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Probabilistic model checking

- Probabilistic model checking
— formal construction/analysis of probabilistic models

— “correctness” properties expressed in temporal logic
— e.g. trigger — P.g999 [ F=20 deploy ]
— mix of exhaustive & numerical/quantitative reasoning
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- Trends and advances
— improvement in scalability to larger models
— increasingly expressive/powerful model classes
— from verification problems to control problems
— ever widening range of application domains




Stochastic games

- Verification of systems with

— competitive or collaborative behaviour between multiple
rational agents, possibly with differing/opposing goals

— e.g. security protocols, algorithms for distributed consensus,
energy management, autonomous robotics, auctions

- Goals

— synthesise (single or joint) strategies that are robust in
adversarial settings and stochastic environments

— analyse the effectiveness of incentive/reward schemes
designed for robustness against selfish behaviour

- Natural to take a game-theoretic approach
— we use stochastic multi-player games
— probabilistic model checking using PRISM-games




Overview

Strategy synthesis

— Markov decision processes (MDPs)
— example: robot navigation
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¥ - Stochastic multi-player games (SMGs)

— rPATL model checking and strategy synthesis
— example: energy management

— Concurrent stochastic games (CSGs)
— example: investor models

Al

Equilibria-based properties
— (social welfare) Nash equilibria
— example: multi-robot coordination



Verification vs. Strategy synthesis

Markov decision processes (MDPs)

— models nondeterministic (actions, strategies)
and probabilistic behaviour

— strategies (policies): randomisation, memory, ...

1. Verification

— quantify over all possible
strategies (i.e. best/worst-case)

— P_o 1 [ F err] : “for all strategies, the 0.3
probability of an error occurring is < 0.1” ' {err}

2. Strategy synthesis

— generation of "correct-by-construction” controllers

— P_o1 [ F err] : "does there exist a strategy for which the
probability of an error occurring is < 0.1?”



Strategy synthesis for MDPs

- Core property: probabilistic reachability

— solvable with value iteration, policy iteration,
linear programming, interval iteration, ...

- Wide range of useful extensions

— expected costs/rewards
— linear temporal logic (LTL)

— multi-objective model checking
— real-time (PTAS)
— partial observability (POMDPs) ¢ —#»—
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— dynamic power management, robot navigation,
UUV mission planning, task scheduling
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Application: Robot navigation

- Robot navigation planning: [IROS'14,JCAI'15,ICAPS’17,JRR’18]

G4S Technology, Tewkesbury (STRANDS)

learnt MDP models navigation
through uncertain environment

co-safe LTL used to formally specify
tasks to be executed by robot

finite—memory strategy synthesis
to construct plans/controllers

ROS module based on PRISM

100s of hrs of autonomous deployment

Task Map
cheduler enerator

Navigation planner




Application: Robot navigation

Navigation planning MDPs
— expected timed on edges + probabilities
— learnt using data from previous explorations

LTL-based task specification

— expected time to satisfy (one or more) co-safe LTL formulas
— e.g. Rpin=2 [ 7zones U (room; A (F room4 A F rooms) ]

Benefits of the approach
— LTL: flexible, unambiguous property specification
— efficient, fully-automated techniques
— generates meaningful guarantees on performance

. ¢.f. ad-hoc reward structures, e.g. with discounting
. QoS guarantees fed into task planning



Overview
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: - Stochastic multi-player games (SMGs)

— rPATL model checking and strategy synthesis
— example: energy management

Al
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Stochastic multi-player games

- Stochastic multi-player game (SMGs)
— nondeterminism + probability + multiple players
— for now: turn-based (players control states)

— applications: e.g. security (system vs. attacker),
controller synthesis (controller vs. environment)

- A (turn-based) SMG is a tuple
(N, S, (S)icn, A, 0, L) where:

— N is a set of n players

— Sis a (finite) set of states

— (Si)ien is a partition of S

— Ais a set of action labels

— 0 :S X A — Dist(S) is a (partial)
transition probability function

— L:S — 247is a labelling function




Strategies, probabilities & rewards

- Strategy for player i: resolves choices in S; states

— based on execution history, i.e. g; : (SA)*S; — Dist(A)

— can be: deterministic (pure), randomised,
memoryless, finite—-memory, ...

— 2, denotes the set of all strategies for player i

- Strategy profile: strategies for all players: o=(g,,...,0,)

— probability measure Pr,° over (infinite) paths from state s
— expectation E.9(X) of random variable X over Pr.,°

Rewards (or costs)
— hon-negative integers on states/transitions

— e.g. elapsed time, energy consumption,
number of packets lost, net profit, ...

