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Overview

Sequential decision making under uncertainty

Formal verification: probabilistic model checking
= key ideas and example applications
= probabilistic models
= temporal logic & automata

Multi-agent decision making
= stochastic games

Data-driven models for decision making
= robustness under epistemic uncertainty

Neuro-symbolic decision making



Sequential decision making under uncertainty

Current vectors (hour:2)

* Sequential decision making e el
= jterative interaction with an environment to achieve a goal e @‘ R
= sequential process of making observations and executing actions s Y i EI;
= applications in: health, energy, transportation, robotics, ... acs |
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Applications & challenges

Autonomous underwater vehicle . Mobile robots around humans

Unmanned aerial vehicles
- safe & effective navigation in . reliable navigation in

-+ robust control in the unknown ocean currents
presence of turbulence offices & care homes
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Formal verification

 Computer-aided formal verification
= how do | (automatically) prove that my program/protocol/design is correct?
= particularly important for safety critical systems

* How do we do this in the presence of uncertainty?

= hardware failures, randomisation, unreliable sensors, unpredictable environments, ...




Probabilistic
model checking



Probabilistic model checking

Automated verification of stochastic systems
= systematic construction and analysis of probabilistic models
= key ingredients: logic, automata, probability

Connections to:

= Markov models, graph theory, artificial intelligence,

control theory, optimisation, game theory, SAT, ...

Key strengths: exhaustive + numeric analysis

= often subtle interplay between probability + nondeterminism

Applications to:

= airbag design, satellite reliability, pacemaker designs,
communication/network protocols, computer security




Probabilistic model checking (PMC)

High-level Probabilistic model checking
System model/design
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Probabilistic model checking

Probabilistic model checking Numerical results (“guarantees”)
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model checker

Probabilistic
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Strategies/policies/controllers



Example: Bluetooth

Device discovery between a pair of Bluetooth devices

= performance guarantees essential for this phase

Complex discovery process
= two asynchronous 28-bit clocks

= pseudo-random hopping between 32 frequencies
®= random waiting scheme to avoid collisions

Probabilistic model checking
= worst-case expected time and probability for successful discovery
= Markov chains with 17,179,869,184 initial configurations
= exhaustive numerical analysis via symbolic model checking
= highlights flaws in a simpler, analytic analysis
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Diverse applications of PRISM

* Cloud computing

live migration of VMs

plan optimisation for

performance guarantees

[Kikuchi/Matsumoto
(Fujitsu), CLOUD’11]
(Best paper)

* Football tactics ®e

e Human-cell conversion
team strategies learnt from data = for disease models, gene therapies

tactical efficiency analysed via = design tool for optimisation and
probabilistic model checking prediction, based on model checking

Percent change in number
of shots by location Close shots increased
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Trends in probabilistic model checking

* From verification problems to control/synthesis

= “correct-by-construction” from temporal logic specifications

* |ncreasing use/integration of learning
= ejther to support modelling/verification

= or deployed within the systems being verified

* Increasingly expressive/powerful classes of model CTMC, CSG,
DTMC, LTS, MDP,
= real-time, partial observability, epistemic uncertainty, multi-agent, ... PPTaMgTPE)ZO;\TA%

» |eading to ever widening range of application domains TPTG, IDTMC,

IMDP

14



A zoo of probabilistic models

* Increasing variety (and complexity) of probabilistic models supported

 discrete-time Markov chains
« probabilistic automata + concurrency
« continuous-time Markov chains + exponential delays

« Markov decision processes (MDPs) + policies / control

« probabilistic timed automata + real-time clocks

« partially observable MDPs + observability

» stochastic multi-player games + multi-agent & strategies
« concurrent stochastic games + concurrency & equilibria

 interval Markov chains & MDPs + epistemic uncertainty

15



A zoo of probabilistic models

* Increasing variety (and complexity) of probabilistic models supported

 discrete-time Markov chains
« probabilistic automata + concurrency
« continuous-time Markov chains + exponential delays
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« probabilistic timed automata + real-time clocks
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» stochastic multi-player games + multi-agent & strategies
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Probabilistic models

* Discrete-time Markov chains (DTMCs)
= finite state space + discrete probabilities
= core property: probabilistic reachability Pr(Fv)

* Markov decision processes (MDPs) _
o , , _ 0 :S — Dist(S)
= policies (or strategies) o resolve actions based on history

" eg.: P, .-[FV] = sup, Pro(Fv)

= what is the maximum probability of
reaching v/ achievable by any policy o?

