

Robust Verification and Control under Uncertainty

Dave Parker

SETTA 2025

Formal verification under uncertainty

- How do we verify computerised systems in the presence of uncertainty?
 - hardware failures, randomisation, unreliable sensors, unpredictable environments, ...

- This talk: advances in verifying autonomous systems under uncertainty
 - 1. verified control & sequential decision making
 - 2. verifying multiple agents acting autonomously and concurrently
 - 3. robust verification under models learnt from data

Overview

- Probabilistic model checking
 - key ideas, applications, trends
- Verification and control
 - Markov decision processes and beyond
- Multi-agent systems
 - probabilistic model checking with stochastic games
 - competitive or collaborative behaviour
- Robustness under model uncertainty
 - probabilistic model checking with epistemic uncertainty
 - robust guarantees for data-driven models

Probabilistic model checking

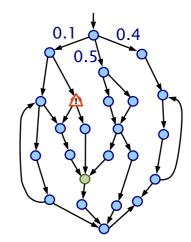
Probabilistic model checking

- Probabilistic model checking
 - systematic construction and analysis of probabilistic models
 - key ingredients: logic, automata, probability

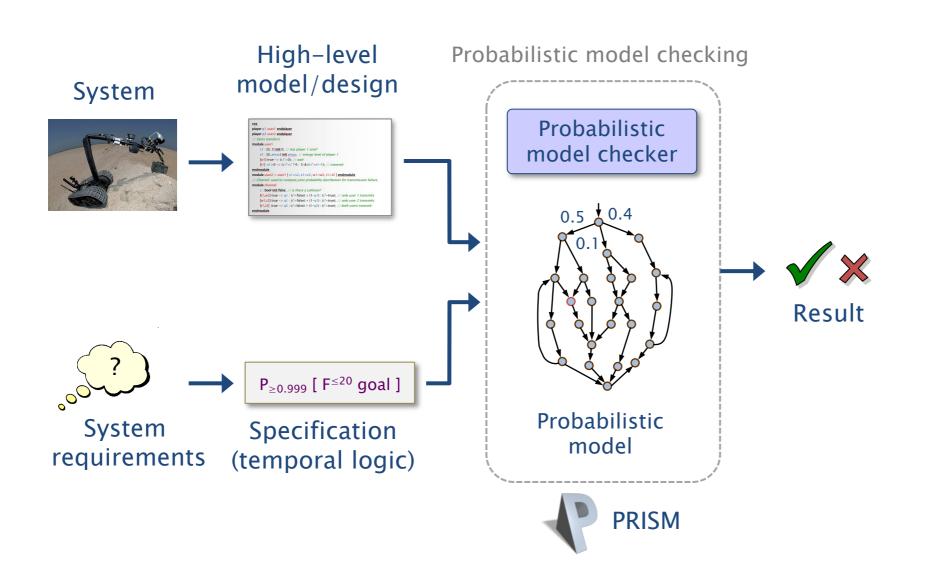
Connections to:

 Markov models, graph theory, artificial intelligence, control theory, optimisation, SAT/SMT, game theory, ...

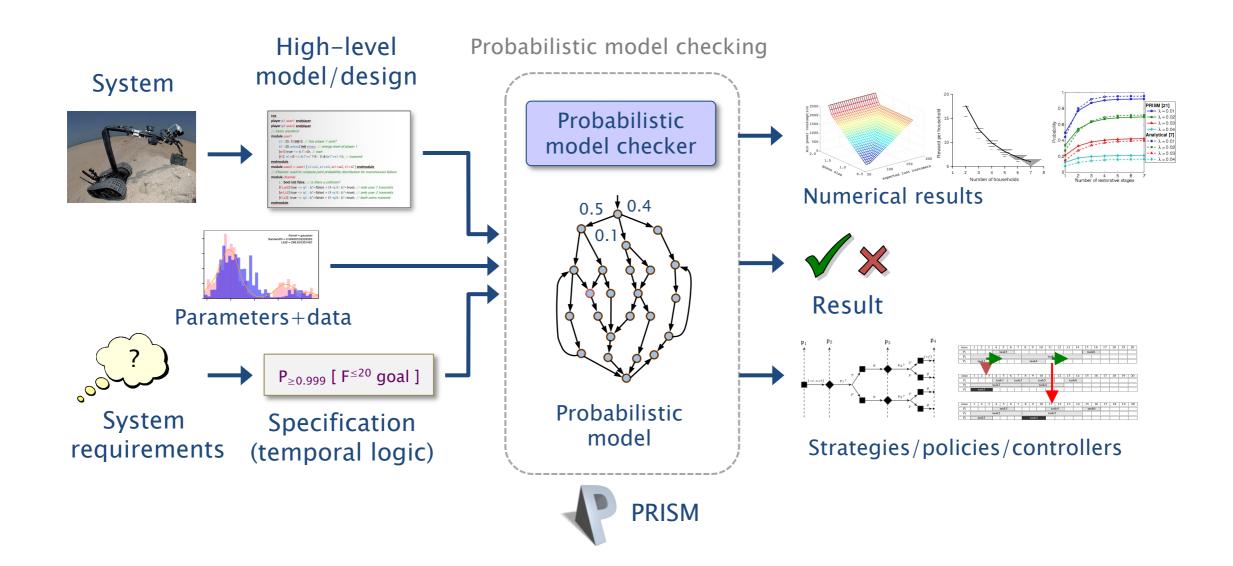
- Key strengths: exhaustive + numeric analysis
 - often subtle interplay between probability + nondeterminism
- Applications to:
 - airbag design, satellite reliability, pacemaker designs, communication/security/energy protocols, robotics, ...



Probabilistic model checking (PMC)

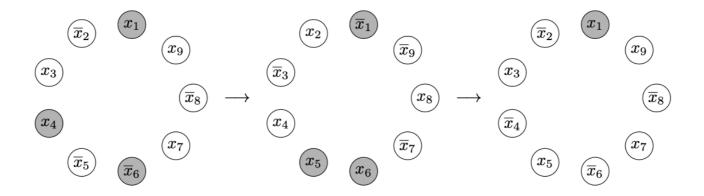


Probabilistic model checking (PMC)



Example: Self-stabilisation

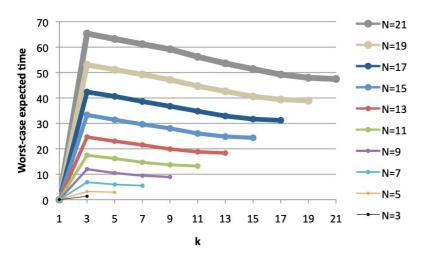
- Randomised self-stabilisation (leader election) algorithm [Herman'90]
 - for a ring of N identical synchronous processes, some of which have tokens



- each process with a token randomly (i) keeps it or (ii) passes it to its right neighbour
- if a process has two tokens, both are eliminated
- Correctness <u>and</u> performance
 - is this guaranteed to stabilise (to one token)? (yes)
 - what (and when) is the worst-case expected run time? ...

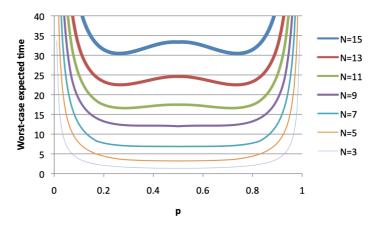
Example: Self-stabilisation

- Conjecture [McIver&Morgan'05]
 - worst-case expected runtime occurs with k=3 initial tokens

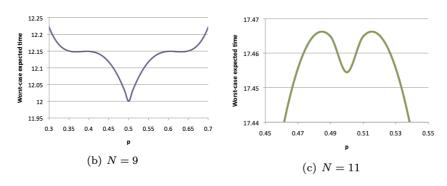


- validated with PRISM for finite configurations
- finally proved 10 years later

- Can we improve performance
 - using a biased coin?

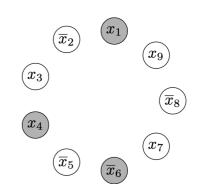


zooming in...



