
Verified Sequential Decision
Making under Uncertainty

Dave Parker

CDT in Safe & Trusted AI, July 2025

Overview
• Sequential decision making under uncertainty
• Formal verification: probabilistic model checking

§ key ideas and example applications
§ probabilistic models
§ temporal logic & automata

• Multi-agent decision making
§ stochastic games

• Data-driven models for decision making
§ robustness under epistemic uncertainty

• Neuro-symbolic decision making

2

Sequential decision making under uncertainty
• Sequential decision making

§ iterative interaction with an environment to achieve a goal
§ sequential process of making observations and executing actions
§ applications in: health, energy, transportation, robotics, …

• Sequential decision making under uncertainty
§ noisy sensors, unpredictable conditions, lossy communication,

human behaviour, hardware failures, …

• Trustworthy, safe and robust decision making
§ e.g. for safety-critical applications
§ needs rigorous/systematic quantification of uncertainty

3

Applications & challenges

4

• Autonomous underwater vehicle
‣ safe & effective navigation in

unknown ocean currents

• Unmanned aerial vehicles
‣ robust control in the

presence of turbulence

• Mine exploration
‣ Safe exploration

and mapping
(avoiding
radiation)

• Mobile robots around humans
‣ reliable navigation in

offices & care homes

[Budd
et al.’22]

[Budd
et al.’22]

[Badings
et al.’23]

[Hawes et al.’17]

Formal verification
• Computer-aided formal verification

§ how do I (automatically) prove that my program/protocol/design is correct?
§ particularly important for safety critical systems

• How do we do this in the presence of uncertainty?
§ hardware failures, randomisation, unreliable sensors, unpredictable environments, …

5

Probabilistic
model checking

Probabilistic model checking
• Automated verification of stochastic systems

§ systematic construction and analysis of probabilistic models
§ key ingredients: logic, automata, probability

• Connections to:
§ Markov models, graph theory, artificial intelligence,

control theory, optimisation, game theory, SAT, …

• Key strengths: exhaustive + numeric analysis
§ often subtle interplay between probability + nondeterminism

• Applications to:
§ airbag design, satellite reliability, pacemaker designs,

communication/network protocols, computer security

7

trigger → P≥0.999 [◇≤2 deploy]

0.4
0.5

0.1

Probabilistic
model checker

Probabilistic
model

Probabilistic model checking

0.5
0.1

0.4

Probabilistic model checking (PMC)

Result

High-level
model/design

Specification
(temporal logic)

System

System
 require-

ments

?
P≥0.999 [F≤20 goal]

PRISM

Probabilistic
model checker

Probabilistic
model

Probabilistic model checking

0.5
0.1

0.4

Probabilistic model checking

22

are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

Strategies/policies/controllers

Numerical results (“guarantees”)

Result
Parameters

+data

PRISM

P≥0.999 [F≤20 goal]

Example: Bluetooth
• Device discovery between a pair of Bluetooth devices

§ performance guarantees essential for this phase

• Complex discovery process
§ two asynchronous 28-bit clocks
§ pseudo-random hopping between 32 frequencies
§ random waiting scheme to avoid collisions

• Probabilistic model checking
§ worst-case expected time and probability for successful discovery
§ Markov chains with 17,179,869,184 initial configurations
§ exhaustive numerical analysis via symbolic model checking
§ highlights flaws in a simpler, analytic analysis

12

Diverse applications of PRISM

13

[Van Roy et al.,
JAIR’23, MIT-SSAC’24]

• Football tactics
§ team strategies learnt from data
§ tactical efficiency analysed via

probabilistic model checking

• Cloud computing
§ live migration of VMs
§ plan optimisation for

performance guarantees

[Kikuchi/Matsumoto
(Fujitsu), CLOUD’11]

(Best paper)

• Human-cell conversion
§ for disease models, gene therapies
§ design tool for optimisation and

prediction, based on model checking

[Jung et al., Nature
Communications’21]

Trends in probabilistic model checking

• From verification problems to control/synthesis
§ “correct-by-construction” from temporal logic specifications

• Increasing use/integration of learning
§ either to support modelling/verification
§ or deployed within the systems being verified

• Increasingly expressive/powerful classes of model
§ real-time, partial observability, epistemic uncertainty, multi-agent, …
§ leading to ever widening range of application domains

CTMC, CSG,
DTMC, LTS, MDP,
POMDP, POPTA,

PTA, STPG, SMG,
TPTG, IDTMC,

IMDP

22

are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

14

10

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1
b
1
c

c

f

f

f

0.7

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

20

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9
0.1

fast

s0

s4

s3

0.7

east

s1

south
0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south

0.3

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9
north

s6 0.3

0.7

si Player 1 Player 2sj

TSG models

init
x≤2

0.9

retry

done
true

lost
x≤5

fail
true

quit
send

x≥3

x:=0

0.1
x≥1∧
tries≤N

tries:=0

tries>N
x:=0,
tries:=tries+1

A zoo of probabilistic models
• Increasing variety (and complexity) of probabilistic models supported

