

Automated Verification Techniques for Probabilistic Systems

Vojtěch Forejt Marta Kwiatkowska Gethin Norman Dave Parker

SFM-11:CONNECT Summer School, Bertinoro, June 2011

EU-FP7: CONNECT

LSCITS/PSS

VERIWARE

Part 4

Compositional probabilistic verification

Overview

• Lectures 1 and 2:

- 1 Introduction
- 2 Discrete-time Markov chains
- 3 Markov decision processes
- 4 Compositional probabilistic verification

• PRISM lab session (4.30pm)

- PC lab downstairs or install PRISM on your own laptop
- Course materials available here:
 - <u>http://www.prismmodelchecker.org/courses/sfm11connect/</u>
 - lecture slides, reference list, tutorial chapter, lab session

Overview (Part 4)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking

Probabilistic assume guarantee

- semantics, model checking
- assume-guarantee proof rules
- quantitative approaches
- implementation & experimental results
- assumption generation with learning

Compositional verification

Goal: scalability through modular verification

- e.g. decide if $M_1 || M_2 \models G$
- by analysing M_1 and M_2 separately
- Assume-guarantee (AG) reasoning
 - use assumption A about the context of a component M_2
 - $\langle A \rangle M_2 \langle G \rangle$ "whenever M_2 is part of a system satisfying A, then the system must also guarantee G"
 - example of asymmetric (non-circular) A/G rule:

```
\begin{array}{c}
\mathsf{M}_1 \vDash \mathsf{A} \\
\overset{\langle \mathsf{A} \rangle \ \mathsf{M}_2 \ \langle \mathsf{G} \rangle}{\underbrace{\mathsf{M}_1 \ || \ \mathsf{M}_2 \vDash \mathsf{G}}}
\end{array}
```

[Pasareanu/Giannakopoulou/et al.]

AG rules for probabilistic systems

 How to formulate AG rules for MDPs?

- Key questions:
 - 1. What form do assumptions A take?
 - needs to be compositional
 - needs to be efficient to check
 - needs to allow compact assumptions
 - 2. How do we generate suitable assumptions?
 . preferably in a fully automated fashion
 - 3. Can we get "quantitative" results?
 . i.e. numerical values, rather than "yes"/"no"

AG rules for probabilistic systems

 How to formulate AG rules for MDPs?

- Key questions:
 - 1. What form do assumptions A take?
 - needs to be compositional
 - $\cdot\,$ needs to be efficient to check
 - needs to allow compact assumptions
 - various compositional relations exist
 - \cdot e.g. strong/weak (probabilistic) (bi)simulation
 - but these are either too fine (difficult to get small assumptions) or expensive to check
 - ▷ here, we use: probabilistic safety properties [TACAS'10]
 - less expressive, but compact and efficient
 - · (see also generalisation to liveness/rewards [TACAS'11])

AG rules for probabilistic systems

 How to formulate AG rules for MDPs?

- Key questions:
 - 2. How do we generate suitable assumptions?
 . preferably in a fully automated fashion
 - algorithmic learning (based on L* algorithm)
 adapt techniques for (non-probabilistic) assumptions
 - 3. Can we get "quantitative" results?
 - $\cdot\,$ i.e. numerical values, rather than "yes"/"no"
 - ▷ yes: generate lower/upper bounds on probabilities

Overview (Part 4)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Recap: Markov decision processes

- Markov decision processes (MDPs)
 - model probabilistic and nondeterministic behaviour
- An MDP is a tuple M = (S, s_{init} , α_M , δ_M , L):
 - **S** is the state space
 - $s_{init} \in S$ is the initial state
 - α_M is the action alphabet
 - $-\delta_M \subseteq S \times (\alpha_M \cup \tau) \times Dist(S)$ is the transition probability relation
 - $L : S \rightarrow 2^{AP}$ labels states with atomic propositions

shutdown 0.9 shutdown 0.1 t_2 off

warn

- Notes:
 - $\alpha_M,\,\delta_M$ have subscripts to avoid confusion with other automata
 - transitions can also be labelled with a "silent" $\boldsymbol{\tau}$ action
 - we write $s{-}^a{\rightarrow}\mu$ as shorthand for $(s,a,\mu)\in \delta_M$
 - MDPs, here, are identical to probabilistic automata [Segala]

