
2nd Intl. Workshop on Multi-objective Reasoning
in Verification and Synthesis (MoRe’19)

Vancouver, June 2019

Multi-objective Reasoning with

Probabilistic Model Checking

Dave Parker

University of Birmingham

Joint work with:

Gabriel Santos, Gethin Norman, Marta Kwiatkowska, …

Multi-objective Reasoning with

Probabilistic Model Checking

Dave Parker

University of Birmingham

3

Probabilistic model checking

• Probabilistic model checking
− formal construction/analysis of probabilistic models
− “correctness” properties expressed in temporal logic
− e.g. trigger → P≥0.999 [F≤20 deploy]
− mix of exhaustive & numerical/quantitative reasoning

• Trends and advances
− increasingly expressive/powerful model classes
− from verification problems to control problems
− ever widening range of application domains

0.5

0.1

0.4

4

Overview

• Multi-objective probabilistic model checking
− Markov decision processes (MDPs)

− examples: robot navigation, task scheduling

• Multiple players: competition/collaboration
− rPATL model checking and strategy synthesis
− stochastic multi-player games (SMGs)

− example: energy management
− concurrent stochastic games (CSGs)

• example: investor models

• Multiple players and multiple objectives
− (social welfare) Nash equilibria

• example: communication protocols

5

Verification vs. Strategy synthesis

• Markov decision processes (MDPs)
− models nondeterministic (actions, strategies)

and probabilistic behaviour
− strategies: randomisation, memory, …

• 1. Verification
− quantify over all possible

strategies (i.e. best/worst-case)
− P≤0.1 [F err] : �the probability of an

error occurring is ≤ 0.1 for all strategies�

• 2. Strategy synthesis
− generation of "correct-by-construction" controllers
− P≤0.1 [F err] : "does there exist a strategy for which the

probability of an error occurring is ≤ 0.1?�

s1s0

s2

s3

0.9

0.10.7

1

1

{succ}

{err}

{init}

0.3

1a

b

c

a

a

6

Strategy synthesis for MDPs

• Core property: probabilistic reachability
− solvable with value iteration, policy iteration,

linear programming, interval iteration, …

• Wide range of useful extensions
− expected costs/rewards
− linear temporal logic (LTL)
− multi-objective model checking
− real-time (PTAs)
− partial observability (POMDPs)

• Applications
− dynamic power management, robot navigation,

UUV mission planning, task scheduling

22

are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

7

Multi-objective model checking

• Multi-objective probabilistic model checking
− investigate trade-offs between conflicting objectives
− in PRISM, objectives are probabilistic LTL or expected rewards

• Achievability queries: multi(P≥0.95 [F send], Rtime≥10 [C])

− e.g. “is there a strategy such that the probability of message
transmission is ≥ 0.95 and expected battery life ≥ 10 hrs?”

• Numerical queries: multi(Pmax=? [F send], Rtime≥10 [C])
− e.g. “maximum probability of message transmission,

assuming expected battery life-time is ≥ 10 hrs?”

• Pareto queries:
− multi(Pmax=? [F send], Rtime

max=? [C])

− e.g. "Pareto curve for maximising
probability of transmission and
expected battery life-time” obj1

ob
j 2

9

Multi-objective model checking

• PRISM implements two distinct approaches

• 1. Linear programming
− solve dual problem to classical LP formulation

• 2. Value iteration based weighted sweep
− approximate exploration/construction of Pareto curve
− e.g. P≥r1 […] ∧ P≥r2 […] for r=(r1,r2)=(0.2,0.7)

− method 2 extends to step-bounded objectives

10

Application: Robot navigation

• Robot navigation planning: [IROS'14,IJCAI’15,ICAPS’17,IJRR’19]