15

10

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1
b
1
c

c

f

f

f

0.7

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

20

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9
0.1

fast

s0

s4

s3

0.7

east

s1

south
0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south

0.3

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9
north

s6 0.3

0.7

si Player 1 Player 2sj

TSG models

init
x≤2

0.9

retry

done
true

lost
x≤5

fail
true

quit
send

x≥3

x:=0

0.1
x≥1∧
tries≤N

tries:=0

tries>N
x:=0,
tries:=tries+1

10

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1
b
1
c

c

f

f

f

0.7

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

20

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9
0.1

fast

s0

s4

s3

0.7

east

s1

south
0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south

0.3

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9
north

s6 0.3

0.7

si Player 1 Player 2sj

TSG models

init
x≤2

0.9

retry

done
true

lost
x≤5

fail
true

quit
send

x≥3

x:=0

0.1
x≥1∧
tries≤N

tries:=0

tries>N
x:=0,
tries:=tries+1

• discrete-time Markov chains

+ concurrency• probabilistic automata

+ exponential delays• continuous-time Markov chains

+ real-time clocks• probabilistic timed automata

+ policies / control• Markov decision processes (MDPs)

+ observability• partially observable MDPs

+ multi-agent & strategies• stochastic multi-player games

+ concurrency & equilibria• concurrent stochastic games

+ epistemic uncertainty• interval Markov chains & MDPs

A zoo of probabilistic models
• Increasing variety (and complexity) of probabilistic models supported

16

10

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1
b
1
c

c

f

f

f

0.7

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

20

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9
0.1

fast

s0

s4

s3

0.7

east

s1

south
0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south

0.3

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9
north

s6 0.3

0.7

si Player 1 Player 2sj

TSG models

init
x≤2

0.9

retry

done
true

lost
x≤5

fail
true

quit
send

x≥3

x:=0

0.1
x≥1∧
tries≤N

tries:=0

tries>N
x:=0,
tries:=tries+1

• discrete-time Markov chains

+ concurrency• probabilistic automata

+ exponential delays• continuous-time Markov chains

+ real-time clocks• probabilistic timed automata

+ policies / control• Markov decision processes (MDPs)

+ observability• partially observable MDPs

+ multi-agent & strategies• stochastic multi-player games

+ concurrency & equilibria• concurrent stochastic games

+ epistemic uncertainty• interval Markov chains & MDPs

Probabilistic models
• Discrete-time Markov chains (DTMCs)

§ finite state space + discrete probabilities
§ core property: probabilistic reachability Prs(F✓)

• Markov decision processes (MDPs)
§ policies (or strategies) σ resolve actions based on history
§ e.g.: Pmax=? [F✓] = supσ Prs

σ (F✓)
§ what is the maximum probability of

reaching ✓ achievable by any policy σ?

• Models for probabilistic model checking:
§ mostly finite-state
§ mostly known in full

s0

0.5

0.5

s2

s1

s5

✓

s40.3

1

0.7

s0

0.5

0.5
b

s2

s1

s5

✓

s40.3
1

b

1

b
1

c
c

d

d

d

0.7

δ : S×A → Dist(S)

δ : S → Dist(S)

MDPs and policies
• Policies for an MDP differ in the use of memory and randomisation
– each yields an induced Markov chain

18

(finite-memory, deterministic) (memoryless, randomised)

(memoryless, deterministic)

Temporal logic

Temporal logic
• Formal specification of desired/required behaviour

§ formal language for quantitative guarantees

• Simple examples (PCTL)
§ Probabilistic reachability

P≥0.7 [F goal1]
P≥0.6

 [F≤10 goal1]

§ Probabilistic safety/invariance
P≥0.99 [G¬hazard]

§ Numerical queries
P=?

 [F goal1]
Pmax=?

 [F goal1]

• Extensions
§ richer temporal specs (LTL), multi-objective, costs/rewards, …

Example MDP (robot navigation)

s0

s4s3

0.5

east s1
south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Correctness by construction
• Synthesise correct-by-construction controllers/policies/plans

§ based on temporal logic specifications (probabilistic guarantees)
§ verification vs synthesis of MDP policies

21

s0

s4s3

0.5

east s1
south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Can we guarantee reaching goal1 with probability 0.5?
P≥0.5 [F goal1]

Correctness by construction
• Synthesise correct-by-construction controllers/policies/plans

§ based on temporal logic specifications (probabilistic guarantees)
§ verification vs synthesis of MDP policies

22

Can we guarantee reaching goal1 with probability 0.5?
P≥0.5 [F goal1]

How do we maximise the probability of reaching goal1?
Pmax=? [F goal1]

(optimal policy is deterministic and memoryless)

s0

s4s3

0.5

east s1
south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Correctness by construction
• Synthesise correct-by-construction controllers/policies/plans

§ based on temporal logic specifications (probabilistic guarantees)
§ verification vs synthesis of MDP policies

23

s0

s4s3

0.5

east s1
south

0.8

0.1

{zone3}

s2

s5

{zone0}

0.1

{zone1}

{zone2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

With high probability, complete the task
“inspect zones 3 then 1, without passing through zone 0”
whilst always remaining close to the charging dock.

