

Verified Sequential Decision Making under Uncertainty

Dave Parker

CDT in Safe & Trusted AI, July 2025

Overview

- Sequential decision making under uncertainty
- Formal verification: probabilistic model checking
 - key ideas and example applications
 - probabilistic models
 - temporal logic & automata
- Multi-agent decision making
 - stochastic games
- Data-driven models for decision making
 - robustness under epistemic uncertainty
- Neuro-symbolic decision making

Sequential decision making under uncertainty

- Sequential decision making
 - iterative interaction with an environment to achieve a goal
 - sequential process of making observations and executing actions
 - applications in: health, energy, transportation, robotics, ...
- Sequential decision making under uncertainty
 - noisy sensors, unpredictable conditions, lossy communication, human behaviour, hardware failures, ...

- Trustworthy, safe and robust decision making
 - e.g. for safety-critical applications
 - needs rigorous/systematic quantification of uncertainty

Applications & challenges

- Unmanned aerial vehicles
 - robust control in the presence of turbulence

- Autonomous underwater vehicle
 - safe & effective navigation in unknown ocean currents

[Budd et al.'22]

- Mobile robots around humans
 - reliable navigation in offices & care homes

[Hawes et al.'17]

- Mine exploration
 - Safe exploration and mapping (avoiding radiation)

Formal verification

- Computer-aided formal verification
 - how do I (automatically) prove that my program/protocol/design is correct?
 - particularly important for safety critical systems

- How do we do this in the presence of uncertainty?
 - hardware failures, randomisation, unreliable sensors, unpredictable environments, ...

Probabilistic model checking

Probabilistic model checking

- Automated verification of stochastic systems
 - systematic construction and analysis of probabilistic models
 - key ingredients: logic, automata, probability

Connections to:

 Markov models, graph theory, artificial intelligence, control theory, optimisation, game theory, SAT, ...

- Key strengths: exhaustive + numeric analysis
 - often subtle interplay between probability + nondeterminism
- Applications to:
 - airbag design, satellite reliability, pacemaker designs, communication/network protocols, computer security

Probabilistic model checking (PMC)

Probabilistic model checking

Example: Bluetooth

- Device discovery between a pair of Bluetooth devices
 - performance guarantees essential for this phase
- Complex discovery process
 - two asynchronous 28-bit clocks
 - pseudo-random hopping between 32 frequencies
 - random waiting scheme to avoid collisions
- Probabilistic model checking
 - worst-case expected time and probability for successful discovery
 - Markov chains with 17,179,869,184 initial configurations
 - exhaustive numerical analysis via symbolic model checking
 - highlights flaws in a simpler, analytic analysis

Diverse applications of PRISM

Cloud computing

- live migration of VMs
- plan optimisation for performance guarantees

[Kikuchi/Matsumoto (Fujitsu), CLOUD'11] (Best paper)

Football tactics

- team strategies learnt from data
- tactical efficiency analysed via probabilistic model checking

[Van Roy et al., JAIR'23, MIT-SSAC'24]

Human-cell conversion

- for disease models, gene therapies
- design tool for optimisation and prediction, based on model checking

[Jung et al., Nature Communications'21

Trends in probabilistic model checking

- From verification problems to control/synthesis
 - "correct-by-construction" from temporal logic specifications

- Increasing use/integration of learning
 - either to support modelling/verification
 - or deployed within the systems being verified

- Increasingly expressive/powerful classes of model
 - real-time, partial observability, epistemic uncertainty, multi-agent, ...
 - leading to ever widening range of application domains

CTMC, CSG, DTMC, LTS, MDP, POMDP, POPTA, PTA, STPG, SMG, TPTG, IDTMC, IMDP

A zoo of probabilistic models

- Increasing variety (and complexity) of probabilistic models supported
 - discrete-time Markov chains
 - probabilistic automata
 - continuous-time Markov chains
 - Markov decision processes (MDPs)
 - probabilistic timed automata
 - partially observable MDPs
 - stochastic multi-player games
 - concurrent stochastic games
 - interval Markov chains & MDPs