− learnt MDP models navigation
through uncertain environment

− co-safe LTL used to formally specify
tasks to be executed by robot

− finite-memory strategy synthesis
to construct plans/controllers

− ROS module based on PRISM
− 100s of hrs of autonomous deployment

Task
scheduler

Map
generator

Motion planner

Navigation planner

G4S Technology, Tewkesbury (STRANDS)

12

Multi-objective: Partial satisfiability

• Partially satisfiable task specifications
− e.g. Pmax=? [¬zone3 U (room1 ∧ (F room4 ∧ F room5)] < 1

• Synthesise strategies that, in decreasing order of priority:
− maximise the probability of finishing the task;
− maximise progress towards completion, if this is not possible;
− minimise the expected time (or cost) required

• Progress function constructed from DFA
− (distance to accepting states, reward for decreasing distance)

• Encode prioritisation using multi-objective queries:
− p = Pmax=? [task]
− r = multi(Rmax=? [C], P>=p [task])
− multi(Rmin=? [task], P>=p [task] ∧ R>=r [C])

• Or alternatively, using nested value iteration

prog

time prog

13

Multi-obj: Time-bounded guarantees

• Often need probabilistic time-bounded guarantees
− e.g. "probability of completing tasks within 5 mins is >0.99"
− but verification techniques for these are less efficient/scalable
− and often needed in conjunction with secondary objectives

• Efficient generation of time-bounded guarantees [ICAPS’17]
− implemented in the PRISM model checker

• Key ideas:
− optimize secondary goal wrt. guarantee
− two phase verification: initial exploration

of Pareto front on coarser untimed model
− then generate guarantee from pruned model
− significant gains in scalability

14

Overview

• Multi-objective probabilistic model checking
− Markov decision processes (MDPs)

− examples: robot navigation, task scheduling

• Multiple players: competition/collaboration
− rPATL model checking and strategy synthesis
− stochastic multi-player games (SMGs)

− example: energy management
− concurrent stochastic games (CSGs)

• example: investor models

• Multiple players and multiple objectives
− (social welfare) Nash equilibria

• example: communication protocols

15

Competitive/collaborative behaviour

• Open systems
− multiple system components, not all under our control
− possibly with differing/opposing goals
− giving rise to competitive/collaborative behaviour

• Many occurrences in practice
− e.g. security protocols, algorithms for distributed consensus,

energy management or sensor network co-ordination

• Natural to adopt a game-theoretic view
− here: stochastic multi-player games
− key ingredients: temporal logic, probabilistic model checking,

tool support (PRISM-games), case studies

16

Stochastic multi-player games

• Stochastic multi-player game (SMGs)
− nondeterminism + probability + multiple players
− for now: turn-based (players control states)
− applications: e.g. security (system vs. attacker),

controller synthesis (controller vs. environment)

• A (turn-based) SMG is a tuple
(N, S, ⟨Si⟩i∈N, A, δ, L) where:

− N is a set of n players
− S is a (finite) set of states
− ⟨Si⟩i∈N is a partition of S
− A is a set of action labels
− δ : S × A → Dist(S) is a (partial)

transition probability function
− L : S → 2AP is a labelling function

b

a ¼
¼
¼

½

¼
�

1

1
½

1
a
b

1
a
b

17

Strategies, probabilities & rewards

• Strategy for player i: resolves choices in Si states
− based on execution history, i.e. σi : (SA)*Si → Dist(A)
− can be: deterministic (pure), randomised,

memoryless, finite-memory, …
− Σi denotes the set of all strategies for player i

• Strategy profile: strategies for all players: σ=(σ1,…,σn)
− induces a set of (infinite) paths from some start state s
− a probability measure Prs

σ over these paths
− expectation Es

σ(X) of random variable X over Prs
σ

• Rewards (or costs)
− non-negative values assigned to states/transitions
− e.g. elapsed time, energy consumption,

number of packets lost, net profit, …

18

Property specification: rPATL

• rPATL (reward probabilistic alternating temporal logic)