P>0.99 [¬zone0 U (zone3 ∧ (F zone1))]
∧ ∀G P>0.95 [F≤100 zone2)]

Linear temporal logic (LTL)
• LTL (linear temporal logic) syntax:

− ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ

• Propositional logic + temporal operators:
− a is an atomic proposition (labelling a state)
− X ψ means "ψ is true in the next state"
− F ψ means “ψ is eventually true”
− G ψ means “ψ always remains true”
− ψ1 U ψ2 means "ψ2 is true eventually and ψ1 is true until then”

• Common alternative notation:
§ ◯ (next), ◇ (eventually), □ (always) , U (until)

Linear temporal logic (LTL)
• LTL (linear temporal logic) syntax:

§ ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ

• Commonly used LTL formulae:
§ G (a → F b) - "b always eventually follows a"
§ G (a → X b) - "b always immediately follows a”
§ G F a - "a is true infinitely often"
§ F G a - "a becomes true and remains true forever"

• Example: robot task specifications in LTL
§ e.g. P>0.7 [(G¬hazard) ∧ (GF goal1)] – ”the probability of

avoiding hazard and visiting goal1 infinitely often is > 0.7"
§ e.g. Pmax=? [¬zone3 U (zone1 ∧ (F zone4))] – "max. probability of

patrolling zone 1 (whilst avoiding zone 3) then zone 4?”

Multi-objective specifications

• Achievability query
− P≥0.7 [G ¬hazard] ∧ P≥0.2 [GF goal1] ?

• Numerical query
− Pmax=? [GF goal1] such that P≥0.7 [G ¬hazard] ?

• Pareto query
− for Pmax=? [G ¬hazard], Pmax=? [GF goal1] ?

randomised,
(finite-memory)
optimal policy

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2
ψ1 = G ¬hazard
ψ2 = GF goal1

More temporal logic
• Costs & rewards

§ i.e., accrued values assigned to model states or transitions
§ e.g., R min=? [¬zone3 U (zone1 ∧ (F zone4))]
§ minimise expected time to patrol zone 1 (whilst avoiding zone 3) then zone 4?

• Nested (branching-time) queries
§ e.g. Rmin=? [P≥0.99

 [F≤10 base] U (zone1 ∧ (F zone4))]
§ "minimise expected battery usage to visit zones 1 then 4,

whilst (initially) ensuring the base can always be reliably reached

• And more
§ cost-bounded, conditional probabilities, quantiles
§ metric temporal logic, signal temporal logic, …

bat

time

Benefits of temporal logic
• Unambiguous, flexible, tractable behavioural specification

§ broad range of quantitative properties expressible

• (Probabilistic) guarantees on safety, performance, etc.
§ meaningful properties: event probabilities, time, energy,…

§ compare to: ad-hoc reward structures, e.g. with discounting
§ caveat: accuracy of model (and its solution)

• Efficient LTL-to-automata translation
§ optimal (finite-memory) policy synthesis (via product MDP)
§ correctness monitoring / shielding
§ task progress metrics

P>0.7 [(G¬hazard) ∧ (GF goal1)]

LTL & automata
• Safe/co-safe LTL: (deterministic) finite automata

§ (non-)satisfaction occurs in finite time
§ ¬zone3 U (zone1 ∧ (F zone4))

• Full LTL: e.g. (deterministic) Rabin/Buchi automata
§ G¬hazard ∧ GF goal1

• Many other useful LTL/automata subclasses…

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

q0 q2

z3∧
¬z1

¬z1∧
¬z3

q3

true

q1
z4

¬z4

z1∧z4

z1∧
¬z4

LTL model checking via product MDP

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

0.5

east
south

0.8

0.1

{goal1}

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

{goal2}

s4q0s3q0

s1q2

s4q2s3q0 s5q2

s2q2

M⊗Aψ

M

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

Aψ ψ = □¬h ∧ □◇ g1

LTL model checking via product MDP

0.5

east
south

0.8

0.1

{goal1}

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

{goal2}

s4q0s3q0

s1q2

s4q2s3q2 s5q2

s2q2

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

M⊗Aψ

M Aψ ψ = □¬h ∧ □◇ g1

Verification techniques
• Probabilistic model checking techniques

§ automata + graph analysis + numerical solution
§ often more focus on exhaustive/“exact”/optimal methods
§ e.g., for MDPs: value iteration (VI), linear programming

• Example (MDPs):
§ max. probability of reaching ✓
§ values p(s) = supσ Prs

σ (F✓)
are the least fixed point of:

• But: VI has known accuracy and convergence issues
§ interval iteration, sound VI, optimistic VI
§ separate convergence from above and below

p(s) = 1 if s⊨✓
maxa Σs’ δ(s,a)(s’)⋅p(s’) otherwise

s0
0.5

0.5
b

s2

s1

s5

✓

s40.3
1

b

1
b
1

c
c

d

d

d

0.7

Scalability & efficiency
• Scalability & efficiency are always key challenges

§ many approaches investigated…

• Symbolic probabilistic model checking
§ i.e., (multi-terminal) binary decision diagrams

• Model reductions
§ bisimulation minimisation
§ abstraction + sound bounds (property driven)

• Sampling (simulation) based methods
§ statistical model checking, PAC guarantees, heuristics, …

• Trade-off: scalability/efficiency vs. accuracy/guarantees
§ spectrum of “correctness” : exact, floating-point correct, ɛ-correct, probably ɛ-correct, …

0.1 0.8 1

Example: Robot deployments
• Mobile robots in offices/care homes

§ Convert MDP policies to navigation controllers
§ ROS module based on PRISM
§ 100s of hrs of autonomous deployment

