

Automated Verification Techniques for Probabilistic Systems

Vojtěch Forejt Marta Kwiatkowska Gethin Norman Dave Parker

SFM-11:CONNECT Summer School, Bertinoro, June 2011

EU-FP7: CONNECT

LSCITS/PSS

VERIWARE

Overview

- Lecture 1 (9am-11am)
 - Introduction to Modelling and Quantitative Verification
 - Marta Kwiatkowska
- Invited lecture: Christel Baier
 - Component and Connector Modelling Formalisms
- Lecture 2 (2.30pm-4pm)
 - Quantitative Compositional Verification
 - Dave Parker
- Lab session (4.30pm-6pm)
 - Modelling and Compositional Verification of Probabilistic Component-Based Systems using PRISM
 - Dave Parker
- <u>http://www.prismmodelchecker.org/courses/sfm11connect/</u>

Part 1

Introduction

Quantitative verification

Formal verification...

 is the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems

Quantitative verification

- applies formal verification techniques to the modelling and analysing of non-functional aspects of system behaviour (e.g. probability, time, cost, ...)
- Probabilistic model checking...
 - is a an automated quantitative verification technique for systems that exhibit probabilistic behaviour

Why formal verification?

• Errors in computerised systems can be costly...

Pentium chip (1994) Bug found in FPU. Intel (eventually) offers to replace faulty chips. Estimated loss: \$475m

Ariane 5 (1996) Self-destructs 37secs into maiden launch. Cause: uncaught overflow exception. Toyota Prius (2010) Software "glitch" found in anti-lock braking system. 185,000 cars recalled.

- Why verify?
 - "Testing can only show the presence of errors, not their absence." [Edsger Dijstra]

Model checking

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms

 as a symmetry breaker, in gossip routing to reduce flooding
- Examples: real-world protocols featuring randomisation:
 - Randomised back-off schemes
 - · CSMA protocol, 802.11 Wireless LAN
 - Random choice of waiting time
 - · IEEE1394 Firewire (root contention), Bluetooth (device discovery)
 - Random choice over a set of possible addresses
 - IPv4 Zeroconf dynamic configuration (link-local addressing)
 - Randomised algorithms for anonymity, contract signing, ...

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 as a symmetry breaker, in gossip routing to reduce flooding
- To model uncertainty and performance
 - to quantify rate of failures, express Quality of Service
- Examples:
 - computer networks, embedded systems
 - power management policies
 - nano-scale circuitry: reliability through defect-tolerance

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 as a symmetry breaker, in gossip routing to reduce flooding
- To model uncertainty and performance
 - to quantify rate of failures, express Quality of Service
- To model biological processes
 - reactions occurring between large numbers of molecules are naturally modelled in a stochastic fashion

Verifying probabilistic systems

- We are not just interested in correctness
- We want to be able to quantify non-functional properties:
 - security, privacy, trust, anonymity, fairness
 - safety, reliability, performance, dependability
 - resource usage, e.g. battery life
 - and much more...
- Quantitative, as well as qualitative requirements:
 - how reliable is the disaster service provider network?
 - how efficient is my phone's power management policy?
 - is my bank's web-service secure?
 - what is the expected long-run percentage of protein X?

Probabilistic model checking

CONNECTed probabilistic systems

- Many of the probabilistic systems that we want to verify are naturally decomposed into sub-systems
 - communication protocols, power management systems, ...
- Need modelling formalisms to capture this behaviour
 - Markov decision processes (probabilistic automata)
 - combine probabilistic and nondeterministic behaviour
 - analysis non-trivial need automated techniques and tools
 - Component-based systems
 - offer opportunities to exploit their structure
 - compositional probabilistic verification: assume-guarantee
 - more generally, quantitative properties

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (<mark>CTMCs</mark>)	CTMDPs/IMCs
		Probabilistic timed automata (PTAs)

Overview

Lectures 1 and 2:

- 1 Introduction
- 2 Discrete-time Markov chains
- 3 Markov decision processes
- 4 Compositional probabilistic verification
- Course materials available here:
 - <u>http://www.prismmodelchecker.org/courses/sfm11connect/</u>
 - lecture slides, reference list, tutorial chapter, lab session

Part 2

Discrete-time Markov chains

Overview (Part 2)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- States
 - discrete set of states representing possible configurations of the system being modelled
- Transitions
 - transitions between states occur in discrete time-steps
- Probabilities
 - probability of making transitions between states is given by discrete probability distributions

Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a finite set of states ("state space")
 - $\boldsymbol{s}_{init} \in \boldsymbol{S}$ is the initial state
 - $\mathbf{P} : \mathbf{S} \times \mathbf{S} \rightarrow [0,1]$ is the transition probability matrix
 - where $\Sigma_{s' \in S} \mathbf{P}(s,s') = 1$ for all $s \in S$
 - L : S \rightarrow 2^{AP} is function labelling states with atomic propositions

Note: no deadlock states

- i.e. every state has at least one outgoing transition
- can add self loops to represent final/terminating states

DTMCs: An alternative definition

- Alternative definition: a DTMC is:
 - a family of random variables { X(k) | k=0,1,2,... }
 - X(k) are observations at discrete time-steps
 - i.e. X(k) is the state of the system at time-step k
- Memorylessness (Markov property)

- We consider homogenous DTMCs
 - transition probabilities are independent of time
 - $P(s_{k-1},s_k) = Pr(X(k) = s_k | X(k-1) = s_{k-1})$

Paths and probabilities

- A (finite or infinite) path through a DTMC
 - is a sequence of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \ \forall i$
 - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
- To reason (quantitatively) about this system
 - need to define a probability space over paths
- Intuitively:
 - sample space: Path(s) = set of all infinite paths from a state s
 - events: sets of infinite paths from s
 - basic events: cylinder sets (or "cones")
 - cylinder set C(ω), for a finite path ω
 - = set of infinite paths with the common finite prefix ω
 - for example: $C(ss_1s_2)$

Probability spaces

- Let Ω be an arbitrary non-empty set
- A σ -algebra (or σ -field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if $A\in \Sigma,$ the complement $\Omega\setminus A$ is in Σ
 - if $A_i \in \Sigma$ for $i \in \mathbb{N},$ the union $\cup_i A_i$ is in Σ
 - the empty set ${\varnothing}$ is in Σ
- Theorem: For any family F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F
- Probability space (Ω , Σ , Pr)
 - $-\ \Omega$ is the sample space
 - Σ is the set of events: $\sigma\text{-algebra}$ on Ω
 - Pr : $\Sigma \rightarrow [0,1]$ is the probability measure:

 $Pr(\Omega) = 1$ and $Pr(\cup_i A_i) = \Sigma_i Pr(A_i)$ for countable disjoint A_i

Probability space over paths

- Sample space Ω = Path(s)
 set of infinite paths with initial state s
- Event set $\Sigma_{Path(s)}$
 - the cylinder set C(ω) = { ω ' \in Path(s) | ω is prefix of ω ' }
 - $\Sigma_{Path(s)}$ is the least $\sigma\text{-algebra}$ on Path(s) containing C(w) for all finite paths ω starting in s
- Probability measure Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1...s_n$ as:
 - · $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $\mathbf{P}_{s}(\omega) = \mathbf{P}(s,s_{1}) \cdot \ldots \cdot \mathbf{P}(s_{n-1},s_{n})$ otherwise
 - · define $Pr_s(C(\omega)) = P_s(\omega)$ for all finite paths ω
 - Pr_s extends uniquely to a probability measure $Pr_s: \Sigma_{Path(s)} \rightarrow [0,1]$
- See [KSK76] for further details

