
SFM-11:CONNECT Summer School, Bertinoro, June 2011

 EU-FP7: CONNECT LSCITS/PSS VERIWARE

2

Overview

•  Lecture 1 (9am-11am)
−  Introduction to Modelling and Quantitative Verification
−  Marta Kwiatkowska

•  Invited lecture: Christel Baier
−  Component and Connector Modelling Formalisms

•  Lecture 2 (2.30pm-4pm)
−  Quantitative Compositional Verification
−  Dave Parker

•  Lab session (4.30pm-6pm)
−  Modelling and Compositional Verification of Probabilistic

Component-Based Systems using PRISM
−  Dave Parker

•  http://www.prismmodelchecker.org/courses/sfm11connect/

Part 1

Introduction

4

Quantitative verification

•  Formal verification…
−  is the application of rigorous, mathematics-based

techniques to establish the correctness of
computerised systems

•  Quantitative verification
−  applies formal verification techniques to the

modelling and analysing of non-functional aspects of
system behaviour (e.g. probability, time, cost, …)

•  Probabilistic model checking…
−  is a an automated quantitative verification technique  

for systems that exhibit probabilistic behaviour

5

Why formal verification?

•  Errors in computerised systems can be costly…

Pentium chip (1994)  
Bug found in FPU.  

Intel (eventually) offers 
 to replace faulty chips.  
Estimated loss: $475m

Ariane 5 (1996) 
Self-destructs 37secs 
into maiden launch.
Cause: uncaught

overflow exception.

Toyota Prius (2010)
Software “glitch” 

found in anti-lock  
braking system.

185,000 cars recalled.

•  Why verify?
•  “Testing can only show the presence of errors,  

not their absence.” [Edsger Dijstra]

6

Model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
 require-

ments

¬EF fail

Model checker
e.g. SMV, Spin

7

Why probability?

•  Some systems are inherently probabilistic…

•  Randomisation, e.g. in distributed coordination algorithms
−  as a symmetry breaker, in gossip routing to reduce flooding

•  Examples: real-world protocols featuring randomisation:
−  Randomised back-off schemes

•  CSMA protocol, 802.11 Wireless LAN
−  Random choice of waiting time

•  IEEE1394 Firewire (root contention), Bluetooth (device discovery)
−  Random choice over a set of possible addresses

•  IPv4 Zeroconf dynamic configuration (link-local addressing)
−  Randomised algorithms for anonymity, contract signing, …

8

Why probability?

•  Some systems are inherently probabilistic…

•  Randomisation, e.g. in distributed coordination algorithms
−  as a symmetry breaker, in gossip routing to reduce flooding

•  To model uncertainty and performance
−  to quantify rate of failures, express Quality of Service

•  Examples:
−  computer networks, embedded systems
−  power management policies
−  nano-scale circuitry: reliability through defect-tolerance

9

Why probability?

•  Some systems are inherently probabilistic…

•  Randomisation, e.g. in distributed coordination algorithms
−  as a symmetry breaker, in gossip routing to reduce flooding

•  To model uncertainty and performance
−  to quantify rate of failures, express Quality of Service

•  To model biological processes
−  reactions occurring between large numbers of molecules are

naturally modelled in a stochastic fashion

10

Verifying probabilistic systems

•  We are not just interested in correctness

•  We want to be able to quantify non-functional properties:
−  security, privacy, trust, anonymity, fairness
−  safety, reliability, performance, dependability
−  resource usage, e.g. battery life
−  and much more…

•  Quantitative, as well as qualitative requirements:
−  how reliable is the disaster service provider network?
−  how efficient is my phone’s power management policy?
−  is my bank’s web-service secure?
−  what is the expected long-run percentage of protein X?

