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Probabilistic model checking

• Probabilistic model checking
− formal construction/analysis of probabilistic models
− “correctness” properties expressed in temporal logic
− e.g. trigger → P≥0.999 [ F≤20 deploy ]
− mix of exhaustive & numerical/quantitative reasoning

• Trends and advances
− improvement in scalability to larger models
− increasingly expressive/powerful model classes
− from verification problems to control problems
− ever widening range of application domains
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Stochastic games

• Verification of systems with 
− competitive or collaborative behaviour between multiple 

rational agents, possibly with differing/opposing goals
− e.g. security protocols, algorithms for distributed consensus, 

energy management, autonomous robotics, auctions

• Goals
− synthesise (single or joint) strategies that are robust in 

adversarial settings and stochastic environments
− analyse the effectiveness of incentive/reward schemes 

designed for robustness against selfish behaviour

• Natural to take a game-theoretic approach
− we use stochastic multi-player games
− probabilistic model checking using PRISM-games
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Overview

• Strategy synthesis
− Markov decision processes (MDPs)
− example: robot navigation

• Stochastic multi-player games (SMGs)
− rPATL model checking and strategy synthesis
− example: energy management

− Concurrent stochastic games (CSGs)
− example: investor models

• Equilibria-based properties
− (social welfare) Nash equilibria
− example: multi-robot coordination
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Verification vs. Strategy synthesis

• Markov decision processes (MDPs)
− models nondeterministic (actions, strategies)

and probabilistic behaviour
− strategies (policies): randomisation, memory, …

• 1. Verification
− quantify over all possible

strategies (i.e. best/worst-case)
− P≤0.1 [ F err ] : �for all strategies, the

probability of an error occurring is ≤ 0.1�

• 2. Strategy synthesis
− generation of "correct-by-construction" controllers
− P≤0.1 [ F err ] : "does there exist a strategy for which the 

probability of an error occurring is ≤ 0.1?�
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Strategy synthesis for MDPs

• Core property: probabilistic reachability
− solvable with value iteration, policy iteration,

linear programming, interval iteration, …

• Wide range of useful extensions
− expected costs/rewards
− linear temporal logic (LTL)
− multi-objective model checking
− real-time (PTAs)
− partial observability (POMDPs)

• Applications
− dynamic power management, robot navigation,

UUV mission planning, task scheduling
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are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4
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(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].
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San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)



8

Application: Robot navigation

• Robot navigation planning: [IROS'14,IJCAI’15,ICAPS’17,IJRR’18]

− learnt MDP models navigation
through uncertain environment

− co-safe LTL used to formally specify
tasks to be executed by robot

− finite-memory strategy synthesis
to construct plans/controllers

− ROS module based on PRISM
− 100s of hrs of autonomous deployment

Task
scheduler

Map
generator

Motion planner

Navigation planner

G4S Technology, Tewkesbury (STRANDS)
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Application: Robot navigation

• Navigation planning MDPs
− expected timed on edges + probabilities
− learnt using data from previous explorations

• LTL-based task specification
− expected time to satisfy (one or more) co-safe LTL formulas
− e.g. Rmin=? [ ¬zone3 U (room1 ∧ (F room4 ∧ F room5)  ]

• Benefits of the approach
− LTL: flexible, unambiguous property specification
− efficient, fully-automated techniques
− generates meaningful guarantees on performance

• c.f. ad-hoc reward structures, e.g. with discounting
• QoS guarantees fed into task planning

Fig. 1. The robot in its environment, and the map and navigation graph used in the application example. Blue (bi-directional) edges represent possible
navigation actions between states.

where each state is labelled by an atomic proposition vi,
which corresponds to the navigation node that the state is
representing. We also take into account possible failures in
navigation. In this example, we consider that a failure occurs
when the robot fails to reach the target node of the navigation
action, for example due to an obstacle, and ends in a different
node. We model these failures by adding uncertainty to the
outcome of executing actions from some states. For example,
action goto11 from state v13 has probability 0.85 of ending
in state v11, 0.1 of ending in state v12 and 0.05 of finishing
in state v14. In order to define a cost function for the MDP,
we used the Euclidean distance between nodes.