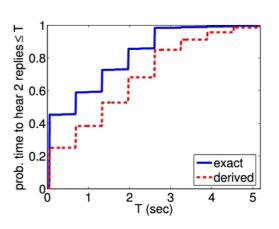
PRISM modelling language


```
// herman's self stabilising algorithm [Her90]
// gxn/dxp 13/07/02
// the procotol is synchronous with no nondeterminism (a DTMC)
const double p = 0.5;
// module for process 1
module process1
       // Boolean variable for process 1
        x1 : [0..1];
        [step] (x1=x3) \rightarrow p : (x1'=0) + 1-p : (x1'=1);
        [step] !(x1=x3) \rightarrow (x1'=x3);
endmodule
// add further processes through renaming
module process2 = process1 [ x1=x2, x3=x1 ] endmodule
module process3 = process1 [ x1=x3, x3=x2 ] endmodule
// cost - 1 in each state (expected number of steps)
rewards "steps"
        true : 1;
endrewards
// set of initial states: all (i.e. any possible initial configuration of tokens)
init
        true
endinit
// formula, for use in properties: number of tokens
// (i.e. number of processes that have the same value as the process to their left)
formula num_tokens = (x1=x2?1:0)+(x2=x3?1:0)+(x3=x1?1:0);
// label - stable configurations (1 token)
label "stable" = num_tokens=1;
```



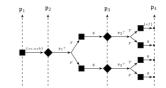
Example: Bluetooth

- Device discovery between a pair of Bluetooth devices
 - performance guarantees essential for this phase
- Complex discovery process
 - two asynchronous 28-bit clocks
 - pseudo-random hopping between 32 frequencies
 - random waiting scheme to avoid collisions
- Probabilistic model checking with PRISM
 - worst-case expected time and probability for successful discovery
 - Markov chains with 17,179,869,184 initial configurations
 - exhaustive numerical analysis via symbolic model checking
 - highlights flaws in a simpler, analytic analysis

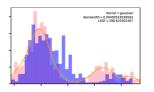


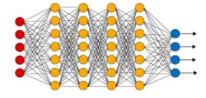
Trends in probabilistic model checking

- From verification problems to control/synthesis
 - "correct-by-construction" from temporal logic specifications



- Increasing use/integration of learning
 - either to support modelling/verification
 - or deployed within the systems being verified





- Increasingly expressive/powerful classes of model
 - real-time, partial observability, epistemic uncertainty, multi-agent, ...
 - leading to ever widening range of application domains

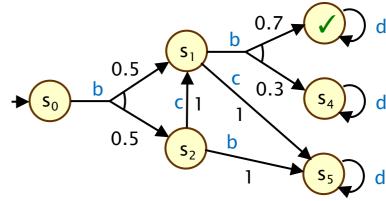
CTMC, CSG, DTMC, LTS, MDP, POMDP, POPTA, PTA, STPG, SMG, TPTG, IDTMC, IMDP

Verification & control

(with Markov decision processes)

Markov decision processes

- Markov decision processes (MDPs)
 - probability + nondeterminism (over actions A)
 - transition probabilities: $\delta : S \times A \rightarrow Dist(S)$



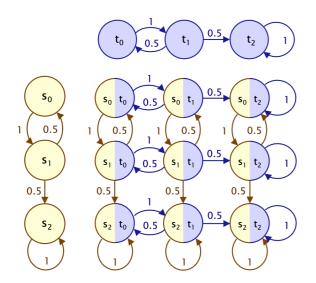
Policies

- policies σ : Path(s) \rightarrow Dist(A) resolve actions based on history
- can be memoryless/finite-memory and deterministic/randomised
- Probabilistic reachability
 - $P_{\text{max}=?}[F\checkmark] = \sup_{\sigma} Pr_s^{\sigma}(F\checkmark)$
 - what is the <u>maximum</u> probability of reaching ✓ achievable by any policy o?
 - optimal policies are deterministic and memoryless
 - solvable with dynamic programming (known as value iteration)

$$p(s) = \begin{cases} 1 & \text{if } s = \checkmark \\ \max_{a} \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{otherwise} \end{cases}$$

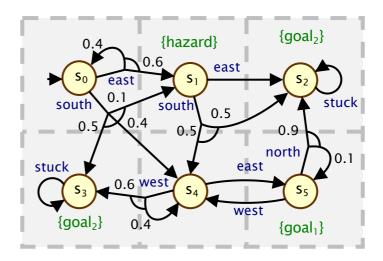
MDPs: Verification vs. control

- MDPs (or probabilistic automata)
 model probability + concurrency
 - e.g. randomised distributed algorithms/protocols



What is the worst-case probability of (or expected time for) termination under any possible process scheduling?

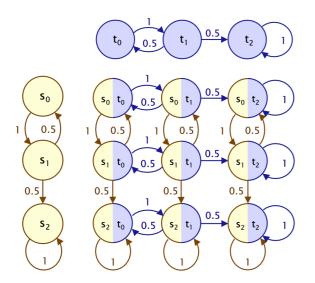
- MDPs are also a standard model for sequential decision making under uncertainty
 - e.g. robot navigation in uncertain environments
 - e.g. task scheduling on fault-prone processors



What is the optimal navigation policy for reaching a goal location whilst avoiding the hazard?

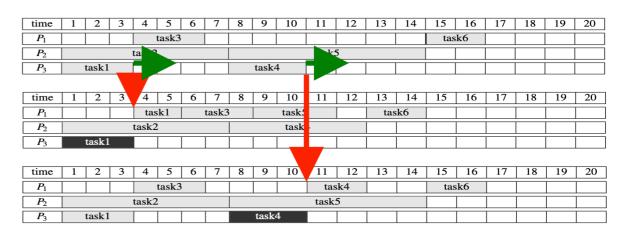
MDPs: Verification vs. control

- MDPs (or probabilistic automata)
 model probability + concurrency
 - e.g. randomised distributed algorithms/protocols



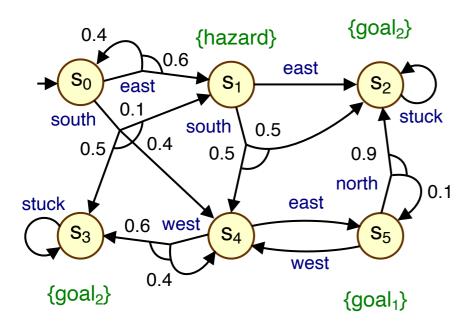
What is the worst-case probability of (or expected time for) termination under any possible process scheduling?

- MDPs are also a standard model for sequential decision making under uncertainty
 - e.g. robot navigation in uncertain environments
 - e.g. task scheduling on fault-prone processors



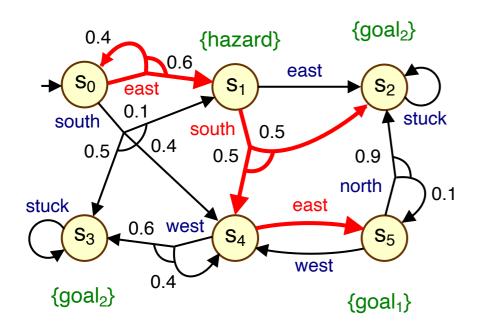
What is the optimal task scheduling to maximise successful/timely completion?

- Synthesise correct-by-construction controllers/policies/plans
 - based on temporal logic specifications, e.g., in PCTL
 - synthesis of MDP policies + probabilistic guarantees on safety/performance



• Can we guarantee reaching goal₁ with probability 0.5? $P_{\geq 0.5}$ [F goal₁]

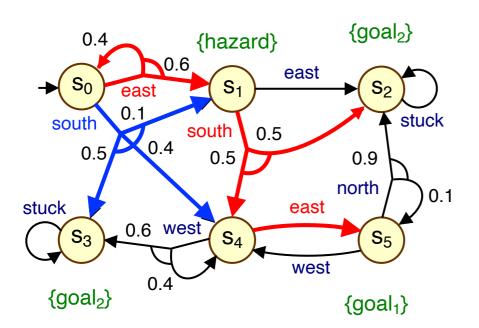
- Synthesise correct-by-construction controllers/policies/plans
 - based on temporal logic specifications, e.g., in PCTL
 - synthesis of MDP policies + probabilistic guarantees on safety/performance



- Can we guarantee reaching goal₁ with probability 0.5? $P_{\geq 0.5}$ [F goal₁]
- How do we maximise the probability of reaching goal₁ whilst avoiding hazard locations?