 Models for probabilistic model checking:

= mostly finite-state
= mostly known in full O : SXA — Dist(S)



MDPs and policies

* Policies for an MDP differ in the use of memory and randomisation

— eachyields an induced Markov chain

(finite-memory, deterministic) (memoryless, randomised)

18



Temporal logic



Temporal logic

Formal specification of desired/required behaviour

= formal language for quantitative guarantees

Simple examples (PCTL)

Example MDP (robot navigation)
= Probabilistic reachability
P.o7 [ Fgoal; ] ’)
Pso6 [ F*1% goal, ]

{hazard} {goal}

= Probabilistic safety/invariance
Pso g9 [ G=hazard ] stuck

= Numerical queries
P_;[Fgoal ]
I:)max=? [ F goall ]

{goa|2} 0.4 {goa' }

Extensions
= richer temporal specs (LTL), multi-objective, costs/rewards, ...



Correctness by construction

* Synthesise correct-by-construction controllers/policies/plans
= based on temporal logic specifications (probabilistic guarantees)
= verification vs synthesis of MDP policies

{goaly,}

east Can we guarantee reaching goal; with probability 0.5?
P-os [ F goal ]

21



Correctness by construction

* Synthesise correct-by-construction controllers/policies/plans
= based on temporal logic specifications (probabilistic guarantees)

= verification vs synthesis of MDP policies

{hazard}

{goaly}

Can we guarantee reaching goal; with probability 0.5?
Pxo5 [ F goaly ]

How do we maximise the probability of reaching goal,?

I:’max=? [ F goa|1 ]

(optimal policy is deterministic and memoryless)

22



Correctness by construction

* Synthesise correct-by-construction controllers/policies/plans
= based on temporal logic specifications (probabilistic guarantees)
= verification vs synthesis of MDP policies

0.4 {zone,} {zoney}

With high probability, complete the task
“inspect zones 3 then 1, without passing through zone 0”
whilst always remaining close to the charging dock.

P.o.99 [ "ZzOneg U (zones A (F zoney)) ]
A VG Py g5 [ F<190 zone,) ]

23



Linear temporal logic (LTL)

* LTL (linear temporal logic) syntax:
—gu=true|a | YA |- [ XY [YUD[F[GY

* Propositional logic + temporal operators:
— ais an atomic proposition (labelling a state)
— X' means " is true in the next state"
— F { means “Y is eventually true”
— G Y means “g always remains true”
— U, U Y, means ", is true eventually and {, is true until then”

e Common alternative notation:
= (O (next), < (eventually), O (always) , U (until)



Linear temporal logic (LTL)

* LTL (linear temporal logic) syntax:
=gu=true|a VA |- XY [YUD|F[GY

e Commonly used LTL formulae:
= G (a—> Fb)-"balways eventually follows a"
" G (a—> XDb)-"balways immediately follows a”
= G Fa-"aistrueinfinitely often"
= FGa-"abecomes true and remains true forever"

 Example: robot task specifications in LTL

" e.g. P, [ (G=hazard) A (GF goal,) ] — "the probability of
avoiding hazard and visiting goal, infinitely often is > 0.7"

" e.g. P ..>[—-zone; U (zone, A (F zone,)) ] — "max. probability of
patrolling zone 1 (whilst avoiding zone 3) then zone 4?”



Multi-objective specifications

W,

0sd

044 T~
0.3 1

0.2 L
0.1 -

P, = G —hazard
P, = GF goaly;

0

- Achievability query
— P.o7 [ G —hazard ] A P-g, [ GF goal; ]?

- Numerical query
— Pmax=2 [ GF goal; ] such that P.¢; [ G —hazard ] ?