For the execution of the policies obtained from our
approach, we used the Markov Decision Making library2

for ROS. In Fig. 2, we depict different moments in the
execution of our algorithms for 3 co-safe LTL tasks specified
dynamically during execution. The robot starts in node v0
with the task “visit v3 and v18, in any order”, i.e., F v3^F v18.
Algorithm 1 creates a finite-memory policy for this task and
the robot executes it, navigating towards v3 first, as depicted
in Fig. 2(a). Note that we have an optimal action defined for
each state, thus the choice of first node to be visited depends
on the current state of the robot. This means that even if there
are action failures, there is no need for replanning. When the
robot reaches v3, the “mode” of the policy changes, and the
optimal actions for each state are now directed towards node
v18, as seen in Fig. 2(b). Recall that the “mode” changes are
due to a change of one of the DFA state components in the
evolution of the MDP-DFA product.

While the robot is executing action goto11 from state v9,
we add a new task: “visit v9 and afterwards visit v14”, i.e.,
F(v9 ^ F v14)3. The dynamic replanning is executed, and a
new policy is generated. This policy takes into account that
we still need to visit v18, but also incorporates the fact that
v9 needs to be visited. Since the robot is closer to v9, it turns
back to visit it. This is seen in Fig. 2(c). After v9 is visited,
the policy changes “mode” again, now taking into account

2https://github.com/larsys/markov_decision_making
3One could also make sure that v14 cannot be visited before state v9 by

changing the specification to (¬v14 U v9) ^ F v14.

the fact that v14 needs to be visited after v9, and that v18 is
still to be visited. The shortest path at this moment is moving
towards node v14, so the robot moves towards it (Fig. 2(d)).

When the robot reaches v14, we add a new task: “visit
v0, avoiding v8”, i.e., ¬v8 U v0. In practical terms, such
specifications, where given nodes are to be avoided, can be
used when it is known that a given area of the environment
is not safe, for example due to the presence of a crowd. If
this information is known beforehand it can be added to the
specification in order to prevent navigation problems that
might occur. With this new specification, a new policy is
computed. Node v0 becomes a node to be visited, and node
v8 a node to be avoided. However, given that the current
position of the robot is closer to v18, the policy drives the
robot towards it, as seen in Fig. 2(e).

Finally, when the robot reaches v18 the policy changes
“mode”, and starts driving the robot towards v0. However,
when trying to execute action goto11 from v13, an obstacle
makes the robot’s continuous navigation end on v12 instead.
Given that the optimal action from v12 is goto10, the robot
switches from its initial most expected trajectory (through
v11) to a new one, which is the optimal given the navigation
failure. After that, given that v8 is a forbidden node, the
policy makes the robot turn and avoid it, finally getting to
v0 and finishing execution, as all the LTL tasks have been
completed (Fig. 2(f)).

In Table I, we show, for the addition of each task described
above, the number of states and transitions of the current
product MDP, along with the computation time of the new
optimal policy4. We see that, for this small example, the
computation times are negligible. Furthermore, keeping track
of the current state of execution and only taking into account
the reachable fragment from the current state of the product
MDP when replanning keeps the size of the structures from
increasing greatly. To illustrate this fact, we also show the
size and computation time for the case where the initial task
is the conjunction of all 3 tasks used in the example.

4This includes building the DFA, building the product MDP, and finding
the optimal policy. All computations were performed on an Intel R� CoreTM

i7 quad-core CPU at 2.20GHz and 8GB of RAM.
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Overview

• Strategy synthesis
− Markov decision processes (MDPs)
− example: robot navigation

• Stochastic multi-player games (SMGs)
− rPATL model checking and strategy synthesis
− example: energy management

− Concurrent stochastic games (CSGs)
− example: investor models

• Equilibria-based properties
− (social welfare) Nash equilibria
− example: multi-robot coordination
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Stochastic multi-player games

• Stochastic multi-player game (SMGs) 
− nondeterminism + probability + multiple players
− for now: turn-based (players control states)
− applications: e.g. security (system vs. attacker),

controller synthesis (controller vs. environment)

• A (turn-based) SMG is a tuple
(N, S, ⟨Si⟩i∈N, A, δ, L) where:

− N is a set of n players
− S is a (finite) set of states
− ⟨Si⟩i∈N is a partition of S
− A is a set of action labels
− δ : S × A → Dist(S) is a (partial)

transition probability function
− L : S → 2AP is a labelling function
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Strategies, probabilities & rewards

• Strategy for player i: resolves choices in Si states
− based on execution history, i.e. σi : (SA)*Si → Dist(A)
− can be: deterministic (pure), randomised,

memoryless, finite-memory, …
− Σi denotes the set of all strategies for player i

• Strategy profile: strategies for all players: σ=(σ1,…,σn)
− probability measure Prs