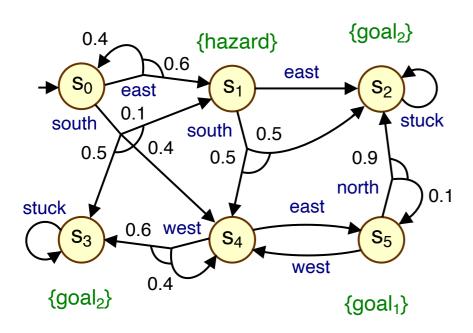
 P_{max=?} [¬hazard U goal₁]

- Synthesise correct-by-construction controllers/policies/plans
 - based on temporal logic specifications, e.g., in PCTL
 - synthesis of MDP policies + probabilistic guarantees on safety/performance



- Can we guarantee reaching goal₁ with probability 0.5? $P_{\geq 0.5}$ [F goal₁]
- How do we maximise the probability of reaching goal₁ whilst avoiding hazard locations?
 P_{max=?} [¬hazard U goal₁]

- Synthesise correct-by-construction controllers/policies/plans
 - based on temporal logic specifications, e.g., in PCTL
 - synthesis of MDP policies + probabilistic guarantees on safety/performance



More complex specifications?

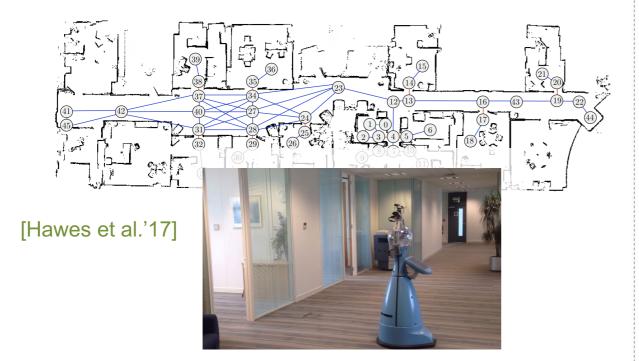
With high probability, complete the task
 "visit goal1 then goal2, without passing through hazard"
 whilst always remaining close to the charging dock.

```
P_{>0.99} [ \neghazard U (goal<sub>1</sub> \land (F goal<sub>2</sub>)) ] \land \forallG P_{>0.95} [ F^{\leq 100} charge) ]
```

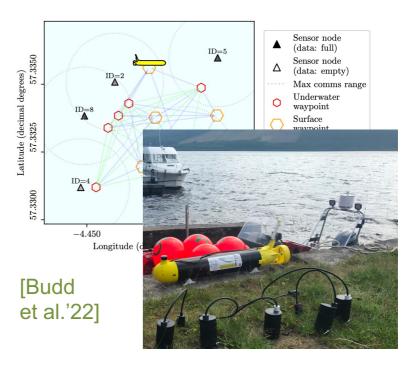
Optimal finite-memory policies synthesised via automata products

Examples: Robot deployments

- Mobile robots in offices/care homes
 - Convert MDP policies to navigation controllers
 - ROS module based on PRISM
 - 100s of hrs of autonomous deployment



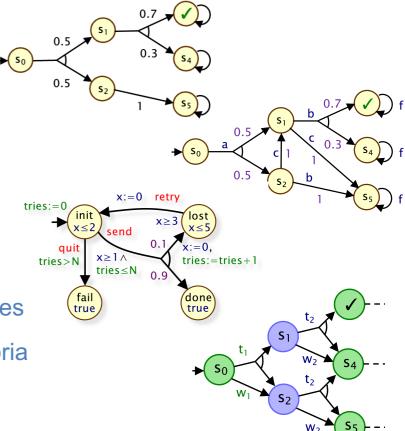
- Underwater autonomous vehicles
 - efficient/reliable retrieval of data from sensor networks
 - PRISM-generated control policies outperform hand-designed ones



A zoo of probabilistic models

- Increasing variety (and complexity) of probabilistic models supported
 - discrete-time Markov chains
 - probabilistic automata
 - continuous-time Markov chains
 - Markov decision processes (MDPs)
 - probabilistic timed automata
 - partially observable MDPs
 - stochastic multi-player games
 - concurrent stochastic games
 - interval Markov chains & MDPs

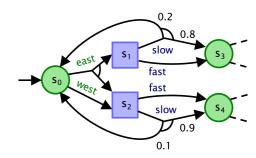
- + concurrency
- + exponential delays
- + policies / control
- + real-time clocks
- + observability
- + multi-agent & strategies
- + concurrency & equilibria
- + epistemic uncertainty



A zoo of probabilistic models

- Increasing variety (and complexity) of probabilistic models supported
 - discrete-time Markov chains
 - probabilistic automata
 - continuous-time Markov chains
 - Markov decision processes (MDPs)
 - probabilistic timed automata
 - partially observable MDPs
 - stochastic multi-player games
 - concurrent stochastic games
 - interval Markov chains & MDPs

- + concurrency
- + exponential delays
- + policies / control
- + real-time clocks
- + observability
- + multi-agent & strategies
- + concurrency & equilibria
- + epistemic uncertainty



Overview

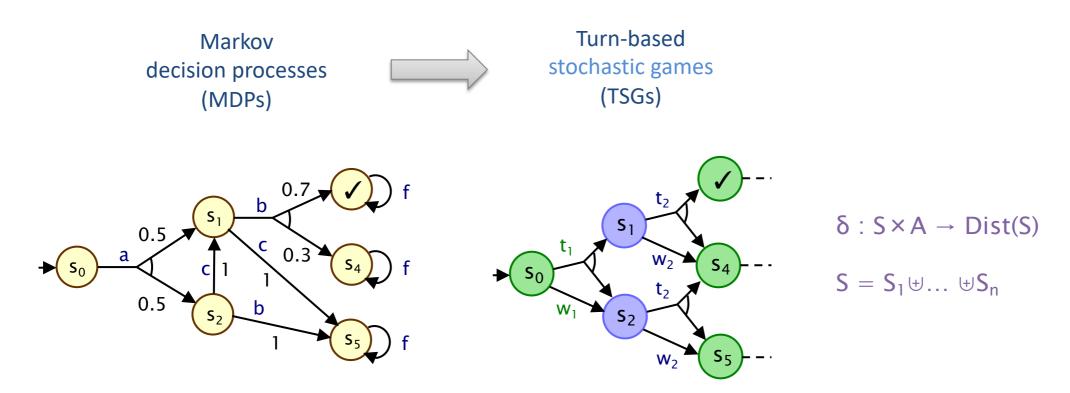
- Probabilistic model checking
 - key ideas, applications, trends
- Verification and control
 - Markov decision processes and beyond
- Multi-agent systems
 - probabilistic model checking with stochastic games
 - competitive or collaborative behaviour
- Robustness under model uncertainty
 - probabilistic model checking with epistemic uncertainty
 - robust guarantees for data-driven models

Multi-agent verification

(with stochastic games)

Stochastic multi-player games

- (Turn-based) stochastic multi-player games
 - strategies + probability + multiple players
 - player i controls subset of states S_i

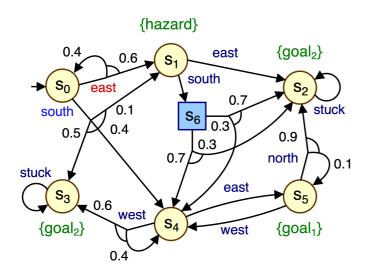


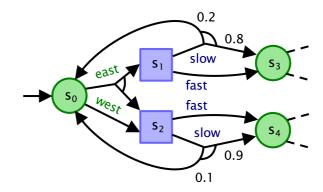
Modelling with turn-based games

Turn-based stochastic games well suited to some (but not all) scenarios

Uncontrollable/unknown navigation interference

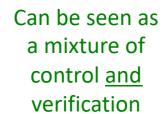
Shared autonomy: human-robot control





Property specification: rPATL

- rPATL (reward probabilistic alternating temporal logic)
 - zero-sum, branching-time temporal logic for stochastic games
 - coalition operator ((C)) of ATL
 probabilistic (P) and reward (R) operators
- Example:
 - \(\langle \langle \
 - "what strategies for robots 1 and 3 <u>maximise</u>
 the probability of reaching their goal locations,
 <u>regardless</u> of the strategies of other robots"



