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Probabilistic model checking

- Probabilistic model checking
— formal construction/analysis of probabilistic models

— “correctness” properties expressed in temporal logic
— e.g. trigger — P.g999 [ F=20 deploy ]
— mix of exhaustive & numerical/quantitative reasoning

- Trends and advances
— increasingly expressive/powerful model classes
— from verification problems to control problems
— ever widening range of application domains




Overview

Multi-objective probabilistic model checking

— Markov decision processes (MDPs)
— examples: robot navigation, task scheduling

Multiple players: competition/collaboration
— rPATL model checking and strategy synthesis
— stochastic multi-player games (SMGs)

— example: energy management
— concurrent stochastic games (CSGs)
. example: investor models

Multiple players and multiple objectives

— (social welfare) Nash equilibria
. example: communication protocols



Verification vs. Strategy synthesis

Markov decision processes (MDPs)

— models nondeterministic (actions, strategies)
and probabilistic behaviour

— strategies: randomisation, memory, ...

1. Verification

— quantify over all possible
strategies (i.e. best/worst-case)

— P_o.1 [ F err] : “the probability of an _
error occurring is < 0.1 for all strategies” {err}

2. Strategy synthesis

— generation of "correct-by-construction” controllers

— P_o1 [ F err] : "does there exist a strategy for which the
probability of an error occurring is < 0.1?”




Strategy synthesis for MDPs

- Core property: probabilistic reachability

— solvable with value iteration, policy iteration,
linear programming, interval iteration, ...

- Wide range of useful extensions

— expected costs/rewards
— linear temporal logic (LTL)

— multi-objective model checking
— real-time (PTAS)
— partial observability (POMDPs) ¢ —#»—
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— dynamic power management, robot navigation,
UUV mission planning, task scheduling




Multi-objective model checking

Multi-objective probabilistic model checking
— investigate trade-offs between conflicting objectives
— in PRISM, objectives are probabilistic LTL or expected rewards

- Achievability queries: multi(P.g 95 [ F send], Rtime_,,[ C1)

— e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

Numerical queries: multi(Ppax_2 [ F send], Rime_,,[ C1)

— e.g. “‘maximum probability of message transmission,
assuming expected battery life-time is > 10 hrs?”

Pareto queries: -~
o)
- mUIti(PmaXZ?[ F Seﬂd], Rtimemax=?[ C ]) © t-"&

— e.g. "Pareto curve for maximising . "
probability of transmission and o ‘\
expected battery life-time” .. B .

P y +— 0bj;



Multi-objective model checking

- PRISM implements two distinct approaches

- 1. Linear programming
— solve dual problem to classical LP formulation

- 2. Value iteration based weighted sweep
— approximate exploration/construction of Pareto curve
—e.g.P.q[...]1 AP [...]forr=(rq,r;)=(0.2,0.7)
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— method 2 extends to step-bounded objectives
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Application: Robot navigation

- Robot navigation planning: [IROS'14,JCAI'15,ICAPS’17,IJRR’19]

G4S Technology, Tewkesbury (STRANDS)

learnt MDP models navigation
through uncertain environment

co-safe LTL used to formally specify
tasks to be executed by robot

finite—memory strategy synthesis
to construct plans/controllers

ROS module based on PRISM

100s of hrs of autonomous deployment

Task Map
cheduler enerator

Navigation planner




Multi-objective: Partial satisfiability

Partially satisfiable task specifications
— e.9. Pmnax=2> [ mzones U (room; A (F room4 A F rooms) ] < 1

- Synthesise strategies that, in decreasing order of priority:
— maximise the probability of finishing the task;

— maximise progress towards completion, if this is not possible;
— minimise the expected time (or cost) required

Progress function constructed from DFA
— (distance to accepting states, reward for decreasing distance)

Encode prioritisation using multi-objective queries:
—p= Pmax:? [ taSk]
— 1 = multi(Rhyay— [ C1, Po_, [ task )

time prog

— multi(Rmin=z [ task ], P._p [task ] AR, [ C])

