Verification and Strategy Synthesis
for Stochastic Games

Dave Parker

University of Birmingham

Radboud University, March 2020

Verification and Strategy Synthesis
for Stochastic Games

Dave Parker

University of Birmingham

Joint work with:

Gabriel Santos, Gethin Norman, Marta Kwiatkowska, ...

Probabilistic model checking

- Probabilistic model checking
— formal construction/analysis of probabilistic models

— “correctness” properties expressed in temporal logic
— e.g. trigger — P.g999 [F=20 deploy]
— mix of exhaustive & numerical/quantitative reasoning

“\\\\\\‘
ittt
2500 ‘“\\\\‘\‘“\\\\\)
o

- Trends and advances
— improvement in scalability to larger models
— increasingly expressive/powerful model classes
— from verification problems to control problems
— ever widening range of application domains

Stochastic games

- Verification of systems with

— competitive or collaborative behaviour between multiple
rational agents, possibly with differing/opposing goals

— e.g. security protocols, algorithms for distributed consensus,
energy management, autonomous robotics, auctions

- Goals

— synthesise (single or joint) strategies that are robust in
adversarial settings and stochastic environments

— analyse the effectiveness of incentive/reward schemes
designed for robustness against selfish behaviour

- Natural to take a game-theoretic approach
— we use stochastic multi-player games
— probabilistic model checking using PRISM-games

Overview

Strategy synthesis

— Markov decision processes (MDPs)
— example: robot navigation

with 14

¥ - Stochastic multi-player games (SMGs)

— rPATL model checking and strategy synthesis
— example: energy management

— Concurrent stochastic games (CSGs)
— example: investor models

Al

Equilibria-based properties
— (social welfare) Nash equilibria
— example: multi-robot coordination

Verification vs. Strategy synthesis

Markov decision processes (MDPs)

— models nondeterministic (actions, strategies)
and probabilistic behaviour

— strategies (policies): randomisation, memory, ...

1. Verification

— quantify over all possible
strategies (i.e. best/worst-case)

— P_o 1 [F err] : “for all strategies, the 0.3
probability of an error occurring is < 0.1” ' {err}

2. Strategy synthesis

— generation of "correct-by-construction” controllers

— P_o1 [F err] : "does there exist a strategy for which the
probability of an error occurring is < 0.1?”

Strategy synthesis for MDPs

- Core property: probabilistic reachability

— solvable with value iteration, policy iteration,
linear programming, interval iteration, ...

- Wide range of useful extensions

— expected costs/rewards
— linear temporal logic (LTL)

— multi-objective model checking
— real-time (PTAS)
— partial observability (POMDPs) ¢ —#»—

z = §
I s 1w we T T T 7
I 2 § &
Pl 5
. . a
8
o I I 1 1000
H
5
2 s00
=
i .

— dynamic power management, robot navigation,
UUV mission planning, task scheduling

wibkh L4

AN

Application: Robot navigation

- Robot navigation planning: [IROS'14,JCAI'15,ICAPS’17,JRR’18]

G4S Technology, Tewkesbury (STRANDS)

learnt MDP models navigation
through uncertain environment

co-safe LTL used to formally specify
tasks to be executed by robot

finite—memory strategy synthesis
to construct plans/controllers

ROS module based on PRISM

100s of hrs of autonomous deployment

Task Map
cheduler enerator

Navigation planner

Application: Robot navigation

Navigation planning MDPs
— expected timed on edges + probabilities
— learnt using data from previous explorations

LTL-based task specification

— expected time to satisfy (one or more) co-safe LTL formulas
— e.g. Rpin=2 [7zones U (room; A (F room4 A F rooms)]

Benefits of the approach
— LTL: flexible, unambiguous property specification
— efficient, fully-automated techniques
— generates meaningful guarantees on performance

. ¢.f. ad-hoc reward structures, e.g. with discounting
. QoS guarantees fed into task planning

Overview

with 14

: - Stochastic multi-player games (SMGs)

— rPATL model checking and strategy synthesis
— example: energy management

Al

10

Stochastic multi-player games

- Stochastic multi-player game (SMGs)
— nondeterminism + probability + multiple players
— for now: turn-based (players control states)

— applications: e.g. security (system vs. attacker),
controller synthesis (controller vs. environment)

- A (turn-based) SMG is a tuple
(N, S, (S)icn, A, 0, L) where:

— N is a set of n players

— Sis a (finite) set of states

— (Si)ien is a partition of S

— Ais a set of action labels

— 0 :S X A — Dist(S) is a (partial)
transition probability function

— L:S — 247is a labelling function

Strategies, probabilities & rewards

- Strategy for player i: resolves choices in S; states

— based on execution history, i.e. g; : (SA)*S; — Dist(A)

— can be: deterministic (pure), randomised,
memoryless, finite—-memory, ...