σ over (infinite) paths from state s
− expectation Es

σ(X) of random variable X over Prs
σ

• Rewards (or costs)
− non-negative integers on states/transitions
− e.g. elapsed time, energy consumption,

number of packets lost, net profit, …
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Property specification: rPATL

• rPATL (reward probabilistic alternating temporal logic)

− branching-time temporal logic for SMGs

• CTL, extended with:
− coalition operator ⟨⟨C⟩⟩ of ATL
− probabilistic operator P of PCTL
− generalised (expected) reward operator R from PRISM

• In short:
− zero-sum, probabilistic reachability + expected total reward

• Example:
− ⟨⟨{1,3}⟩⟩ P<0.01 [ F≤10 error ]
− “players 1 and 3 have a strategy to ensure that the probability 

of an error occurring within 10 steps is less than 0.01, 
regardless of the strategies of other players”
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rPATL syntax/semantics

• Syntax:
φ ::= true | a | ¬φ | φ ∧ φ | ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈x [ρ]
ψ ::= X φ | φ U≤k φ | φ U φ
ρ ::= I=k | C≤k | F φ

• where:
− a∈AP is an atomic proposition, C⊆N is a coalition of players,
⋈ ∈ {≤,<,>,≥}, q ∈ [0,1]∩ℚ, x ∈ ℚ≥0, k ∈ ℕ
r is a reward structure

• Semantics:
• e.g. P operator: s ⊨ ⟨⟨C⟩⟩P⋈q[ψ] iff:

− “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path 
formula ψ being true from state s satisfies ⋈ q” 
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rPATL and beyond

• Quantitative (numerical) properties:
− ⟨⟨{1}⟩⟩ Pmax=? [ F error ], i.e. supσ1∈Σ1

infσ2∈Σ2
Prsσ1,σ2 (F error)

− “what is the maximum probability of reaching an error state 
that player 1 can guarantee?” (against player 2)

• Nesting (and n>2 players)
− players: sensor1, sensor2, repairer
− ⟨⟨sensor1⟩⟩ P<0.01[ F (¬⟨⟨repairer⟩⟩ P≥0.95[ F “operational” ] ) ]

• Generalised reward operators [TACAS’12, FMSD’13]
− ⟨⟨C⟩⟩Rr⋈x [F⋆φ] where ⋆ ∈ {∞,c,0}
− F0 is tricky: needs finite-memory strategies

• And more…
− rPATL*, reward-bounded [FMSD], exact bounds [CONCUR’12]
− multi-objective model checking [QEST’13,TACAS15,I&C’17]
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Model checking rPATL

• Main task: checking individual P and R operators
− reduction to solution of zero-sum stochastic 2-player game
− (probabilistic reachability + expected total reward)
− e.g. ⟨⟨C⟩⟩P≥q[ψ]  ⇔  supσ1∈Σ1

infσ2∈Σ2
Prs

σ1,σ2 (ψ) ≥ q
− complexity: NP ∩ coNP (without any R[F0] operators)
− complexity for full logic: NEXP ∩ coNEXP (due to R[F0] op.)

• In practice though:
− (usual approach taken in probabilistic model checking tools)
− value iteration (evaluation of numerical fixed points)
− and more: graph-algorithms, sequences of fixed points, …
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Example: Probabilistic reachability

• E.g. ⟨⟨C⟩⟩P≥q[ F φ ] : max/min reachability probabilities
− compute supσ1∈Σ1

infσ2∈Σ2
Prs

σ1,σ2 (F φ) for all states s
− deterministic memoryless strategies suffice

• Value p(s) for state s is least fixed point of:

• Computation (value iteration):
− start from zero, propagate probabilities backwards
− guaranteed convergence; apply “usual” termination criteria

p(s) = 
1 if s∈Sat(φ)
maxa∈A(s) Σs’∈S δ(s,a)(s’)·p(s’) if s∈S1\Sat(φ)
mina∈A(s) Σs’∈S δ(s,a)(s’)·p(s’) if s∈S2\Sat(φ)
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PRISM-games

• PRISM-games: www.prismmodelchecker.org/games
− extension of PRISM modelling language (see later)
− implementation in explicit engine
− prototype symbolic (MTBDD) version also available