Recap: Model checking for MDPs

- An adversary σ resolves the nondeterminism in an MDP M
 - make a (possibly randomised) choice, based on history
 - induces probability measure Pr_M^{σ} over (infinite) paths $Path_M^{\sigma}$
 - can compute probability of some measurable property $\boldsymbol{\varphi}$
 - · e.g. F err = \diamond err "an error eventually occurs"
 - or automata over action labels (see later)
 - Property specifications: quantify over all adversaries
 - − e.g. PCTL: $M \models P_{\geq p}[\phi] \iff Pr_M^{\sigma}(\phi) \ge p$ for all adv.s $\sigma \in Adv_M$
 - corresponds to best-/worst-case behaviour analysis
 - requires computation of $Pr_M^{min}(\phi)$ or $Pr_M^{max}(\phi)$
 - or in a more quantitative fashion:
 - just ask e.g. $P_{min=?}(\phi)$ or $P_{max=?}(\phi)$
 - also extends to (min/max) expected costs & rewards

Parallel composition for MDPs

- The parallel composition of M_1 and M_2 is denoted $M_1 \parallel M_2$
 - CSP style: synchronise over all common (non- τ) actions
 - when synchronising, transition probabilities are multiplied
- Formally, if $M_i = (S_i, s_{init,i}, \alpha_{M_i}, \delta_{M_i}, L_i)$ for i=1,2, then:
- $M_1 || M_2 = (S_1 \times S_2, (s_{init,1}, s_{init,2}), \alpha_{M_1} \cup \alpha_{M_2}, \delta_{M_1 || M_2}, L_{12})$ where:
 - $L_{12}(s_1, s_2) = L_1(s_1) \cup L_2(s_2)$
 - $-\delta_{M_1||M_2}$ is defined such that $(s_1,s_2)^{-a} \rightarrow \mu_1 \times \mu_2$ iff one of:
 - $s_1^{-a} \rightarrow \mu_1$, $s_2^{-a} \rightarrow \mu_2$ and $a \in \alpha_{M_1} \cap \alpha_{M_2}$ (synchronous)
 - $s_1^{-a} \rightarrow \mu_1$, $\mu_2 = \eta_{s_2}$ and $a \in (\alpha_{M_1} \setminus \alpha_{M_2}) \cup \{\tau\}$ (asynchronous)
 - $s_2^{-a} \rightarrow \mu_2$, $\mu_1 = \eta_{s_1}$ and $a \in (\alpha_{M_2} \setminus \alpha_{M_1}) \cup \{\tau\}$ (asynchronous)
 - where $\mu_1 \times \mu_2$ denotes the product of distributions μ_1 , μ_2
 - and $\eta_s \in \text{Dist}(S)$ is the Dirac (point) distribution on $s \in S$

- Two components, each a Markov decision process:
 - M₁: controller which shuts down devices (after warning first)
 - M₂: device to be shut down (may fail if no warning sent)

Safety properties

- Safety property: language of infinite words (over actions)
 - characterised by a set of "bad prefixes" (or "finite violations")
 - i.e. finite words of which any extension violates the property

Regular safety property

- bad prefixes are represented by a regular language
- property A stored as deterministic finite automaton (DFA) A_{err}

"a fail action never occurs" "warn occurs before shutdown" "at most 2 time steps pass before termination"

Probabilistic safety properties

- A probabilistic safety property P_{>p} [A] comprises
 - a regular safety property ${\bf A}$ + a rational probability bound ${\bf p}$
 - "the probability of satisfying A must be at least p"
 - $\mathsf{M} \vDash \mathsf{P}_{\geq p}[\mathsf{A}] \iff \mathsf{Pr}_{\mathsf{M}}^{\sigma}(\mathsf{A}) \geq p \text{ for all } \sigma \in \mathsf{Adv}_{\mathsf{M}} \iff \mathsf{Pr}_{\mathsf{M}}^{\min}(\mathsf{A}) \geq p$

• Examples:

- "warn occurs before shutdown with probability at least 0.8"
- "the probability of a failure occurring is at most 0.02"
- "probability of terminating within k time-steps is at least 0.75"
- Model checking: $Pr_{M^{min}}(A) = 1 Pr_{M \otimes A_{err}}^{max}(\Diamond err_{A})$
 - where err_A denotes "accept" states for DFA A
 - i.e. construct (synchronous) MDP-DFA product $M \otimes A_{err}$
 - then compute reachability probabilities on product MDP

• Does probabilistic safety property $P_{\geq 0.8}$ [A] hold in M_1 ?