− branching-time temporal logic for SMGs

• CTL, extended with:
− coalition operator ⟨⟨C⟩⟩ of ATL
− probabilistic operator P of PCTL
− generalised (expected) reward operator R from PRISM

• In short:
− zero-sum, probabilistic reachability + expected (total) reward

• Example:
− ⟨⟨{1,3}⟩⟩ P<0.01 [F≤10 error]
− “players 1 and 3 have a strategy to ensure that the probability

of an error occurring within 10 steps is less than 0.01,
regardless of the strategies of other players”

19

rPATL syntax/semantics

• Syntax:
φ ::= true | a | ¬φ | φ ∧ φ | ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈x [ρ]
ψ ::= X φ | φ U≤k φ | φ U φ
ρ ::= I=k | C≤k | F φ

• where:
− a∈AP is an atomic proposition, C⊆N is a coalition of players,
⋈ ∈ {≤,<,>,≥}, q ∈ [0,1]∩ℚ, x ∈ ℚ≥0, k ∈ ℕ
r is a reward structure

• Semantics:
• e.g. P operator: s ⊨ ⟨⟨C⟩⟩P⋈q[ψ] iff:

− “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path
formula ψ being true from state s satisfies ⋈ q”

20

rPATL and beyond

• Generalised reward operators [TACAS’12, FMSD’13]
− ⟨⟨C⟩⟩Rr⋈x [F⋆φ] where ⋆ ∈ {∞,c,0}
− F0 is tricky: needs finite-memory strategies

• Quantitative (numerical) properties:
− ⟨⟨{1}⟩⟩ Pmax=? [F error], i.e. supσ1∈Σ1

infσ2∈Σ2
Prsσ1,σ2 (F error)

− “what is the maximum probability of reaching an error state
that player 1 can guarantee?” (against player 2)

• Nesting (and n>2 players)
− players: sensor1, sensor2, repairer
− ⟨⟨sensor1⟩⟩ P<0.01[F (¬⟨⟨repairer⟩⟩ P≥0.95[F “operational”])]

• And more…
− rPATL*, reward-bounded [FMSD], exact bounds [CONCUR’12]
− multi-objective model checking [QEST’13,TACAS15,I&C’17]

21

rPATL model checking for SMGs

• Reduces to solving zero-sum stochastic 2-player games
− complexity: NP ∩ coNP (without any R[F0] operators)
− complexity for full logic: NEXP ∩ coNEXP (due to R[F0])

• In practice, we use value iteration (numerical fixed points)
− and more: graph-algorithms, sequences of fixed points, …

• E.g. probabilistic reachability: ⟨⟨C⟩⟩ P≥q[F φ]
− compute supσ1∈Σ1

infσ2∈Σ2
Prs

σ1,σ2 (F φ) for all states s
− deterministic memoryless strategies suffice
− value p(s) for state s is least fixed point of:

− convergence criteria need to be selected carefully

p(s) =
1 if s∈Sat(φ)
maxa∈A(s) Σs’∈S δ(s,a)(s’)·p(s’) if s∈S1\Sat(φ)
mina∈A(s) Σs’∈S δ(s,a)(s’)·p(s’) if s∈S2\Sat(φ)

24

PRISM-games

• PRISM-games: www.prismmodelchecker.org/games
− extension of PRISM modelling language (see later)
− implementation in explicit engine
− prototype MTBDD version also available

• Example application domains
− security: attack-defence trees; DNS bandwidth amplification
− self-adaptive software architectures
− autonomous urban driving
− human-in-the-loop UAV mission planning
− collective decision making and team formation protocols
− energy management protocols

http://www.prismmodelchecker.org/games

25

Application: Energy management

• Energy management protocol for Microgrid
− randomised demand management protocol
− random back-off when demand is high

• Original analysis [Hildmann/Saffre'11]
− protocol increases "value" for clients
− simulation-based, clients are honest

• Our analysis
− stochastic multi-player game model
− clients can cheat (and cooperate)
− model checking: PRISM-games
− exposes protocol weakness (incentive

for clients to act selfishly
− propose/verify simple fix using penalties

26

Results: Competitive behaviour

• Expected total value V per household
− in rPATL: ⟨⟨C⟩⟩RrCmax=? [F0 time=max time] / |C|
− where rC is combined rewards for coalition C

All follow alg.