Probability space – Example

· Paths where sending fails the first time

$$-\omega = s_0 s_1 s_2$$

- $C(\omega) = all paths starting s_0 s_1 s_2 \dots$
- $\mathbf{P}_{s0}(\boldsymbol{\omega}) = \mathbf{P}(s_0, s_1) \cdot \mathbf{P}(s_1, s_2)$

$$= 1 \cdot 0.01 = 0.01$$

$$- Pr_{s0}(C(\omega)) = P_{s0}(\omega) = 0.01$$

- Paths which are eventually successful and with no failures
 - $C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup ...$

$$- \Pr_{s0}(C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup \dots)$$

- $= \mathbf{P}_{s0}(\mathbf{s}_0\mathbf{s}_1\mathbf{s}_3) + \mathbf{P}_{s0}(\mathbf{s}_0\mathbf{s}_1\mathbf{s}_1\mathbf{s}_3) + \mathbf{P}_{s0}(\mathbf{s}_0\mathbf{s}_1\mathbf{s}_1\mathbf{s}_1\mathbf{s}_3) + \dots$
- $= 1 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.01 \cdot 0.98 + \dots$
- = 0.9898989898...

= 98/99

Overview (Part 2)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators

• Example

- − send → $P_{\ge 0.95}$ [true U^{≤10} deliver]
- "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

PCTL syntax

- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- A PCTL formula is always a state formula
 - path formulas only occur inside the P operator

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC
 - $-s \models \varphi$ denotes φ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the DTMC (S, s_{init}, P, L):
 - $\ s \vDash a \quad \Leftrightarrow \ a \in L(s)$
 - $\ s \vDash \varphi_1 \land \varphi_2 \qquad \Leftrightarrow \ s \vDash \varphi_1 \ \text{and} \ s \vDash \varphi_2$
 - $s \vDash \neg \varphi \qquad \Leftrightarrow s \vDash \varphi \text{ is false}$
- Examples
 - $\mathbf{s}_3 \models \mathbf{succ}$
 - $s_1 \models try \land \neg fail$

PCTL semantics for DTMCs

- Semantics of path formulas:
 - for a path $\omega = s_0 s_1 s_2 \dots$ in the DTMC:
 - $\omega \vDash X \varphi \qquad \Leftrightarrow \ s_1 \vDash \varphi$
 - $\omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \ \exists i \leq k \text{ such that } s_i \vDash \varphi_2 \text{ and } \forall j < i, \ s_j \vDash \varphi_1$
 - $\omega \vDash \varphi_1 \cup \varphi_2 \qquad \Leftrightarrow \ \exists k \ge 0 \text{ such that } \omega \vDash \varphi_1 \cup^{\leq k} \varphi_2$
- Some examples of satisfying paths:
 - X succ {try} {succ} {succ} {succ} $s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow s_3 \rightarrow \cdots$
 - ¬fail U succ
 - {try} {try} {succ} {succ} $s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \cdots$

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{-p} [\psi]$ means that "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ "
 - example: $s \models P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - formally: $s \models P_{\sim p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
 - where: Prob(s, ψ) = Pr_s { $\omega \in Path(s) \mid \omega \vDash \psi$ }
 - (sets of paths satisfying ψ are always measurable [Var85])

More PCTL...

- Usual temporal logic equivalences:
 - false ≡ ¬true

$$- \phi_1 \lor \phi_2 \equiv \neg (\neg \phi_1 \land \neg \phi_2)$$

 $- \ \varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \ \lor \ \varphi_2$

 $- F \varphi \equiv \diamond \varphi \equiv true U \varphi$

$$- G \varphi \equiv \Box \varphi \equiv \neg (F \neg \varphi)$$

- bounded variants: $F^{\leq k} \ \varphi, \ G^{\leq k} \ \varphi$

(false) (disjunction) (implication)

(eventually, "future") (always, "globally")

Negation and probabilities

$$\begin{array}{l} - \mbox{ e.g. } \neg P_{>p} \ [\ \varphi_1 \ U \ \varphi_2 \] \equiv P_{\leq p} \ [\varphi_1 \ U \ \varphi_2 \] \\ - \mbox{ e.g. } P_{>p} \ [\ G \ \varphi \] \equiv P_{<1-p} \ [\ F \ \neg \varphi \] \end{array}$$