- + concurrency
- + exponential delays
- + policies / control
- + real-time clocks
- + observability
- + multi-agent & strategies
- + concurrency & equilibria
- + epistemic uncertainty

A zoo of probabilistic models

- Increasing variety (and complexity) of probabilistic models supported
 - discrete-time Markov chains
 - probabilistic automata
 - continuous-time Markov chains
 - Markov decision processes (MDPs)
 - probabilistic timed automata
 - partially observable MDPs
 - stochastic multi-player games
 - concurrent stochastic games
 - interval Markov chains & MDPs

- + concurrency
- + exponential delays
- + policies / control
- + real-time clocks
- + observability
- + multi-agent & strategies
- + concurrency & equilibria
- + epistemic uncertainty

Probabilistic models

- Discrete-time Markov chains (DTMCs)
 - finite state space + discrete probabilities
 - core property: probabilistic reachability Pr_s(F ✓)
- Markov decision processes (MDPs)
 - policies (or strategies) or resolve actions based on history
 - e.g.: $P_{\text{max}=?}[F\checkmark] = \sup_{\sigma} Pr_s^{\sigma}(F\checkmark)$
 - what is the <u>maximum</u> probability of reaching ✓ achievable by any policy o?
- Models for probabilistic model checking:
 - mostly finite-state
 - mostly known in full

$$\delta: S \times A \rightarrow Dist(S)$$

MDPs and policies

- Policies for an MDP differ in the use of memory and randomisation
 - each yields an induced Markov chain

(memoryless, deterministic)

(memoryless, randomised)

Temporal logic

Temporal logic

- Formal specification of desired/required behaviour
 - formal language for quantitative guarantees
- Simple examples (PCTL)
 - Probabilistic reachability

```
P_{\geq 0.7} [ F goal<sub>1</sub> ] P_{\geq 0.6} [ F<sup>\leq 10</sup> goal<sub>1</sub> ]
```

- Probabilistic safety/invariance
 - P_{≥0.99} [G¬hazard]
- Numerical queries

```
P<sub>=?</sub> [ F goal<sub>1</sub> ]
P<sub>max=?</sub> [ F goal<sub>1</sub> ]
```

Example MDP (robot navigation)

- Extensions
 - richer temporal specs (LTL), multi-objective, costs/rewards, ...

Correctness by construction

- Synthesise correct-by-construction controllers/policies/plans
 - based on temporal logic specifications (probabilistic guarantees)
 - verification vs synthesis of MDP policies

Can we guarantee reaching goal₁ with probability 0.5? $P_{\geq 0.5}$ [F goal₁]

Correctness by construction

- Synthesise correct-by-construction controllers/policies/plans
 - based on temporal logic specifications (probabilistic guarantees)
 - verification vs synthesis of MDP policies

Can we guarantee reaching goal₁ with probability 0.5? $P_{\geq 0.5}$ [F goal₁]

How do we maximise the probability of reaching $goal_1$? $P_{max=?}$ [F $goal_1$]

(optimal policy is deterministic and memoryless)

Correctness by construction

- Synthesise correct-by-construction controllers/policies/plans
 - based on temporal logic specifications (probabilistic guarantees)
 - verification vs synthesis of MDP policies

With high probability, complete the task "inspect zones 3 then 1, without passing through zone 0" whilst always remaining close to the charging dock.

$$P_{>0.99}$$
 [$\neg zone_0$ U ($zone_3 \land (F zone_1)$)] $\land \forall G P_{>0.95}$ [$F^{\leq 100} zone_2$)]

Linear temporal logic (LTL)

- LTL (linear temporal logic) syntax:
 - ψ ::= true | a | $\psi \wedge \psi$ | $\neg \psi$ | $X \psi$ | $\psi \cup \psi$ | $F \psi$ | $G \psi$
- Propositional logic + temporal operators:
 - a is an atomic proposition (labelling a state)
 - $\times \psi$ means " ψ is true in the next state"
 - F ψ means "ψ is eventually true"
 - G ψ means "ψ always remains true"
 - $-\psi_1 \cup \psi_2$ means " ψ_2 is true eventually and ψ_1 is true until then"
- Common alternative notation:
 - (next), ♦ (eventually), □ (always), U (until)