11

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic
temporal logic
specification

e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
 require-

ments

P<0.1 [F fail]

0.5
0.1

0.4

Probabilistic
model checker

e.g. PRISM

12

CONNECTed probabilistic systems

•  Many of the probabilistic systems that we want to verify  
are naturally decomposed into sub-systems
−  communication protocols, power management systems, …

•  Need modelling formalisms to capture this behaviour
−  Markov decision processes (probabilistic automata)
−  combine probabilistic and nondeterministic behaviour
−  analysis non-trivial – need automated techniques and tools

•  Component-based systems
−  offer opportunities to exploit their structure
−  compositional probabilistic verification: assume-guarantee
−  more generally, quantitative properties

13

Probabilistic models

Discrete
time

Continuous
time

Nondeterministic Fully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

(probabilistic automata)

CTMDPs/IMCs

Probabilistic timed
automata (PTAs)

14

Overview

•  Lectures 1 and 2:

−  1 – Introduction
−  2 – Discrete-time Markov chains
−  3 – Markov decision processes
−  4 – Compositional probabilistic verification

•  Course materials available here:
−  http://www.prismmodelchecker.org/courses/sfm11connect/
−  lecture slides, reference list, tutorial chapter, lab session

Discrete-time Markov chains

Part 2

16

Overview (Part 2)

•  Discrete-time Markov chains (DTMCs)

•  PCTL: A temporal logic for DTMCs

•  PCTL model checking

•  Other properties: LTL, costs and rewards

•  Case study: Bluetooth device discovery

17

Discrete-time Markov chains

•  Discrete-time Markov chains (DTMCs)
−  state-transition systems augmented with probabilities

•  States
−  discrete set of states representing possible configurations of

the system being modelled
•  Transitions

−  transitions between states occur  
in discrete time-steps

•  Probabilities
−  probability of making transitions 

between states is given by  
discrete probability distributions

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

18

Discrete-time Markov chains

•  Formally, a DTMC D is a tuple (S,sinit,P,L) where:
−  S is a finite set of states (“state space”)
−  sinit ∈ S is the initial state
−  P : S × S → [0,1] is the transition probability matrix

 where Σs’∈S P(s,s’) = 1 for all s ∈ S
−  L : S → 2AP is function labelling states with atomic propositions

•  Note: no deadlock states
−  i.e. every state has at least

 one outgoing transition
−  can add self loops to represent

 final/terminating states

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

19

DTMCs: An alternative definition

•  Alternative definition: a DTMC is:
−  a family of random variables { X(k) | k=0,1,2,… }
−  X(k) are observations at discrete time-steps
−  i.e. X(k) is the state of the system at time-step k

•  Memorylessness (Markov property)
−  Pr(X(k)=sk | X(k-1)=sk-1, … , X(0)=s0)

 = Pr(X(k)=sk | X(k-1)=sk-1)

•  We consider homogenous DTMCs
−  transition probabilities are independent of time
−  P(sk-1,sk) = Pr(X(k)=sk | X(k-1)=sk-1)

20

Paths and probabilities

•  A (finite or infinite) path through a DTMC
−  is a sequence of states s0s1s2s3… such that P(si,si+1) > 0 ∀i
−  represents an execution (i.e. one possible behaviour) of the

system which the DTMC is modelling
•  To reason (quantitatively) about this system

−  need to define a probability space over paths
•  Intuitively:

−  sample space: Path(s) = set of all  
infinite paths from a state s

−  events: sets of infinite paths from s
−  basic events: cylinder sets (or “cones”)
−  cylinder set C(ω), for a finite path ω 

= set of infinite paths with the common finite prefix ω
−  for example: C(ss1s2)

s1 s2 s

21

Probability spaces

•  Let Ω be an arbitrary non-empty set
•  A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω

closed under complementation and countable union, i.e.:
−  if A ∈ Σ, the complement Ω ∖ A is in Σ
−  if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ
−  the empty set ∅ is in Σ

•  Theorem: For any family F of subsets of Ω, there exists a
unique smallest σ-algebra on Ω containing F

•  Probability space (Ω, Σ, Pr)
−  Ω is the sample space
−  Σ is the set of events: σ-algebra on Ω
−  Pr : Σ → [0,1] is the probability measure:

 Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai

22

Probability space over paths

•  Sample space Ω = Path(s)
set of infinite paths with initial state s

•  Event set ΣPath(s)
−  the cylinder set C(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }
−  ΣPath(s) is the least σ-algebra on Path(s) containing C(ω) for all

finite paths ω starting in s
•  Probability measure Prs

−  define probability Ps(ω) for finite path ω = ss1…sn as:
•  Ps(ω) = 1 if ω has length one (i.e. ω = s)
•  Ps(ω) = P(s,s1) · … · P(sn-1,sn) otherwise
•  define Prs(C(ω)) = Ps(ω) for all finite paths ω

