

2

PRISM – An overview

•  PRISM is a probabilistic model checker
−  automatic verification of systems with stochastic behaviour
−  e.g. due to unreliability, uncertainty, randomisation, …

•  Construction/analysis of probabilistic models…
−  discrete- and continuous-time Markov chains, Markov

decision processes, probabilistic timed automata

•  Verification of properties in probabilistic temporal logics…
−  PCTL, CSL, LTL, PCTL*, quantitative extensions, costs/rewards

•  Various model checking engines and techniques
−  symbolic, explicit-state, simulation-based data structures,  

symmetry reduction, quantitative abstraction refinement, …

•  PRISM is free and open source
−  www.prismmodelchecker.org 

3

Overview

•  Probabilistic models
−  model types, modelling language, case studies/benchmarks

•  Property specification
−  temporal logics + extensions

•  Underlying techniques and implementation
−  symbolic/explicit-state, PTA model checking, statistical m/c

•  Future additions
−  probabilistic counterexamples, multi-objective model

checking, compositional model checking, stochastic games

4

PRISM - Probabilistic models

•  Discrete-time Markov chains (DTMCs)
−  discrete states + probability
−  for: randomisation, unreliable communication media, …

•  Continuous-time Markov chains (CTMCs)
−  discrete states + exponentially distributed delays
−  for: component failures, job arrivals, molecular reactions, …

•  Markov decision processes (MDPs)
−  in fact: probabilistic automata [Segala]
−  probability + nondeterminism (e.g. for concurrency, control)
−  for: randomised distributed algorithms, security protocols, …

•  Probabilistic timed automata (PTAs) [new in PRISM 4.0]
−  probability, nondeterminism + real-time
−  for wireless comm. protocols, embedded control systems, …

5

Probabilistic timed automata (PTAs)

•  Probability + nondeterminism + real-time
−  timed automata + discrete probabilistic choice, or…
−  probabilistic automata + real-valued clocks

•  PTA example: message transmission over faulty channel

“init”
x≤2

0.9

retry

“done”
true

“lost”
x≤5

“fail”
true

quit

send
x≥3

x:=0

0.1
x≥1∧tries≤N

tries:=0

tries>N

x:=0,  
tries:=tries+1

States
•  locations + data variables
Transitions
•  guards and action labels
Real-valued clocks
•  state invariants, guards, resets

Probability
•  discrete probabilistic choice

6

The PRISM modelling language

•  Simple textual modelling language for probabilistic systems
−  inspired by “Reactive Modules” formalism [Alur/Henzinger]

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

7

The PRISM modelling language

•  Simple textual modelling language for probabilistic systems
−  inspired by “Reactive Modules” formalism [Alur/Henzinger]

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

Basic ingredients:
•  modules
•  variables
•  commands

8

The PRISM modelling language

•  Simple textual modelling language for probabilistic systems
−  inspired by “Reactive Modules” formalism [Alur/Henzinger]

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

New for PTAs:
•  clocks
•  invariants
•  guards/resets

Basic ingredients:
•  modules
•  variables
•  commands

9

The PRISM modelling language

•  Simple textual modelling language for probabilistic systems
−  inspired by “Reactive Modules” formalism [Alur/Henzinger]

New for PTAs:
•  clocks
•  invariants
•  guards/resets

Basic ingredients:
•  modules
•  variables
•  commands

Also:
•  rewards 
 (i.e. costs, prices)
•  parallel composition

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

10

PRISM – Case studies

•  Randomised distributed algorithms
−  consensus, leader election, self-stabilisation, …

•  Randomised communication protocols
−  Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

•  Security protocols/systems
−  contract signing, anonymity, pin cracking, quantum crypto, …

•  Biological systems
−  cell signalling pathways, DNA computation, …

•  Planning & controller synthesis
−  robotics, dynamic power management, …

•  Performance & reliability
−  nanotechnology, cloud computing, manufacturing systems, …