Other additions:

- (co-safe) linear temporal logic
 ¬zone₃ U (room₁ ∧ (F room₄ ∧ F room₅)
- nested specifications

```
\langle\langle\{\text{robot}_1,\text{robot}_3\}\rangle\rangle \text{ R}_{\text{min=?}}[
\langle\langle\{\text{robot}_1\}\rangle\rangle \text{ P}_{\geq 0.99}[\text{ F}^{\leq 10} \text{ base }]
\text{U (zone}_1 \land (\text{F zone}_4))]
```

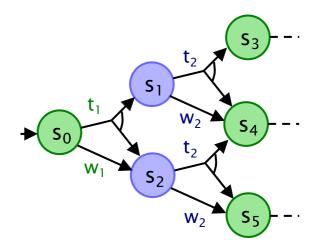
"minimise expected time for joint task, while ensuring base reliably reached"

Model checking rPATL

- Main task: checking individual P and R operators
 - reduces to solving a (zero-sum) stochastic 2-player game
 - e.g. max/min reachability probability: $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1,\sigma_2} (F \checkmark)$
 - **■** complexity: NP ∩ coNP (if we omit some reward operators)
- We again use value iteration
 - values p(s) are the least fixed point of:

$$p(s) = \begin{cases} 1 & \text{if } s \vDash \checkmark \\ \max_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \text{ and } s \in S_1 \\ \min_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \text{ and } s \in S_2 \end{cases}$$

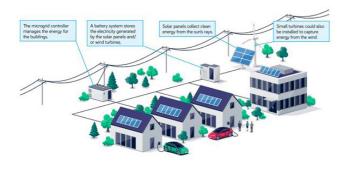
and more: graph-algorithms, sequences of fixed points, ...

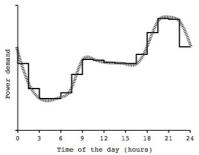


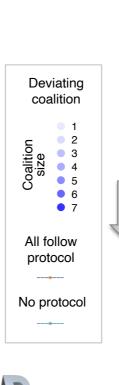
- Implementation
 - symbolic (BDD-based) version also developed
 - big gains on some models
 - also benefits for strategy compactness

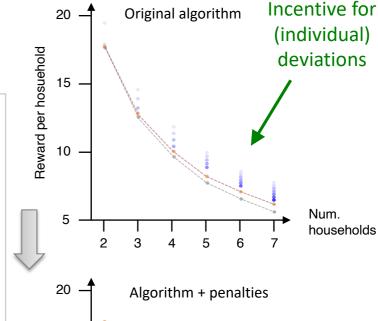
Example: Energy protocols

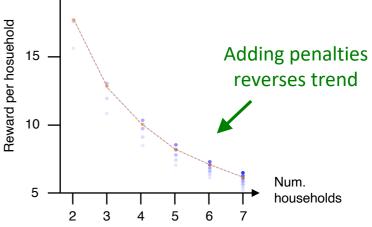
- Demand management protocol for microgrids
 - randomised back-off to minimise peaks
- Stochastic game model checking
 - allow users to collaboratively cheat (ignore protocol)
 - models of up to ~6 million states
 - exposes protocol weakness (incentive for clients to act selfishly)
 - propose/verify simple fix using penalties





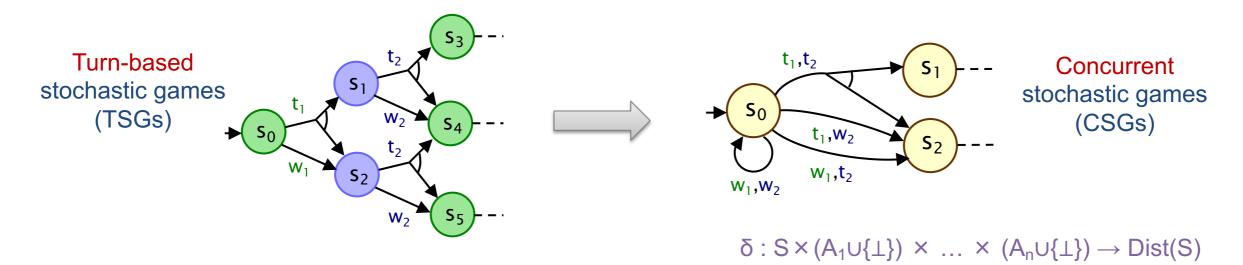




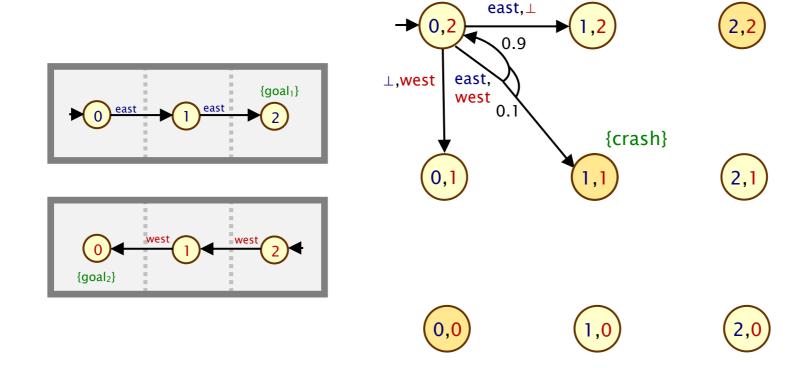


Concurrent stochastic games

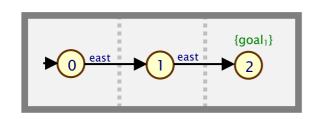
- Need a more realistic model of components operating concurrently
- Concurrent stochastic games (CSGs)
 - (also known as Markov games, multi-agent MDPs)
 - players choose actions concurrently & independently
 - jointly determines (probabilistic) successor state

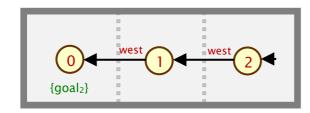


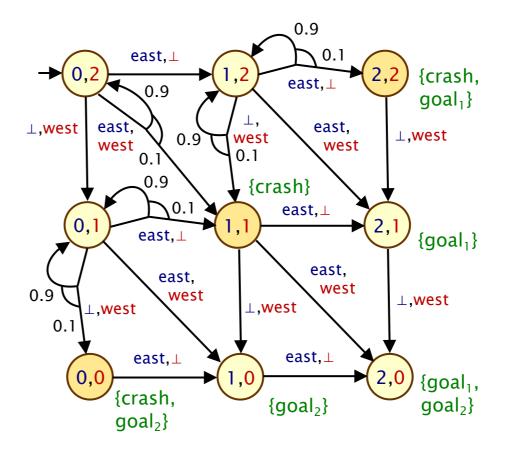
CSG for 2 robots on a 3x1 grid



CSG for 2 robots on a 3x1 grid







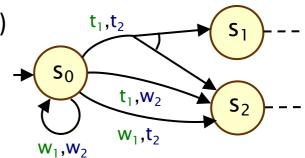
rPATL model checking for CSGs

- Same overall rPATL model checking algorithm
 - key ingredient is now solving (zero-sum) 2-player CSGs (PSPACE)
 - note that optimal strategies are now randomised

- e.g. max/min reachability probabilities
- $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1,\sigma_2}(F \checkmark)$ for all states s
- values p(s) are the least fixed point of:

$$p(s) = \begin{cases} 1 & \text{if } s \neq \checkmark \\ val(Z) & \text{if } s \neq \checkmark \end{cases}$$

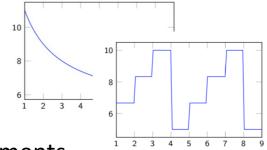
• where Z is the matrix game with $z_{ij} = \Sigma_{s'} \delta(s,(a_i,b_i))(s') \cdot p(s')$