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)
- + A PCTL property $P_{\sim p}$ [ψ] is...
 - qualitative when p is either 0 or 1
 - quantitative when p is in the range (0,1)
- $P_{>0}$ [F φ] is identical to EF φ - there exists a finite path to a φ -state

• $P_{\geq 1}$ [F φ] is (similar to but) weaker than AF φ - e.g. AF "tails" (CTL) $\neq P_{\geq 1}$ [F "tails"] (PCTL)

Quantitative properties

- Consider a PCTL formula P_{-p} [ψ]
 - if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
 - we allow the form $P_{=?}$ [ψ]
 - "what is the probability that path formula $\boldsymbol{\psi}$ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"

Some real PCTL examples

Overview (Part 2)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D=(S,s_{init},P,L), PCTL formula ϕ
 - output: Sat(ϕ) = { s \in S | s $\models \phi$ } = set of states satisfying ϕ
- What does it mean for a DTMC D to satisfy a formula $\varphi?$
 - sometimes, want to check that $s \models \varphi \forall s \in S$, i.e. $Sat(\varphi) = S$
 - sometimes, just want to know if $s_{init} \models \phi$, i.e. if $s_{init} \in Sat(\phi)$
- Sometimes, focus on quantitative results
 - e.g. compute result of P=? [F error]
 - e.g. compute result of P=? [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of $\boldsymbol{\varphi}$
 - example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95}$ [$\neg fail U succ$]
- For the non-probabilistic operators:
 - Sat(true) = S
 - $\ Sat(a) = \{ \ s \in S \ | \ a \in L(s) \ \}$
 - $\ Sat(\neg \varphi) = S \ \setminus \ Sat(\varphi)$
 - Sat($\phi_1 \land \phi_2$) = Sat(ϕ_1) \cap Sat(ϕ_2)
- For the $P_{\sim p}$ [ψ] operator
 - need to compute the probabilities $Prob(s, \psi)$ for all states $s \in S$
 - focus here on "until" case: $\psi = \varphi_1 U \varphi_2$

PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0
 - $S^{yes} = Sat(P_{\geq 1} [\varphi_1 U \varphi_2])$
 - $\hspace{0.1 cm} S^{no} \hspace{0.1 cm} = \hspace{0.1 cm} Sat(P_{\leq 0} \hspace{0.1 cm} [\hspace{0.1 cm} \varphi_1 \hspace{0.1 cm} U \hspace{0.1 cm} \varphi_2 \hspace{0.1 cm}])$
- Then solve linear equation system for remaining states
- We refer to the first phase as "precomputation"
 - two algorithms: Prob0 (for S^{no}) and Prob1 (for S^{yes})
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - reduces the set of states for which probabilities must be computed numerically (which is more expensive)
 - gives exact results for the states in Syes and Sno (no round-off)
 - for $P_{-p}[\cdot]$ where p is 0 or 1, no further computation required

PCTL until - Linear equations

• Probabilities Prob(s, $\phi_1 \cup \phi_2$) can now be obtained as the unique solution of the following set of linear equations:

$$Prob(s, \phi_1 U \phi_2) = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ \sum_{s' \in S} P(s, s') \cdot Prob(s', \phi_1 U \phi_2) & \text{otherwise} \end{cases}$$

- can be reduced to a system in $|S^{?}|$ unknowns instead of |S| where $S^{?}$ = S \setminus (S^{yes} \cup S^{no})
- This can be solved with (a variety of) standard techniques
 - direct methods, e.g. Gaussian elimination
 - iterative methods, e.g. Jacobi, Gauss-Seidel, ...
 (preferred in practice due to scalability)

PCTL until – Example

• Example: P_{>0.8} [¬a U b]

PCTL until – Example

• Example: $P_{>0.8}$ [$\neg a \cup b$]