34

• Underwater autonomous vehicles
§ efficient/reliable retrieval of

data from sensor networks
§ PRISM-generated control policies

outperform hand-designed ones

[Budd
et al.’22]

[Hawes et al.’17]

Overview
• Sequential decision making under uncertainty
• Formal verification: probabilistic model checking

§ key ideas and example applications
§ probabilistic models
§ temporal logic & automata

• Multi-agent decision making
§ stochastic games

• Data-driven models for decision making
§ robustness under epistemic uncertainty

• Neuro-symbolic decision making

35

Multi-agent
decision making

Stochastic multi-agent systems
• How do we verify/control stochastic systems with…

§ multiple agents acting autonomous and concurrently
§ competitive or collaborative behaviour between agents, possibly with differing goals
§ learnt components for e.g. control/perception

• Probabilistic model checking
§ with stochastic multi-player games

• Applications:
§ distributed protocols for

consensus/security
§ multi-robot systems
§ autonomous vehicles

37

10

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1
b
1
c

c

f

f

f

0.7

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

20

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9
0.1

fast

s0

s4

s3

0.7

east

s1

south
0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south

0.3

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9
north

s6 0.3

0.7

si Player 1 Player 2sj

TSG models

init
x≤2

0.9

retry

done
true

lost
x≤5

fail
true

quit
send

x≥3

x:=0

0.1
x≥1∧
tries≤N

tries:=0

tries>N
x:=0,
tries:=tries+1A zoo of probabilistic models

• Increasing variety (and complexity) of probabilistic models supported

38

• discrete-time Markov chains

+ concurrency• probabilistic automata

+ exponential delays• continuous-time Markov chains

+ real-time clocks• probabilistic timed automata

+ policies / control• Markov decision processes (MDPs)

+ observability• partially observable MDPs

+ multi-agent & strategies• stochastic multi-player games

+ concurrency & equilibria• concurrent stochastic games

+ epistemic uncertainty• interval Markov chains & MDPs

Multiple players
with differing
strategies and

objectives

Stochastic multi-player games
• (Turn-based) stochastic multi-player games

§ strategies + probability + multiple players
§ player i controls subset of states Si

Markov
decision processes

(MDPs)

Turn-based
stochastic games

(TSGs)

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1

b
1

c
c

f

f

f

0.7

δ : S×A → Dist(S)

S = S1⊎… ⊎Sn

39

Modelling with turn-based games
• Turn-based stochastic games well suited to some (but not all) scenarios

20

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9
0.1

fast

s0

s4

s3

0.7

east

s1

south
0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south

0.3

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9
north

s6 0.3

0.7

si Player 1 Player 2sj

TSG modelsUncontrollable/unknown
navigation interference

20

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9
0.1

fast

s0

s4

s3

0.7

east

s1

south
0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south

0.3

0.60.4

stuck

east

stuck

0.4

0.6
west

west

east

0.1

0.9
north

s6 0.3

0.7

si Player 1 Player 2sj

TSG models

Shared autonomy:
human-robot control

40

Property specification: rPATL
• rPATL (reward probabilistic alternating temporal logic)

§ zero-sum, branching-time temporal logic for stochastic games
§ coalition operator ⟨⟨C⟩⟩ of ATL

+ probabilistic (P) and reward (R) operators

• Example:
§ ⟨⟨{robot1,robot3}⟩⟩ Pmax=? [F (goal1∨ goal3)]
§ “what strategies for robots 1 and 3 maximise

the probability of reaching their goal locations,
regardless of the strategies of other robots”

• Other additions:
§ (co-safe) linear temporal logic

¬zone3 U (room1 ∧ (F room4 ∧ F room5)

§ nested specifications
⟨⟨{robot1,robot3}⟩⟩ Rmin=? [
 ⟨⟨{robot1}⟩⟩ P≥0.99

 [F≤10 base]
 U (zone1 ∧ (F zone4))]
“minimise expected time for joint task,
while ensuring base reliably reached”

Can be seen as
a mixture of
control and
verification

41

Model checking rPATL
• Main task: checking individual P and R operators

§ reduces to solving a (zero-sum) stochastic 2-player game
§ e.g. max/min reachability probability: supσ1

infσ2
 Prs

σ1,σ2 (F✓)
§ complexity: NP ∩ coNP (if we omit some reward operators)

• We again use value iteration
§ values p(s) are the least fixed point of:

§ and more: graph-algorithms, sequences of fixed points, …

p(s) =
1 if s⊨✓
maxa Σs’ δ(s,a)(s’)⋅p(s’) if s⊭✓ and s∈S1

mina Σs’ δ(s,a)(s’)⋅p(s’) if s⊭✓ and s∈S2

s0

s1

w1 s2

t1 w2

t2

w2

t2

s3

s4

s5

• Implementation
§ symbolic (BDD-based)

version also developed
§ big gains on some models
§ also benefits for strategy

compactness

42

Example: Energy protocols
• Demand management protocol for microgrids

§ randomised back-off to minimise peaks

• Stochastic game model checking
§ allow users to collaboratively cheat (ignore protocol)
§ models of up to ~6 million states
§ exposes protocol weakness

(incentive for clients to act selfishly)
§ propose/verify simple fix using penalties