— 2, denotes the set of all strategies for player i

- Strategy profile: strategies for all players: o=(g,,...,0,)

— probability measure Pr,° over (infinite) paths from state s
— expectation E.9(X) of random variable X over Pr.,°

Rewards (or costs)
— hon-negative integers on states/transitions

— e.g. elapsed time, energy consumption,
number of packets lost, net profit, ...

12

Property specification: rPATL

rPATL (reward probabilistic alternating temporal logic)

— branching-time temporal logic for SMGs

- CTL, extended with:

— coalition operator ((C)) of ATL
— probabilistic operator P of PCTL
— generalised (expected) reward operator R from PRISM

In short:
— zero-sum, probabilistic reachability + expected total reward

Example:

— (({1,3}) P<o.o1 [F='%error]

— “players 1 and 3 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.01,

regardless of the strategies of other players”
13

rPATL syntax/semantics

- Syntax:

¢:=true|al —p | A | {(C)HP W] | (CHR . [P]
=X |dUkd|dUD
p:i=I1=¢|Csk|Fo

- where:

— a€AP is an atomic proposition, CSN is a coalition of players,
< € {<,<,>,2},q € [0,1]nQ, x € Q.p, k €N
ris a reward structure

- Semantics:

- e.g. P operator: s = ((C))P.,[W] iff:

— “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path
formula P being true from state s satisfies > q”

14

rPATL and beyond

- Quantitative (numerical) properties:

— ({{1})) Pmax=2[F error], i.e. SUPg, ez, infc,zez2 Pr.o1.92 (F error)

— “what is the maximum probability of reaching an error state
that player 1 can guarantee?” (against player 2)

Nesting (and n>2 players)
— players: sensor;, sensor,, repairer
— {(sensor;)) P.go1l F (—{({repairer)) P-g.os5[F “Operational”])]

- Generalised reward operators [TACAS’12, FMSD’1 3]
— ((CY)R "k [F*d] where * € {o0,c,0}
— FO9 is tricky: needs finite—-memory strategies

- And more...

— rPATL*, reward-bounded [FMSD], exact bounds [CONCUR’12]
— multi-objective model checking [QEST 13, TACAS15,I&C’17] 15

Model checking rPATL

Main task: checking individual P and R operators
— reduction to solution of zero-sum stochastic 2-player game
— (probabilistic reachability + expected total reward)
— e.d. (O)P=4[W] & sups cs info s, Preo192(Y) = q
— complexity: NP N coNP (without any R[F°] operators)
— complexity for full logic: NEXP n coNEXP (due to R[F9] op.)

In practice though:
— (usual approach taken in probabilistic model checking tools)
— value iteration (evaluation of numerical fixed points)
— and more: graph-algorithms, sequences of fixed points, ...

16

Example: Probabilistic reachability

- E.g. ((C))P.[F &] : max/min reachability probabilities
— compute supg e, infgzez2 Pr.91.92 (F) for all states s
— deterministic memoryless strategies suffice

- Value p(s) for state s is least fixed point of:

—

] if seSat(d)
P(S) = 7 MaXeae Zses 0(5,8)(s7)-p(s’) if s€Sy\Sat(d)
| MiNgeae) 2ses 0(5,a)(s7)-p(s’) if se€S,\Sat(d)

- Computation (value iteration):

— start from zero, propagate probabilities backwards
— guaranteed convergence; apply “usual’ termination criteria

17

PRISM-games

PRISM-games: www.prismmodelchecker.org/games
— extension of PRISM modelling language (see later)
— implementation in explicit engine Y
— prototype symbolic (MTBDD) version also available