−  Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

•  See [KSK76] for further details

23

Probability space - Example

•  Paths where sending fails the first time
− ω = s0s1s2
−  C(ω) = all paths starting s0s1s2…
−  Ps0(ω) = P(s0,s1) · P(s1,s2)

 = 1 · 0.01 = 0.01
−  Prs0(C(ω)) = Ps0(ω) = 0.01

•  Paths which are eventually successful and with no failures
−  C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …
−  Prs0(C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …)

 = Ps0(s0s1s3) + Ps0(s0s1s1s3) + Ps0(s0s1s1s1s3) + …
 = 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …
 = 0.9898989898…
 = 98/99

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

24

Overview (Part 2)

•  Discrete-time Markov chains (DTMCs)

•  PCTL: A temporal logic for DTMCs

•  PCTL model checking

•  Other properties: LTL, costs and rewards

•  Case study: Bluetooth device discovery

25

PCTL

•  Temporal logic for describing properties of DTMCs
−  PCTL = Probabilistic Computation Tree Logic [HJ94]
−  essentially the same as the logic pCTL of [ASB+95]

•  Extension of (non-probabilistic) temporal logic CTL
−  key addition is probabilistic operator P
−  quantitative extension of CTL’s A and E operators

•  Example
−  send → P≥0.95 [true U≤10 deliver]
−  “if a message is sent, then the probability of it being delivered

within 10 steps is at least 0.95”

26

PCTL syntax

•  PCTL syntax:

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

−  ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

−  where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

•  A PCTL formula is always a state formula
−  path formulas only occur inside the P operator

“until”

 ψ is true with
probability ~p

“bounded
until” “next”

27

PCTL semantics for DTMCs

•  PCTL formulas interpreted over states of a DTMC
−  s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

•  Semantics of (non-probabilistic) state formulas:
−  for a state s of the DTMC (S,sinit,P,L):
−  s ⊨ a ⇔ a ∈ L(s)
−  s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

−  s ⊨ ¬φ ⇔ s ⊨ φ is false

•  Examples
−  s3 ⊨ succ
−  s1 ⊨ try ∧ ¬fail

s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

28

PCTL semantics for DTMCs

•  Semantics of path formulas:
−  for a path ω = s0s1s2… in the DTMC:
− ω ⊨ X φ ⇔ s1 ⊨ φ
− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1
− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

•  Some examples of satisfying paths:
−  X succ

−  ¬fail U succ

s1 s3 s3 s3

{succ} {succ} {succ} {try}

s1 s1 s3 s3

{try} {succ} {succ}

s0

{try}
s1 s0

s2

s3

0.01
0.98

0.01

1

1

1

{fail}

{succ}

{try}

29

PCTL semantics for DTMCs

•  Semantics of the probabilistic operator P
−  informal definition: s ⊨ P~p [ψ] means that “the probability,

from state s, that ψ is true for an outgoing path satisfies ~p”
−  example: s ⊨ P<0.25 [X fail] ⇔ “the probability of atomic

proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

−  formally: s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p
−  where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }
−  (sets of paths satisfying ψ are always measurable [Var85])

s

¬ψ

ψ Prob(s, ψ) ~ p ?

30

More PCTL…

•  Usual temporal logic equivalences:
−  false ≡ ¬true (false)
−  φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)
−  φ1 → φ2 ≡ ¬φ1 ∨ φ2 (implication)

−  F φ ≡ ◊ φ ≡ true U φ (eventually, “future”)
−  G φ ≡ □ φ ≡ ¬(F ¬φ) (always, “globally”)
−  bounded variants: F≤k φ, G≤k φ

•  Negation and probabilities
−  e.g. ¬P>p [φ1 U φ2] ≡ P≤p [φ1 U φ2]
−  e.g. P>p [G φ] ≡ P<1-p [F ¬φ]

31

Qualitative vs. quantitative properties

•  P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

•  A PCTL property P~p [ψ] is…
−  qualitative when p is either 0 or 1
−  quantitative when p is in the range (0,1)

•  P>0 [F φ] is identical to EF φ
−  there exists a finite path to a φ-state

•  P≥1 [F φ] is (similar to but) weaker than AF φ
−  e.g. AF “tails” (CTL) ≠ P≥1 [F “tails”] (PCTL)

s0

s1

s2

0.5

0.5

1

1

{heads}

{tails}

32

Quantitative properties

•  Consider a PCTL formula P~p [ψ]
−  if the probability is unknown, how to choose the bound p?

