Tutorial:
Planning in Formal Methods Land

Dave Parker

University of Birmingham

“Rigorous Automated Planning”, Lorentz Centre, June 2022

Z==/ L
72N Vg
N
% } W
2 i peR | AD
| | RDUA| ALTA as
=l

Tutorial:
Planning with Probabilistic Model Checking

Dave Parker

University of Birmingham

“Rigorous Automated Planning”, Lorentz Centre, June 2022

Probabilistic model checking

High-level Probabilistic model checking
System model/design

Probabilistic
model checker

0.5 0.4
0.1
— v X
Result
QOO _} P-0.999 [= goal]
model

require- (temporal logic)
ments

Probabilistic model checking

Probabilistic model checking Numerical results/analysis

0
R

i
g0 (I
Sone, VARERERR
:mu

Probabilistic
model checker

srent —)

0.5 »Y0.4
0.1

e —

Probabilistic
model

Strategies/policies/controllers

P-0.999 [F=20 goal]

Overview

- Temporal logic
— quantitative task specification/guarantees

- Techniques & tools
— models, modelling languages

- Multi-agent planning
— stochastic multi-player games

Temporal
logic

Temporal logic

Formal specification of desired behaviour
— i.e., planning tasks/objectives
— formal guarantees on resulting behaviour

Simple examples (PCTL)

L o Example MDP (robot navigation)
— Probabilistic reachability

P20.7 [F goah] 0.4 {hazard} {goaly}
P.oe[F=10 goal;]

— Probabilistic safety/invariance
P20_99 [G—-hazard]

— Numerical queries
Pmax:?[F goall]

{goal,} 0.4 {goal,}

For planning with MDPs:
— P.p[W@] means: find a policy/strategy o satisfying Pro(p)~p

Linear temporal logic (LTL)

Logic for describing properties of executions [Pnueli]

LTL syntax:
—ypu=tue la|l Ay | -w | Xy |lwUy|Fy |Gy

Propositional logic + temporal operators:
— a is an atomic proposition (labelling a state)
— X Y means "¢ is true in the next state”
— F Y means “¢ is eventually true”
— G Y means “P always remains true”
— Y7 U P, means "P, is true eventually and @, is true until then”

. Common alternative notation:
— O (next), & (eventually), O (always) , U (until)

Linear temporal logic (LTL)

- LTL syntax:

—Ppu=truela Ay || Xp|lYUyY |Fy|Cy

- Commonly used LTL formulae:

— G (a — F b) - "b always eventually follows a"

— G (@ = X b) - "b always immediately follows a”

— G F a - "ais true infinitely often”

— F G a - "a becomes true and remains true forever"

- Robot task specifications in LTL (for MDPs)

— e.g. Poo7 [(G—hazard) A (GF goaly)] - "the probability of
avoiding hazard and visiting goal; infinitely often is > 0.7"

— e.9. Pnax—2> [mzonesz U (zone; A (F zoney)) | - "max. probability
of patrolling zones 1 then 4, without passing through 37”

Temporal logic

- Benefits of temporal logic

— flexible, unambiguous behavioural specification
. broad range of quantitative properties expressible

— (probabilistic) guarantees on safety, performance, etc.
. meaningful properties: event probabilities, time, energy,...

P.o7 [(G—hazard) A (GF goal,)]

. (c.f. ad-hoc reward structures, e.g. with discounting)
. caveat: accuracy of model (and its solution)

— efficient LTL-to—-automata translation
. optimal (finite—-memory) policy synthesis (via product MDP)
. correctness monitoring / shielding

. task progress metrics
10

LTL & automata

. Safe/co-safe LTL: (deterministic) finite automata

- Full LTL: e.g. (det.) Rabin/Buchi automata

- Other useful LTL subclasses

— (non-)satisfaction occurs in finite time TZy
— —zonez U (zone; A (F zoney))

— G—hazard A GF goal;

— GR(1), LTL\GU, ...