No use of alg.

Deviations of
varying size

Strong
incentive to
deviate

27

Results: Competitive behaviour

• Algorithm fix: simple punishment mechanism
− distribution manager can cancel some loads exceeding clim

All follow alg.

Deviations of
varying size

Better to
collaborate
(with all)

28

Overview

• Multi-objective probabilistic model checking
− Markov decision processes (MDPs)

− examples: robot navigation, task scheduling

• Multiple players: competition/collaboration
− rPATL model checking and strategy synthesis
− stochastic multi-player games (SMGs)

− example: energy management
− concurrent stochastic games (CSGs)

• example: investor models

• Multiple players and multiple objectives
− (social welfare) Nash equilibria

• example: communication protocols

29

Concurrent stochastic games

• Concurrent stochastic games (CSGs)
− players choose actions concurrently
− jointly determines (probabilistic) successor state
− generalises turn-based stochastic games

• Key motivation:
− more realistic model of components operating concurrently,

making action choices without knowledge of others

• Formally
− set of n players N, state space S, actions Ai for player i
− transition probability function δ : S×A → Dist(S)
− where A = (A1∪{⊥}) × … × (An∪{⊥})
− strategies σi : FPath → Dist(Ai), strategy profiles σ=(σ1,…,σn)
− probability measure Prs

σ, expectations Es
σ(X)

30

Example CSG: rock-paper-scissors

• Rock-paper-scissors game
− 2 players repeated draw

rock (r), paper (p), scissors (s),
then restart the game (t)

− rock > scissors, paper > rock,
scissors > paper, otherwise draw

• Example CSG
− 2 players: N={1,2}
− A1 = A2 = {r,p,s,t}
− NB: no probabilities here

s0

s1

s3

(t,t)
(r,r),
(p,p),
(s,s)

s2

(s,r), (p,s),
(r,p)

(r,s), (p,r),
(s,p)

{draw}

{win2}{win1}

31

Matrix games

• Matrix games
− finite, one-shot, 2-player, zero-sum games
− utility function ui : A1×A2 → ℝ for each player i
− represented by matrix Z where zij = u1(ai,bj) = -u2(ai,bj)

• Example:
− one round of

rock-paper-scissors

• Optimal (player 1) strategy via LP solution (minimax):
− compute value val(Z): maximise value v subject to:
− v ≤ xp-xs

v ≤ xs-xr,
v ≤ xs-xp
xr+xp+xs=1
xr≥0, xp≥0, xs≥0

r p s

Z =
r
p
s

0 −1 1
1 0 −1
−1 1 0

Optimal strategy (randomised):
(xr,xp,xs) = (⅓,⅓,⅓)

32

rPATL for CSGs

• We use the same logic rPATL as for SMGs

• Examples for rock-paper-scissors game:
− ⟨⟨1⟩⟩ P≥1 [F win1] - player 1 can ensure

it eventually wins a round of the game
with probability 1

− ⟨⟨2⟩⟩ Pmax=? [¬win1 U win2] - the maximum
probability with which player 2 can ensure
it wins before player 1

− ⟨⟨1⟩⟩ Rmax=? [C≤2K] - the maximum
expected utility player 1 can ensure
over K rounds (utility = 1/0/−1
for win/draw/lose)

utility1

s0

s1

s3

(t,t)
(r,r),
(p,p),
(s,s)

s2

(s,r), (p,s),
(r,p)

(r,s), (p,r),
(s,p)