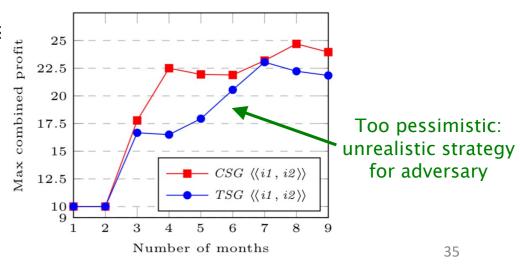
- Implementation
 - matrix games solved as linear programs
 - (LP problem of size |A|)
 - required for every iteration/state
 - which is the main bottleneck
 - but we solve CSGs of ~3 million states

Example: Future markets investor

- 3-player CSG modelling interactions between:
 - stock market, evolves stochastically
 - two investors i₁, i₂ decide when to invest
 - market decides whether to bar investors
 - various profit models; reduced for simultaneous investments



- Investor strategy synthesis via rPATL model checking
 - \(\langle\) (\(\langle\) investor₁, investor₂\(\rangle\) \(\Rangle\) R_{max=?} [F finished_{1,2}]
 - non-trivial optimal (randomised) investment strategies
 - concurrent game (CSG) yields more realistic results (market has less observational power over investors)



Equilibria-based properties

- Beyond zero-sum games:
 - players/components may have distinct objectives but which are not directly opposing (zero-sum)
- We use Nash equilibria (NE)
 - no incentive for any player to unilaterally change strategy
 - actually, we use ε-NE, which always exist for CSGs

```
\sigma = (\sigma_{1,...}, \sigma_n) is an \epsilon-NE for objectives X_1,..., X_n iff:
for all i : E_s^{\sigma}(X_i) \ge \sup \{ E_s^{\sigma'}(X_i) \mid \sigma' = \sigma_{-i}[\sigma_i'] \text{ and } \sigma_i' \in \Sigma_i \} - \epsilon
```

- We extend rPATL model checking for CSGs
 - with social-welfare Nash equilibria (SWNE)
 - i.e., NE which also maximise the joint sum $E_s^{\sigma}(X_1) + ... E_s^{\sigma}(X_n)$

```
\begin{tabular}{ll} Zero-sum \\ properties \\ $\langle\langle robot_1\rangle\rangle_{max=?}$ P [ F^{\leq k} goal_1 ] \end{tabular}
```

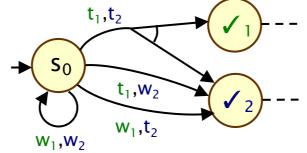


```
\langle \langle robot_1: robot_2 \rangle \rangle_{max=?}
(P [ F<sup>\leq k</sup> goal<sub>1</sub>]+P [F \leq k goal<sub>2</sub>])
```

Equilibria-based properties (SWNE)

Model checking for Nash equilibria

- Model checking for CSGs with equilibria
 - needs solution of bimatrix games
 - (basic problem is EXPTIME)
 - strategies need history and randomisation



• We further extend the value iteration approach:

$$p(s) = \begin{cases} (1,1) & \text{if } s \vDash \checkmark_{1} \land \checkmark_{2} \\ (1,p_{\text{max}}(s,\checkmark_{2})) & \text{if } s \vDash \checkmark_{1} \land \lnot \checkmark_{2} \\ (p_{\text{max}}(s,\checkmark_{1}),1) & \text{if } s \vDash \lnot \checkmark_{1} \land \lnot \checkmark_{2} \\ \text{val}(Z_{1},Z_{2}) & \text{if } s \vDash \lnot \checkmark_{1} \land \lnot \checkmark_{2} \end{cases}$$

■ where Z₁ and Z₂ encode matrix games similar to before

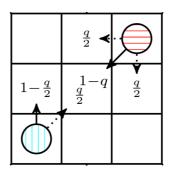
- Implementation
 - we adapt a known approach using labelled polytopes, and implement via SMT
 - optimisations: filtering of dominated strategies
 - solve CSGs of ~2 million states

standard MDP analysis

bimatrix game

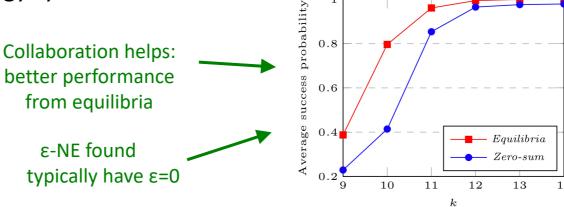
Example: multi-robot coordination

- 2 robots navigating an m x m gridworld
 - start at opposite corners, goals are to navigate to opposite corners
 - obstacles modelled stochastically



10 x 10 grid

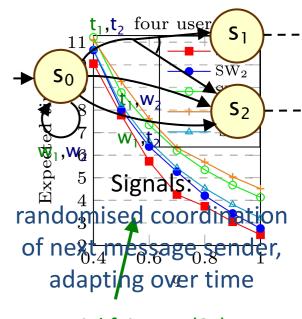
- We synthesise SWNEs to maximise the average probability of robots reaching their goals within time k
 - $\langle \text{(robot1:robot2)} \rangle_{\text{max}=?}$ (P [$F^{\leq k}$ goal₁]+P [$F^{\leq k}$ goal₂])
 - and compare to sequential strategy synthesis



Faster and fairer equilibria

- Limitations of (social welfare) Nash equilibria for CSGs:
 - 1. can be computationally expensive, especially for >2 players
 - 2. social welfare optimality is <u>not</u> always equally beneficial to players
- Correlated equilibria
 - correlation: shared (probabilistic) signal + map to local strategies
 - synthesis: support enumeration + nonLP (Nash) -> LP (correlated)
 - experiments: much faster to synthesise (4-20x faster)
- Social fairness
 - alternative optimality criterion: minimise difference in objectives
 - applies to both Nash/correlated: slight changes to optimisation

Example: Aloha communication protocol



social fairness (SF)
more equitable
than social welfare (WF_i)

Tool support: PRISM-games

- PRISM-games
 - supports turn-based/concurrent SGs, zero-sum/equilibria
 - and more (co-safe LTL, multi-objective, real-time extensions, ...)
 - explicit-state and symbolic implementations
 - custom modelling language extending PRISM
- Growing interest: other (TSG) tools becoming available
 - Tempest, EPMC, PET, PRISM-games extensions
- Many other example application domains
 - attack-defence trees, self-adaptive software architectures, human-in-the-loop UAV mission planning, trust models, collective decision making, intrusion detection policies

```
csg
player p1 user1 endplayer
player p2 user2 endplayer
// Users (senders)
module user1
s1:[0..1] init 0; // has player 1 sent?
e1:[0..emax] init emax; // energy level of player 1
[w1] true -> (s1'=0); // wait
[t1] e1> -> (s1'=0); // wait
[t1] e1> -> (s1'=c? 0: 1) & (e1'=e1-1); // transmit
endmodule
module user2 = user1 [s1=s2, e1=e2, w1=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c: bool init false; // is there a collision?
[t1,w2] true -> q1: (c'=false) + (1-q1): (c'=true); // only user 1 transmits
[w1,t2] true -> q2: (c'=false) + (1-q1): (c'=true); // both users transmit
endmodule
```


prismmodelchecker.org/games/

Overview

- Probabilistic model checking
 - key ideas, applications, trends
- Verification and control
 - Markov decision processes and beyond
- Multi-agent systems
 - probabilistic model checking with stochastic games
 - competitive or collaborative behaviour
- Robustness under model uncertainty
 - probabilistic model checking with epistemic uncertainty
 - robust guarantees for data-driven models

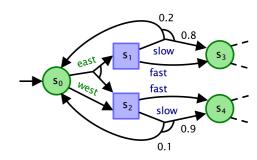
Robust verification

(under model uncertainty)