- Or alternatively, using nested value iteration 12



Multi-obj: Time-bounded guarantees

- Often need probabilistic time-bounded guarantees
— e.g. "probability of completing tasks within 5 mins is >0.99"

— but verification techniques for these are less efficient/scalable
— and often needed in conjunction with secondary objectives

- Efficient generation of time-bounded guarantees [ICAPS’17]
— implemented in the PRISM model checker

- Key ideas:
— optimize secondary goal wrt. guarantee &

— two phase verification: initial exploration =
of Pareto front on coarser untimed model

— then generate guarantee from pruned model
— significant gains in scalability

13




Overview

with 14

: - Multiple players: competition/collaboration
— rPATL model checking and strategy synthesis

— stochastic multi-player games (SMGs)
— example: energy management

Al
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Competitive/collaborative behaviour

- Open systems
— multiple system components, not all under our control
— possibly with differing/opposing goals
— giving rise to competitive/collaborative behaviour

Many occurrences in practice

— e.g. security protocols, algorithms for distributed consensus,
energy management or sensor network co-ordination

Natural to adopt a game-theoretic view
— here: stochastic multi-player games

— key ingredients: temporal logic, probabilistic model checking,
tool support (PRISM-games), case studies

15




Stochastic multi-player games

- Stochastic multi-player game (SMGs)
— nondeterminism + probability + multiple players
— for now: turn-based (players control states)

— applications: e.g. security (system vs. attacker),
controller synthesis (controller vs. environment)

- A (turn-based) SMG is a tuple
(N, S, (S)icn, A, 0, L) where:

— N is a set of n players

— Sis a (finite) set of states

— (Si)ien is a partition of S

— Ais a set of action labels

— 0 :S X A — Dist(S) is a (partial)
transition probability function

— L:S — 247is a labelling function




Strategies, probabilities & rewards

Strategy for player i: resolves choices in S; states
— based on execution history, i.e. g; : (SA)*S; — Dist(A)

— can be: deterministic (pure), randomised,
memoryless, finite—-memory, ...

— 2, denotes the set of all strategies for player i

Strategy profile: strategies for all players: o=(o0,,...,0,)
— induces a set of (infinite) paths from some start state s
— a probability measure Pr.° over these paths
— expectation E;9(X) of random variable X over Pr,°

Rewards (or costs)
— non-negative values assigned to states/transitions

— e.g. elapsed time, energy consumption,

number of packets lost, net profit, ... 5



Property specification: rPATL

rPATL (reward probabilistic alternating temporal logic)

— branching-time temporal logic for SMGs

- CTL, extended with:

— coalition operator ((C)) of ATL
— probabilistic operator P of PCTL
— generalised (expected) reward operator R from PRISM

In short:
— zero-sum, probabilistic reachability + expected (total) reward

Example:

— (({1,3}) P<o.o1 [ F='%error ]

— “players 1 and 3 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.01,

regardless of the strategies of other players”
18



rPATL syntax/semantics

- Syntax:

¢:=true|al —p | A | {(C)HP W] | (CHR . [P]
=X |dUkd|dUD
p:i=I1=¢|Csk|Fo

- where:

— a€AP is an atomic proposition, CSN is a coalition of players,
< € {<,<,>,2},q € [0,1]nQ, x € Q.p, k €N
ris a reward structure

- Semantics:

- e.g. P operator: s = ((C))P.,[W] iff:

— “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path
formula P being true from state s satisfies > q”

19



rPATL and beyond

- Generalised reward operators [TACAS’12, FMSD’1 3]
— ((CY)R "k [F*d] where * € {o0,c,0}
— FO9 is tricky: needs finite—-memory strategies

- Quantitative (numerical) properties:

— {({{1}) Pmax=2[ F error ], i.e. SUPg, ez, infc,zez2 Pr.o1.92 (F error)

— “what is the maximum probability of reaching an error state
that player 1 can guarantee?” (against player 2)

Nesting (and n>2 players)
— players: sensor;, sensor,, repairer
— {(sensor;)) P.go1l F (—{({repairer)) P-g.os5[ F “operational”]) ]

- And more...