Adding penalties
reverses trend

Incentive for
(individual)
deviations

2

R
ew

ar
d

pe
r h

os
ue

ho
ld

6 753 4
5

10

15

20

Num.
households

Algorithm + penalties

2

Num.
households

R
ew

ar
d

pe
r h

os
ue

ho
ld

6 7543
5

10

15

20 Original algorithm

C
oa

lit
io

n
si

ze

No protocol

7

1

3
4
5
6

2

Deviating
coalition

All follow
protocol

PRISM-games

43

Concurrent stochastic games
• Need a more realistic model of components operating concurrently

• Concurrent stochastic games (CSGs)
§ (also known as Markov games, multi-agent MDPs)
§ players choose actions concurrently & independently
§ jointly determines (probabilistic) successor state

Concurrent
stochastic games

(CSGs)s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

Turn-based
stochastic games

(TSGs) s0

s1

w1 s2

t1 w2

t2

w2

t2

s3

s4

s5
δ : S×(A1∪{⊥}) × … × (An∪{⊥}) → Dist(S)

44

CSG for 2 robots on a 3x1 grid

45

0,2
0.9

0.1

1,2

0,1 1,1

east,⊥

⊥,west east,
west

0 east 1 2
east

{goal1}

0
west

1 2
west

{goal2}

2,2

1,1 2,1

0,0 1,0 2,0

{crash}

CSG for 2 robots on a 3x1 grid

46

0,2

east,⊥

0.9

0.1

1,2 2,2

0,1 1,1 2,1

0,0 1,0 2,0

0.9
0.1

0.9
0.1

0.9

0.1

east,⊥

east,⊥
east,⊥

east,⊥
east,⊥

⊥,west east,
west

east,
 west

⊥,west

east,
 west

east,
 west

⊥,west⊥,west

⊥,
west

0.9
0.1

⊥,west

{goal1,
goal2}

{goal1}

{crash,
goal1}

{crash,
goal2}

{goal2}

{crash}
0 east 1 2

east
{goal1}

0
west

1 2
west

{goal2}

rPATL model checking for CSGs
• Same overall rPATL model checking algorithm

§ key ingredient is now solving (zero-sum) 2-player CSGs (PSPACE)
§ note that optimal strategies are now randomised

• We again use a value iteration based approach
§ e.g. max/min reachability probabilities
§ supσ1

 infσ2
 Prs

σ1,σ2 (F ✓) for all states s
§ values p(s) are the least fixed point of:

§ where Z is the matrix game
with zij = Σs’ δ(s,(ai,bj))(s’)⋅p(s’)

p(s) =
1 if s⊨✓
val(Z) if s⊭✓

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

• Implementation
§ matrix games solved as linear programs

• (LP problem of size |A|)
§ required for every iteration/state

• which is the main bottleneck

§ but we solve CSGs of ~3 million states

47

Example: Future markets investor
• 3-player CSG modelling interactions between:

§ stock market, evolves stochastically
§ two investors i1, i2 decide when to invest
§ market decides whether to bar investors
§ various profit models; reduced for simultaneous investments

• Investor strategy synthesis via rPATL model checking
§ ⟨⟨investor1,investor2⟩⟩ Rmax=? [F finished1,2]
§ non-trivial optimal (randomised) investment strategies
§ concurrent game (CSG) yields more realistic results

(market has less observational power over investors)

profit1,2

Too pessimistic:
unrealistic strategy

for adversary

48

Equilibria-based properties
• Beyond zero-sum games:

§ players/components may have distinct objectives
but which are not directly opposing (zero-sum)

• We use Nash equilibria (NE)
§ no incentive for any player to unilaterally change strategy
§ actually, we use ε-NE, which always exist for CSGs

• We extend rPATL model checking for CSGs
§ with social-welfare Nash equilibria (SWNE)
§ i.e., NE which also maximise the joint sum Es

σ (X1) + … Es
σ (Xn)

Zero-sum
properties

⟨⟨robot1⟩⟩max=? P [F≤k goal1]

Equilibria-based
properties
(SWNE)

⟨⟨robot1:robot2⟩⟩max=?
(P [F≤k goal1]+P [F ≤k goal2])

σ=(σ1,…,σn) is an ε-NE for objectives X1,…,Xn iff:
for all i : Es

σ (Xi) ≥ sup { Es
σ’ (Xi) | σ’=σ-i[σi’] and σi’∈ Σi } – ε

49

Model checking for Nash equilibria
• Model checking for CSGs with equilibria

§ needs solution of bimatrix games
§ (basic problem is EXPTIME)
§ strategies need history

and randomisation

• We further extend the value iteration approach:

§ where Z1 and Z2 encode matrix games similar to before

p(s) =

(1,1) if s ⊨ ✓1∧✓2

(1,pmax(s,✓2)) if s ⊨ ✓1∧¬✓2

(pmax(s,✓1),1) if s ⊨ ¬✓1∧✓2

val(Z1,Z2) if s ⊨ ¬✓1∧¬✓2

standard
MDP analysis

bimatrix game

s0

t1,t2

w1,t2w1,w2

✓1

✓2
t1,w2

• Implementation
§ we adapt a known approach

using labelled polytopes, and
implement via SMT

§ optimisations: filtering
of dominated strategies

§ solve CSGs of ~2 million states

50

Example: multi-robot coordination
• 2 robots navigating an m x m gridworld

§ start at opposite corners, goals are
to navigate to opposite corners

§ obstacles modelled stochastically

• We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k
§ ⟨⟨robot1:robot2⟩⟩max=? (P [F≤k goal1]+P [F ≤k goal2])
§ and compare to sequential strategy synthesis