A zoo of probabilistic models

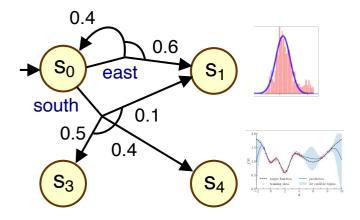
- Increasing variety (and complexity) of probabilistic models supported
 - discrete-time Markov chains
 - probabilistic automata
 - continuous-time Markov chains
 - Markov decision processes (MDPs)
 - probabilistic timed automata
 - partially observable MDPs
 - stochastic multi-player games
 - concurrent stochastic games
 - interval Markov chains & MDPs

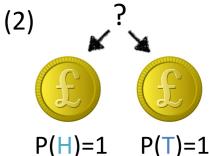
- + concurrency
- + exponential delays
- + policies / control
- + real-time clocks
- + observability
- + multi-agent & strategies
- + concurrency & equilibria
- + epistemic uncertainty



Reasoning about uncertainty

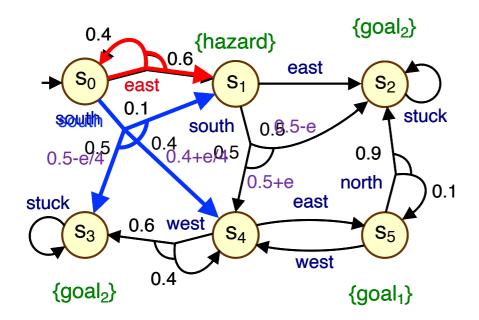
- Probabilistic model checking
 - formal quantitative guarantees on safety, performance, ...
 - based on rigorous modelling of uncertainty
- Caveat: must assume that models are correct/accurate
 - how do we build/learn accurate probabilistic models?
 - how do we factor in model uncertainty?
- We distinguish between:
- Aleatoric uncertainty (randomness intrinsic to environment)
 - e.g., sensor noise, actuator failure, human decisions
- Epistemic uncertainty (quantifies lack of knowledge)
 - reducible: can reduce by collecting more data/observations
 - e.g., poor model quality due to low number of measurements

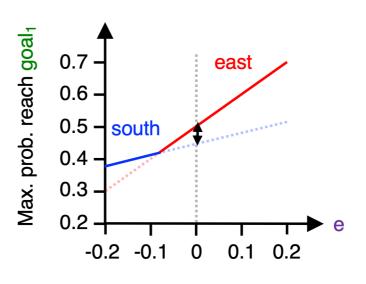




Impact of model uncertainty

- We focus on model uncertainty regarding transition probabilities
 - clearly this impacts the results (guarantees) obtained from model checking
- MDP policy optimality can also be sensitive to perturbations in probabilities
 - so "optimal" policies can in fact be sub-optimal

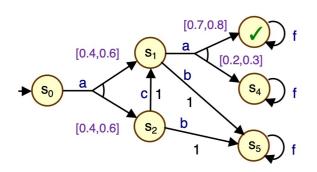




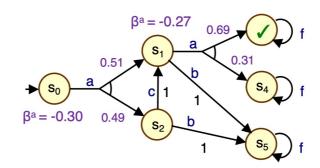
Uncertain MDPs

- An uncertain MDP (uMDP), also called a robust MDP
 - models both aleatoric and epistemic uncertainty
 - can be seen as an MDP with a set \mathcal{P} of transition functions
 - i.e., each $\delta \in \mathcal{P}$ is of the form $\delta : S \times A \rightarrow Dist(S)$
 - we often specify separate uncertainty sets $\mathcal{P}_{s,a} \subseteq \text{Dist}(S)$ for each state s, action a
- Some examples of uMDPs

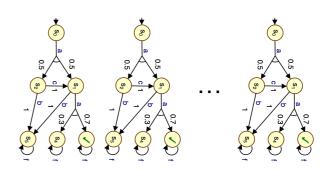
Interval MDPs (IMDPs)



Likelihood MDPs

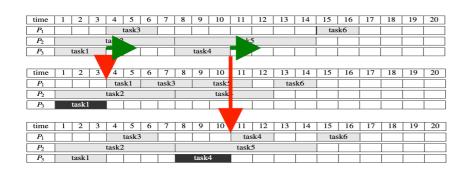


Sampled MDPs

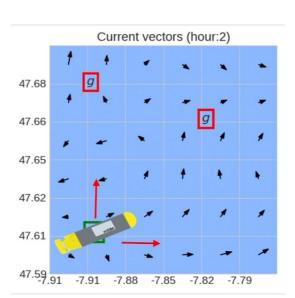


Uncertainty set dependencies

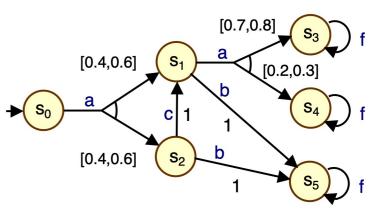
- We often assume (s,a)-rectangularity
 - no dependencies between uncertainty sets: $\mathcal{P} = \times_{(s,a) \in S \times A} \mathcal{P}_{s,a}$
 - computational tractability vs. modelling accuracy
- When might dependences between uncertainties arise?
 - often from shared model parameters



Task scheduling in the presence of faulty processors

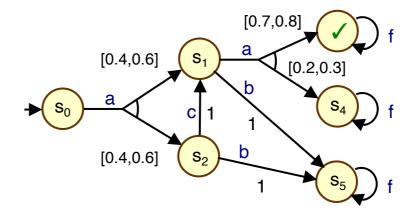


Underwater vehicle control in unknown ocean currents



Robust control

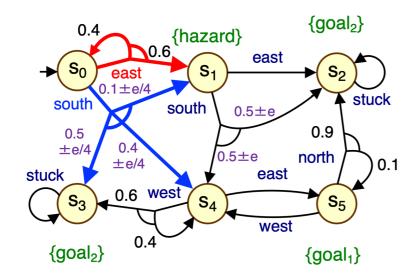
- We consider a robust view of uncertainty
 - i.e., we focus on worst-case (adversarial, pessimistic) scenarios
- Robust policy evaluation:
 - policies of are defined as for MDPs
 - as are objectives e.g. P_{max=?} [F ✓]
 - for a (maximising) policy σ:
 - worst-case value: $\inf_{\delta \in \mathcal{P}} \Pr_{s}^{\delta,\sigma}(F \checkmark)$



- Robust control (policy optimisation):
 - optimal worst-case value $p^* = \sup_{\sigma} \inf_{\delta \in \mathcal{P}} \Pr_{s}^{\delta, \sigma} (F \checkmark)$
 - optimal worst-case policy $\sigma^* = \operatorname{argsup}_{\sigma} \operatorname{inf}_{\delta \in \mathcal{P}} \operatorname{Pr}_{s}^{\delta,\sigma}(F \checkmark)$
 - p* represents a robust guarantee, i.e., P_{≥p*} [F ✓] always holds

Running example: Robust control

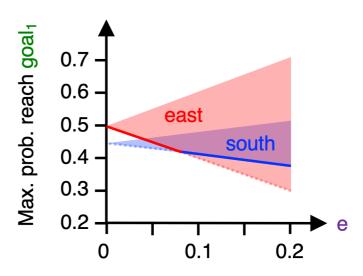
- An IMDP for the robot example
 - uncertainty added to two state-action pairs



Note: the degree of uncertainty (e)
 in states s₁ and s₂ is correlated here
 (but the actual transition probabilities are not)

Robust control

- for any e, we can pick a "robust" (optimal worst-case) policy
- and give a safe lower bound on its performance

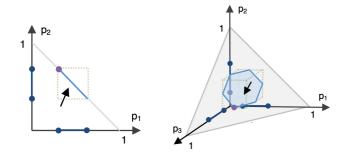


Robust control

Can be solved with robust value iteration

$$p(s) = \begin{cases} 1 & \text{if } s \models \checkmark \\ \max_{a} \min \delta \in \mathcal{P}_{s,a} \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \end{cases}$$

- note the similarity to 2-player stochastic games
- various techniques for solving inner optimisation problems



Robust control

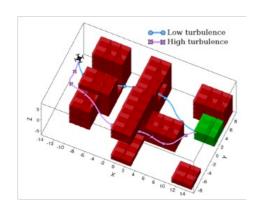
- for any e, we can pick a "robust" (optimal worst-case) policy
- and give a safe lower bound on its performance