PCTL until – Example

Sat($P_{>0.8}$ [$\neg a \cup b$]) = { s_2, s_4, s_5 }

41

PCTL model checking – Summary

- Computation of set Sat(Φ) for DTMC D and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation

Probabilistic operator P:

- X Φ : one matrix-vector multiplication, O(|S|²)
- $\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
- $\Phi_1 U \Phi_2$: linear equation system, at most |S| variables, O(|S|³)

Complexity:

- linear in $|\Phi|$ and polynomial in |S|

Overview (Part 2)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] (non-probabilistic) linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
 - (in PCTL, P_{-p} [...] always contains a single temporal operator)
 - Another direction: extend DTMCs with costs and rewards...

LTL – Linear temporal logic

- LTL syntax (path formulae only)
 - $\psi ::= true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$
 - where $a \in AP$ is an atomic proposition
 - usual equivalences hold: F φ = true U φ , G φ = \neg (F $\neg\varphi)$
 - evaluated over paths of a model
- Examples
 - (F tmp_fail₁) \land (F tmp_fail₂)
 - "both servers suffer temporary failures at some point"
 - GF ready
 - "the server always eventually returns to a ready-state"
 - FG error
 - "an irrecoverable error occurs"
 - G (req \rightarrow X ack)
 - "requests are always immediately acknowledged"

LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula ψ :
 - $\operatorname{Prob}(s, \psi) = \operatorname{Pr}_s \{ \omega \in \operatorname{Path}(s) \mid \omega \vDash \psi \}$
 - all such path sets are measurable [Var85]
- A (probabilistic) LTL specification often comprises an LTL (path) formula and a probability bound
 - e.g. $P_{\geq 1}$ [GF ready] "with probability 1, the server always eventually returns to a ready-state"
 - e.g. P_{<0.01} [FG error] "with probability at most 0.01, an irrecoverable error occurs"
- PCTL* subsumes both LTL and PCTL
 e.g. P_{>0.5} [GF crit₁] ^ P_{>0.5} [GF crit₂]

Fundamental property of DTMCs

- Strongly connected component (SCC)
 - maximally strongly connected set of states
- Bottom strongly connected component (BSCC)
 - SCC T from which no state outside T is reachable from T
- Fundamental property of DTMCs:
 - "with probability 1, a BSCC will be reached and all of its states visited infinitely often"

• Formally:

- \Pr_{s} { $\omega \in Path(s) \mid \exists \ i \geq 0, \ \exists \ BSCC \ T \ such \ that }$

∀ j≥i ω(i) ∈ T and

 \forall s' \in T $\omega(k) =$ s' for infinitely many k } = 1

LTL model checking for DTMCs

- + Steps for model checking LTL property ψ on DTMC D
 - i.e. computing $Prob^{D}(s, \psi)$
- + 1. Build a deterministic Rabin automaton (DRA) A for ψ
 - i.e. a DRA A over alphabet 2^{AP} accepting $\psi\text{-satisfying}$ traces
- 2. Build the "product" DTMC D \otimes A
 - records state of A for path through D so far
- + 3. Identify states T_{acc} in "accepting" BSCCs of $D \otimes A$
 - i.e. those that meet the acceptance condition of $\boldsymbol{\mathsf{A}}$
- 4. Compute probability of reaching T_{acc} in $D \otimes A$ – which gives $Prob^{D}(s, \psi)$, as required

Example: LTL for DTMCs

DTMC D

DRA A_{ψ} for $\psi = G \neg b \land GF$ a

Product DTMC $D \otimes A_{\psi}$

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations

Some examples:

 elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

• Costs? or rewards?

- mathematically, no distinction between rewards and costs
- when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
- we will consistently use the terminology "rewards" regardless

Reward-based properties

- Properties of DTMCs augmented with rewards
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards
 - formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...