•  When the outermost operator of a PTCL formula is P
−  we allow the form P=? [ψ]
−  “what is the probability that path formula ψ is true?”

•  Model checking is no harder: compute the values anyway
•  Useful to spot patterns, trends

•  Example
−  P=? [F err/total>0.1]
−  “what is the probability  

that 10% of the NAND 
gate outputs are erroneous?”

33

Some real PCTL examples

•  NAND multiplexing system
−  P=? [F err/total>0.1]
−  “what is the probability that 10% of the NAND gate outputs are

erroneous?”

•  Bluetooth wireless communication protocol
−  P=? [F≤t reply_count=k]
−  “what is the probability that the sender has received k

acknowledgements within t clock-ticks?”

•  Security: EGL contract signing protocol
−  P=? [F (pairs_a=0 & pairs_b>0)]
−  “what is the probability that the party B gains an unfair

advantage during the execution of the protocol?”

reliability

performance

fairness

34

Overview (Part 2)

•  Discrete-time Markov chains (DTMCs)

•  PCTL: A temporal logic for DTMCs

•  PCTL model checking

•  Other properties: LTL, costs and rewards

•  Case study: Bluetooth device discovery

35

PCTL model checking for DTMCs

•  Algorithm for PCTL model checking [CY88,HJ94,CY95]
−  inputs: DTMC D=(S,sinit,P,L), PCTL formula φ
−  output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

•  What does it mean for a DTMC D to satisfy a formula φ?
−  sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S
−  sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

•  Sometimes, focus on quantitative results
−  e.g. compute result of P=? [F error]
−  e.g. compute result of P=? [F≤k error] for 0≤k≤100

36

PCTL model checking for DTMCs

•  Basic algorithm proceeds by induction on parse tree of φ
−  example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

•  For the non-probabilistic operators:
−  Sat(true) = S
−  Sat(a) = { s ∈ S | a ∈ L(s) }
−  Sat(¬φ) = S \ Sat(φ)
−  Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

•  For the P~p [ψ] operator
−  need to compute the  

probabilities Prob(s, ψ) 
for all states s ∈ S

−  focus here on “until” 
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succ try

37

PCTL until for DTMCs

•  Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S
•  First, identify all states where the probability is 1 or 0

−  Syes = Sat(P≥1 [φ1 U φ2])
−  Sno = Sat(P≤0 [φ1 U φ2])

•  Then solve linear equation system for remaining states

•  We refer to the first phase as “precomputation”
−  two algorithms: Prob0 (for Sno) and Prob1 (for Syes)
−  algorithms work on underlying graph (probabilities irrelevant)

•  Important for several reasons
−  reduces the set of states for which probabilities must be

computed numerically (which is more expensive)
−  gives exact results for the states in Syes and Sno (no round-off)
−  for P~p[·] where p is 0 or 1, no further computation required

38

PCTL until - Linear equations

•  Probabilities Prob(s, φ1 U φ2) can now be obtained as the
unique solution of the following set of linear equations:

−  can be reduced to a system in |S?| unknowns instead of |S|
where S? = S \ (Syes ∪ Sno)

•  This can be solved with (a variety of) standard techniques
−  direct methods, e.g. Gaussian elimination
−  iterative methods, e.g. Jacobi, Gauss-Seidel, … 

(preferred in practice due to scalability)

39

PCTL until - Example

•  Example: P>0.8 [¬a U b]

4

5 3

2 0

1
a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1 0.1

0.5

40

PCTL until - Example

•  Example: P>0.8 [¬a U b]
Sno =

Sat(P≤0 [¬a U b])

4

5 3

2 0

1
a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1

Syes =
Sat(P≥1 [¬a U b])

0.1
0.5

41

PCTL until - Example

•  Example: P>0.8 [¬a U b]

•  Let xs = Prob(s, ¬a U b)

•  Solve:

x4 = x5 = 1
x1 = x3 = 0
x0 = 0.1x1+0.9x2 = 0.8
x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]

Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =
Sat(P≤0 [¬a U b])

4

5 3

2 0

1
a

b
0.4 0.1

0.6

1 0.3

0.7 0.1
0.3

0.9
1

Syes =
Sat(P≥1 [¬a U b])