12



Property specification: rPATL

rPATL (reward probabilistic alternating temporal logic)

— branching-time temporal logic for SMGs

- CTL, extended with:

— coalition operator ((C)) of ATL
— probabilistic operator P of PCTL
— generalised (expected) reward operator R from PRISM

In short:
— zero-sum, probabilistic reachability + expected total reward

Example:

— (({1,3}) P<o.o1 [ F='%error ]

— “players 1 and 3 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.01,

regardless of the strategies of other players”
13



rPATL syntax/semantics

- Syntax:

¢:=true|al —p | A | {(C)HP W] | (CHR . [P]
=X |dUkd|dUD
p:i=I1=¢|Csk|Fo

- where:

— a€AP is an atomic proposition, CSN is a coalition of players,
< € {<,<,>,2},q € [0,1]nQ, x € Q.p, k €N
ris a reward structure

- Semantics:

- e.g. P operator: s = ((C))P.,[W] iff:

— “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path
formula P being true from state s satisfies > q”

14



rPATL and beyond

- Quantitative (numerical) properties:

— ({{1})) Pmax=2[ F error ], i.e. SUPg, ez, infc,zez2 Pr.o1.92 (F error)

— “what is the maximum probability of reaching an error state
that player 1 can guarantee?” (against player 2)

Nesting (and n>2 players)
— players: sensor;, sensor,, repairer
— {(sensor;)) P.go1l F (—{({repairer)) P-g.os5[ F “Operational”]) ]

- Generalised reward operators [TACAS’12, FMSD’1 3]
— ((CY)R "k [F*d] where * € {o0,c,0}
— FO9 is tricky: needs finite—-memory strategies

- And more...

— rPATL*, reward-bounded [FMSD], exact bounds [CONCUR’12]
— multi-objective model checking [QEST 13, TACAS15,I&C’17] 15



Model checking rPATL

Main task: checking individual P and R operators
— reduction to solution of zero-sum stochastic 2-player game
— (probabilistic reachability + expected total reward)
— e.d. (O)P=4[W] & sups cs info s, Preo192(Y) = q
— complexity: NP N coNP (without any R[F°] operators)
— complexity for full logic: NEXP n coNEXP (due to R[F9] op.)

In practice though:
— (usual approach taken in probabilistic model checking tools)
— value iteration (evaluation of numerical fixed points)
— and more: graph-algorithms, sequences of fixed points, ...

16



Example: Probabilistic reachability

- E.g. ((C))P.[ F & ] : max/min reachability probabilities
— compute supg e, infgzez2 Pr.91.92 (F ) for all states s
— deterministic memoryless strategies suffice

- Value p(s) for state s is least fixed point of:

—

] if seSat(d)
P(S) = 7 MaXeae Zses 0(5,8)(s7)-p(s’)  if s€Sy\Sat(d)
| MiNgeae) 2ses 0(5,a)(s7)-p(s’)  if se€S,\Sat(d)

- Computation (value iteration):

— start from zero, propagate probabilities backwards
— guaranteed convergence; apply “usual’ termination criteria

17



PRISM-games

PRISM-games: www.prismmodelchecker.org/games
— extension of PRISM modelling language (see later)
— implementation in explicit engine Y
— prototype symbolic (MTBDD) version also available

Example application domains
— security: attack-defence trees; DNS bandwidth amplification
— self-adaptive software architectures
— autonomous urban driving
— human-in-the-loop UAV mission planning
— collective decision making and team formation protocols
— energy management protocols

18


http://www.prismmodelchecker.org/games

Application: Energy management

- Energy management protocol for Microgrid
— randomised demand management protocol

— random back-off when demand is high

- Original analysis [Hildmann/Saffre'1 1]

— protocol increases "value" for clients
— simulation-based, clients are honest

- Our analysis
— stochastic multi-player game model
— clients can cheat (and cooperate)
— model checking: PRISM-games

— exposes protocol weakness (incentive -
for clients to act selfishly D e et e day ey

— propose/verify simple fix using penalties
19




Results: Competitive behaviour

- Expected total value V per household
— in rPATL: ((C))R"Cphax—> [FO time=max time] / |C]
— where rc is combined rewards for coalition C
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Results: Competitive behaviour

.+ Algorithm fix: simple punishment mechanism
— distribution manager can cancel some loads exceeding ¢,
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Overview

with 14

— Concurrent stochastic games (CSGs)
— example: investor models

22



Concurrent stochastic games

Concurrent stochastic games (CSGs)
— players choose actions concurrently

— jointly determines (probabilistic) successor state
— generalises turn-based stochastic games

Key motivation:

— more realistic model of components operating concurrently,
making action choices without knowledge of others

Formally
— set of n players N, state space S, actions A; for player i
— transition probability function & : SXA — Dist(S)
— where A = (A;U{L}) X ... X (ALU{L}
— strategies o; : FPath — Dist(A)), strategy profiles o=(o,,...,0,)
— probability measure Pr.9, expectations E;°(X)
23