{draw}

{win2}{win1}

33

rPATL model checking for CSGs

• Extends model checking algorithm for SMGs [QEST’18]
− key ingredients are solution of (zero-sum) 2-player CSGs

• E.g. ⟨⟨C⟩⟩P≥q[F φ] : max/min reachability probabilities
− compute supσ1∈Σ1

infσ2∈Σ2
Prs

σ1,σ2 (F φ) for all states s
− note that optimal strategies are now randomised
− solution of the 2-player CSG is in PSPACE
− we use a value iteration based approach

• Value p(s) for state s is least fixed point of:
− p(s) = 1 if s∈Sat(φ) and otherwise p(s) = val(Z) where:
− Z is the matrix game with zij = Σs’∈S δ(s,(ai,bj))(s’)·p(s’)
− so each iteration requires solution of a matrix game for each

state (LP problem of size |A|, where A = action set)

34

CSGs in PRISM-games

• CSG model checking implemented in PRISM-games

• Extension of PRISM modelling language
− player specification via partition of modules
− unlike SMGs, all modules move simultaneously
− concurrent updates modelled with multi-action commands,

e.g. [r1,r2] m1=0 → … and chained updates, e.g. (m2’=m1’)

• Explicit engine implementation
− plus LPsolve library for minimax LP solution
− experiments with CSGs up to ~3 million states

• Case studies:
− future markets investor, trust models for user-centric

networks, intrusion detection policies, jamming radio systems

35

CSGs in PRISM (rock-paper-scissors)

csg

player player1 M1 endplayer

player player2 M2 endplayer

module M1

m1 : [0..3];

[r1] m1=0 → (m1’=1); // rock
[p1] m1=0 → (m1’=2); // paper
[s1] m1=0 → (m1’=3); // scissors
[t1] m1>0 → (m1’=0); // restart

endmodule

module M2 = M1 [m1=m2, r1=r2 , p1=p2, s1=s2, t1=t2] endmodule

label "win1" = (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2); // player 1 wins round
rewards “utility1” // utility for player 1

[t1] (m1=1 & m2=3) | (m1=2 & m2=1) | (m1=3 & m2=2) : 1; // player 1 wins
[t1] (m1=1 & m2=2) | (m1=2 & m2=3) | (m1=3 & m2=1) : -1; // player 2 wins

endrewards

s0

s1

s3

(t,t)
(r,r),
(p,p),
(s,s)

s2

(s,r), (p,s),
(r,p)

(r,s), (p,r),
(s,p)

{draw}

{win2}{win1}

36

Application: Future markets investor

• Model of interactions between:
− stock market, evolves stochastically
− two investors i1, i2 decide when to invest
− market decides whether to bar investors

• Modelled as a 3-player CSG
− extends simpler model originally from [McIver/Morgan’07]
− investing/barring decisions are simultaneous
− profit reduced for simultaneous investments
− market cannot observe investors’ decisions

• Analysed with rPATL model checking & strategy synthesis
− distinct profit models considered: ‘normal market’, ‘later

cash-ins’ and ‘later cash-ins with fluctuation’
− comparison between SMG and CSG models

37

Application: Future markets investor

• Example rPATL queries:
− ⟨⟨investor1⟩⟩ Rmax=? [F finished1]
− ⟨⟨investor1,investor2⟩⟩ Rmax=? [F finished1,2]
− i.e. maximising individual/joint profit

• Results (joint profit) – limited power of market shown
− with (left) and without (right) fluctuations
− optimal (randomised) investment strategies synthesised

profit1

profit1,2

38

Overview

• Multi-objective probabilistic model checking
− Markov decision processes (MDPs)

− examples: robot navigation, task scheduling

• Multiple players: competition/collaboration
− rPATL model checking and strategy synthesis
− stochastic multi-player games (SMGs)

− example: energy management
− concurrent stochastic games (CSGs)