Linear temporal logic (LTL)

- LTL (linear temporal logic) syntax:
 - ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ ∪ ψ | F ψ | G ψ
- Commonly used LTL formulae:
 - $G(a \rightarrow Fb)$ "b always eventually follows a"
 - $G(a \rightarrow Xb)$ "b always immediately follows a"
 - G F a "a is true infinitely often"
 - F G a "a becomes true and remains true forever"
- Example: robot task specifications in LTL
 - e.g. $P_{>0.7}$ [(G-hazard) \land (GF goal₁)] "the probability of avoiding hazard and visiting goal₁ infinitely often is > 0.7"
 - e.g. $P_{max=?}$ [$\neg zone_3$ U ($zone_1 \land (Fzone_4)$)] "max. probability of patrolling zone 1 (whilst avoiding zone 3) then zone 4?"

Multi-objective specifications

- Achievability query
 - $-P_{\geq 0.7}$ [G \neg hazard] $\wedge P_{\geq 0.2}$ [GF goal₁]?
- Numerical query
 - $P_{max=?}$ [GF goal₁] such that $P_{≥0.7}$ [G ¬hazard]?
- Pareto query
 - for $P_{max=?}$ [G ¬hazard], $P_{max=?}$ [GF goal₁]?

More temporal logic

Costs & rewards

- i.e., accrued values assigned to model states or transitions
- e.g., $R_{min=?}^{time}$ [$\neg zone_3$ U ($zone_1 \land (Fzone_4)$)]
- minimise expected time to patrol zone 1 (whilst avoiding zone 3) then zone 4?

Nested (branching-time) queries

- e.g. $R_{\text{min}=?}^{\text{bat}}$ [$P_{\geq 0.99}$ [$F^{\leq 10}$ base] U (zone₁ \wedge (F zone₄))]
- "minimise expected battery usage to visit zones 1 then 4,
 whilst (initially) ensuring the base can always be reliably reached

And more

- cost-bounded, conditional probabilities, quantiles
- metric temporal logic, signal temporal logic, ...

Benefits of temporal logic

- Unambiguous, flexible, tractable behavioural specification
 - broad range of quantitative properties expressible
- (Probabilistic) guarantees on safety, performance, etc.
 - meaningful properties: event probabilities, time, energy,...

```
P<sub>>0.7</sub> [ (G¬hazard) ∧ (GF goal<sub>1</sub>) ]
```

- compare to: ad-hoc reward structures, e.g. with discounting
- caveat: accuracy of model (and its solution)
- Efficient LTL-to-automata translation
 - optimal (finite-memory) policy synthesis (via product MDP)
 - correctness monitoring / shielding
 - task progress metrics

LTL & automata

- Safe/co-safe LTL: (deterministic) finite automata
 - (non-)satisfaction occurs in finite time
 - $\neg zone_3 U (zone_1 \land (F zone_4))$

- Full LTL: e.g. (deterministic) Rabin/Buchi automata
 - G¬hazard ∧ GF goal₁

Many other useful LTL/automata subclasses...

LTL model checking via product MDP

LTL model checking via product MDP

Verification techniques

- Probabilistic model checking techniques
 - automata + graph analysis + numerical solution
 - often more focus on exhaustive/"exact"/optimal methods
 - e.g., for MDPs: value iteration (VI), linear programming

- Example (MDPs):
 - max. probability of reaching
 - values $p(s) = \sup_{\sigma} Pr_s^{\sigma}(F \checkmark)$ are the least fixed point of:

$$p(s) = \begin{cases} 1 & \text{if } s \models \checkmark \\ \max_{a} \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{otherwise} \end{cases}$$

- But: VI has known accuracy and convergence issues
 - interval iteration, sound VI, optimistic VI
 - separate convergence from above and below

Scalability & efficiency

- Scalability & efficiency are always key challenges
 - many approaches investigated...
- Symbolic probabilistic model checking
 - i.e., (multi-terminal) binary decision diagrams
- Model reductions
 - bisimulation minimisation
 - abstraction + sound bounds (property driven)
- Sampling (simulation) based methods
 - statistical model checking, PAC guarantees, heuristics, ...
- Trade-off: scalability/efficiency vs. accuracy/guarantees
 - spectrum of "correctness": exact, floating-point correct, ε-correct, probably ε-correct, ...