Collaboration helps:
better performance

from equilibria

10 x 10 grid

ε-NE found
typically have ε=0

51

Faster and fairer equilibria
• Limitations of (social welfare) Nash equilibria for CSGs:

1. can be computationally expensive, especially for >2 players
2. social welfare optimality is not always equally beneficial to players

• Correlated equilibria
§ correlation: shared (probabilistic) signal + map to local strategies
§ synthesis: support enumeration + nonLP (Nash) -> LP (correlated)
§ experiments: much faster to synthesise (4-20x faster)

• Social fairness
§ alternative optimality criterion: minimise difference in objectives
§ applies to both Nash/correlated: slight changes to optimisation

Example: Aloha
communication protocol14 Marta Kwiatkowska, Gethin Norman, David Parker, Gabriel Santos

0.4 0.6 0.8 1
1

2

3

4

5

q

E
xp

ec
te

d
ti

m
e

two users
SFNEi

SW1

SW2

SFCEi

0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

q

E
xp

ec
te

d
ti

m
e

three users
SW1

SW2

SW3

SFi

0.4 0.6 0.8 1
2
3
4
5
6
7
8
9

10
11

q

E
xp

ec
te

d
ti

m
e

four users
SW1

SW2

SW3

SW4

SFi

Fig. 2: Aloha: 〈〈usr1: · · · :usrm〉〉(!1, !2)min=?(Rtime [F s1]+· · ·+Rtime [F sm])

i for both SWNE and SWCE for the cases of two, three and four users. We see
that the optimal values for the different users under SFNE and SFCE coincide,
while under SWNE and SWCE they are different for each user (with the user
sending first having the lowest and the user sending last the highest). Comparing
the sum of the SWNE (and SWCE) values and that of the SFCE values, we see
a small decrease in the sum of less than 2% of the total, while for SFNE there
is a greater difference as the players cannot coordinate, and hence try and send
at the same time.

Power control. This case study is based on a model of power control in cel-
lular networks from [7]. In the network there are a number of users that each
have a mobile phone. The phones emit signals that the users can strengthen by
increasing the phone’s power level up to a bound (powmax). A stronger signal
can improve transmission quality, but uses more energy and lowers the qual-
ity of the transmissions of other phones due to interference. We use the ex-
tended model from [22], which adds a probability of failure (qfail) when a power
level is increased and assumes each phone has a limited battery capacity (emax).
There is a reward structure associated with each phone representing transmis-
sion quality, which is dependent on both the phone’s power level and the power
levels of other phones due to interference. We consider the nonzero-sum prop-
erty 〈〈p1:· · ·:pm〉〉(!1, !2)max=?(Rr1 [F e1]+· · ·+Rrm [F em]), where each user tries
to maximise their expected reward before their phone’s battery is depleted.

In Figure 3 we have presented the expected rewards of the players under
the synthesised SWCE and SFCE joint strategies. When performing strategy
synthesis, in the case of two users the SWNE and SWCE yield the same profile
in which, when the users’ batteries are almost depleted, one user tries to increase
their phone’s power level and, if successful, in the next step, the second user then
tries to increase their phone’s power level. Since the first user’s phone battery
is depleted when the second tries to increase, this increase does not cause any
interference. On the other hand, if the first user fails to increase their power
level, then both users increase their battery levels. For the SFCE, the users
can coordinate and flip a coin as to which user goes first: as demonstrated by
Figure 3 this yields equal rewards for the users, unlike the SWCE. In the case of
three users, the SWNE and SWCE differ (we were only able to synthesise SWNE
for powmax = 2 as for larger values the computation had not completed within

social fairness (SF)
more equitable

than social welfare (WFi)

Signals:
randomised coordination
of next message sender,

adapting over time

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

52

Tool support: PRISM-games
• PRISM-games

§ supports turn-based/concurrent SGs, zero-sum/equilibria
• and more (co-safe LTL, multi-objective, real-time extensions, …)

§ explicit-state and symbolic implementations
§ custom modelling language extending PRISM

• Growing interest: other (TSG) tools becoming available
§ Tempest, EPMC, PET, PRISM-games extensions

• Many other example application domains
§ attack-defence trees, self-adaptive software architectures,

human-in-the-loop UAV mission planning, trust models,
collective decision making, intrusion detection policies prismmodelchecker.org/games/

53

http://www.prismmodelchecker.org/games/

Robust
decision making

Reasoning about uncertainty
• Markov decision processes (MDPs) and variants

§ standard models for sequential decision making under uncertainty
§ stochastic processes quantify uncertainty
§ but parameters of these often need to be estimated from data

• We distinguish between:
• Aleatoric uncertainty (randomness intrinsic to environment)

• Epistemic uncertainty (quantifies lack of knowledge)
§ reducible: can reduce by collecting more data/observations

55

P(H)=P(T)=0.5

(1)

(2)

P(H)=1 P(T)=1

?