Example CSG: medium access control

Example CSG: medium access control

— 2 players (senders on a shared channel)

— CSG states: (energy,/sent;, energy,/sent,)
— actions = t (transmit), w (wait) (w,w)

— transmission costs 1 unit of
energy and is only possible
if energy is positive

— q, = probability of
transmission success
if 2 messages sent
simultaneously

(probabilistic extension of
[Brenguier’13]) 24




rPATL for CSGs

- We can use the same logic rPATL as for SMGs

Examples for medium access control game:

— (1)) Po; [ F sent; ] - can player 1 ensure that it
eventually transmits with probability 17

— (1)) Pmax=2 [ —sent, U sent; ] - what is the maximum
probability user 1 can ensure of being the first to transmit,
regardless of the behaviour of user 2?

25



rPATL model checking for CSGs

- Same overall model checking algorithm [QEST’18]
— key ingredients are solution of (zero-sum) 2-player CSGs

E.g. ((C))P-4[ F & ] : max/min reachability probabilities
— compute SUpPg e, inf(,zez2 Pr.91.92 (F ¢) for all states s
— note that optimal strategies are now randomised
— solution of the 2-player CSG is in PSPACE
— we again use a value iteration based approach

- Value p(s) for state s is least fixed point of:

1 if seSat(¢p)
P() = 1 val@) if ses\Sat(d)

where:

— Z is the matrix game with zj; = g5 8(s,(a;,b))(s’) - p(s’)

— so each iteration requires solution of a matrix game for each

state (LP problem of size |A|, where A = action set) 26



Matrix games

Matrix games
— finite, one-shot, 2-player, zero-sum games

— utility function u;: A; XA, — R for each player i
— represented by matrix Z where z; = u;(a;,b) = -uy(a;,b)

_ r S
Example: rock-paper-scissors r /0 _p] 1
— rock > scissors, paper > rock, Z=p| 1 0 -1
scissors > paper, otherwise draw s \—1] 1 0

- Optimal (player 1) strategy via LP solution (minimax):
— compute value val(Z): maximise value v subject to:

— V < Xp—Xs
V < X=Xy,
V < Xg—X, Optimal strategy (randomised):
Xr+Xp+XS=] (anp,xs) = (%,%,%5)

Xr=0 Xp=0 Xs=0
27




CSGs in PRISM-games

- CSG model checking implemented in PRISM-games 3.0

Extension of PRISM modelling language
— (see next slide)

Explicit engine implementation
— plus LPsolve library for matrix games LP solution
— this is the main bottleneck
— experiments with CSGs up to ~3 million states

- Case studies:

— future markets investor, trust models for user-centric
networks, intrusion detection policies, jamming radio systems

28



CSGs in PRISM-games 3.0

csg
player p1 userl endplayer Extended version
player p2 user2 endplayer of medium access
// Users (senders) control example

module user]
s1:[0..1]init O; // has player ] sent?
el : [0..emax] init emax; // energy level of player 1
[wl] true -> (s1'=0); // wait
[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule
module user2 = userl [s1=s2, el=e2, wl=w2, t1=t2 ] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule




CSGs in PRISM-games 3.0

csg Each player
player p1 userl endplayer < comprises one
player p2 user2 endplayer or more modules

// Users (senders)

module user]
s1:[0..1]init O; // has player ] sent?
el : [0..emax] jni

Players have
distinct actions,
executed
energy level of player 1 simultaneously

[wW1] true -> (s1'=0); // wait
[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule

module user2 = userl [s1=s2, el=e2, wl=w2, t1=t2 ] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule




CSGs in PRISM-games 3.0

csg

player p1 user1 endplayer
player p2 user2 endplayer
// Users (senders)

module user] "
” Additional
s1 :[0..1]init O; // has player 1 sent? (deterministic)

el : [0..emax] init emax; // energy level of player 1 modules not

[w1] true -> (s1'=0); // wait attached to

[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit any player
endmodule

module user2 = user1 [s1=s2, el=e2,wl= t1=t2 ] endmodule

// Channel. used to compute joint ability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true —-> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule




CSGs in PRISM-games 3.0

= Variable updates
player p1 user] endplayer can refer to other
player p2 user2 endplayer variables updated
// Users (senders) simultaneously

module user]
s1:[0..1]init O; // has player ] sent?
el : [0..emax] init emax; // energyfevel of player 1
[wW1] true -> (s1'=0); // wait
[t1] e1>0-> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule

Action lists
used to specify
synchronisation

module user2 = user] [s1=s2, el =e2, wl=w2, _+=t2 ] endmodule

// Channel: used to compute joint probatility distribution for transmission failure
module channel

c : bool init fal 7/ Is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit

endmodule




Application: Future markets investor

Model of interactions between: N
— stock market, evolves stochastically .
— two investors i, i, decide when to invest