— rPATL*, reward-bounded [FMSD], exact bounds [CONCUR’12]
— multi-objective model checking [QEST 13, TACAS15,I&C’17] 20



rPATL model checking for SMGs

Reduces to solving zero-sum stochastic 2-player games
— complexity: NP n coNP (without any R[F°] operators)
— complexity for full logic: NEXP n coNEXP (due to R[F9])

In practice, we use value iteration (numerical fixed points)
— and more: graph-algorithms, sequences of fixed points, ...
E.g. probabilistic reachability: ((C)) P.4[ F ¢ ]
— compute sUpPg e, inf(,zez2 Pr.o1.92 (F ¢) for all states s
— deterministic memoryless strategies suffice
— value p(s) for state s is least fixed point of:

1 if seSat(p)

P(S) = 7 MaXeae Zses 0(5,8)(s7)-p(s’)  if s€Sy\Sat(d)
| MiNgeae) 2ses 0(5,a)(s7)-p(s’)  if se€S,\Sat(d)

—

— convergence criteria need to be selected carefully 51



PRISM-games

PRISM-games: www.prismmodelchecker.org/games
— extension of PRISM modelling language (see later)
— implementation in explicit engine
— prototype MTBDD version also available | &

Example application domains
— security: attack-defence trees; DNS bandwidth amplification
— self-adaptive software architectures
— autonomous urban driving
— human-in-the-loop UAV mission planning
— collective decision making and team formation protocols
— energy management protocols

24


http://www.prismmodelchecker.org/games

Application: Energy management

- Energy management protocol for Microgrid
— randomised demand management protocol

— random back-off when demand is high

- Original analysis [Hildmann/Saffre'1 1]

— protocol increases "value" for clients
— simulation-based, clients are honest

- Our analysis
— stochastic multi-player game model
— clients can cheat (and cooperate)
— model checking: PRISM-games

— exposes protocol weakness (incentive -
for clients to act selfishly D e et e day ey

— propose/verify simple fix using penalties
25




Results: Competitive behaviour

- Expected total value V per household
— in rPATL: ((C))R"Cprax—> [FO time=max time] / |C]
— where rc is combined rewards for coalition C

with 14
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Results: Competitive behaviour

.+ Algorithm fix: simple punishment mechanism
— distribution manager can cancel some loads exceeding ¢,

with 14
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Overview

with 14

: - Multiple players: competition/collaboration
— rPATL model checking and strategy synthesis

— concurrent stochastic games (CSGs)
. example: investor models

qTAY

28



Concurrent stochastic games

Concurrent stochastic games (CSGs)
— players choose actions concurrently

— jointly determines (probabilistic) successor state
— generalises turn-based stochastic games

Key motivation:

— more realistic model of components operating concurrently,
making action choices without knowledge of others

Formally
— set of n players N, state space S, actions A; for player i
— transition probability function & : SXA — Dist(S)
— where A = (A;U{L}) X ... X (ALU{L}
— strategies o; : FPath — Dist(A)), strategy profiles o=(o,,...,0,)
— probability measure Pr.9, expectations E;°(X)
29




Example CSG: rock-paper-scissors

Rock-paper-scissors game

— 2 players repeated draw
rock (r), paper (p), scissors (s),
then restart the game (t)

— rock > scissors, paper > rock,
scissors > paper, otherwise draw

Example CSG
— 2 players: N={1,2}
— Ay = A, ={r,p,s,t}
— NB: no probabilities here

30




Matrix games

Matrix games
— finite, one-shot, 2-player, zero-sum games
— utility function u;: A; XA, — R for each player i
— represented by matrix Z where z; = u;(a;,b) = -uy(a;,b)

Example: r-p s
rro -1 1

— one round of Z—p(] 0 ]>
k- ~SCi B -
rock-paper-scissors s \_1 0

- Optimal (player 1) strategy via LP solution (minimax):

— compute value val(Z): maximise value v subject to:

— V < Xp—Xs
V = X=X, Optimal strategy (randomised):
V < Xs—Xp (XryXpsXs) = (¥3,Y3,Y5)

XrtXptXs=1
Xr=0 Xp=0 Xs=0 31



rPATL for CSGs

- We use the same logic rPATL as for SMGs

Examples for rock-paper-scissors game:

— (1)) P~y [ F win; ] - player 1 can ensure
it eventually wins a round of the game

with probability 1

— {(2)) Pmax=> [ =win; U win; ] - the maximum
probability with which player 2 can ensure
it wins before player 1

- (p,p)’, (t,0)
— (1)) Rfrfgfl‘? [ C=2K] - the maximum (s,s)
expected utility player 1 can ensure (r,s), (p,n), (s,r), (p,s),
over K rounds (utility = 1/0/-1 (s,p) (r,p)
for win/draw/lose) @4/




rPATL model checking for CSGs

Extends model checking algorithm for SMGs [QEST’18]
— key ingredients are solution of (zero-sum) 2-player CSGs

E.g. ((C))P.[ F & ] : max/min reachability probabilities
— compute supg e, infgzez2 Pr.91.92 (F ) for all states s
— note that optimal strategies are now randomised
— solution of the 2-player CSG is in PSPACE
— we use a value iteration based approach

- Value p(s) for state s is least fixed point of:
— p(s) = 1 if seSat(d) and otherwise p(s) = val(Z) where:
— Z is the matrix game with z; = 25 8(s,(a;,by))(s’)-p(s’)

— so each iteration requires solution of a matrix game for each
state (LP problem of size |A|, where A = action set)

33



CSGs in PRISM-games

CSG model checking implemented in PRISM-games

Extension of PRISM modelling language
— player specification via partition of modules
— unlike SMGs, all modules move simultaneously

— concurrent updates modelled with multi-action commands,
e.g. [r1,r2] m1=0 — ... and chained updates, e.g. (m2’=m1’)

Explicit engine implementation
— plus LPsolve library for minimax LP solution
— experiments with CSGs up to ~3 million states

Case studies:

— future markets investor, trust models for user-centric
networks, intrusion detection policies, jamming radio systems

34



CSGs in PRISM (rock-paper-scissors)

csg

player player1 M1 endplayer
player player2 M2 endplayer (p p)

module M1

m1 : [0..3]; (r,s), ( s,n, (p,s),
[r1]m1=0 - (m1’=1); // rock (s, p (r,p)
[p1] m1=0 — (m1°=2); // paper @
[sST]m1=0 — (m1°=3); // scissors o fwin,}

[t1] m1>0 — (m1’=0); // restart
endmodule
module M2 = M1 [ m1=m2, r1=r2, pl=p2, sl=s2, t1=t2 ] endmodule

label "win1" = (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2); // player 1 wins round
rewards “utilityl1” // utility for player 1

[t1] (mT=1 & m2=3) | (m1=2 & m2=1) | (m1=3 & m2=2) :1; // player ] wins

[t1] (mT=1 & m2=2) | (m1=2 & m2=3) | (m1=3 & m2=1): -1; // player 2 wins
endrewards

35




Application: Future markets investor

Model of interactions between: N
— stock market, evolves stochastically .
— two investors i, i, decide when to invest

— market decides whether to bar investors | M

Modelled as a 3-player CSG A
— extends simpler model originally from [Mclver/Morgan’07]

— investing/barring decisions are simultaneous
— profit reduced for simultaneous investments
— market cannot observe investors’ decisions

- Analysed with rPATL model checking & strategy synthesis

— distinct profit models considered: ‘normal market’, ‘later
cash-ins’ and ‘later cash-ins with fluctuation’

— comparison between SMG and CSG models 36




Application: Future markets investor

- Example rPATL queries:
— ((investor;)) RP2MY, [ F finished; ]
— ((investory,investor,)) RPMz [ F finished; , ]
— i.e. maximising individual/joint profit