- Pareto query
— for Ppax—2 [ G —hazard ], Pmax—> [ GF goal; ]?

T T T T T
0O 0.2 04 0.6 0.8

(finite—memory)

randomised,

optimal policy



More temporal logic

* Costs & rewards
= j.e., accrued values assigned to model states or transitions
time

= e.g.,, R - [ ~zone; U (zone, A (F zong,)) |
" minimise expected time to patrol zone 1 (whilst avoiding zone 3) then zone 47?

* Nested (branching-time) queries
" e.g8. R [ P.yeo[ F$12 base ] U (zone, A (F zone,)) ]

= "minimise expected battery usage to visit zones 1 then 4,
whilst (initially) ensuring the base can always be reliably reached

* And more
= cost-bounded, conditional probabilities, quantiles
= metric temporal logic, signal temporal logic, ...



Benefits of temporal logic

 Unambiguous, flexible, tractable behavioural specification
= broad range of quantitative properties expressible

* (Probabilistic) guarantees on safety, performance, etc.
= meaningful properties: event probabilities, time, energy,...

P-o.7 [ (G™hazard) A (GF goaly) ]

= compare to: ad-hoc reward structures, e.g. with discounting
= caveat: accuracy of model (and its solution)

e Efficient LTL-to-automata translation
= optimal (finite-memory) policy synthesis (via product MDP)
= correctness monitoring / shielding
= task progress metrics



LTL & automata

» Safe/co-safe LTL: (deterministic) finite automata

= (non-)satisfaction occurs in finite time

= —-zone; U (zone, A (F zong,)) Z1A
4]

e Full LTL: e.g. (deterministic) Rabin/Buchi automata
" G-hazard A GF goal,

* Many other useful LTL/automata subclasses...



LTL model checking via product MDP

{goal,}
M 0.4 thazard} 9045 Ay Y =0=hA 03 g




LTL model checking via product MDP

{goal,}
M 0.4 {hazard} goal; Ay V= O-h A0S g




Verification techniques

* Probabilistic model checking techniques
= automata + graph analysis + numerical solution
= often more focus on exhaustive/“exact”/optimal methods
= e.g., for MDPs: value iteration (VI), linear programming

 Example (MDPs):
" max. probability of reaching v/ ] if sev/

S) =
= values p(s) = sup, Pr.° (FV') P(s) max, Zs 0(s,a)(s’)-p(s’) otherwise

are the least fixed point of:

e But: VI has known accuracy and convergence issues
= interval iteration, sound VI, optimistic VI
= separate convergence from above and below



Scalability & efficiency

X

Scalability & efficiency are always key challenges

YI: \4
" many approaches investigated... x
» &
Symbolic probabilistic model checking 7 el T

= j.e., (multi-terminal) binary decision diagrams

- - - upper bound
= actual value
-= lower bound

Model reductions

" bisimulation minimisation

= abstraction + sound bounds (property driven) COF TR e o

T

Trade-off: scalability/efficiency vs. accuracy/guarantees

= spectrum of “correctness” : exact, floating-point correct, €-correct, probably €-correct, ...

Sampling (simulation) based methods
= statistical model checking, PAC guarantees, heuristics, ...




Example: Robot deployments

* Mobile robots in offices/care homes * Underwater autonomous vehicles
= Convert MDP policies to navigation controllers = efficient/reliable retrieval of

= ROS module based on PRISM data from sensor networks

PRISM-generated control policies
outperform hand-designed ones

= 100s of hrs of autonomous deployment

Sensor node
D=5 A (data: full)

§ b A A Sensor node

2 D) W, (data: empty)

w0 ®) Max comms range
Underwater

ID=8 O : ; O waypoint
o 2 he Surface

Latitude (decimal degrees)
57.3325

R ———

57.3300

—4.450
Longitude (il

[Budd
et al.’22]




Overview

Multi-agent decision making
= stochastic games

Data-driven models for decision making
= robustness under epistemic uncertainty

Neuro-symbolic decision making
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Multi-agent
decision making