Example: Robot deployments

- Mobile robots in offices/care homes
 - Convert MDP policies to navigation controllers
 - ROS module based on PRISM
 - 100s of hrs of autonomous deployment

- Underwater autonomous vehicles
 - efficient/reliable retrieval of data from sensor networks
 - PRISM-generated control policies outperform hand-designed ones

Overview

- Sequential decision making under uncertainty
- Formal verification: probabilistic model checking
 - key ideas and example applications
 - probabilistic models
 - temporal logic & automata
- Multi-agent decision making
 - stochastic games
- Data-driven models for decision making
 - robustness under epistemic uncertainty
- Neuro-symbolic decision making

Multi-agent decision making

Stochastic multi-agent systems

- How do we verify/control stochastic systems with...
 - multiple agents acting autonomous and concurrently
 - competitive or collaborative behaviour between agents, possibly with differing goals
 - learnt components for e.g. control/perception

Applications:

- distributed protocols for consensus/security
- multi-robot systems
- autonomous vehicles

- Probabilistic model checking
 - with stochastic multi-player games

A zoo of probabilistic models

- Increasing variety (and complexity) of probabilistic models supported
 - discrete-time Markov chains
 - probabilistic automata
 - continuous-time Markov chains
 - Markov decision processes (MDPs)
 - probabilistic timed automata
 - partially observable MDPs
 - stochastic multi-player games
 - concurrent stochastic games
 - interval Markov chains & MDPs

- + concurrency
- + exponential delays
- + policies / control
- + real-time clocks
- + observability
- + multi-agent & strategies
- + concurrency & equilibria
- + epistemic uncertainty

Multiple players with differing strategies and objectives

Stochastic multi-player games

- (Turn-based) stochastic multi-player games
 - strategies + probability + multiple players
 - player i controls subset of states S_i

Modelling with turn-based games

Turn-based stochastic games well suited to some (but not all) scenarios

Uncontrollable/unknown navigation interference

Shared autonomy: human-robot control

Property specification: rPATL

- rPATL (reward probabilistic alternating temporal logic)
 - zero-sum, branching-time temporal logic for stochastic games
 - coalition operator ((C)) of ATL
 probabilistic (P) and reward (R) operators
- Example:
 - \(\langle \langle \
 - "what strategies for robots 1 and 3 <u>maximise</u>
 the probability of reaching their goal locations,
 <u>regardless</u> of the strategies of other robots"
 - Can be seen as a mixture of control and verification

- Other additions:
 - (co-safe) linear temporal logic
 ¬zone₃ U (room₁ ∧ (F room₄ ∧ F room₅)
 - nested specifications

```
\langle\langle\{\text{robot}_1,\text{robot}_3\}\rangle\rangle \ \mathsf{R}_{\min=?} \ [ \ \langle\langle\{\text{robot}_1\}\rangle\rangle \ \mathsf{P}_{\geq 0.99} \ [\ \mathsf{F}^{\leq 10} \ \mathsf{base}\ ] \ \mathsf{U} \ (\mathsf{zone}_1 \land (\mathsf{F} \ \mathsf{zone}_4)) \ ]
```

"minimise expected time for joint task, while ensuring base reliably reached"

Model checking rPATL

- Main task: checking individual P and R operators
 - reduces to solving a (zero-sum) stochastic 2-player game
 - e.g. max/min reachability probability: $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1,\sigma_2} (F \checkmark)$
 - **■** complexity: NP ∩ coNP (if we omit some reward operators)
- We again use value iteration
 - values p(s) are the least fixed point of:

$$p(s) = \begin{cases} 1 & \text{if } s \models \checkmark \\ \max_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \text{ and } s \in S_1 \\ \min_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \text{ and } s \in S_2 \end{cases}$$

and more: graph-algorithms, sequences of fixed points, ...