• Example application domains
− security: attack-defence trees; DNS bandwidth amplification
− self-adaptive software architectures
− autonomous urban driving
− human-in-the-loop UAV mission planning
− collective decision making and team formation protocols
− energy management protocols

http://www.prismmodelchecker.org/games
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Application: Energy management

• Energy management protocol for Microgrid
− randomised demand management protocol
− random back-off when demand is high

• Original analysis [Hildmann/Saffre'11]
− protocol increases "value" for clients
− simulation-based, clients are honest

• Our analysis
− stochastic multi-player game model
− clients can cheat (and cooperate)
− model checking: PRISM-games
− exposes protocol weakness (incentive

for clients to act selfishly
− propose/verify simple fix using penalties
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Results: Competitive behaviour

• Expected total value V per household
− in rPATL: ⟨⟨C⟩⟩RrCmax=? [F0 time=max time] / |C|
− where rC is combined rewards for coalition C

All follow alg.

No use of alg.

Deviations of
varying size

Strong 
incentive to 
deviate
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Results: Competitive behaviour

• Algorithm fix: simple punishment mechanism
− distribution manager can cancel some loads exceeding clim

All follow alg.

Deviations of
varying size

Better to 
collaborate
(with all)
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Overview

• Strategy synthesis
− Markov decision processes (MDPs)
− example: robot navigation

• Stochastic multi-player games (SMGs)
− rPATL model checking and strategy synthesis
− example: energy management

− Concurrent stochastic games (CSGs)
− example: investor models

• Equilibria-based properties
− (social welfare) Nash equilibria
− example: multi-robot coordination
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Concurrent stochastic games

• Concurrent stochastic games (CSGs)
− players choose actions concurrently
− jointly determines (probabilistic) successor state
− generalises turn-based stochastic games

• Key motivation:
− more realistic model of components operating concurrently, 

making action choices without knowledge of others

• Formally
− set of n players N, state space S, actions Ai for player i
− transition probability function δ : S×A → Dist(S)
− where A = (A1∪{⊥}) × … × (An∪{⊥})
− strategies σi : FPath → Dist(Ai), strategy profiles σ=(σ1,…,σn)
− probability measure Prs

σ, expectations Es
σ(X)
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Example CSG: medium access control

• Example CSG: medium access control

− 2 players (senders on a shared channel)

− CSG states:             (energy1/sent1, energy2/sent2)

− actions = t (transmit), w (wait)

− transmission costs 1 unit of
energy and is only possible
if energy is positive

− q2 = probability of
transmission success
if 2 messages sent
simultaneously

e1s1
e2s2

10
10

{sent1,
sent2}

1-q2

01
10

00
00

10
01

01
01

(w,w)

(t,w)

(t,t)

(w,t)

(t,w)

(w,w)

q2

(w,t)

(w,w)

(w,w)

{sent2}

{sent1}

(w,w)

(probabilistic extension of
[Brenguier’13])
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rPATL for CSGs

• We can use the same logic rPATL as for SMGs

• Examples for medium access control game:
− ⟨⟨1⟩⟩ P≥1 [ F sent1 ] – can player 1 ensure that it

eventually transmits with probability 1?
− ⟨⟨1⟩⟩ Pmax=? [ ¬sent2 U sent1 ] - what is the maximum 

probability user 1 can ensure of being the first to transmit, 
regardless of the behaviour of user 2? 
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rPATL model checking for CSGs

• Same overall model checking algorithm [QEST’18]

− key ingredients are solution of (zero-sum) 2-player CSGs

• E.g. ⟨⟨C⟩⟩P≥q[ F φ ] : max/min reachability probabilities
− compute supσ1∈Σ1

infσ2∈Σ2
Prs

σ1,σ2 (F φ) for all states s
− note that optimal strategies are now randomised
− solution of the 2-player CSG is in PSPACE
− we again use a value iteration based approach

• Value p(s) for state s is least fixed point of:

− Z is the matrix game with zij = Σs’∈S δ(s,(ai,bj))(s’)·p(s’)
− so each iteration requires solution of a matrix game for each 

state (LP problem of size |A|, where A = action set)

p(s) = 
1 if s∈Sat(φ)
val(Z) if s∈S\Sat(φ)

where:
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Matrix games

• Matrix games
− finite, one-shot, 2-player, zero-sum games
− utility function ui : A1×A2 → ℝ for each player i
− represented by matrix Z where zij = u1(ai,bj) = -u2(ai,bj)