§ e.g., sensor noise, actuator failure, human decisions

§ e.g., poor model quality due to low number of measurements

MDPs + epistemic uncertainty
• MDPs for sequential decision making under (aleatoric) uncertainty

§ modelled here using transition probabilities (often learnt from data)

• Policies can be sensitive to small perturbations in transition probabilities
§ so “optimal” policies can in fact be sub-optimal

56

s0

s4s3

0.5

east s1
south

0.5

0.1

{goal1}

s2

s5

{hazard}

0.4

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0

s4s3

0.5-e

east s1
south

0.5-e/4

0.1

{goal1}

s2

s5

{hazard}

0.4+e/4

{goal2}

{goal2}

south

0.5+e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

MDPs + epistemic uncertainty
• MDPs for sequential decision making under (aleatoric) uncertainty

§ modelled here using transition probabilities (often learnt from data)

• Policies can be sensitive to small perturbations in transition probabilities
§ so “optimal” policies can in fact be sub-optimal

• Uncertain MDPs: MDPs + epistemic uncertainty (model uncertainty)
§ we focus here on uncertainty in transition probabilities

57

Key questions:
• how to model (and solve for) epistemic uncertainty?
• what guarantees do we get?
• is it statistically accurate?
• how computationally efficient is it?

Uncertain MDPs
• An uncertain MDP (uMDP), also called a robust MDP

§ can be seen as an MDP with a set 𝒫 of transition functions
§ i.e., each δ ∈ 𝒫 is of the form δ : S×A → Dist(S)
§ we often specify separate uncertainty sets 𝒫s,a ⊆ Dist(S)

• Some examples of uMDPs

§ Other (non-set) representations are possible: dynamic, Bayesian, …
58

Sampled MDPs

…

Interval MDPs (IMDPs) Likelihood MDPs

Uncertainty set dependencies
• We often assume (s,a)-rectangularity

§ no dependencies between uncertainty sets: 𝒫 = ×(𝑠,𝑎)∈𝑆×𝐴𝒫s,a

§ computational tractability vs. modelling accuracy

• When might dependences between uncertainties arise?
§ often from shared model parameters

59

Task scheduling in the
presence of faulty processors

Underwater vehicle
control in unknown

ocean currents

Robust control
• For now, we consider a robust view of uncertainty

§ i.e., we focus on worst-case (adversarial, pessimistic) scenarios

• Robust policy evaluation:
§ policies σ are defined as for MDPs
§ as are objectives e.g. Pmax=? [F ✓]
§ for a (maximising) policy σ:
§ worst-case value: infδ ∈ 𝒫 Prs

δ,σ (F ✓)

• Robust control (policy optimisation):
§ optimal worst-case value p* = supσ infδ ∈ 𝒫 Prs

δ,σ (F ✓)
§ optimal worst-case policy σ* = argsupσ infδ ∈ 𝒫 Prs

δ,σ (F ✓)
§ p* represents a robust guarantee, i.e., P≥p* [F ✓] always holds

60

s0

[0.4,0.6]

a

s2

s1

s5

✓

s41

a

1

b
1

b
c

f

f

f
[0.4,0.6]

[0.7,0.8]

[0.2,0.3]

Running example: Robust control
• An IMDP for the robot example

§ uncertainty added to two state-action pairs

§ Note: the degree of uncertainty (e)
in states s1 and s2 is correlated here
(but the actual transition probabilities are not)

61

• Robust control
§ for any e, we can pick a “robust”

(optimal worst-case) policy
§ and give a safe lower bound

on its performance

Robust control
• Can be solved with robust value iteration

§ various techniques for solving
inner optimisation problems

• Implemented/available in PRISM

62

• Robust control
§ for any e, we can pick a “robust”

(optimal worst-case) policy
§ and give a safe lower bound

on its performance

p(s) = 1 if s⊨✓
maxa min δ∈𝒫s,a Σs’ δ(s,a)(s’)⋅p(s’) if s⊭✓

Learning IMDPs
• We can learn IMDP models from samples of transitions/trajectories

§ of the (fixed, but unknown) “true” MDP
§ either online (interactively) or offline (from existing logs)

• Uncertainty sets in the IMDP
§ are based on confidence intervals
§ around point estimates for transition probabilities 𝑃$%(𝑠&)
§ yielding probably approximately correct (PAC) guarantees

§ we fix an error rate 𝛾 and compute an error ɛ

63

s0

0.21±ɛ

a

s2

s1

s5

✓

s41

a

1

b
1

b
c

f

f

f
0.79±ɛ

0.69±ɛ

0.31±ɛ

s0

0.2
a

s2

s1

s5

✓

s41

a

1

b
1

b
c

f

f

f

0.8

0.7

0.3

𝑃𝑟(𝛿 ∈ 𝒫) ≥ 1 − 𝛾

Learning IMDPs
• For each state 𝑠 and action 𝑎

§ we have sample counts 𝑁 = #(𝑠, 𝑎) and 𝑘& = #(𝑠, 𝑎, 𝑠&)

§ the point estimate for the transition is: 𝑃
~
"
#(𝑠$) ≈ 𝑘$/𝑁

§ the confidence interval is: 𝑃
~
"
#(𝑠$) ± ɛ where ɛ = log(2/𝛾)/2𝑁

§ with PAC guarantee:

• We can lift this to the whole IMDP
§ building uncertain transition set 𝒫 using intervals as above