- Implementation
 - symbolic (BDD-based)version also developed
 - big gains on some models
 - also benefits for strategy compactness

Example: Energy protocols

- Demand management protocol for microgrids
 - randomised back-off to minimise peaks
- Stochastic game model checking
 - allow users to collaboratively cheat (ignore protocol)
 - models of up to ~6 million states
 - exposes protocol weakness (incentive for clients to act selfishly)
 - propose/verify simple fix using penalties

Incentive for

Concurrent stochastic games

- Need a more realistic model of components operating concurrently
- Concurrent stochastic games (CSGs)
 - (also known as Markov games, multi-agent MDPs)
 - players choose actions concurrently & independently
 - jointly determines (probabilistic) successor state

CSG for 2 robots on a 3x1 grid

CSG for 2 robots on a 3x1 grid

rPATL model checking for CSGs

- Same overall rPATL model checking algorithm
 - key ingredient is now solving (zero-sum) 2-player CSGs (PSPACE)
 - note that optimal strategies are now randomised

- e.g. max/min reachability probabilities
- $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1,\sigma_2}(F \checkmark)$ for all states s
- values p(s) are the least fixed point of:

$$p(s) = \begin{cases} 1 & \text{if } s \models \checkmark \\ val(Z) & \text{if } s \not\models \checkmark \end{cases}$$

• where Z is the matrix game with $z_{ij} = \Sigma_{s'} \delta(s,(a_i,b_i))(s') \cdot p(s')$

- Implementation
 - matrix games solved as linear programs
 - (LP problem of size |A|)
 - required for every iteration/state
 - which is the main bottleneck
 - but we solve CSGs of ~3 million states

Example: Future markets investor

- 3-player CSG modelling interactions between:
 - stock market, evolves stochastically
 - two investors i₁, i₂ decide when to invest
 - market decides whether to bar investors
 - various profit models; reduced for simultaneous investments

- Investor strategy synthesis via rPATL model checking
 - \(\langle\) (\(\langle\) investor₁, investor₂\(\rangle\) \(\Rangle\) R_{max=?} [F finished_{1,2}]
 - non-trivial optimal (randomised) investment strategies
 - concurrent game (CSG) yields more realistic results (market has less observational power over investors)

Equilibria-based properties

- Beyond zero-sum games:
 - players/components may have distinct objectives but which are not directly opposing (zero-sum)
- We use Nash equilibria (NE)
 - no incentive for any player to unilaterally change strategy
 - actually, we use ε-NE, which always exist for CSGs

```
\sigma=(\sigma_{1,...},\sigma_n) is an \epsilon-NE for objectives X_1,...,X_n iff:
for all i: E_s^{\sigma}(X_i) \ge \sup \{ E_s^{\sigma'}(X_i) \mid \sigma'=\sigma_{-i}[\sigma_i'] \text{ and } \sigma_i' \in \Sigma_i \} - \epsilon
```

- We extend rPATL model checking for CSGs
 - with social-welfare Nash equilibria (SWNE)
 - i.e., NE which also maximise the joint sum $E_s^{\sigma}(X_1) + ... E_s^{\sigma}(X_n)$

```
Zero-sum properties
```

```
\langle (robot_1) \rangle_{max=?} P [ F^{\leq k} goal_1 ]
```



```
\langle \langle robot_1: robot_2 \rangle \rangle_{max=?}
(P [ F<sup>\leq k</sup> goal<sub>1</sub>]+P [F \leq k goal<sub>2</sub>])
```

Equilibria-based properties (SWNE)

Model checking for Nash equilibria

- Model checking for CSGs with equilibria
 - needs solution of bimatrix games
 - (basic problem is EXPTIME)
 - strategies need history and randomisation