Instantaneous properties

- the expected value of the reward at some time point
- Cumulative properties
 - the expected cumulated reward over some period

DTMC reward structures

- For a DTMC (S,s_{init},P,L), a reward structure is a pair (ρ , ι)
 - $\underline{\rho} : S \rightarrow \mathbb{R}_{\geq 0}$ is the state reward function (vector)
 - $-\iota: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
 - "size of message queue": $\underline{\rho}$ maps each state to the number of jobs in the queue in that state, ι is not used
- Examples (for use with cumulative properties)
 - "time-steps": <u>ρ</u> returns 1 for all states and ι is zero
 (equivalently, <u>ρ</u> is zero and ι returns 1 for all transitions)
 - "number of messages lost": <u>ρ</u> is zero and ι maps transitions corresponding to a message loss to 1
 - "power consumption": <u>ρ</u> is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

PCTL and rewards

- Extend PCTL to incorporate reward-based properties
 - add an R operator, which is similar to the existing P operator

- where $r \in \mathbb{R}_{\geq 0}$, ~ $\in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- R_{-r} [] means "the expected value of satisfies -r"

Types of reward formulas

- Instantaneous: R_{~r} [I^{=k}]
 - "the expected value of the state reward at time-step k is \sim r"
 - e.g. "the expected queue size after exactly 90 seconds"
- Cumulative: R_{-r} [$C^{\leq k}$]
 - "the expected reward cumulated up to time-step k is ~r"
 - e.g. "the expected power consumption over one hour"
- Reachability: R_{-r} [F ϕ]
 - "the expected reward cumulated before reaching a state satisfying φ is ${\sim}r"$
 - e.g. "the expected time for the algorithm to terminate"

Reward formula semantics

- Formal semantics of the three reward operators
 - based on random variables over (infinite) paths
- Recall:
 - $s \vDash P_{\sim p} [\psi] \iff Pr_s \{ \omega \in Path(s) \mid \omega \vDash \psi \} \sim p$
- For a state s in the DTMC:
 - $s \models R_{\sim r} [I^{=k}] \iff Exp(s, X_{I=k}) \sim r$
 - $s \models R_{\sim r} [C^{\leq k}] \iff Exp(s, X_{C \leq k}) \sim r$
 - $s \models R_{\sim r} [F \Phi] \iff Exp(s, X_{F\Phi}) \sim r$

where: Exp(s, X) denotes the expectation of the random variable X : Path(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

Reward formula semantics

- Definition of random variables:
 - for an infinite path $\omega = s_0 s_1 s_2 \dots$

$$X_{I=k}(\omega) = \underline{\rho}(s_k)$$

$$X_{C \le k}(\omega) = \begin{cases} 0 & \text{if } k = 0\\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

$$X_{F\varphi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in Sat(\varphi) \\ \\ \infty & \text{if } s_i \notin Sat(\varphi) \text{ for all } i \ge 0 \\ \\ \sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

 $- \text{ where } k_{\varphi} = min\{ j \mid s_{j} \vDash \varphi \}$

Model checking reward properties

- Instantaneous: R_{-r} [$I^{=k}$]
- Cumulative: R_{r} [$C^{\leq t}$]
 - variant of the method for computing bounded until probabilities
 - solution of recursive equations
- Reachability: R_{r} [F ϕ]
 - similar to computing until probabilities
 - precomputation phase (identify infinite reward states)
 - then reduces to solving a system of linear equation
- For more details, see e.g. [KNP07a]

Overview (Part 2)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

The PRISM tool

- PRISM: Probabilistic symbolic model checker
 - developed at Birmingham/Oxford University, since 1999
 - free, open source (GPL), runs on all major OSs
- Support for:
 - discrete-/continuous-time Markov chains (D/CTMCs)
 - Markov decision processes (MDPs)
 - probabilistic timed automata (PTAs)
 - PCTL, CSL, LTL, PCTL*, costs/rewards, ...
- Multiple efficient model checking engines
 - mostly symbolic (BDDs) (up to 10^{10} states, 10^7 - 10^8 on avg.)
- Successfully applied to a wide range of case studies
 - communication protocols, security protocols, dynamic power management, cell signalling pathways, ...
- See: <u>http://www.prismmodelchecker.org/</u>