MDP M₁ ("controller")

• Does probabilistic safety property $P_{\geq 0.8}$ [A] hold in M_1 ?

Multi-objective MDP model checking

- Consider multiple (linear-time) objectives for an MDP M
 - LTL formulae $\Phi_1, ..., \Phi_k$ and probability bounds $\sim_1 p_1, ..., \sim_k p_k$
 - question: does there <u>exist</u> an adversary $\sigma \in Adv_M$ such that: $Pr_M^{\sigma}(\phi_1) \sim p_1 \wedge \dots \wedge Pr_M^{\sigma}(\phi_k) \sim p_k$
- Motivating example:
 - $\ Pr_{M}^{\ \sigma} (\Box (queue_size < 10)) > 0.99 \ \land \ Pr_{M}^{\ \sigma} (\Diamond flat_battery) < 0.01$
- Multi-objective MDP model checking [EKVY07]
 - construct product of automata for M, Φ_1, \dots, Φ_k
 - then solve linear programming (LP) problem
 - the resulting adversary σ can obtained from LP solution
 - note: σ may be randomised (unlike the single objective case)

Multi-objective MDP model checking

- Consider the two objectives ◇D and ◇E in the MDP below
 - i.e. the trade-off between the probabilities $Pr(\Diamond D)$ and $Pr(\Diamond E)$
 - an adversary resolves the choice between a/b/c
 - increasing the probability of reaching one target decreases the probability of reaching the other

Multi-objective MDP model checking

- Need to consider all randomised adversaries
 - for example, is there an adversary σ such that:
 - $Pr(\Diamond D) > 0.2 \land Pr(\Diamond E) > 0.6$

Overview (Part 4)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking

Probabilistic assume guarantee

- semantics, model checking
- assume-guarantee proof rules
- quantitative approaches
- implementation & experimental results
- assumption generation with learning

Probabilistic assume guarantee

- Assume-guarantee triples $\langle A \rangle_{\geq p_{A}} M \langle G \rangle_{\geq p_{C}}$ where:
 - M is an MDP
 - $P_{\geq p_A}[A]$ and $P_{\geq p_G}[G]$ are probabilistic safety properties
- Informally:
 - "whenever M is part of a system satisfying A with probability at least p_A , then the system is guaranteed to satisfy G with probability at least p_G "
- Formally:
 - $\ \forall \sigma \in Adv_{M'} \ (\ Pr_{M'}^{\sigma}(A) \geq p_A \rightarrow Pr_{M'}^{\sigma}(G) \geq p_G \)$
 - where M' is M with its alphabet extended to include α_A
 - reduces to multi-objective model checking on M'
 - look for adversary satisfying assumption but not guarantee
 - i.e. can check $\langle A \rangle_{\geq p_A} M \langle G \rangle_{\geq p_G}$ efficiently via LP problem

An assume-guarantee rule

- The following asymmetric proof rule holds
 - (asymmetric = uses one assumption about one component)

$$\begin{split} & \mathsf{M}_{1} \vDash \mathsf{P}_{\geq \mathsf{p}_{\mathsf{A}}}[\mathsf{A}] \\ & \underbrace{\langle \mathsf{A} \rangle_{\geq \mathsf{p}_{\mathsf{A}}} \mathsf{M}_{2} \langle \mathsf{G} \rangle_{\geq \mathsf{p}_{\mathsf{G}}}}_{\mathsf{M}_{1}} & (\mathsf{ASYM}) \\ \hline & \mathsf{M}_{1} \mid \mid \mathsf{M}_{2} \vDash \mathsf{P}_{\geq \mathsf{p}_{\mathsf{G}}}[\mathsf{G}] \end{split}$$

- So, verifying $M_1 || M_2 \models P_{\ge p_G}[G]$ requires:
 - premise 1: $M_1 \models P_{\ge p_A}[A]$ (standard model checking)
 - premise 2: $\langle A \rangle_{\geq p_A} M_2 \langle G \rangle_{\geq p_G}$ (multi-objective model checking)
- Potentially much cheaper if |A| much smaller than $|M_1|$

• Does probabilistic safety property $P_{\geq 0.98}$ [G] hold in $M_1 || M_2$?