0.1
0.5

42

PCTL model checking - Summary

•  Computation of set Sat(Φ) for DTMC D and PCTL formula Φ
−  recursive descent of parse tree
−  combination of graph algorithms, numerical computation

•  Probabilistic operator P:
−  X Φ : one matrix-vector multiplication, O(|S|2)
−  Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)
−  Φ1 U Φ2 : linear equation system, at most |S| variables, O(|S|3)

•  Complexity:
−  linear in |Φ| and polynomial in |S|

43

Overview (Part 2)

•  Discrete-time Markov chains (DTMCs)

•  PCTL: A temporal logic for DTMCs

•  PCTL model checking

•  Other properties: LTL, costs and rewards

•  Case study: Bluetooth device discovery

44

Limitations of PCTL

•  PCTL, although useful in practice, has limited expressivity
−  essentially: probability of reaching states in X, passing only

through states in Y (and within k time-steps)

•  More expressive logics can be used, for example:
−  LTL [Pnu77] – (non-probabilistic) linear-time temporal logic
−  PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
−  both allow path operators to be combined
−  (in PCTL, P~p […] always contains a single temporal operator)

•  Another direction: extend DTMCs with costs and rewards…

45

LTL - Linear temporal logic

•  LTL syntax (path formulae only)
−  ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ
−  where a ∈ AP is an atomic proposition
−  usual equivalences hold: F φ ≡ true U φ, G φ ≡ ¬(F ¬φ)
−  evaluated over paths of a model

•  Examples
−  (F tmp_fail1) ∧ (F tmp_fail2)
−  “both servers suffer temporary failures at some point”
−  GF ready
−  “the server always eventually returns to a ready-state”
−  FG error
−  “an irrecoverable error occurs”
−  G (req → X ack)
−  “requests are always immediately acknowledged”

46

LTL for DTMCs

•  Same idea as PCTL: probabilities of sets of path formulae
−  for a state s of a DTMC and an LTL formula ψ:
−  Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }
−  all such path sets are measurable [Var85]

•  A (probabilistic) LTL specification often comprises 
an LTL (path) formula and a probability bound
−  e.g. P≥1 [GF ready] – “with probability 1, the server always

eventually returns to a ready-state”
−  e.g. P<0.01 [FG error] – “with probability at most 0.01, an

irrecoverable error occurs”

•  PCTL* subsumes both LTL and PCTL
−  e.g. P>0.5 [GF crit1] ∧ P>0.5 [GF crit2]

47

Fundamental property of DTMCs

•  Strongly connected component (SCC)
−  maximally strongly connected set of states

•  Bottom strongly connected component (BSCC)
−  SCC T from which no state outside T is reachable from T

•  Fundamental property of DTMCs:
−  “with probability 1,  

a BSCC will be reached  
and all of its states 
visited infinitely often”

•  Formally:
−  Prs { ω ∈ Path(s) | ∃ i≥0, ∃ BSCC T such that 

 ∀ j≥i ω(i) ∈ T and  
 ∀ s’∈T ω(k) = s' for infinitely many k } = 1

s0

0.25 1

s1 s2

s3 s4 s5

1

1 1

0.25

0.5

0.5

0.5

48

LTL model checking for DTMCs

•  Steps for model checking LTL property ψ on DTMC D
−  i.e. computing ProbD(s, ψ)

•  1. Build a deterministic Rabin automaton (DRA) A for ψ
−  i.e. a DRA A over alphabet 2AP accepting ψ-satisfying traces

•  2. Build the “product” DTMC D ⊗ A
−  records state of A for path through D so far

•  3. Identify states Tacc in “accepting” BSCCs of D ⊗ A
−  i.e. those that meet the acceptance condition of A

•  4. Compute probability of reaching Tacc in D ⊗ A
−  which gives ProbD(s, ψ), as required

49

Example: LTL for DTMCs

s2q2 s1q2

s3q2

Product DTMC D ⊗ Aψ

0.1

0.3
0.6 0.2 0.3

0.5

1
0.9

0.1

1

1
s4q2

s0q0

{k1}
s5q2 s3q1

1

1
s4q0

s1 s0 s2
0.1

{b}

0.3

s4 s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9
0.1

1

1

{a}

{a}
DTMC D

q0 q1
¬a∧¬b

a∧¬b
a∧¬b

¬a∧¬b
q2

true

b b

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

 ProbD(s, ψ)
= ProbD⊗Aψ (F T1)
= 3/4. T1 T2

T3

50

Costs and rewards

•  We augment DTMCs with rewards (or, conversely, costs)
−  real-valued quantities assigned to states and/or transitions
−  these can have a wide range of possible interpretations