We further extend the value iteration approach:

$$p(s) = \begin{cases} (1,1) & \text{if } s \vDash \checkmark_{1} \land \checkmark_{2} \\ (1,p_{\text{max}}(s,\checkmark_{2})) & \text{if } s \vDash \checkmark_{1} \land \lnot \checkmark_{2} \\ (p_{\text{max}}(s,\checkmark_{1}),1) & \text{if } s \vDash \lnot \checkmark_{1} \land \lnot \checkmark_{2} \\ val(Z_{1},Z_{2}) & \text{if } s \vDash \lnot \checkmark_{1} \land \lnot \checkmark_{2} \end{cases}$$

■ where Z₁ and Z₂ encode matrix games similar to before

- Implementation
 - we adapt a known approach using labelled polytopes, and implement via SMT
 - optimisations: filtering of dominated strategies
 - solve CSGs of ~2 million states

standard MDP analysis

bimatrix game

Example: multi-robot coordination

- 2 robots navigating an m x m gridworld
 - start at opposite corners, goals are to navigate to opposite corners
 - obstacles modelled stochastically

10 x 10 grid

- We synthesise SWNEs to maximise the average probability of robots reaching their goals within time k
 - $\langle (robot1:robot2) \rangle_{max=?}$ (P [$F^{\leq k}$ goal₁]+P [$F^{\leq k}$ goal₂])
 - and compare to sequential strategy synthesis

Faster and fairer equilibria

- Limitations of (social welfare) Nash equilibria for CSGs:
 - 1. can be computationally expensive, especially for >2 players
 - 2. social welfare optimality is <u>not</u> always equally beneficial to players
- Correlated equilibria
 - correlation: shared (probabilistic) signal + map to local strategies
 - synthesis: support enumeration + nonLP (Nash) -> LP (correlated)
 - experiments: much faster to synthesise (4-20x faster)
- Social fairness
 - alternative optimality criterion: minimise difference in objectives
 - applies to both Nash/correlated: slight changes to optimisation

Example: Aloha communication protocol

social fairness (SF)
more equitable
than social welfare (WF_i)

Tool support: PRISM-games

- PRISM-games
 - supports turn-based/concurrent SGs, zero-sum/equilibria
 - and more (co-safe LTL, multi-objective, real-time extensions, ...)
 - explicit-state and symbolic implementations
 - custom modelling language extending PRISM
- Growing interest: other (TSG) tools becoming available
 - Tempest, EPMC, PET, PRISM-games extensions
- Many other example application domains
 - attack-defence trees, self-adaptive software architectures, human-in-the-loop UAV mission planning, trust models, collective decision making, intrusion detection policies

```
csq
player p1 user1 endplayer
player p2 user2 endplayer
// Users (senders)
module user1
s1:[0..1] init 0; // has player 1 sent?
e1:[0..emax] init emax; // energy level of player 1
[w1] true -> (s1'=0); // wait
[t1] e1> -> (s1'=0); // wait
[t1] e1> -> (s1'=c? 0 : 1) & (e1'=e1-1); // transmit
endmodule
module user2 = user1 [s1=s2, e1=e2, w1=w2, t1=t2] endmodule
// Channel: used to compute joint probability distribution for transmission failure
module channel
c: bool init false; // is there a collision?
[t1,w2] true -> q1: (c'=false) + (1-q1): (c'=true); // only user 1 transmits
[w1,t2] true -> q2: (c'=false) + (1-q2): (c'=true); // both users transmit
endmodule
```


prismmodelchecker.org/games/

Robust decision making

Reasoning about uncertainty

- Markov decision processes (MDPs) and variants
 - standard models for sequential decision making under uncertainty
 - stochastic processes quantify uncertainty
 - but parameters of these often need to be estimated from data
- We distinguish between:
- Aleatoric uncertainty (randomness intrinsic to environment)
 - e.g., sensor noise, actuator failure, human decisions
- Epistemic uncertainty (quantifies lack of knowledge)
 - reducible: can reduce by collecting more data/observations
 - e.g., poor model quality due to low number of measurements

MDPs + epistemic uncertainty

- MDPs for sequential decision making under (aleatoric) uncertainty
 - modelled here using transition probabilities (often learnt from data)
- Policies can be sensitive to small perturbations in transition probabilities
 - so "optimal" policies can in fact be sub-optimal

MDPs + epistemic uncertainty

- MDPs for sequential decision making under (aleatoric) uncertainty
 - modelled here using transition probabilities (often learnt from data)
- Policies can be sensitive to small perturbations in transition probabilities
 - so "optimal" policies can in fact be sub-optimal
- Uncertain MDPs: MDPs + epistemic uncertainty (model uncertainty)
 - we focus here on uncertainty in transition probabilities

Key questions:

- how to model (and solve for) epistemic uncertainty?
- what guarantees do we get?
- is it statistically accurate?
- how computationally efficient is it?