- Results (joint profit) - limited power of market shown
— with (left) and without (right) fluctuations
— optimal (randomised) investment strategies synthesised

16
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Overview

with 14

qTAY

Multiple players and multiple objectives
— (social welfare) Nash equilibria
. example: communication protocols

38



Multiple objectives: Nash equilibria

Now consider distinct objectives X; for each player i
— i.e., no longer restricted to zero-sum goals

- We use Nash equilibria (NE)
— no incentive for any player to unilaterally change strategy
— more precisely subgame-perfect e-Nash equilibrium

— a strategy profile o=(o;,_,0,) for a CSG is a subgame-perfect
e-Nash equilibrium for objectives X;,..., X, iff:

— Es9(Xj)) = sup{ Es9 (X)) | o’=0_ o] and o’ 3; } - e forall i, s
— €-NE (but not 0-NE) guaranteed to exist for CSGs

In particular: social welfare Nash equilibria (SWNE)
— NE which maximise sum E.°(X;) + ... E.9(X,)

39




Example

CSG example: Medium access control protocol

— 2 players (senders); states = &
€,5S;

(energy;/sent;, energy,/senty)
— actions = t (transmit), w (wait)

— q = probability of success
if messages collide

If objectives X; = probability
to send successfully:

— 2 SWNEs when one user waits for

) ) (probabilistic
the other to transmit and then transmits extension of

[Brenguier’13])

If the objectives X, =probability of being
first to transmit their packet:

— only 1 SWNE: both immediately try to transmit 20



rPATL + Nash operator

- Extension of rPATL for Nash equilibria [FM’19]
=truelal -dldAP|
(CHPglW] | {CCNR i [P] | ((C,C7)) masax [6]
0 ::= P[W]+P[y] | R'[p]+R"[p]
Yiu=Xob|dUkd|[dUd
p:i=I1=¢|Csk|Fo
- where:

— a€AP is an atomic proposition, CSN is a coalition of players
and C=N\C,« € {<,<,>,>}, g € [0,1]nQ, x € Q.g, k €N

r is a reward structure

- Semantics:

— ((C,C"))maxwax [0] is satisfied if there exist strategies for all
players that form a SWNE between coalitions C and C'(=N\C),
and under which the sum of the two objectives in 6 is >ix




Model checking for extended rPATL

Key ingredient is now:
— solution of SWNEs for bimatrix games
— (basic problem is EXPTIME)

— we adapt known approach using labelled polytopes,
and implement using an encoding to SMT

- Two types of model checking operator
— bounded: backwards induction
— unbounded: value iteration, e.g.:

[ (L)
(1, Panix(F $?)) else if s € Sat(p!)
Vge (s,0,n) = < (Pm,ax( '), 1) else if s € Sat(¢?)
(0,0) else if n=0
val (21 ,Zy)  otherwise

if s € Sat(¢r) N Sat(p?)

\

— where Z; and Z, encode matrix games similar to before 42




PRISM-games support

- Implementation in PRISM-games
— needed further extensions to modelling language
— extends CSG rPATL model checking implementation
— bimatrix games solved using Z3 encoding 2
— optimised filtering of dominated strategies £ '°
— scales up to CSGs with ~2 million states

1

—— ((pl ’ p2)> max="7 [P+P]

0.5 =@ —  {(P1))Pmax + Pmax

Sum of probabilities

® Appllcatlons °C 1 2 3 14 5 6 7 s 9 10

D

— robot navigation in a grid, medium access control,
Aloha communication protocol, power control

— SWNE strategies outperform those found with rPATL
— €-Nash equilibria found typically have €=0

43




Conclusions

Probabilistic model checking: PRISM & PRISM-games
— multi-objective techniques for MDPs

— rPATL model checking for
. stochastic multi-player games (SMGs)

. concurrent stochastic games (CSGs)
— CSGs + (social welfare) Nash equilibria
— wide variety of case studies studied

- Challenges & directions
— extending to >2 players
— scalability, e.g. symbolic methods, abstraction
— partial information/observability & greater efficiency
— further applications and case studies
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