Example application domains
— security: attack-defence trees; DNS bandwidth amplification
— self-adaptive software architectures
— autonomous urban driving
— human-in-the-loop UAV mission planning
— collective decision making and team formation protocols
— energy management protocols

18

http://www.prismmodelchecker.org/games

Application: Energy management

- Energy management protocol for Microgrid
— randomised demand management protocol

— random back-off when demand is high

- Original analysis [Hildmann/Saffre'1 1]

— protocol increases "value" for clients
— simulation-based, clients are honest

- Our analysis
— stochastic multi-player game model
— clients can cheat (and cooperate)
— model checking: PRISM-games

— exposes protocol weakness (incentive -
for clients to act selfishly D e et e day ey

— propose/verify simple fix using penalties
19

Results: Competitive behaviour

- Expected total value V per household
— in rPATL: ((C))R"Cphax—> [FO time=max time] / |C]
— where rc is combined rewards for coalition C

with 14

20
s
= Strong All follow alg.
§ deviate = e
2 No use of alg.
8 _
o 10 _—
% g Deviations of
? e varying size
S5 T l l I 1 T)

1 2 3 4 5 6 7 8

Number of households 20

Results: Competitive behaviour

.+ Algorithm fix: simple punishment mechanism
— distribution manager can cancel some loads exceeding ¢,

with 14

20 -
s

: 4 L]
© Better to
S 15 - - collaborate All follow alg.
L / (with all) _
Q _
z
§_ Deviations of
o 10 - varying size
«
=

= @

3 o

5 | |

1 2 3 4 5 6 7 8
Number of households 21

Overview

with 14

— Concurrent stochastic games (CSGs)
— example: investor models

22

Concurrent stochastic games

Concurrent stochastic games (CSGs)
— players choose actions concurrently

— jointly determines (probabilistic) successor state
— generalises turn-based stochastic games

Key motivation:

— more realistic model of components operating concurrently,
making action choices without knowledge of others

Formally
— set of n players N, state space S, actions A; for player i
— transition probability function & : SXA — Dist(S)
— where A = (A;U{L}) X ... X (ALU{L}
— strategies o; : FPath — Dist(A)), strategy profiles o=(o,,...,0,)
— probability measure Pr.9, expectations E;°(X)
23

Example CSG: medium access control

Example CSG: medium access control

— 2 players (senders on a shared channel)

— CSG states: (energy,/sent;, energy,/sent,)
— actions = t (transmit), w (wait) (w,w)

— transmission costs 1 unit of
energy and is only possible
if energy is positive

— q, = probability of
transmission success
if 2 messages sent
simultaneously

(probabilistic extension of
[Brenguier’13]) 24

rPATL for CSGs

- We can use the same logic rPATL as for SMGs

Examples for medium access control game:

— (1)) Po; [F sent;] - can player 1 ensure that it
eventually transmits with probability 17

— (1)) Pmax=2 [—sent, U sent;] - what is the maximum
probability user 1 can ensure of being the first to transmit,
regardless of the behaviour of user 2?

25

rPATL model checking for CSGs

- Same overall model checking algorithm [QEST’18]
— key ingredients are solution of (zero-sum) 2-player CSGs

E.g. ((C))P-4[F &] : max/min reachability probabilities
— compute SUpPg e, inf(,zez2 Pr.91.92 (F ¢) for all states s
— note that optimal strategies are now randomised
— solution of the 2-player CSG is in PSPACE
— we again use a value iteration based approach

- Value p(s) for state s is least fixed point of:

1 if seSat(¢p)
P() = 1 val@) if ses\Sat(d)

where:

— Z is the matrix game with zj; = g5 8(s,(a;,b))(s’) - p(s’)

— so each iteration requires solution of a matrix game for each

state (LP problem of size |A|, where A = action set) 26

Matrix games

Matrix games
— finite, one-shot, 2-player, zero-sum games

— utility function u;: A; XA, — R for each player i
— represented by matrix Z where z; = u;(a;,b) = -uy(a;,b)

_ r S
Example: rock-paper-scissors r /0 _p] 1
— rock > scissors, paper > rock, Z=p| 1 0 -1
scissors > paper, otherwise draw s \—1] 1 0