• Example: rock-paper-scissors
− rock > scissors, paper > rock,

scissors > paper, otherwise draw

• Optimal (player 1) strategy via LP solution (minimax):
− compute value val(Z): maximise value v subject to:
− v ≤ xp-xs

v ≤ xs-xr,
v ≤ xs-xp
xr+xp+xs=1
xr≥0, xp≥0, xs≥0

r p s

Z =
r
p
s

0 −1 1
1 0 −1
−1 1 0

Optimal strategy (randomised):
(xr,xp,xs) = (⅓,⅓,⅓)
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CSGs in PRISM-games

• CSG model checking implemented in PRISM-games 3.0

• Extension of PRISM modelling language
− (see next slide)

• Explicit engine implementation
− plus LPsolve library for matrix games LP solution
− this is the main bottleneck
− experiments with CSGs up to ~3 million states

• Case studies:
− future markets investor, trust models for user-centric 

networks, intrusion detection policies, jamming radio systems 
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CSGs in PRISM-games 3.0

csg

player p1 user1 endplayer

player p2 user2 endplayer

// Users (senders)
module user1

s1 : [0..1] init 0; // has player 1 sent?
e1 : [0..emax] init emax; // energy level of player 1
[w1] true -> (s1'=0); // wait
[t1]  e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit

endmodule

module user2 = user1 [ s1=s2, e1=e2, w1=w2, t1=t2 ] endmodule

// Channel: used to compute joint probability distribution for transmission failure
module channel

c : bool init false; // is there a collision?
[t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
[w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
[t1,t2]  true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit

endmodule

Extended version
of medium access
control example
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CSGs in PRISM-games 3.0

Each player
comprises one

or more modules

csg

player p1 user1 endplayer

player p2 user2 endplayer

// Users (senders)
module user1

s1 : [0..1] init 0; // has player 1 sent?
e1 : [0..emax] init emax; // energy level of player 1
[w1] true -> (s1'=0); // wait
[t1]  e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit

endmodule

module user2 = user1 [ s1=s2, e1=e2, w1=w2, t1=t2 ] endmodule

// Channel: used to compute joint probability distribution for transmission failure
module channel

c : bool init false; // is there a collision?
[t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
[w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
[t1,t2]  true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit

endmodule

Players have
distinct actions,

executed
simultaneously
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CSGs in PRISM-games 3.0

csg

player p1 user1 endplayer

player p2 user2 endplayer

// Users (senders)
module user1

s1 : [0..1] init 0; // has player 1 sent?
e1 : [0..emax] init emax; // energy level of player 1
[w1] true -> (s1'=0); // wait
[t1]  e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit

endmodule

module user2 = user1 [ s1=s2, e1=e2, w1=w2, t1=t2 ] endmodule

// Channel: used to compute joint probability distribution for transmission failure
module channel

c : bool init false; // is there a collision?
[t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
[w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
[t1,t2]  true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit

endmodule

Additional
(deterministic) 
modules not
attached to
any player
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CSGs in PRISM-games 3.0

Variable updates
can refer to other
variables updated

simultaneously

Action lists
used to specify
synchronisation

csg

player p1 user1 endplayer

player p2 user2 endplayer

// Users (senders)
module user1

s1 : [0..1] init 0; // has player 1 sent?
e1 : [0..emax] init emax; // energy level of player 1
[w1] true -> (s1'=0); // wait
[t1]  e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit

endmodule

module user2 = user1 [ s1=s2, e1=e2, w1=w2, t1=t2 ] endmodule

// Channel: used to compute joint probability distribution for transmission failure
module channel

c : bool init false; // is there a collision?
[t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
[w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
[t1,t2]  true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit

endmodule
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Application: Future markets investor

• Model of interactions between:
− stock market, evolves stochastically
− two investors i1, i2 decide when to invest
− market decides whether to bar investors

• Modelled as a 3-player CSG
− extends simpler model originally from [McIver/Morgan’07]
− investing/barring decisions are simultaneous
− profit reduced for simultaneous investments
− market cannot observe investors’ decisions

• Analysed with rPATL model checking & strategy synthesis
− distinct profit models considered: ‘normal market’, ‘later 

cash-ins’ and ‘later cash-ins with fluctuation’
− comparison between TSG and CSG models
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Application: Future markets investor

• Example rPATL query:
− ⟨⟨investor1,investor2⟩⟩ Rmax=? [ F finished1,2 ]
− i.e. maximising joint profit