Bluetooth device discovery

- Bluetooth: short-range low-power wireless protocol
 - widely available in phones, PDAs, laptops, ...
 - open standard, specification freely available
- Uses frequency hopping scheme
 - to avoid interference (uses unregulated 2.4GHz band)
 - pseudo-random selection over 32 of 79 frequencies
- Formation of personal area networks (PANs)
 - piconets (1 master, up to 7 slaves)
 - self-configuring: devices discover themselves
- Device discovery
 - mandatory first step before any communication possible
 - relatively high power consumption so performance is crucial
 - master looks for devices, slaves listens for master

Master (sender) behaviour

- 28 bit free-running clock CLK, ticks every 312.5µs
- Frequency hopping sequence determined by clock:
 - freq = $[CLK_{16-12}+k+(CLK_{4-2,0}-CLK_{16-12}) \mod 16] \mod 32$
 - 2 trains of 16 frequencies (determined by offset k), 128 times each, swap between every 2.56s
- Broadcasts "inquiry packets" on two consecutive frequencies, then listens on the same two

Slave (receiver) behaviour

• Listens (scans) on frequencies for inquiry packets

- must listen on right frequency at right time
- cycles through frequency sequence at much slower speed (every 1.28s)

- On hearing packet, pause, send reply and then wait for a random delay before listening for subsequent packets
 - avoid repeated collisions with other slaves

Bluetooth – PRISM model

- Modelled/analysed using PRISM model checker [DKNP06]
 - model scenario with one sender and one receiver
 - synchronous (clock speed defined by Bluetooth spec)
 - model at lowest-level (one clock-tick = one transition)
 - randomised behaviour so model as a DTMC
 - use real values for delays, etc. from Bluetooth spec

Modelling challenges

- complex interaction between sender/receiver
- combination of short/long time-scales cannot scale down
- sender/receiver not initially synchronised, so huge number of possible initial configurations (17,179,869,184)

Bluetooth – Results

- Huge DTMC initially, model checking infeasible
 - partition into 32 scenarios, i.e. 32 separate DTMCs
 - on average, approx. 3.4×10^9 states (536,870,912 initial)
 - can be built/analysed with PRISM's MTBDD engine
- We compute:
 - R=? [F replies=K {"init"}{max}]
 - "worst-case expected time to hear K replies over all possible initial configurations"
- Also look at:
 - how many initial states for each possible expected time
 - cumulative distribution function (CDF) for time, assuming equal probability for each initial state

Bluetooth – Time to hear 1 reply

Worst-case expected time = 2.5716 sec

- in 921,600 possible initial states
- best-case = 635 μ s

Bluetooth – Time to hear 2 replies

- Worst-case expected time = 5.177 sec
 - in 444 possible initial states
 - compare actual CDF with derived version which assumes times to reply to first/second messages are independent

Bluetooth – Results

Other results: (see [DKNP06])

- compare versions 1.2 and 1.1 of Bluetooth, confirm 1.1 slower
- power consumption analysis (using costs + rewards)

Conclusions:

- successful analysis of complex real-life model
- detailed model, actual parameters used
- exhaustive analysis: best/worst-case values
 - $\cdot\,$ can pinpoint scenarios which give rise to them
 - not possible with simulation approaches
- model still relatively simple
 - consider multiple receivers?
 - · combine with simulation?

Summary (Parts 1 & 2)

- Probabilistic model checking
 - automated quantitative verification of stochastic systems
 - to model randomisation, failures, ...
- Discrete-time Markov chains (DTMCs)
 - state transition systems + discrete probabilistic choice
 - probability space over paths through a DTMC
- Property specifications
 - probabilistic extensions of temporal logic, e.g. PCTL, LTL
 - also: expected value of costs/rewards
- Model checking algorithms
 - combination of graph-based algorithms, numerical computation, automata constructions
- Next: Markov decision processes (MDPs)