Stochastic multi-agent systems

 How do we verify/control stochastic systems with...
* multiple agents acting autonomous and concurrently
= competitive or collaborative behaviour between agents, possibly with differing goals
= |earnt components for e.g. control/perception
* Applications:

R = distributed protocols for
consensus/security

" multi-robot systems
= agutonomous vehicles

* Probabilistic model checking

= with stochastic multi-player games



A zoo of probabilistic models

* Increasing variety (and complexity) of probabilistic models supported

 discrete-time Markov chains

« probabilistic automata

« continuous-time Markov chains

» Markov decision processes (MDPs)
« probabilistic timed automata

« partially observable MDPs

» stochastic multi-player games

« concurrent stochastic games

* interval Markov chains & MDPs

+ concurrency

+ exponential delays

+ policies / control

+ real-time clocks

+ observability

+ multi-agent & strategies
+ concurrency & equilibria

+ epistemic uncertainty

0.2
0.8

-
slow
3
t ! \_’y@
eas -

s fast
0 Yes, fast
S2

slow S4
0.9

0.1

Multiple players
with differing
strategies and

objectives
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Stochastic multi-player games

(Turn-based) stochastic multi-player games
= strategies + probability + multiple players
= player i controls subset of states S

Markov Turn-based
decision processes |:> stochastic games
(MDPs) (TSGs)

0 : SXA — Dist(S)

S =S5,w... WS,

39



Modelling with turn-based games

* Turn-based stochastic games well suited to some (but not all) scenarios

Uncontrollable/unknown Shared autonomy:
navigation interference human-robot control
{hazard}

0.4 east {goal,} 0.2
0.8 _

slow
east oL -

s fast
0 g, fast _
S2 slow S4

0.9 -

0.1

{goal,}



Property specification: rPATL

* rPATL (reward probabilistic alternating temporal logic)

= zero-sum, branching-time temporal logic for stochastic games

= coalition operator ((C)) of ATL
+ probabilistic (P) and reward (R) operators

e Other additions:
 Example:

= ({{robot;,robots})) P> [ F(goal;V goals) ]
= “what strategies for robots 1 and 3 maximise

= (co-safe) linear temporal logic
-zone; U (room; A (F room, A F room;)

the probability of reaching their 2-al locations, " nested specifications
regardless of the strategies of oiher robots” ({({robot,,robot;})) R iz [
({{robot;})) Psg o9 [ F*'° base ]
\ / U (zone; A (F zone,)) ]
Can be seen as “minimise expected time for joint task,
a mixture of while ensuring base reliably reached”
control and

verification



Model checking rPATL

* Main task: checking individual P and R operators
= reduces to solving a (zero-sum) stochastic 2-player game
= e.g. max/min reachability probability: supolinf02 Pr.°1% (Fv)
= complexity: NP N coNP (if we omit some reward operators)

 We again use value iteration

= values p(s) are the least fixed point of:
* Implementation

1 if s=v = symbolic (BDD-based)
p(s) = { max, Z¢ 8(s,a)(s’)-p(s’) if s¥=v and seS; version also developed
min, Z¢ 0(s,a)(s’)-p(s’)  if siEv and s€S; = big gains on some models

= also benefits for strategy
= and more: graph-algorithms, sequences of fixed points, ... compactness



Example: Energy protocols

e Demand management protocol for microgrids 20 - Original algorithm 'E‘I;Zrl‘\t:‘éi:l’)r
= randomised back-off to minimise peaks § deviations
2 15 —
e Stochastic game model checking Devaing | g ‘ /
= allow users to collaboratively cheat (ignore protocol) _ | 37
20 3
= models of up to ~6 million states §% ‘ .
PY 5 > m.
= exposes protocol weakness . @ Y 2 4 & & 5 ouseholds
(incentive for clients to act selfishly) Al follow
. . . ) ) protocol 20 Algorithm + penalties
= propose/verify simple fix using penalties
No protocol E
3 15 — Adding penalties
§ : reverses trend
\‘ Zg; 10 — /
o -4
PRISM-games N
o 3 6 9 12 15 18 21 24 S | | | | | | > houséholds