• Results: with (left) and without (right) fluctuations
− optimal (randomised) investment strategies synthesised
− CSG yields more realistic results (market has less power

due to limited observation of investor strategies)

profit1,2
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Overview

• Strategy synthesis
− Markov decision processes (MDPs)
− example: robot navigation

• Stochastic multi-player games (SMGs)
− rPATL model checking and strategy synthesis
− example: energy management

− Concurrent stochastic games (CSGs)
− example: investor models

• Equilibria-based properties
− (social welfare) Nash equilibria
− example: multi-robot coordination



36

Nash equilibria

• Now consider distinct objectives Xi for each player i
− no longer restricted to zero sum goals

• Nash equilibria (NE)
− no incentive for any player to unilaterally change strategy
− a strategy profile σ=(σ1,…,σn) for a CSG is an
ε-Nash equilibrium for state s and objectives X1,…,Xn iff:

− Es
σ (Xi) ≥ sup { Es

σ’ (Xi) | σ’=σ-i[σi’] and σi’∈ Σi } – ε for all i
− ε-NE (but not 0-NE) guaranteed to exist for CSGs

• Social welfare Nash equilibria (SWNE)
− NE which maximise sum Es

σ (X1) + … Es
σ (Xn)

− i.e., optimise combined goal



37

Example

• Example CSG: medium access control

• If objective Xi = probability for user i to send successfully:
− 2 SWNEs when one user waits for

the other to transmit and then transmits

• If objective Xi =probability of user i being first to transmit:
− only 1 SWNE: both immediately try to transmit

10
10

{sent1,
sent2}

1-q2

01
10

00
00

10
01

01
01

(w,w)

(t,w)

(t,t)

(w,t)

(t,w)

(w,w)

q2

(w,t)

(w,w)

(w,w)

{sent2}

{sent1}

(w,w)
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rPATL + Nash operator

• Extension of rPATL for Nash equilibria [FM’19]

φ ::= true | a | ¬φ | φ ∧ φ |
⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈x [ρ] | ⟨⟨C:C’⟩⟩max⋈x [θ]

θ ::= P[ψ]+P[ψ] | Rr[ρ]+Rr[ρ] 
ψ ::= X φ | φ U≤k φ | φ U φ
ρ ::= I=k | C≤k | F φ

• where:
− a∈AP is an atomic proposition, C⊆N is a coalition of players 

and C’=N\C,⋈ ∈ {≤,<,>,≥}, q ∈ [0,1]∩ℚ, x ∈ ℚ≥0, k ∈ ℕ
r is a reward structure

• Semantics:
− ⟨⟨C:C’⟩⟩max⋈x [θ] is satisfied if there exist strategies for all 

players that form a SWNE between coalitions C and C’(=N\C),
and under which the sum of the two objectives in θ is ⋈x
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Model checking for extended rPATL

• Key ingredient is now:
− solution of SWNEs for bimatrix games
− (basic problem is EXPTIME)
− we adapt known approach using labelled polytopes,

and implement using an encoding to SMT

• Two types of model checking operator
− bounded: backwards induction
− unbounded: value iteration, e.g.:

− where Z1 and Z2 encode matrix games similar to before
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PRISM-games support

• Implementation in PRISM-games
− extends CSG rPATL model checking implementation
− bimatrix games solved using Z3/Yices encoding
− optimised filtering of dominated strategies
− scales up to CSGs with ~2 million states

• Applications
− robot navigation in a grid, medium access control,

Aloha communication protocol, power control 
− SWNE strategies outperform those found with rPATL
− ε-Nash equilibria found typically have ε=0
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Example: multi-robot coordination

• 2 robots navigating an l x l grid
− start at opposite corners, goals are

to navigate to opposite corners
− obstacles modelled stochastically: navigation

in chosen direction fails with probability q

• We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k
− ⟨⟨robot1:robot2⟩⟩max=? (P [ F≤k goal1 ]+P [F ≤k goal2])

• Results (10 x 10 grid)
− better performance obtained

than using zero-sum methods,
i.e., optimising for robot 1,
then robot 2
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Conclusions

• Probabilistic model checking & PRISM
− verification & strategy synthesis

• Stochastic multi-player games
− competitive/collaborative behaviour + stochasticity
− rPATL model checking & strategy synthesis
− concurrent stochastic games: more realistic models of 

competing stochastic components
− Nash equilibria: beyond zero sum properties

• Challenges & directions
− partial information/observability & greater efficiency
− scalability, e.g. symbolic methods, abstraction
− managing model uncertainty + integration with learning