LTL planning via product MDP

\IJ:G_'h/\GFg]

LTL planning via product MDP

\IJ:G_'h/\GFg]

Costs & Rewards

- Costs & rewards
— i.e., values assigned to model states or state-action pairs

- Temporal logic examples

— R™Y[C=20] - the expected number of times that the robot
enters the hazard location within 20 steps is at most 1.5

— RES%Y [F goal] - minimise the expected energy consumption

until the the goal is reached

— RUM [=zone; U (zone; A (F zone,)) | - minimise expected
time to patrol zones 1 then 4, without passing through 3

- Notes:
1. the above use PRISM’s R (reward) operator, even for costs
2. discounted rewards are more rarely used in this context

14

More temporal logic

Multi-objective queries
— e.g. ((*)) (Pmax=2 [GF goal; |, P~o7 [G —hazard]) N
— max. objective 1 subject to constrained objective 2 'g?
— also: achievability & Pareto queries Y

Nested (branching-time) queries I W obj,
— e.9. Rmin=2 [P=o.99[F=19 base] U (zone; A (F zoney))]

— "minimise expected time to visit zones 1 then 4, whilst
ensuring the base can always be reliably reached

- And more

— cost-bounded, conditional probabilities, quantiles
— metric temporal logic, signal temporal logic

15

Multi-objective specifications

WP,

0 51 P; = G —hazard
04 “>~._ W2 =CGFgoal
0.3- TS~

0.2_ ... ' ~

®
0.]0 \ —» Y

randomised,
finite-memory
optimal policy

- Achievability query
— P.o7 [G —hazard] A P-g> [GF goal;]?

Numerical query
— Pmax=2 [GF goal;] such that P.¢; [G —hazard] ?

Pareto query
— for Ppax— [G —hazard], Pmax-> [GF goal;]? 16

Techniques
& tools

Verification techniques

- Probabilistic model checking techniques
— automata + graph analysis + numerical solution
— often more focus on exhaustive/“exact’/optimal methods
— e.g., for MDPs: value iteration (VI), linear programming

- But: known accuracy and convergence issues
— interval iteration, sound VI, optimistic VI
— separate convergence from above and below

o
[N}

-==-upper bound
= actual value
-= lower bound

©
o
o

o
=

0.05

Min. prob. stabilised by time T

- Scalability vs accuracy/guarantees
— scalability/efficiency is always an issue
— statistical model checking: sampling-based methods
— abstraction + sound bounds (often property driven)

o

80_ 90 100 110 120
T (time units)

18

Probabilistic verification: directions

0.8-1
00.6-0.8

0.4-0.6

- Research directions

Probability

00.2-04

0Jo-0.2

— parametric model checking

. e.g., for parameter synthesis,
sensitivity analysis

— quantification of uncertainty
. e.g. robust verification with interval MDPs, s
convex optimisation s

0 20 40 60 80 100

Trajectory

— verification + machine learning

. learnt policies
e.g. (sampling/heuristics? neural nets?)

. learnt models + parameters

19

Verification tools

Probabilistic verification tools
— PRISM (and PRISM-games), STORM, MODEST, ePMC

— general purpose probabilistic model checking tools,
wide range of models (Markov chains, (PO)MDPs, games),
many temporal logics & solution techniques

Real-time verification tools
— UPPAAL (and UPPAAL-Stratego/Tiga/CORA/SMC/...)
— timed automata, plus stochastic & game variants

- Also many other specialised tools

— PET (partial exploration, sampling)
— Prophesy (parametric techniques)
— FAUST?, StocHy (continuous space/hybrid systems)

20

Modelling languages

Example languages for formal model specification
— PRISM: textual language, based on guarded commands
— UPPAAL: graphical/textual description of automata networks