Uncertain MDPs

- An uncertain MDP (uMDP), also called a robust MDP
 - can be seen as an MDP with a set \mathcal{P} of transition functions
 - i.e., each $\delta \in \mathcal{P}$ is of the form $\delta : S \times A \rightarrow Dist(S)$
 - we often specify separate uncertainty sets $\mathcal{P}_{s,a} \subseteq \text{Dist}(S)$
- Some examples of uMDPs

Interval MDPs (IMDPs)

Likelihood MDPs

Sampled MDPs

Other (non-set) representations are possible: dynamic, Bayesian, ...

Uncertainty set dependencies

- We often assume (s,a)-rectangularity
 - no dependencies between uncertainty sets: $\mathcal{P} = \times_{(s,a) \in S \times A} \mathcal{P}_{s,a}$
 - computational tractability vs. modelling accuracy
- When might dependences between uncertainties arise?
 - often from shared model parameters

Task scheduling in the presence of faulty processors

Underwater vehicle control in unknown ocean currents

Robust control

- For now, we consider a robust view of uncertainty
 - i.e., we focus on worst-case (adversarial, pessimistic) scenarios
- Robust policy evaluation:
 - policies o are defined as for MDPs
 - as are objectives e.g. P_{max=?} [F ✓]
 - for a (maximising) policy σ:
 - worst-case value: $\inf_{\delta \in \mathcal{P}} \Pr_{s}^{\delta,\sigma}(F \checkmark)$

- Robust control (policy optimisation):
 - optimal worst-case value $p^* = \sup_{\sigma} \inf_{\delta \in \mathcal{P}} \Pr_{s}^{\delta, \sigma} (F \checkmark)$
 - optimal worst-case policy $\sigma^* = \operatorname{argsup}_{\sigma} \operatorname{inf}_{\delta \in \mathcal{P}} \operatorname{Pr}_{s}^{\delta,\sigma} (\mathsf{F} \checkmark)$
 - p* represents a robust guarantee, i.e., P_{≥p*} [F ✓] always holds

Running example: Robust control

- An IMDP for the robot example
 - uncertainty added to two state-action pairs

Note: the degree of uncertainty (e)
 in states s₁ and s₂ is correlated here
 (but the actual transition probabilities are not)

Robust control

- for any e, we can pick a "robust" (optimal worst-case) policy
- and give a safe lower bound on its performance

Robust control

Can be solved with robust value iteration

$$p(s) = \begin{cases} 1 & \text{if } s \models \checkmark \\ \max_{a} \min \delta \in \mathcal{P}_{s,a} \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \end{cases}$$

 various techniques for solving inner optimisation problems

Implemented/available in PRISM

Robust control

- for any e, we can pick a "robust" (optimal worst-case) policy
- and give a safe lower bound on its performance

Learning IMDPs

- We can learn IMDP models from samples of transitions/trajectories
 - of the (fixed, but unknown) "true" MDP
 - either online (interactively) or offline (from existing logs)
- Uncertainty sets in the IMDP
 - are based on confidence intervals
 - around point estimates for transition probabilities $P_s^a(s_i)$
 - yielding probably approximately correct (PAC) guarantees
 - we fix an error rate γ and compute an error ϵ

$$Pr(\delta \in \mathcal{P}) \ge 1 - \gamma$$

Learning IMDPs

- For each state s and action a
 - we have sample counts N = #(s, a) and $k_i = \#(s, a, s_i)$
 - the point estimate for the transition is: $P_s^a(s_i) \approx k_i/N$
 - the confidence interval is: $P_s^a(s_i) \pm \varepsilon$ where $\varepsilon = \sqrt{\log(2/\gamma)/2N}$
 - with PAC guarantee: $Pr(P_s^a(s_i) \in P_s^a(s_i) \pm \varepsilon) \ge 1 \gamma$