Time of the day (hours)

2 3 4 5 6 7
43



Concurrent stochastic games

 Need a more realistic model of components operating concurrently

e Concurrent stochastic games (CSGs)
= (also known as Markov games, multi-agent MDPs)
= players choose actions concurrently & independently
= jointly determines (probabilistic) successor state

Turn-based
stochastic games
(TSGs)

W] ’t2
W] ’W2

Concurrent

stochastic games

(CSGs)

5:Sx(AU{L}) X ... X (A,U{L}) — Dist(S)

44



CSG for 2 robots on a 3x1 grid

45



CSG for 2 robots on a 3x1 grid

{goalq}

@ east >@ east >@

Q——()+—

{goalz}

46



rPATL model checking for CSGs

 Same overall rPATL model checking algorithm
= key ingredient is now solving (zero-sum) 2-player CSGs (PSPACE)
= note that optimal strategies are now randomised

* We again use a value iteration based approach
= e.g. max/min reachability probabilities

" sup, inf, Pr.ovo2(F V') for all states s + Implementation

= values p(s) are the least fixed point of: . .
" matrix games solved as linear programs

1 if s= v/ * (LP problem of size |A])
p(s) = val(2) if sk = required for every iteration/state
* which is the main bottleneck

= where Z is the matrix game = but we solve CSGs of ~3 million states

with z; = 5, 8(s,(2,b))(s')-p(s

47



Example: Future markets investor

e 3-player CSG modelling interactions between:

= stock market, evolves stochastically \ }
= two investors iy, i, decide when to invest ;
= market decides whether to bar investors PR

1 2 3 4 5 6 7 8 9

= various profit models; reduced for simultaneous investments

* Investor strategy synthesis via rPATL model checking

= ((investor,,investor,)) Rﬂ;’i‘L;Z[ F finished, , ]

= non-trivial optimal (randomised) investment strategies

= concurrent game (CSG) yields more realistic results
(market has less observational power over investors)

Too pessimistic:

~ unrealistic strategy

—m— COSG (i1, i2)) for adversary
—e— TSG ((il, i2))

Max combined profit
=
o
wm

1 2 3 4 5 6 7 8 9
Number of months 48



Equilibria-based properties

e Beyond zero-sum games:

= players/components may have distinct objectives
but which are not directly opposing (zero-sum)

 We use Nash equilibria (NE)

" no incentive for any player to unilaterally change strategy
= actually, we use e-NE, which always exist for CSGs

o=(o, _,0,) is an e-NE for objectives X,..., X, iff:
foralli:EC°(X)=sup{EX° (X) | o’=0.[c/]landc/€E 3 }—¢

 We extend rPATL model checking for CSGs
= with social-welfare Nash equilibria (SWNE)
= j.e., NE which also maximise the joint sum E.° (X;) + ... E°(X,)

Zero-sum
properties

<<r0b0t1>>max=? P [ FSk goal1 ]

!

((robot,:robot,))max=-
(P [ F=< goal, ]+P [F = goal,])

Equilibria-based
properties
(SWNE)

49



Model checking for Nash equilibria

* Model checking for CSGs with equilibria
= needs solution of bimatrix games * Implementation

. . t,t
= strategies need history 9\ using labelled polytopes, and
and randomisation '%Q -- implement via SMT

wow, 0t = optimisations: filtering
of dominated strategies
* We further extend the value iteration approach: . <olve CSGs of ~2 million states
f('l"l) ifS|=\/1/\\/2
p(S) _ < (] ;pmax(s;\/z)) If S F ‘/1/\_'/2 <\ Standard .
(Prax(s, /0,1 ifs e/ Ay, «— MPPanass
L Val(Z1,Zz) if s e _'/1/\_'\/2

<€4— bimatrix game

= where Z, and Z, encode matrix games similar to before

50



Example: multi-robot coordination

* 2 robots navigating an m x m gridworld

= start at opposite corners, goals are
to navigate to opposite corners

NS
% A

[
I
NS
Nk

|
Q
N

= obstacles modelled stochastically

Ot

* We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k
= ((robotl:robot2))...- (P [ F*¢ goal, ]+P [F = goal,])
= and compare to sequential strategy synthesis