•  See: www.prismmodelchecker.org/casestudies

11

The PRISM benchmark suite

•  PRISM models are widely used for testing/benchmarking
−  but there are many case studies in several locations
−  can be hard to find the right type of examples for testing

•  The PRISM benchmark suite
−  collection of probabilistic model checking benchmarks
−  designed to make it easy to test/evaluate/compare tools
−  currently, approx. 20 models, of various types and sizes
−  wide range of model checking properties, grouped by type
−  PRISM can also export built models in various formats

•  See: www.prismmodelchecker.org/benchmarks

12

PRISM – Property specification

•  Temporal logic-based property specification language
−  subsumes PCTL, CSL, probabilistic LTL, PCTL*, (CTL), …

•  Simple examples:
−  P≤0.01 [F “crash”] – “the probability of a crash is at most 0.01”
−  S>0.999 [“up”] – “long-run probability of availability is >0.999”

•  Usually focus on quantitative (numerical) properties:
−  P=? [F “crash”]  

“what is the probability  
of a crash occurring?”

−  typically, use “experiments”,  
i.e. analyse plots/trends in 
quantitative properties 
as system parameters vary

13

PRISM – Property specification

•  Properties can combine numerical + exhaustive aspects
−  Pmax=? [F≤10 “fail”] – “worst-case probability of a failure

occurring within 10 seconds, for any possible scheduling of
system components”

−  P=? [G≤0.02 !“deploy” {“crash”}{max}] - “the maximum
probability of an airbag failing to deploy within 0.02s,  
from any possible crash scenario”

•  Reward-based properties (rewards = costs = prices)
−  R{“time”}=? [F “end”] – “expected algorithm execution time”
−  R{“energy”}max=? [C≤7200] – “worst-case expected energy

consumption during the first 2 hours”

•  Properties can be combined with e.g. arithmetic operators
−  e.g. P=? [F fail1] / P=? [F failany] – “conditional failure prob.”

14

PRISM – Underlying techniques

•  Basic ingredients for probabilistic model checking
−  construction of probabilistic model (from high-level descr.)
−  graph-based algorithms (reachability, SCC decomposition, …)
−  iterative numerical computation (lin. equ.s, value iteration, …)

•  Recent additions/extensions (in PRISM 4.0):  

•  1. Explicit-state probabilistic model checking 

•  2. Probabilistic timed automata (PTA) model checking 

•  3. Approximate/statistical model checking

15

Explicit-state (vs. symbolic) techniques

•  To date, PRISM’s implementation has been mostly symbolic
−  i.e. (multi-terminal) binary decision diagrams – (MT)BDDs
−  can be very compact/efficient for large, structured models
−  3 model checking engines, but all partially symbolic

•  New explicit-state engine in PRISM
−  no BDDs; uses: vectors, bit-sets, sparse matrices
−  more efficient for small, unstructured models
−  more efficient if model needs to manipulated on-the-fly
−  particularly well suited to prototyping new techniques

 (designed to be used as a standalone library)
−  also being developed into a fully fledged PRISM engine
−  some additional functionality: e.g. extra techniques for MDPs

(policy iteration, …), extra models (CTMDPs, stoch. games)

16

PTA model checking in PRISM

•  Properties for PTAs similar to those for other models:
−  min/max probability of reaching X (within time T)
−  min/max expected cost/reward to reach X

•  But infinite state space necessitates different techniques
−  PRISM has two different approaches to PTA model checking…

•  “Digital clocks” – conversion to finite-state MDP
−  preserves min/max probability + expected cost/reward/price
−  (for PTAs with closed, diagonal-free constraints)
−  efficient, in combination with PRISM’s symbolic engines

•  Quantitative abstraction refinement
−  zone-based abstractions of PTAs using stochastic games
−  provide lower/upper bounds on quantitative properties
−  automatic iterative abstraction refinement

17

Approximate/statistical model checking

•  Discrete event (Monte Carlo) simulation + sampling
−  much better scalability/applicability, at expense of precision
−  full probabilistic models only (no nondeterminism)

•  PRISM 4.0 has a completely re-written simulator engine
−  two approximate model checking approaches…

•  Estimation: approximate result for P=? [φ], plus a
−  confidence interval (for a given confidence level)
−  probabilistic guarantee for result precision [Hérault et al.]