Implemented/available in PRISM

Generating IMDP intervals

Some examples of IMDP generation

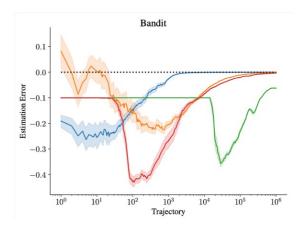


- Unmanned aerial vehicle
 - robust control in turbulence
 - continuous-space dynamical model with unknown noise
 - discrete abstraction + finite "scenarios" of sampled noise yields IMDP abstraction

[AAAI'22 / JAIR'23]

- Deep reinforcement learning
 - worst-case analysis of abstractions of probabilistic policies for neural networks
 - intervals between IMDP abstract states constructed by sampling the policy

[FORMATS'20]



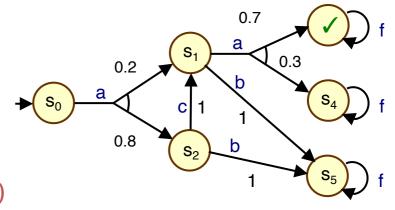
- Robust anytime MDP learning
 - sampled MDP trajectories
 - IMDPs constructed and solved periodically to yield robust predictions on current model
 - PAC or Bayesian interval learning

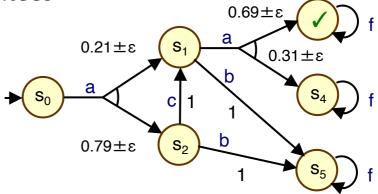
[NeurlPS'22]

Learning IMDPs

- We can learn IMDP models from samples of transitions/trajectories
 - of the (fixed, but unknown) "true" MDP
 - either online (interactively) or offline (from existing logs)
- Uncertainty sets in the IMDP
 - are based on confidence intervals
 - around point estimates for transition probabilities $P_s^a(s_i)$
 - yielding probably approximately correct (PAC) guarantees
 - we fix an error rate γ and compute an error ϵ

$$Pr(\delta \in \mathcal{P}) \ge 1 - \gamma$$





Learning IMDPs

- For each state s and action a
 - we have sample counts N = #(s, a) and $k_i = \#(s, a, s_i)$
 - the point estimate for the transition is: $P_s^a(s_i) \approx k_i/N$
 - the confidence interval is: $P_s^a(s_i) \pm \varepsilon$ where $\varepsilon = \sqrt{\log(2/\gamma)/2N}$
 - with PAC guarantee: $Pr(P_s^a(s_i) \in P_s^a(s_i) \pm \varepsilon) \ge 1 \gamma$

(via Hoeffding's inequality)

0.21±ε_

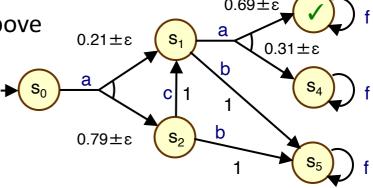
 $0.79\pm\epsilon$

- We can lift this to the whole IMDP
 - building uncertain transition set \mathcal{P} using intervals as above

$$Pr(\delta \in \mathcal{P}) \ge 1 - \gamma$$

(after distributing error rate γ)

■ and also to our robust guarantees $P_{\geq p^*}$ [F \checkmark]



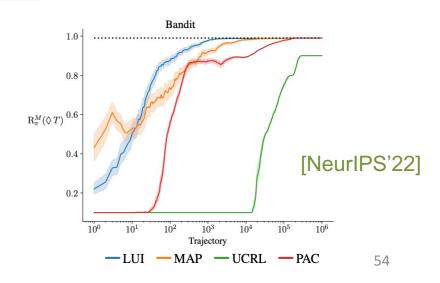
Learning IMDPs

- For each state s and action a
 - we have sample counts N = #(s, a) and $k_i = \#(s, a, s_i)$
 - the point estimate for the transition is: $P_s^a(s_i) \approx k_i/N$
 - the confidence interval is: $P_s^a(s_i) \pm \varepsilon$ where $\varepsilon = \sqrt{\log(2/\gamma)/2N}$
 - with PAC guarantee: $Pr(P_s^a(s_i) \in P_s^a(s_i) \pm \varepsilon) \ge 1 \gamma$
- (via Hoeffding's inequality)

- We can lift this to the whole IMDP
 - building uncertain transition set \mathcal{P} using intervals as above

$$Pr(\delta \in \mathcal{P}) \ge 1 - \gamma$$
 (after distributing error rate γ)

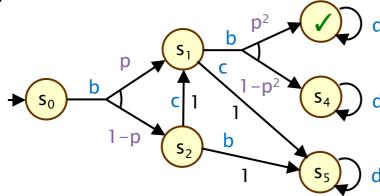
■ and also to our robust guarantees $P_{\geq p^*}$ [F \checkmark]



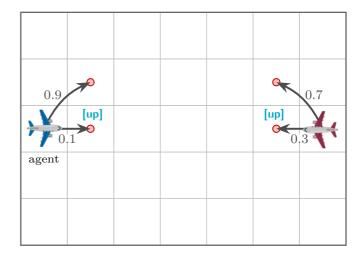
0.21±ε_

 $0.79\pm\epsilon$

- Parametric MDPs (pMDPs)
 - $\delta_{\Theta}: \Theta \times S \times A \rightarrow Dist(S)$
 - for parameter space Θ
 - each $\theta \in \Theta$ yields an MDP



- Uncertain parametric MDPs (upMDPs)
 - pMDP + distribution P over parameter space Θ
 - yields a distribution over MDPs



Example: Aircraft collision avoidance [Kochendorfer'15]

Parameters:

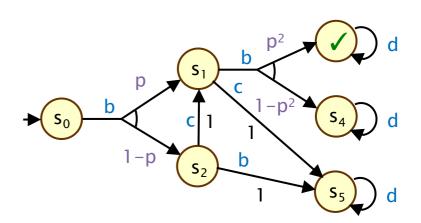
- navigation uncertainty
- pilot response factor

- Learning upMDP models from data [TACAS'25]
 - (data = samples of transitions/trajectories)
 - two levels of uncertainty:
 - unknown parameter distribution $\theta \sim \mathbb{P}$
 - unknown transitions $\delta_{\rm A}$

Setup

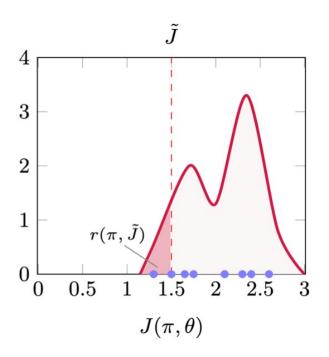
- performance function $J\colon\Pi imes\Theta o\mathbb{R}$ (e.g. probability of reaching \checkmark)
- lacktriangle aim for PAC guarantee over risk associated with policy π and performance guarantee \tilde{J}

$$r(\pi, \tilde{J}) = \mathbb{P}\left\{\theta \in \Theta \colon J(\pi, \theta) < \tilde{J}\right\}$$



- Learning upMDP models from data [TACAS'25]
 - (data = samples of transitions/trajectories)
 - two levels of uncertainty:
 - unknown parameter distribution $\theta \sim \mathbb{P}$
 - unknown transitions δ_{θ}
- Setup
 - performance function $J\colon \Pi \times \Theta \to \mathbb{R}$ (e.g. probability of reaching \checkmark)
 - \blacksquare aim for PAC guarantee over risk associated with policy π and performance guarantee \tilde{J}

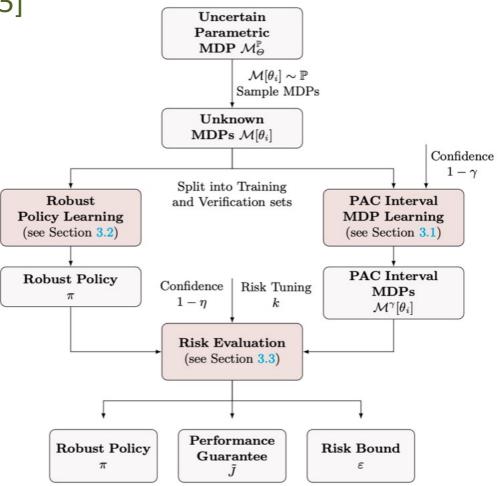
$$r(\pi, \tilde{J}) = \mathbb{P}\left\{\theta \in \Theta \colon J(\pi, \theta) < \tilde{J}\right\}$$



$$\Pr\left\{r(\pi, ilde{J}) \leq arepsilon
ight\} \geq 1 - \eta$$
Risk Performance Risk Bound Confidence Bound