- Optimal (player 1) strategy via LP solution (minimax):
— compute value val(Z): maximise value v subject to:

— V < Xp—Xs
V < X=Xy,
V < Xg—X, Optimal strategy (randomised):
Xr+Xp+XS=] (anp,xs) = (%,%,%5)

Xr=0 Xp=0 Xs=0
27

CSGs in PRISM-games

- CSG model checking implemented in PRISM-games 3.0

Extension of PRISM modelling language
— (see next slide)

Explicit engine implementation
— plus LPsolve library for matrix games LP solution
— this is the main bottleneck
— experiments with CSGs up to ~3 million states

- Case studies:

— future markets investor, trust models for user-centric
networks, intrusion detection policies, jamming radio systems

28

CSGs in PRISM-games 3.0

csg
player p1 userl endplayer Extended version
player p2 user2 endplayer of medium access
// Users (senders) control example

module user]
s1:[0..1]init O; // has player] sent?
el : [0..emax] init emax; // energy level of player 1
[wl] true -> (s1'=0); // wait
[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule
module user2 = userl [s1=s2, el=e2, wl=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

CSGs in PRISM-games 3.0

csg Each player
player p1 userl endplayer < comprises one
player p2 user2 endplayer or more modules

// Users (senders)

module user]
s1:[0..1]init O; // has player] sent?
el : [0..emax] jni

Players have
distinct actions,
executed
energy level of player 1 simultaneously

[wW1] true -> (s1'=0); // wait
[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule

module user2 = userl [s1=s2, el=e2, wl=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

CSGs in PRISM-games 3.0

csg

player p1 user1 endplayer
player p2 user2 endplayer
// Users (senders)

module user] "
” Additional
s1 :[0..1]init O; // has player 1 sent? (deterministic)

el : [0..emax] init emax; // energy level of player 1 modules not

[w1] true -> (s1'=0); // wait attached to

[t1] e1>0 -> (s1'=c’?0:1) & (el'=el-1); // transmit any player
endmodule

module user2 = user1 [s1=s2, el=e2,wl= t1=t2] endmodule

// Channel. used to compute joint ability distribution for transmission failure
module channel
c : bool init false; // is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true —-> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule

CSGs in PRISM-games 3.0

= Variable updates
player p1 user] endplayer can refer to other
player p2 user2 endplayer variables updated
// Users (senders) simultaneously

module user]
s1:[0..1]init O; // has player] sent?
el : [0..emax] init emax; // energyfevel of player 1
[wW1] true -> (s1'=0); // wait
[t1] e1>0-> (s1'=c’?0:1) & (el'=el-1); // transmit
endmodule

Action lists
used to specify
synchronisation

module user2 = user] [s1=s2, el =e2, wl=w2, _+=t2] endmodule

// Channel: used to compute joint probatility distribution for transmission failure
module channel

c : bool init fal 7/ Is there a collision?
[t1,w2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user I transmits
[w1,t2] true —> g1 : (c'=false) + (1-ql) : (c'=true); // only user 2 transmits
[t1,t2] true —> g2 : (c'=false) + (1-q2) : (c'=true); // both users transmit

endmodule

Application: Future markets investor

Model of interactions between: N
— stock market, evolves stochastically .
— two investors i, i, decide when to invest

— market decides whether to bar investors | M

Modelled as a 3-player CSG A
— extends simpler model originally from [Mclver/Morgan’07]

— investing/barring decisions are simultaneous
— profit reduced for simultaneous investments
— market cannot observe investors’ decisions

- Analysed with rPATL model checking & strategy synthesis

— distinct profit models considered: ‘normal market’, ‘later
cash-ins’ and ‘later cash-ins with fluctuation’

— comparison between TSG and CSG models 33

Application: Future markets investor

- Example rPATL query:
profit;

— ((investorj,investor;)) Rmax=s’ [F finished; ;]
— i.e. maximising joint profit

with 14

- Results: with (left) and without (right) fluctuations

: — optimal (randomised) investment strategies synthesised

— CSG vyields more realistic results (market has less power
due to limited observation of investor strategies)