— market decides whether to bar investors | M

Modelled as a 3-player CSG A
— extends simpler model originally from [Mclver/Morgan’07]

— investing/barring decisions are simultaneous
— profit reduced for simultaneous investments
— market cannot observe investors’ decisions

- Analysed with rPATL model checking & strategy synthesis

— distinct profit models considered: ‘normal market’, ‘later
cash-ins’ and ‘later cash-ins with fluctuation’

— comparison between TSG and CSG models 33




Application: Future markets investor

- Example rPATL query:
profit;

— ((investorj,investor;)) Rmax=s’ [ F finished; ;]
— i.e. maximising joint profit

with 14

- Results: with (left) and without (right) fluctuations

: — optimal (randomised) investment strategies synthesised

— CSG vyields more realistic results (market has less power
due to limited observation of investor strategies)
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- Equilibria-based properties
— (social welfare) Nash equilibria
— example: multi-robot coordination
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Nash equilibria

Now consider distinct objectives X; for each player i
— no longer restricted to zero sum goals

Nash equilibria (NE)
— no incentive for any player to unilaterally change strategy

— a strategy profile o=(o; _,0,) for a CSG is an
e-Nash equilibrium for state s and objectives X;,..., X, iff:

— E9(X;) = sup{ E° (X)) | o’=0_l0i'] and o’ 3, } - € for all i
— €-NE (but not 0-NE) guaranteed to exist for CSGs

- Social welfare Nash equilibria (SWNE)

— NE which maximise sum E.°(X;) + ... E9(X,)
— i.e., optimise combined goal

36



Example

Example CSG: medium access control

If objective X; = probability for user i to send successfully:

— 2 SWNEs when one user waits for
the other to transmit and then transmits

If objective X; =probability of user i being first to transmit:
— only 1 SWNE: both immediately try to transmit 37




rPATL + Nash operator

- Extension of rPATL for Nash equilibria [FM’19]
=truelal -dldAP|
(CHPglW] | {CCNR i [P] | ({C:C7)) maxsax [6]
0 ::= P[W]+P[y] | R'[p]+R"[p]
Yiu=Xob|dUkd|[dUd
p:i=I1=¢|Csk|Fo
- where:

— a€AP is an atomic proposition, CSN is a coalition of players
and C=N\C,« € {<,<,>,>}, g € [0,1]nQ, x € Q.g, k €N

r is a reward structure

- Semantics:

— ((C:C"))maxwax [0] is satisfied if there exist strategies for all
players that form a SWNE between coalitions C and C'(=N\C),
and under which the sum of the two objectives in 6 is >ix




Model checking for extended rPATL

Key ingredient is now:
— solution of SWNEs for bimatrix games
— (basic problem is EXPTIME)

— we adapt known approach using labelled polytopes,
and implement using an encoding to SMT

- Two types of model checking operator
— bounded: backwards induction
— unbounded: value iteration, e.g.:

[ (L)
(1, Panix(F $?)) else if s € Sat(p!)
Vge (s,0,n) = < (Pm,ax( '), 1) else if s € Sat(¢?)
(0,0) else if n=0
val (21 ,Zy)  otherwise

if s € Sat(¢r) N Sat(p?)

\

— where Z; and Z, encode matrix games similar to before 39




PRISM-games support

Implementation in PRISM-games
— extends CSG rPATL model checking implementation
— bimatrix games solved using Z3/Yices encoding
— optimised filtering of dominated strategies
— scales up to CSGs with ~2 million states

- Applications

— robot navigation in a grid, medium access control,
Aloha communication protocol, power control

— SWNE strategies outperform those found with rPATL
— €-Nash equilibria found typically have €=0

40




Example: multi-robot coordination

2 robots navigating an | x | grid s
— start at opposite corners, goals are -
to navigate to opposite corners 1-¢ | 479 ¢
2

in chosen direction fails with probability g

— obstacles modelled stochastically: navigation 5’

- We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k

— ((robot1:robot2))max=? (P [ Fsk goal; ]+P [F <k goal,])

1

Results (10 x 10 grid)

— better performance obtained
than using zero-sum methods, § 0.6
i.e., optimising for robot 1,
then robot 2

0.8

s probability

0.4

Average succ
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Conclusions

Probabilistic model checking & PRISM
— verification & strategy synthesis

Stochastic multi-player games
— competitive/collaborative behaviour + stochasticity
— rPATL model checking & strategy synthesis

— concurrent stochastic games: more realistic models of
competing stochastic components

— Nash equilibria: beyond zero sum properties

Challenges & directions

— partial information/observability & greater efficiency
— scalability, e.g. symbolic methods, abstraction
— managing model uncertainty + integration with learning

42