21

Modelling languages

csg // Model type: concurrent stochastic game
player p1 userl endplayer player p2 user2 endplayer PRISM—games
// Parameters
const int emax; const double g1; const double g2 = 0.9 * q1;
// Modules: users (senders) + channel
module user]
s1 :[0..1]init O; // has player 1 sent?
el : [0..emax] init emax; // energy level of player 1
[wl] true -> (s1'=0); // wait
[t1] e1>0 —> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule
module user2 = userl [s1=s2, el=e2, wl=w2, t1=t2] endmodule
module channel
c : bool init false; // /s there a collision?
[t1,w2] true -> g1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
[w1,t2] true -> g1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
[t1,t2] true -> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule
// Reward structures. energy usage

rewards “energy” [t1] true: 1.5; [t2] true: 1.2; endrewards

22

Modelling languages

Positive_acc U PPAAL

chooseEgo?

velocityEgo < maxVelocityEgo Jdistance > maxSensorDistance

accelerationEgo = 2 update?
distance = maxSensorDistance+1, accelerationFront = 0

chooseEgo?

No_acc ©

tance > maxSensorDistance

\
i
I
I
I
i
I
- afe? \ i
accelerationEgo ance+1, H !
I I
Control scheduler FrontNext Done ! !
chooseEgo! Positive_acc !
= chooseFvonUQ |
S~ ST 1
-~ T ! ; I
waitTimer == 1 \\\\‘ ””’ waitTimer = 0 ! ve\oc'i/t/Front < maxVelocit; Front:
updateDiscrete() \OA update! 1 accélelyationFront =2 y i
! v
. | s !
Wait A :
waitTimer <=1 e i
hybrid clock rVeloci ties i
. : ry 0 W W 3 '
hybr}d clock rDistance; // cont:l.m'lot?s. real‘ distance betwgen cars ityFront > minvelocityFront |
hybrid clock D; // "cost" to be minimized: integral over distance e ationFront = -2 !
N 1
i
double _distanceRate_(double velFront, double velEgo, double dist) ?"b' """""""
{ Negative_acc

**ifx* (dist > maxSensorDistance)
return 0.0;

telger
return velFront - velEgo;

23

Modelling languages

- Example languages for formal model specification
— PRISM: textual language, based on guarded commands
— UPPAAL: graphical/textual description of automata networks

- Some key modelling language features
— Compositional model specifications
. components, parallel composition, communication
— Parameterised models
. probabilities, sizes, components

- Challenges
— language/tool interoperability
. e.d., JANI (models), PPDDL (planning), HOAF (automata), tool APIs
— modelling stochasticity/uncertainty

. probabilistic programming languages?
24

Models, models, models...

- Wide range of probabilistic models

discrete states & probabilities: Markov chains

+ nondeterminism: Markov decision processes (MDPs)

+ real-time clocks: probabilistic timed automata (PTAS)

+ uncertainty: interval MDPs (IMDPs)

+ partial observability: partially observable MDPs (POMDPs)
+ multiple players: (turn-based) stochastic games

+ concurrency: concurrent stochastic games

- And many others

— stochastic timed automata
— stochastic hybrid automata
— Markov automata

25

Multi-agent
planning

Verification with stochastic games

- How do we plan rigorously with...
— multiple autonomous agents acting concurrently

— competitive or collaborative behaviour between agents,
possibly with differing/opposing goals

— e.g. security protocols, algorithms for distributed consensus,
energy management, autonomous robotics, auctions

- Verification with stochastic multi-player games

— verification (and synthesis) of strategies that are robust
in adversarial settings and stochastic environments

27

Stochastic multi-player games

- Stochastic multi-player games

— strategies + probability + multiple players
— for now: turn-based (player i controls states S))

Markov
decision processes
(MDPs)

E—

Turn-based
stochastic games
(TSGs)

28

Property specification: rPATL

rPATL (reward probabilistic alternating temporal logic)

— branching-time temporal logic for stochastic games

- CTL, extended with:

— coalition operator ((C)) of ATL
— probabilistic operator P of PCTL
— generalised (expected) reward operator R from PRISM

In short:
— zero-sum, probabilistic reachability + expected total reward

Example:

— (({robot;,robots})) P.o.99 [F=10(goal; Vv goals)]

