now: deterministic memoryless strategies do not suffice

a 1
2 0
= KO,ONR., [FY v]
E (9L ‘
b] b: reward O
Z: 1 a, b: expected reward 0.5

1
a, a, b: expected reward 0.5
a, a, a, b: expected reward 0.375

0 0

What if incoming reward is 2?

b: reward 2
a, b: expected reward 1.5

Rewards for R[F°] operator

E.g. KCHR" [FO & | : max/min expected rewards for P1/P2
— now: deterministic memoryless strategies do not suffice

- There exists a finite—-memory optimal strategy for P1
- — there exists a bound B, beyond which strategy is memoryless
— B is exponential in worst-case, but can be computed...

- Computation:
— compute bound B (using simpler rPATL queries)
— perform value iteration for each level 0,...,B; combine results

Tool support: PRISM-games

Model checker for stochastic multi-player games
— PRISM-games: extension of PRISM model checker
— using new explicit-state model checking engine
— symbolic (BDD-based) implementation in progress

Features:
— modelling language for SMGs (guarded command based)
— rPATL model checking
— strategy synthesis and analysis
— GUI: model editor, simulator, graph-plotting, strategies, ...

- Available now
— http://www.prismmodelchecker.org/games/

Case studies

Evaluated on several case studies:

— team formation protocol [CLIMA’T 1]

— futures market investor model [Mclver & Morgan]

— collective decision making for sensor networks [TACAS’12]
=< — energy management in microgrids [TACAS’12]

Ongoing applications
— trust models in user-centric networks
— (randomised) security protocols

AR

Energy management in microgrids

- Microgrid: proposed model for future energy markets
— localised energy management

- Neighbourhoods use and
=< store electricity generated
from local sources LB

— wind, solar, ... S

Batteryless
Grid-Tie
- Inverters

- Needs: demand-side
management

— active management
of demand by users

AR

— to avoid peaks

Generator Sends Power if
There Isn’t Enough Solar
Power for Household Loads.

Batteries

Microgrid demand-side management

Demand-side management algorithm [Hildmann/Saffre’11]
) — N households, connected to a distribution manager
; — households submit loads for execution
- — execution cost/step = number of currently running loads

'y - Simple algorithm:

— upon load generation, if cost is below an agreed limit ¢;;,,,,

execute it, otherwise only execute with probability P,

- Analysis of [Hildmann/Saffre’11]
— load submission probability: daily demand curve
— load duration: random, between 1 and D steps
— define household value as V=loads_executing/execution_cost

— simulation-based analysis shows reduction in peak demand
and total energy cost reduced, with good expected value V

— (if all households stick to algorithm)

Microgrid demand-side management

- The model

— SMG with N players (one per household)

; — analyse 3-day period, using piecewise
- approximation of daily demand curve

— fix parameters D=4, ¢;,=1.5
— add rewards structure for value V

Power demand

0 3 6 9 12 15 18 21 24
Time of the day (hours)

Built/analysed models
— for N=2,...,7 households

States Transitions
743,904 2,145,120
2,384,369 7,260,756
6,241,312 19,678,246

- Step 1: assume all households
follow algorithm of [HS’11] (MDP)

— obtain optimal value for P,

N O U | 2

- Step 2: introduce competitive behaviour (SMG)
— allow coalition C of households to deviate from algorithm

Results: Competitive behaviour

- Expected total value V per household
— in rPATL: «C)Rc_ ., _, [FO time=max time] / |C]
— where r- is combined rewards for coalition C

20
s
= _ >trong Al follow alg.
P incentive to
5] 15 =
(g ________
O No use of alg.
-
g _
-E 10 —
% ‘g Deviations of
: O varying size
e ying
S I I T I I T)

1 2 3 4 5 6 7 8
Number of households

Results: Competitive behaviour

- Algorithm fix: simple punishment mechanism
— distribution manager can cancel some loads exceeding ¢,

20 A
s

4 2 Better to
< 15 - - collaborate All follow alg.
2 (with all) _
o —
=
§_ Deviations of
S 10 - varying size
@
=

" @

3 x

5 T |

1 2 3 4 5 6 7 8
Number of households

Conclusions

Conclusions
— game-theoretic verification for probabilistic systems
— modelled as stochastic multi-player games
— new temporal logic rPATL for property specification
. — rPATL model checking algorithm based on num. fixed points
— model checker PRISM-games
— case studies: e.g. energy management for microgrid

Future work
— more realistic classes of strategy, e.g. partial observation, ...
— further objectives, e.g. multiple objectives, Nash equilibria, ...
— more application areas: security, randomised algorithmes, ...

PRISM-games: http://www.prismmodelchecker.org/games/