10 x 10 grid

Collaboration helps:
better performance
from equilibria

e-NE found /

typically have €=0

B

—m— Equilibria | |
—@— Zero-sum

Average success probability
o
o

I |
9 10 11 12 13 14
k 51



Faster and fairer equilibria

Limitations of (social welfare) Nash equilibria for CSGs:
1. can be computationally expensive, especially for >2 players
2. social welfare optimality is not always equally beneficial to players

Correlated equilibria
= correlation: shared (probabilistic) signal + map to local strategies
= synthesis: support enumeration + nonLP (Nash) -> LP (correlated)
= experiments: much faster to synthesise (4-20x faster)

Social fairness
= alternative optimality criterion: minimise difference in objectives
= applies to both Nash/correlated: slight changes to optimisation

Example: Aloha
communication protocol

social fairness (SF)
more equitable
than social welfare (WF,)

52



Tool support: PRISM-games

* PRISM-games
= supports turn-based/concurrent SGs, zero-sum/equilibria A

player p1 userl endplayer

« and more (co-safe LTL, multi-objective, real-time extensions, ...) L

module user]

= explicit-state and symbolic implementations T ———
[w1] true -> (s1'=0); // wait

[t1] e1>0-> (s1'=c’?0: 1) & (el'=el-1); // transmit

= custom modelling language extending PRISM

module user2 = userl [ s1=s2, el=e2, wl=w2, t1=t2 | endmodule

// Channel: used to compute joint probability distribution for transmission failure
module channel
¢ : bool init false; // /s there a collision?
[t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
[w1,t2] true —> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits

* Growing interest: other (TSG) tools becoming available

endmodule

= Tempest, EPMC, PET, PRISM-games extensions

 Many other example application domains |#

= attack-defence trees, self-adaptive software architectures,
human-in-the-loop UAV mission planning, trust models,
collective decision making, intrusion detection policies prismmodelchecker.org/games/

53
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decision making



Reasoning about uncertainty

Markov decision processes (MDPs) and variants
= standard models for sequential decision making under uncertainty
= stochastic processes quantify uncertainty
= but parameters of these often need to be estimated from data

We distinguish between:

Aleatoric uncertainty (randomness intrinsic to environment) (1)

%,
=€§
A
8
%
%
>

= e.g., sensor noise, actuator failure, human decisions :
P(H)=P(T)=0.5

Epistemic uncertainty (quantifies lack of knowledge)
= reducible: can reduce by collecting more data/observations

= e.g., poor model quality due to low number of measurements

55



MDPs + epistemic uncertainty

 MDPs for sequential decision making under (aleatoric) uncertainty
= modelled here using transition probabilities (often learnt from data)

* Policies can be sensitive to small perturbations in transition probabilities

= 5o “optimal” policies can in fact be sub-optimal

Max. prob. reach goal,

A

0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2

east

south

—T— T T1%»¢

-02 01 0 0.1 0.2
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MDPs + epistemic uncertainty

 MDPs for sequential decision making under (aleatoric) uncertainty
= modelled here using transition probabilities (often learnt from data)

* Policies can be sensitive to small perturbations in transition probabilities
= 5o “optimal” policies can in fact be sub-optimal

 Uncertain MDPs: MDPs + epistemic uncertainty (model uncertainty)

= we focus here on uncertainty in transition probabilities

{goal;}

Key questions:

* how to model (and solve for) epistemic uncertainty?
 what guarantees do we get?

* s it statistically accurate?

* how computationally efficient is it?

57



Uncertain MDPs

e An uncertain MDP (uMDP), also called a robust MDP
= can be seen as an MDP with a set P of transition functions
= j.e.,,each® € Pisoftheformo : SxA — Dist(S)
= we often specify separate uncertainty sets P, , < Dist(S)

 Some examples of uMDPs

Interval MDPs (IMDPs) Likelihood MDPs

Sampled MDPs

= Other (non-set) representations are possible: dynamic, Bayesian, ...
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Uncertainty set dependencies

We often assume (s,a)-rectangularity
" no dependencies between uncertainty sets: P = X, ycsx4Psa
= computational tractability vs. modelling accuracy

When might dependences between uncertainties arise?