— “robots 1 and 3 have a strategy to ensure that the probability
of reaching the goal location within 10 steps is >0.99,

regardless of the strategies of other players”
29

rPATL syntax/semantics

- Syntax:

¢:=true|al —p | A | {(C)HP W] | ((CHR"x [P]
=X |dUkd|dUD
p:i=I1=¢|Csk|Fo

- where:

— a€AP is an atomic proposition, CSN is a coalition of players,
< € {<,<,>,2},q € [0,1]nQ, x € Qsp, k €N
ris a reward structure

- Semantics:

- e.g. P operator: s = ((C))P.,[W] iff:

— “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path
formula P being true from state s satisfies > q”

30

Reminder: Solving MDPs

- Various techniques exist to solve MDPs

— (and to perform strategy synthesis)

Here, we focus on value iteration
— dynamic programming approach
— common for probabilistic model checking

transition
probabilities:

0 :S x Act — Dist(S)

For example:

— maximum probability p(s) to reach v from s

— values p(s) are the least fixed point of: let p(s)

p(s) — 1 if s=v P—G -
max, ZS’ 6(S,a)(s’).p(s’) otherwise SUpPg Frs (Fv)

— basis for iterative numerical computation 3

Model checking rPATL

Main task: checking individual P and R operators
— reduces to solving a (zero-sum) stochastic 2-player game
— e.g. max/min reachability probability: supc,]inf(72 Pr.c1.92 (Fv)
— complexity: NP N coNP (if we omit some reward operators)

- We again use value iteration

— values p(s) are the
least fixed point of:

] if sev
p(s) = { max, 2o 8(s,a)(s’)-p(s’) if sv and seS,;
min, 2 0(s,a)(s’)-p(s’) if s#v and sES,

— and more: graph-algorithms, sequences of fixed points, ...

32

Applications

- Example application domains (PRISM-games)

— collective decision making and team formation protocols
— security: attack-defence trees; network protocols
— human-in-the-loop UAV mission planning

— autonomous urban driving

— self-adaptive software architectures

207 _
] 0.2 . . o
2 0.8 A A A A
g 15 - 1 1 I 1
2 g 1L Slow ! ! . ==
< S | | - 0 p2? |
gi o s : fast = i) i E '. ,<._w"l
g 0 M/est fast ., (..,..n;;’ — < I ._w>
& - ! ! " o & w7 T |
] 52 slow S4 | ! I—>’—>r< , !
L 2 3 4 5 6 71 8 0.9 ~ ; e

Number of households
0.1

33

Concurrent stochastic games

Motivation:

— more realistic model of components operating concurrently,
making action choices without knowledge of others

Turn-based Concurrent
stochastic games > stochastic games
(TSGs) (CSGs)

t] lt2 -
(of— &
wy,t
W] 1W2 e

34

CSG for 2 robots on a 3x1 grid

35

CSG for 2 robots on a 3x1 grid

{goali}

@ east >@ east @

(D)=

{goalz}

36

Concurrent stochastic games

- Concurrent stochastic games (CSGs)

— players choose actions concurrently & independently
— jointly determines (probabilistic) successor state

— 0 : SX(A;U{L} X ... X (ALu{L}) — Dist(S)

— generalises turn-based stochastic games

- We again use the logic rPATL for properties

- Same overall rPATL model checking algorithm [QEST’ 18]
— key ingredient is now solving (zero-sum) 2-player CSGs
— this problem is in PSPACE

— note that optimal strategies are now randomised

37

rPATL model checking for CSGs

- We again use a value iteration based approach
— e.g. max/min reachability probabilities
— SUpg, inf(72 Pr.o1.92 (F v') for all states s
— values p(s) are the least fixed point of:
1 if sev
p(s) = { val(2) if s v

— where Z is the matrix game with z;; = 2 8(s,(a;,b))(s’)-p(s’)

- So each iteration solves a matrix game for each state
— LP problem of size |A|, where A = action set