• example: investor models

• Multiple players and multiple objectives
− (social welfare) Nash equilibria

• example: communication protocols

39

Multiple objectives: Nash equilibria

• Now consider distinct objectives Xi for each player i
− i.e., no longer restricted to zero-sum goals

• We use Nash equilibria (NE)
− no incentive for any player to unilaterally change strategy
− more precisely subgame-perfect ε-Nash equilibrium
− a strategy profile σ=(σ1,…,σn) for a CSG is a subgame-perfect
ε-Nash equilibrium for objectives X1,…,Xn iff:

− Es
σ (Xi) ≥ sup { Es

σ’ (Xi) | σ’=σ-i[σi’] and σi’∈ Σi } – ε for all i, s
− ε-NE (but not 0-NE) guaranteed to exist for CSGs

• In particular: social welfare Nash equilibria (SWNE)
− NE which maximise sum Es

σ (X1) + … Es
σ (Xn)

40

Example

• CSG example: Medium access control protocol
− 2 players (senders); states =

(energy1/sent1, energy2/sent2)
− actions = t (transmit), w (wait)
− q = probability of success

if messages collide

• If objectives Xi = probability
to send successfully:
− 2 SWNEs when one user waits for

the other to transmit and then transmits

• If the objectives Xi =probability of being
first to transmit their packet:
− only 1 SWNE: both immediately try to transmit

e1s1
e2s2

10
10

{sent1,
sent2}

1-q

01
10

00
00

10
01

01
01

(w,w)

(t,w)

(t,t)

(w,t)

(t,w)

(w,w)

q

(w,t)

(w,w)

(w,w)

{sent2}

{sent1}

(w,w)

(probabilistic
extension of

[Brenguier’13])

41

rPATL + Nash operator

• Extension of rPATL for Nash equilibria [FM’19]

φ ::= true | a | ¬φ | φ ∧ φ |
⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈x [ρ] | ⟨⟨C,C’⟩⟩max⋈x [θ]

θ ::= P[ψ]+P[ψ] | Rr[ρ]+Rr[ρ]
ψ ::= X φ | φ U≤k φ | φ U φ
ρ ::= I=k | C≤k | F φ

• where:
− a∈AP is an atomic proposition, C⊆N is a coalition of players

and C’=N\C,⋈ ∈ {≤,<,>,≥}, q ∈ [0,1]∩ℚ, x ∈ ℚ≥0, k ∈ ℕ
r is a reward structure

• Semantics:
− ⟨⟨C,C’⟩⟩max⋈x [θ] is satisfied if there exist strategies for all

players that form a SWNE between coalitions C and C’(=N\C),
and under which the sum of the two objectives in θ is ⋈x

42

Model checking for extended rPATL

• Key ingredient is now:
− solution of SWNEs for bimatrix games
− (basic problem is EXPTIME)
− we adapt known approach using labelled polytopes,

and implement using an encoding to SMT

• Two types of model checking operator
− bounded: backwards induction
− unbounded: value iteration, e.g.:

− where Z1 and Z2 encode matrix games similar to before

43

PRISM-games support

• Implementation in PRISM-games
− needed further extensions to modelling language
− extends CSG rPATL model checking implementation
− bimatrix games solved using Z3 encoding
− optimised filtering of dominated strategies
− scales up to CSGs with ~2 million states

• Applications
− robot navigation in a grid, medium access control,

Aloha communication protocol, power control
− SWNE strategies outperform those found with rPATL
− ε-Nash equilibria found typically have ε=0

44

Conclusions

• Probabilistic model checking: PRISM & PRISM-games
− multi-objective techniques for MDPs
− rPATL model checking for

• stochastic multi-player games (SMGs)
• concurrent stochastic games (CSGs)

− CSGs + (social welfare) Nash equilibria
− wide variety of case studies studied

• Challenges & directions
− extending to >2 players
− scalability, e.g. symbolic methods, abstraction
− partial information/observability & greater efficiency
− further applications and case studies