•  Some examples:
−  elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …

•  Costs? or rewards?
−  mathematically, no distinction between rewards and costs
−  when interpreted, we assume that it is desirable to minimise

costs and to maximise rewards
−  we will consistently use the terminology “rewards” regardless

51

Reward-based properties

•  Properties of DTMCs augmented with rewards
−  allow a wide range of quantitative measures of the system
−  basic notion: expected value of rewards
−  formal property specifications will be in an extension of PCTL

•  More precisely, we use two distinct classes of property…

•  Instantaneous properties
−  the expected value of the reward at some time point

•  Cumulative properties
−  the expected cumulated reward over some period

52

DTMC reward structures

•  For a DTMC (S,sinit,P,L), a reward structure is a pair (ρ,ι)
−  ρ : S → ℝ≥0 is the state reward function (vector)
−  ι : S × S → ℝ≥0 is the transition reward function (matrix)

•  Example (for use with instantaneous properties)
−  “size of message queue”: ρ maps each state to the number of

jobs in the queue in that state, ι is not used

•  Examples (for use with cumulative properties)
−  “time-steps”: ρ returns 1 for all states and ι is zero

 (equivalently, ρ is zero and ι returns 1 for all transitions)
−  “number of messages lost”: ρ is zero and ι maps transitions

 corresponding to a message loss to 1
−  “power consumption”: ρ is defined as the per-time-step

 energy consumption in each state and ι as the energy cost of
 each transition

53

PCTL and rewards

•  Extend PCTL to incorporate reward-based properties
−  add an R operator, which is similar to the existing P operator

−  φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [F φ]

−  where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

•  R~r [·] means “the expected value of · satisfies ~r”

“reachability”

 expected
reward is ~r

“cumulative” “instantaneous”

54

Types of reward formulas

•  Instantaneous: R~r [I=k]
−  “the expected value of the state reward at time-step k is ~r”
−  e.g. “the expected queue size after exactly 90 seconds”

•  Cumulative: R~r [C≤k]
−  “the expected reward cumulated up to time-step k is ~r”
−  e.g. “the expected power consumption over one hour”

•  Reachability: R~r [F φ]
−  “the expected reward cumulated before reaching a state

satisfying φ is ~r”
−  e.g. “the expected time for the algorithm to terminate”

55

Reward formula semantics

•  Formal semantics of the three reward operators
−  based on random variables over (infinite) paths

•  Recall:
−  s ⊨ P~p [ψ] ⇔ Prs { ω ∈ Path(s) | ω ⊨ ψ } ~ p

•  For a state s in the DTMC:
−  s ⊨ R~r [I=k] ⇔ Exp(s, XI=k) ~ r
−  s ⊨ R~r [C≤k] ⇔ Exp(s, XC≤k) ~ r
−  s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) → ℝ≥0 with respect to the probability measure Prs

56

Reward formula semantics

•  Definition of random variables:
−  for an infinite path ω= s0s1s2…

−  where kφ =min{ j | sj ⊨ φ }

57

Model checking reward properties

•  Instantaneous: R~r [I=k]
•  Cumulative: R~r [C≤t]

−  variant of the method for computing bounded until
probabilities

−  solution of recursive equations

•  Reachability: R~r [F φ]
−  similar to computing until probabilities
−  precomputation phase (identify infinite reward states)
−  then reduces to solving a system of linear equation

•  For more details, see e.g. [KNP07a]

58

Overview (Part 2)

•  Discrete-time Markov chains (DTMCs)

•  PCTL: A temporal logic for DTMCs

•  PCTL model checking

•  Other properties: LTL, costs and rewards

•  Case study: Bluetooth device discovery

59

The PRISM tool

•  PRISM: Probabilistic symbolic model checker
−  developed at Birmingham/Oxford University, since 1999
−  free, open source (GPL), runs on all major OSs

•  Support for:
−  discrete-/continuous-time Markov chains (D/CTMCs)
−  Markov decision processes (MDPs)
−  probabilistic timed automata (PTAs)
−  PCTL, CSL, LTL, PCTL*, costs/rewards, …

•  Multiple efficient model checking engines
−  mostly symbolic (BDDs) (up to 1010 states, 107-108 on avg.)