38

Example: Future markets investor

Example rPATL query:
— ((investor,,investor,)) RAM2 [F finished, ,]
— i.e. maximising joint profit

Results: with (left) and without (right) fluctuations

— optimal (randomised) investment strategies synthesised

— CSG vyields more realistic results (market has less power
due to limited observation of investor strategies)

16
» 15 - 25
B 14 i
& N 8, 22.5
§ L5 ’q'g 20
: - \ Too pessimistic:
5 1ol z . ~ unrealistic strategy
9}
y — for adversar
§ 9 —&— CSG (i1, i2)) 3 12.5 —®— CSG (i1, 12)) y
8 —&— TSG ((il,12)) = - —e— TSG ((il, i2))
T 2 3 4 5 6 7 8 o9 9

1 2 3 4 5 6 7 8 9 39

Nambes: oF months Number of months

Equilibria-based properties

Motivation:

— players/components may have distinct objectives
but which are not directly opposing (non zero-sum)

Zero-sum :> Equilibria-based
properties properties
((robot;:robots))max—>

(P [F=k goal,; 1+P [F =k goal,])

((rObOtl))maXZ? P [FSk goal]]

- We use Nash equilibria (NE)
— no incentive for any player to unilaterally change strategy
— actually, we use e -NE, which always exist for CSGs

— a strategy profile o=(o, ,0,) for a CSG
is an €-NE for state s and objectives X;,...,X, iff:

— Pro(Xj) = sup { Pro (X)) | o’=0_[oy] and oy€ Z; } - € for all i
40

Social-welfare Nash equilibria

Key idea: formulate model checking (strategy synthesis)
in terms of social-welfare Nash equilibria (SWNE)

— these are NE which maximise the sum E.°(X;) + ... E.9(X,)
— i.e., optimise the players combined goal

- We extend rPATL accordingly
Zero-sum j> Equilibria-based
properties properties

((robot;:robots))max=>
(P [F=k goal;]+P [F =k goal,])

((r0b0t1>>max:? P [FSk goal]]

find a robot 1 strategy

which maximises find (SWNE) strategies for robots 1 and 2
the probability of it where there is no incentive to change actions
reaching its goal, and which maximise joint goal probability

regardless of robot 2 a1

Model checking for extended rPATL

Model checking for CSGs with equilibria
— first: 2-coalition case [FM’19]
— needs solution of bimatrix games
— (basic problem is EXPTIME)

— we adapt a known approach
using labelled polytopes, and
implement with an SMT encoding

- We further extend the value iteration approach:

((1,1) ifseE VAV standard
os) = < (Pmax(s, v 2),1) if s v AV, «— _ MDPanalysis
(1,Pmax(s,v 1)) ifsE -V AV,
. val(Zy,Z5,) if sE -v 1A=V, 4«—— bimatrix game

— where Z; and Z, encode matrix games similar to before 42

Example: multi-robot coordination

2 robots navigating an | x | grid s
— start at opposite corners, goals are -
to navigate to opposite corners 1-¢ | 479 ¢
2

in chosen direction fails with probability g

— obstacles modelled stochastically: navigation 5’

- We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k

— {({robot;:robot;))max—2> (P [F=k goal;]+P [F =k goal,])

1

Results (10 x 10 grid)

— better performance obtained
than using zero-sum methods, § 0.0
i.e., optimising for robot 1,
then robot 2

0.8

s probability

0.4

Average suc

Conclusions

Conclusions

Planning & formal verification
— temporal logics & automata

I/
i3 ANN|
"' REVIEUMI;SL

Annua)
eviey
Autonomoys sy,fgi”"”vl, Robotics, gy
b 3y
Probapjj

— tools, techniques, modelling languages 0 Aty 1 Checling
— multi-agent systems

Challenges
— partial information/observability
— managing model uncertainty
— integration with machine learning

— scalability & efficiency vs accuracy

More details and
references here

45

http://www.prismmodelchecker.org/bibitem.php?key=KNP22