(via Hoeffding's inequality)

3±8.0

- We can lift this to the whole IMDP
 - lacktriangle building uncertain transition set $\mathcal P$ using intervals as above

$$Pr(\delta \in \mathcal{P}) \ge 1 - \gamma$$

(after distributing error rate γ)

■ and also to our robust guarantees $P_{\geq p^*}$ [F \checkmark]

Learning IMDPs

- For each state s and action a
 - we have sample counts N = #(s, a) and $k_i = \#(s, a, s_i)$
 - the point estimate for the transition is: $P_s^a(s_i) \approx k_i/N$
 - the confidence interval is: $P_s^a(s_i) \pm \varepsilon$ where $\varepsilon = \sqrt{\log(2/\gamma)/2N}$
 - with PAC guarantee: $Pr(P_s^a(s_i) \in P_s^a(s_i) \pm \varepsilon) \ge 1 \gamma$
- (via Hoeffding's inequality)

- We can lift this to the whole IMDP
 - building uncertain transition set \mathcal{P} using intervals as above

$$Pr(\delta \in \mathcal{P}) \ge 1 - \gamma$$
 (after distributing error rate γ)

■ and also to our robust guarantees $P_{\geq p^*}$ [F \checkmark]

 $0.8\pm\epsilon$

Neuro-symbolic decision making

Deep reinforcement learning

- Tackling more realistic problems
 - continuous state spaces & more complex dynamics
- Verification of learning-based systems
 - e.g., deep reinforcement learning
 - neural network (NN) learnt for strategy actions/values
- First steps: single-agent verification, fixed policy
 - deterministic dynamical system + control faults

combine polyhedral abstractions with probabilistic model checking

 conservative abstraction of NN-controlled dynamics over a finite horizon, via MILP

upper bounds on failure probabilities for initial regions

deep reinforcement learning

Neuro-symbolic games

- Mixture of neural components + symbolic/logical components
 - simpler than end-to-end neural control problem; aids explainability
 - here: neural networks (or similar) for perception tasks
 - plus: local strategies for control decisions

- Neuro-symbolic CSGs
 - finite-state agents + continuous-state environment E

•
$$S = (Loc_1 \times Per_1) \times (Loc_2 \times Per_2) \times S_E$$

- agents use a (learnt) perception function to observe E
 - obs_i: $(Loc_1 \times Loc_2) \times S_E \rightarrow Per_i$
- CSG-like joint actions update state probabilistically

NN maps exact vehicle position to perceived grid cell

Model checking neuro-symbolic CSGs

- Strategy synthesis for zero-sum (discounted) expected reward
 - for now, we assume full observability
- Value iteration (VI) approach
 - continuous state-space decomposed into regions
 - further subdivision at each iteration
 - we define a class of piecewise-continuous value functions, preserved by NNs and VI
- Implementation
 - pre-image computations of NNs
 - polytope representations of regions
 - LPs to solve zero-sum games at each step

Dynamic vehicle parking with larger (8x8) grid and simpler (regression) perception

Value function (fragment)

Optimal strategy (fragment)

Wrapping up

Overview

- Sequential decision making under uncertainty
- Formal verification: probabilistic model checking
- Multi-agent decision making
- Data-driven models for decision making
- Neuro-symbolic decision making

Challenges & directions

- Partial information/observability
 - e.g., leveraging progress on POMDPs
- Managing robustness and uncertainty
 - e.g., stability of randomised strategies
- Modelling language design and extensions
 - e.g., for specifying uncertainty
 - e.g., more flexible interchange of components and strategies
- Further classes of equilibria
 - e.g. Stackelberg equilibria for automotive/security applications
- Improving scalability & efficiency
 - e.g. symbolic methods for CSGs, compositional solution

prismmodelchecker.org