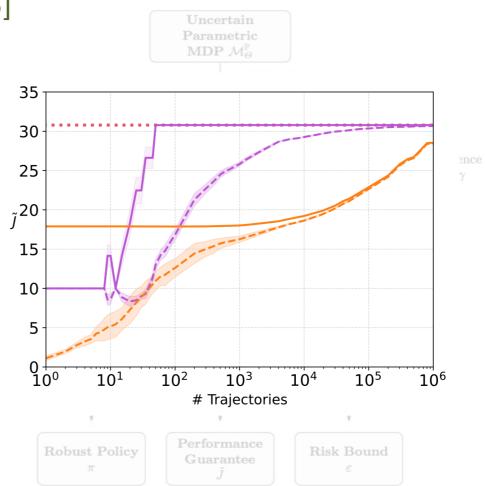
- Learning upMDP models from data [TACAS'25]
 - (data = samples of transitions/trajectories)
 - two levels of uncertainty:
 - unknown parameter distribution $\theta \sim \mathbb{P}$
 - unknown transitions δ_{θ}
- Setup
 - performance function $J\colon\Pi imes\Theta o\mathbb{R}$ (e.g. probability of reaching \checkmark)
 - ${\color{red} \bullet}$ aim for PAC guarantee over risk associated with policy π and performance guarantee \tilde{J}

$$r(\pi, \tilde{J}) = \mathbb{P}\left\{\theta \in \Theta \colon J(\pi, \theta) < \tilde{J}\right\}$$



- Learning upMDP models from data [TACAS'25]
 - (data = samples of transitions/trajectories)
 - two levels of uncertainty:
 - unknown parameter distribution $\theta \sim \mathbb{P}$
 - unknown transitions $\delta_{\rm A}$
- Setup
 - performance function $J\colon \Pi \times \Theta \to \mathbb{R}$ (e.g. probability of reaching \checkmark)
 - \blacksquare aim for PAC guarantee over risk associated with policy π and performance guarantee \tilde{J}

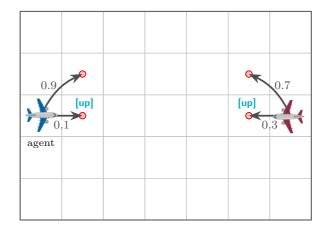
$$r(\pi, \tilde{J}) = \mathbb{P}\left\{\theta \in \Theta \colon J(\pi, \theta) < \tilde{J}\right\}$$

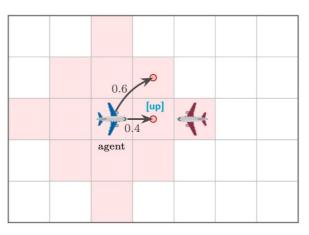


Learning factored models

- Aircraft collision avoidance
 - PRISM model excerpt

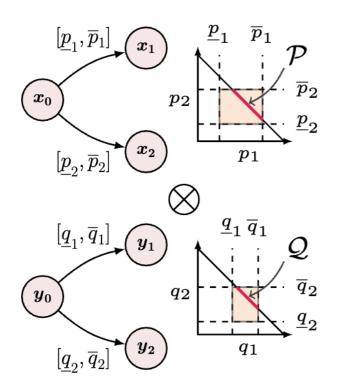
```
module ownship
  x : [0..X] init 0 // horizontal position
 y : [0..Y] init 0 // altitude
  // [up]: dependency on closeness to intruder
  [up] \| (x,y) - (ix,iy) \|_1 >= 5 -> 0.9 : (y' = y + 1)
                                       + 0.1 : (y' = y)
  [up] \|(\mathbf{x},\mathbf{y}) - (\mathbf{i}\mathbf{x},\mathbf{i}\mathbf{y})\|_1 < 5 \rightarrow 0.6 : (\mathbf{y}' = \mathbf{y} + 1) + 0.4 : (\mathbf{y}' = \mathbf{y})
endmodule
module intruder
  ix : [0..IX] init IX // intruder horizontal position
  iy : [0..IY] init 0 // intruder altitude
  // [up]: no dependency on ownship
  [up] iy < 10 \rightarrow 0.7 : (iy' = iy + 1)
                   + 0.3 : (iv' = iv)
endmodule
```

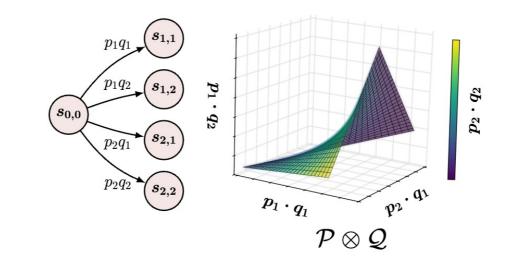




Learning factored models

- Factored models provide compositional modelling
 - but compositional uncertainties are non-convex and computationally complex to solve

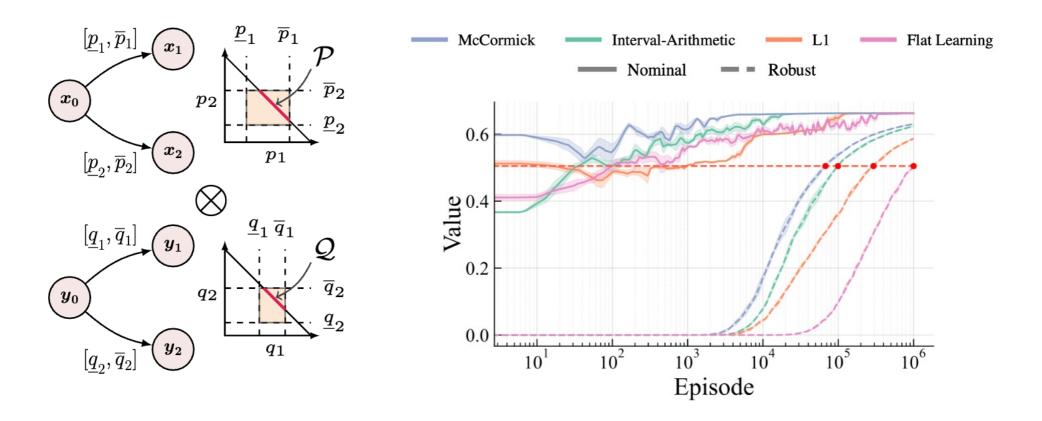




$$p(s) = \begin{cases} 1 & \text{if } s \models \checkmark \\ \max_{a} \min \delta \in \mathcal{P}_{s,a} \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \notin \checkmark \end{cases}$$

Learning factored models

- Factored models provide compositional modelling
 - but compositional uncertainties are non-convex and computationally complex to solve
 - we introduce multiple relaxation approaches to optimise learning [AAAI'26]



Wrapping up

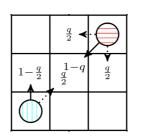
Overview

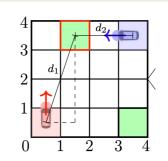
- Probabilistic model checking
 - key ideas, applications, trends
- Verification and control
 - Markov decision processes and beyond
- Multi-agent systems
 - probabilistic model checking with stochastic games
 - competitive or collaborative behaviour
- Robustness under model uncertainty
 - probabilistic model checking with epistemic uncertainty
 - robust guarantees for data-driven models

Challenges & directions

- Partial information/observability
 - e.g., POMDPs + PO stochastic games

- e.g. Stackelberg equilibria for automotive/security applications
- robust equilibria for epistemic uncertainty
- Modelling language design and extensions
 - e.g., for specifying epistemic uncertainty
 - e.g., more flexible interchange of components and strategies
- Improving scalability & efficiency
 - e.g. symbolic methods for CSGs, compositional solution







prismmodelchecker.org