§ and also to our robust guarantees P≥p*
 [F ✓]

64

(via Hoeffding’s
 inequality)

s0

0.2±ɛ

a

s2

s1

0.8±ɛ

𝑃𝑟(𝑃"#(𝑠$) ∈ 𝑃
~
"
#(𝑠$) ± ɛ) ≥ 1 − 𝛾

𝑃𝑟(𝛿 ∈ 𝒫) ≥ 1 − 𝛾 s0

0.2±ɛ

a

s2

s1

s5

✓

s41

a

1

b
1

b
c

f

f

f
0.8±ɛ

0.7±ɛ

0.3±ɛ

(after distributing
 error rate 𝛾)

x200

x800

Learning IMDPs
• For each state 𝑠 and action 𝑎

§ we have sample counts 𝑁 = #(𝑠, 𝑎) and 𝑘& = #(𝑠, 𝑎, 𝑠&)

§ the point estimate for the transition is: 𝑃
~
"
#(𝑠$) ≈ 𝑘$/𝑁

§ the confidence interval is: 𝑃
~
"
#(𝑠$) ± ɛ where ɛ = log(2/𝛾)/2𝑁

§ with PAC guarantee:

• We can lift this to the whole IMDP
§ building uncertain transition set 𝒫 using intervals as above

§ and also to our robust guarantees P≥p*
 [F ✓]

65

(via Hoeffding’s
 inequality)

s0

0.2±ɛ

a

s2

s1

0.8±ɛ

𝑃𝑟(𝑃"#(𝑠$) ∈ 𝑃
~
"
#(𝑠$) ± ɛ) ≥ 1 − 𝛾

𝑃𝑟(𝛿 ∈ 𝒫) ≥ 1 − 𝛾 (after distributing
 error rate 𝛾)

[Suilen
et al.’22]

Neuro-symbolic
decision making

Deep reinforcement learning
• Tackling more realistic problems

§ continuous state spaces & more complex dynamics

• Verification of learning-based systems
§ e.g., deep reinforcement learning
§ neural network (NN) learnt for strategy actions/values

• First steps: single-agent verification, fixed policy
§ deterministic dynamical system + control faults
§ combine polyhedral abstractions with probabilistic model checking
§ conservative abstraction of NN-controlled dynamics

over a finite horizon, via MILP

System Controller/policy Environment

deep reinforcement learning

pendulum
benchmark

upper bounds on
failure probabilities
for initial regions

67

Neuro-symbolic games
• Mixture of neural components + symbolic/logical components

§ simpler than end-to-end neural control problem; aids explainability
§ here: neural networks (or similar) for perception tasks
§ plus: local strategies for control decisions

• Neuro-symbolic CSGs
§ finite-state agents + continuous-state environment E

• S = (Loc1×Per1) × (Loc2×Per2) × SE

§ agents use a (learnt) perception function to observe E
• obsi : (Loc1×Loc2) × SE → Peri

§ CSG-like joint actions update state probabilistically

• Example: dynamic vehicle parking
§ NN maps exact vehicle position to perceived grid cell

s0

t1,t2

w1,t2w1,w2

s1

s2t1,w2

68

Model checking neuro-symbolic CSGs
• Strategy synthesis for zero-sum (discounted) expected reward

§ for now, we assume full observability

• Value iteration (VI) approach
§ continuous state-space decomposed into regions
§ further subdivision at each iteration
§ we define a class of piecewise-continuous

value functions, preserved by NNs and VI

• Implementation
§ pre-image computations of NNs
§ polytope representations of regions
§ LPs to solve zero-sum games at each step

Dynamic vehicle parking
with larger (8x8) grid and
simpler (regression) perception

Value function
(fragment)

Optimal strategy
(fragment)

69

Wrapping up

70

Overview

• Sequential decision making under uncertainty
• Formal verification: probabilistic model checking

• Multi-agent decision making
• Data-driven models for decision making
• Neuro-symbolic decision making

71

Challenges & directions
• Partial information/observability

§ e.g., leveraging progress on POMDPs

• Managing robustness and uncertainty
§ e.g., stability of randomised strategies

• Modelling language design and extensions
§ e.g., for specifying uncertainty
§ e.g., more flexible interchange of components and strategies

• Further classes of equilibria
§ e.g. Stackelberg equilibria for automotive/security applications

• Improving scalability & efficiency
§ e.g. symbolic methods for CSGs, compositional solution

M1 A M2A

Running example: Robust control
• An IMDP for the robot example
‣ uncertainty added to two state-action pairs

‣ Note: the degree of uncertainty (e)
in states s1 and s2 is correlated here
(but the actual transition probabilities are not)

52

• Robust control

‣ for any e, we can pick a “robust”
(optimal worst-case) policy

‣ and give a safe lower bound
on its performance

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south

0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

27

0.1 0.20

0.4

0.6
0.7

0.5

0.3
eM

ax
. p

ro
b.

 re
ac

h
go

al
1

east
south

0.2

s0

s4s3

0.5±e

east s1

south

0.5
±e/4

{goal1}

s2

s5

{hazard}
{goal2}

{goal2}

south

0.5±e

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north0.4

±e/4

0.1±e/4

72

prismmodelchecker.org

https://www.prismmodelchecker.org/