16
L 15 s 25
5 14 E 22.5
-
:; 13 |- &
o
¥ S 12 s 20
- < 2
: = 1 2175
S 10| S 15
b) .
§ 9 —m— CSG ((i1, i2))] 125 —m— CSG (i1, i2))
8 —&— TSG ((il,i2)) - —e— TSG ((il, i2))
10
7

9
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 -] 9

34
Number of months Number of months

Overview

with 14

Al

- Equilibria-based properties
— (social welfare) Nash equilibria
— example: multi-robot coordination

35

Nash equilibria

Now consider distinct objectives X; for each player i
— no longer restricted to zero sum goals

Nash equilibria (NE)
— no incentive for any player to unilaterally change strategy

— a strategy profile o=(o; _,0,) for a CSG is an
e-Nash equilibrium for state s and objectives X;,..., X, iff:

— E9(X;) = sup{ E° (X)) | o’=0_l0i'] and o’ 3, } - € for all i
— €-NE (but not 0-NE) guaranteed to exist for CSGs

- Social welfare Nash equilibria (SWNE)

— NE which maximise sum E.°(X;) + ... E9(X,)
— i.e., optimise combined goal

36

Example

Example CSG: medium access control

If objective X; = probability for user i to send successfully:

— 2 SWNEs when one user waits for
the other to transmit and then transmits

If objective X; =probability of user i being first to transmit:
— only 1 SWNE: both immediately try to transmit 37

rPATL + Nash operator

- Extension of rPATL for Nash equilibria [FM’19]
=truelal -dldAP|
(CHPglW] | {CCNR i [P] | ({C:C7)) maxsax [6]
0 ::= P[W]+P[y] | R'[p]+R"[p]
Yiu=Xob|dUkd|[dUd
p:i=I1=¢|Csk|Fo
- where:

— a€AP is an atomic proposition, CSN is a coalition of players
and C=N\C,« € {<,<,>,>}, g € [0,1]nQ, x € Q.g, k €N

r is a reward structure

- Semantics:

— ((C:C"))maxwax [0] is satisfied if there exist strategies for all
players that form a SWNE between coalitions C and C'(=N\C),
and under which the sum of the two objectives in 6 is >ix

Model checking for extended rPATL

Key ingredient is now:
— solution of SWNEs for bimatrix games
— (basic problem is EXPTIME)

— we adapt known approach using labelled polytopes,
and implement using an encoding to SMT

- Two types of model checking operator
— bounded: backwards induction
— unbounded: value iteration, e.g.:

[(L)
(1, Panix(F $?)) else if s € Sat(p!)
Vge (s,0,n) = < (Pm,ax('), 1) else if s € Sat(¢?)
(0,0) else if n=0
val (21 ,Zy) otherwise

if s € Sat(¢r) N Sat(p?)

\

— where Z; and Z, encode matrix games similar to before 39

PRISM-games support

Implementation in PRISM-games
— extends CSG rPATL model checking implementation
— bimatrix games solved using Z3/Yices encoding
— optimised filtering of dominated strategies
— scales up to CSGs with ~2 million states

- Applications

— robot navigation in a grid, medium access control,
Aloha communication protocol, power control

— SWNE strategies outperform those found with rPATL
— €-Nash equilibria found typically have €=0

40

Example: multi-robot coordination

2 robots navigating an | x | grid s
— start at opposite corners, goals are -
to navigate to opposite corners 1-¢ | 479 ¢
2

in chosen direction fails with probability g

— obstacles modelled stochastically: navigation 5’

- We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k

— ((robot1:robot2))max=? (P [Fsk goal;]+P [F <k goal,])

1

Results (10 x 10 grid)

— better performance obtained
than using zero-sum methods, § 0.6
i.e., optimising for robot 1,
then robot 2

0.8

s probability

0.4

Average succ

41

Conclusions

Probabilistic model checking & PRISM
— verification & strategy synthesis

Stochastic multi-player games
— competitive/collaborative behaviour + stochasticity
— rPATL model checking & strategy synthesis

— concurrent stochastic games: more realistic models of
competing stochastic components

— Nash equilibria: beyond zero sum properties

Challenges & directions

— partial information/observability & greater efficiency
— scalability, e.g. symbolic methods, abstraction
— managing model uncertainty + integration with learning

42