•  Acceptance sampling: yes/no answer for P∼p [φ]
−  correct with high probability [Younes/Simmons]
−  stop sampling as soon as the result can be given
−  PRISM implements SPRT (sequential probability ratio test)

18

Future additions to PRISM

•  Recent/current work being integrated into PRISM:

•  1. Probabilistic counterexamples

•  2. Multi-objective model checking

•  3. Compositional probabilistic verification

•  4. Game-based probabilistic models

•  5. Incremental probabilistic model checking
−  (see Mateusz’s talk)

19

Probabilistic counterexamples

•  In conventional (non-probabilistic) model checking
−  counterexamples are typically single traces to an error
−  and are essential to the usefulness of model checkers

•  Probabilistic counterexamples
−  e.g. for property “probability of an error occurring is ≤ p”
−  sets of error traces with combined probability > p

•  PRISM extended to generate probabilistic counterexamples
−  aim to build “small” counterexample (few traces) which

includes “most likely” events (largest probabilities)
−  reduces to solving “k-shortest paths” problem [Han/Katoen]
−  currently use REA algorithm [Jiménez/Marzal]
−  various optimisations possible: regexps, subgraphs, SCCs,

20

Multi-objective model checking

•  Model checking for MDPs quantifies over all adversaries
−  adversary = strategy = policy = resolution of nondeterminism
−  verification: “worst case probability of error is always < 0.01”
−  controller synthesis: “how to minimise expected run-time?”
−  PRISM 4.0 generates optimal (best/worst-case) adversaries

•  Multi-objective probabilistic model checking
−  investigate trade-offs between conflicting objectives
−  e.g. “maximum probability of message transmission,

assuming expected battery life-time is > 10 hrs”

•  PRISM extension
−  extension of property specification language [TACAS’11]
−  support for probabilistic omega-regular and reward properties
−  reduces to solution of linear programming problem

21

Compositional probabilistic verification

•  Assume-guarantee (A-G) framework for MDPs [TACAS’10]
−  assumptions/guarantees are probabilistic safety properties
−  e.g. “warn signal sent before shutdown signal with prob. 0.99”
−  can be generalised to more expressive properties [TACAS’11]

•  Example A-G proof rule:

•  A-G model checking reduces to multi-objective queries
−  “every adversary that satisfies A must also satisfy G”

•  In progress: integration into PRISM
−  extend input language with automata-based properties
−  allow specification of which proof rule(s) to apply

M1 ⊨ ⟨A⟩≥pA
⟨A⟩≥pA

 M2 ⟨G⟩≥pG

M1 || M2 ⊨ ⟨G⟩≥pG

(ASYM)

22

Game-based probabilistic models

•  Game-theoretic approach to model checking
−  models competitive and/or collaborative behaviour
−  e.g. for verification of security protocols, …

•  Extending PRISM with stochastic multi-player games
−  native support in PRISM modelling language
−  modules and/or synchronous action labels assigned to players

•  Probabilistic model checking for:
−  PATL: probabilistic version of Alternating Time Temporal Logic
−  “can players 1 and 2 collaborate such that the probability of …

is at least p, whatever players 3 and 4 do?”
−  also: cost/reward-based properties
−  reduction to analysis of stochastic two-player games

23

More information…

•  More info and resources online
−  www.prismmodelchecker.org

•  Documentation + related papers

•  Tutorials, teaching material, support

•  Case studies repository + benchmark suite

•  Questions welcome…