= often from shared model parameters

Current vectors (hour:2)

[tme [ 1 [2 [ 3[4 [5]6] 78910 11 [12] 13 14 [ 15 ] 16 | 17 | 18 [ 19 | 20 |
AT T [ [ weo [ [ [ [ [ T | [ | @k [ [ [ [ |
Ce @ \ * [ [ [ [ T ] t ¢ e EN N -
(A [ wk 1 [ ks T [ T T T T T | s E
[time [ 1 [2 [3W4 [5]6[7 80 [ 10§11 [12]13][ 14151617 1819 [20] 4 » - — — —
[ 2 [ [ [ | taskli | task3 |  task [ [ ws6 [ [ [ T 1 1 | .
Cr] S S———————— — a7.66 [4] Underwater vehicle
C T [ [ T 1 C [ [ [ [ [ [ [ T ] N ' 4 4
¥ - .
[lime[1|2|3|4|5|6|7]8|9]10‘1112[13[14]15}16]17113[19120]
CA T [ [ 1 @k [ [ [ [ | wkd [ [ | wke [ [ [ [ ] 47.65 Control In unknown
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N T T T [ [ [ [ T ] = ocean currents
47.62
Task scheduling in the -

presence of faulty processors
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Robust control

For now, we consider a robust view of uncertainty

= j.e., we focus on worst-case (adversarial, pessimistic) scenarios

Robust policy evaluation:
= policies o are defined as for MDPs
= as are objectivese.g. Pax— [ F v ]
= for a (maximising) policy o:
= worst-case value: infs c » Pr.8°(F V)

Robust control (policy optimisation):
= optimal worst-case value p* = sup, infs ¢ » Pr,%°(F V')
= optimal worst-case policy 6* = argsup, infsc » Pr.%°(F V')
" p* represents a robust guarantee, i.e., P.,-[ F v ] always holds
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Running example: Robust control

 An IMDP for the robot example
= uncertainty added to two state-action pairs

{goal,}

= Note: the degree of uncertainty (e)
in states s1 and s2 is correlated here
(but the actual transition probabilities are not)

e Robust control

= for any e, we can pick a “robust”

(optimal worst-case) policy

= and give a safe lower bound
on its performance

= A

S 0.7-

S 0.6-

o054 east

S0

S o o

o

é 0.3

= 02 — T T T1%»¢€
0 0.1 0.2
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Robust control

e (Can be solved with robust value iteration e Robust control
= for any e, we can pick a “robust”
o(s) = 1 if sev/ (optimal worst-case) policy
max, min 8P, , Ty 8(s,a)s’)-p(s’) if sV = and give a safe lower bound

on its performance

= various techniques for solving . A

inner optimisation problems § 0.7 -
% 0.6 -
® 054 east
o]
PR
o
% 0.3 +
= 02 — T T T »¢

0 0.1 0.2

* Implemented/available in PRISM



Learning IMDPs

* We can learn IMDP models from samples of transitions/trajectories
= of the (fixed, but unknown) “true” MDP
= either online (interactively) or offline (from existing logs)

* Uncertainty sets in the IMDP

=" gre based on confidence intervals

= around point estimates for transition probabilities P (s;)

= vielding probably approximately correct (PAC) guarantees

= we fix an error rate ¥ and compute an error €

Pr(6eP)=1—-vy
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Learning IMDPs

e For each state s and action a

» we have sample counts N = #(s,a) and k; = #(s,a, s;)

= the point estimate for the transitionis: P.*(s;) = k;/N

= the confidence intervalis: P*(s;) + € where € = \/log(Z/y)/ZN

= with PACguarantee: | Pr(P&(s;) € PA(s;)) te)=1—vy

(via Hoeffding’s
inequality)