•  Successfully applied to a wide range of case studies
−  communication protocols, security protocols, dynamic power

management, cell signalling pathways, …
•  See: http://www.prismmodelchecker.org/

60

Bluetooth device discovery

•  Bluetooth: short-range low-power wireless protocol
−  widely available in phones, PDAs, laptops, ...
−  open standard, specification freely available

•  Uses frequency hopping scheme
−  to avoid interference (uses unregulated 2.4GHz band)
−  pseudo-random selection over 32 of 79 frequencies

•  Formation of personal area networks (PANs)
−  piconets (1 master, up to 7 slaves)
−  self-configuring: devices discover themselves

•  Device discovery
−  mandatory first step before any communication possible
−  relatively high power consumption so performance is crucial
−  master looks for devices, slaves listens for master

61

Master (sender) behaviour

•  28 bit free-running clock CLK, ticks every 312.5µs
•  Frequency hopping sequence determined by clock:

−  freq = [CLK16-12+k+ (CLK4-2,0- 
CLK16-12) mod 16] mod 32

−  2 trains of 16 frequencies 
(determined by offset k),  
128 times each, swap between 
every 2.56s

•  Broadcasts “inquiry packets” on 
two consecutive frequencies,  
then listens on the same two

62

Slave (receiver) behaviour

•  Listens (scans) on frequencies for inquiry packets
−  must listen on right frequency at right time
−  cycles through frequency sequence at much slower speed

(every 1.28s)  

•  On hearing packet, pause, send reply and then wait for a
random delay before listening for subsequent packets
−  avoid repeated collisions with other slaves

63

Bluetooth – PRISM model

•  Modelled/analysed using PRISM model checker [DKNP06]
−  model scenario with one sender and one receiver
−  synchronous (clock speed defined by Bluetooth spec)
−  model at lowest-level (one clock-tick = one transition)
−  randomised behaviour so model as a DTMC
−  use real values for delays, etc. from Bluetooth spec

•  Modelling challenges
−  complex interaction between sender/receiver
−  combination of short/long time-scales – cannot scale down
−  sender/receiver not initially synchronised, so huge number of

possible initial configurations (17,179,869,184)

64

Bluetooth - Results

•  Huge DTMC – initially, model checking infeasible
−  partition into 32 scenarios, i.e. 32 separate DTMCs
−  on average, approx. 3.4 x 109 states (536,870,912 initial)
−  can be built/analysed with PRISM's MTBDD engine

•  We compute:
−  R=? [F replies=K {“init”}{max}]
−  “worst-case expected time to hear K replies over all possible

initial configurations”

•  Also look at:
−  how many initial states for each possible expected time
−  cumulative distribution function (CDF) for time, assuming

equal probability for each initial state

65

Bluetooth - Time to hear 1 reply

•  Worst-case expected time = 2.5716 sec
−  in 921,600 possible initial states
−  best-case = 635 µs

66

Bluetooth - Time to hear 2 replies

•  Worst-case expected time = 5.177 sec
−  in 444 possible initial states
−  compare actual CDF with derived version which assumes times

to reply to first/second messages are independent

67

Bluetooth - Results

•  Other results: (see [DKNP06])
−  compare versions 1.2 and 1.1 of Bluetooth, confirm 1.1 slower
−  power consumption analysis (using costs + rewards)

•  Conclusions:
−  successful analysis of complex real-life model
−  detailed model, actual parameters used
−  exhaustive analysis: best/worst-case values

•  can pinpoint scenarios which give rise to them
•  not possible with simulation approaches

−  model still relatively simple
•  consider multiple receivers?
•  combine with simulation?

68

Summary (Parts 1 & 2)

•  Probabilistic model checking
−  automated quantitative verification of stochastic systems
−  to model randomisation, failures, …

•  Discrete-time Markov chains (DTMCs)
−  state transition systems + discrete probabilistic choice
−  probability space over paths through a DTMC

•  Property specifications
−  probabilistic extensions of temporal logic, e.g. PCTL, LTL
−  also: expected value of costs/rewards

•  Model checking algorithms
−  combination of graph-based algorithms, numerical

computation, automata constructions

•  Next: Markov decision processes (MDPs)