* We can lift this to the whole IMDP
= building uncertain transition set P using intervals as above

Pr(oeP)=1—-vy

= and also to our robust guarantees P_ - [F v ]

(after distributing
error rate y)
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Learning IMDPs

For each state s and action a

= we have sample counts N = #(s,a) and k; = #(s,a, s;)
= the point estimate for the transitionis: P.*(s;) = k;/N

= the confidence intervalis: P*(s;) + € where € = \/log(Z/)/)/ZN

= with PACguarantee: | Pr(P&(s;) € PA(s;)) te)=1—vy

We can lift this to the whole IMDP

= building uncertain transition set P using intervals as above

Pr(oeP)=1—-vy

(after distributing
error rate y)

= and also to our robust guarantees P_ - [F v ]

RY(0T)

1.0

0.8

0.6 1

0.4

0.2

(via Hoeffding’s

inequality)

[Suilen
et al.’22]

100

10" 102 100 10t 10° 1
Trajectory

—LUI —MAP —UCRL —PAC
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Neuro-symbolic
decision making



Deep reinforcement learning

* Tackling more realistic problems

= continuous state spaces & more complex dynamics

System Controller/policy Environment

e Verification of learning-based systems

= e.g., deep reinforcement learning deep reinforcement learning

4y

= neural network (NN) learnt for strategy actions/values

¢ FIrSt StepSZ Slngle'agent Ver|flcat|0n, leEd pO|ICY Rectangle Octago | {81, 02, d3 }-polyhedron

(a) (b) ()
= deterministic dynamical system + control faults

= combine polyhedral abstractions with probabilistic model checking

= conservative abstraction of NN-controlled dynamics = \
over a finite horizon, via MILP / o >
upper bounds on 5
failure probabilities pendulum
benchmark

for initial regions
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Neuro-symbolic games

Mixture of neural components + symbolic/logical components
= simpler than end-to-end neural control problem; aids explainability
= here: neural networks (or similar) for perception tasks
= plus: local strategies for control decisions

Neuro-symbolic CSGs

= finite-state agents + continuous-state environment E
e S = (Locy X Pery) X (Loc, X Per,) X Sg

= agents use a (learnt) perception function to observe E

e obs;: (Loc; X Loc,) X Sg—> Per;

= CSG-like joint actions update state probabilistically

—N W e
xf
I
-

Example: dynamic vehicle parking 0 I 2 3

= NN maps exact vehicle position to perceived grid cell
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Model checking neuro-symbolic CSGs

» Strategy synthesis for zero-sum (discounted) expected reward

= for now, we assume full observability

e Value iteration (VI) approach

= continuous state-space decomposed into regions

4.0

» further subdivision at each iteration 35
3.0

= we define a class of piecewise-continuous 25
value functions, preserved by NNs and VI 201

1.5 1

1.0 1

0.5 1

Implementation 00
= pre-image computations of NNs
= polytope representations of regions
= |Ps to solve zero-sum games at each step

Dynamic vehicle parking
with larger (8x8) grid and
simpler (regression) perception

.
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Wrapping up



Overview

Sequential decision making under uncertainty
Formal verification: probabilistic model checking

Multi-agent decision making
Data-driven models for decision making
Neuro-symbolic decision making
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Challenges & directions

4 ‘ ‘
al : T 5 4 o e L,
Partial information/observability 4O s e~
: 1-4| 47¢ ; Pl I AW
= e.g., leveraging progress on POMDPs Ly 1_& | o T
O A8 i
Managing robustness and uncertainty 0 123 4
1 A
= e.g., stability of randomised strategies 2 o7
g 0:5: east
. . . g i south
Modelling language design and extensions 5 o
= 0. —T T T1%»¢
= e.g., for specifying uncertainty o o .

= e.g., more flexible interchange of components and strategies

Further classes of equilibria I M, ‘A ‘A -:>I M,

= e.g. Stackelberg equilibria for automotive/security applications

Improving scalability & efficiency

= e.g.symbolic methods for CSGs, compositional solution

&‘ prismmodelchecker.org
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