• Does probabilistic safety property $P_{\geq 0.98}$ [G] hold in $M_1 || M_2$?

• Premise 1: Does $M_1 \models P_{\geq 0.8}$ [A] hold? (same as earlier ex.)

• Premise 2: Does $\langle A \rangle_{\geq 0.8} M_2 \langle G \rangle_{\geq 0.98}$ hold?

- ∃ an adversary of M₂ satisfying Pr_M^σ(A)≥0.8 but not Pr_M^σ(G)≥0.98 ?
 ⇔
- \exists an an adversary of M' with $Pr_{M'}^{\sigma'}$ ($\Diamond err_{A} \ge 0.2$ and $Pr_{M'}^{\sigma'}$ ($\Diamond err_{G} \ge 0.02$?
- To satisfy $Pr_{M'}^{\sigma'}$ ($\Diamond err_A$) ≤ 0.2 , adversary σ' must choose shutdown in initial state with probability ≤ 0.2 , which means $Pr_{M'}^{\sigma'}$ ($\Diamond err_G$) ≤ 0.02
- So, there is no such adversary and $\langle A \rangle_{\geq 0.8} M_2 \langle G \rangle_{\geq 0.98} \underline{does}$ hold

Other assume-guarantee rules

Multiple assumptions:

$$\begin{split} \mathbf{M}_{1} &\models P_{\geq p_{1}}[\mathbf{A}_{1}] \land \ldots \land P_{\geq p_{k}}[\mathbf{A}_{k}] \\ & \frac{\langle \mathbf{A}_{1}, \ldots, \mathbf{A}_{k} \rangle_{\geq p_{1}, \ldots, p_{k}} \mathbf{M}_{2} \langle \mathbf{G} \rangle_{\geq p_{G}}}{\mathbf{M}_{1} \mid \mid \mathbf{M}_{2} \models P_{\geq p_{G}}[\mathbf{G}]} \quad \text{(Asym-Mult)} \end{split}$$

Multiple components (chain):

$$\begin{split} \mathsf{M}_{1} &\models \mathsf{P}_{\geq}\mathsf{p}_{1}\left[\mathsf{A}_{1}\right] \\ &\langle \mathsf{A}_{1} \rangle_{\geq} \mathsf{p}_{1} \ \mathsf{M}_{2} \ \langle \mathsf{A}_{2} \rangle_{\geq} \mathsf{p}_{2} \\ & \dots \qquad (\mathsf{ASYM-N}) \\ &\langle \mathsf{A}_{n} \rangle_{\geq} \mathsf{p}_{n} \ \mathsf{M}_{n} \ \langle \mathsf{G} \rangle_{\geq} \mathsf{p}_{\mathsf{G}} \\ \hline \mathsf{M}_{1} \ || \ \dots \ || \ \mathsf{M}_{n} \vDash \mathsf{P}_{\geq} \mathsf{p}_{\mathsf{G}}\left[\mathsf{G}\right] \end{split}$$

• Circular rule:

$$\begin{split} & \mathsf{M}_{2} \vDash \mathsf{P}_{\geq} \mathsf{p}_{2} \left[\mathsf{A}_{2} \right] \\ & \langle \mathsf{A}_{2} \rangle_{\geq} \mathsf{p}_{2} \left[\mathsf{M}_{1} \left\langle \mathsf{A}_{1} \right\rangle_{\geq} \mathsf{p}_{1} \right] \\ & \langle \mathsf{A}_{1} \rangle_{\geq} \mathsf{p}_{1} \left[\mathsf{M}_{2} \left\langle \mathsf{G} \right\rangle_{\geq} \mathsf{p}_{\mathsf{G}} \right] \end{split}$$
 (CIRC)

 $\mathsf{M}_1 \mid\mid \mathsf{M}_2 \vDash \mathsf{P}_{\geq \mathsf{p}_{\mathsf{G}}}[\mathsf{G}]$

Asynchronous components:

 $\begin{array}{l} \langle A_1 \rangle {\geq} p_1 \ M_1 \ \langle G_1 \rangle {\geq} q_1 \\ \langle A_2 \rangle {\geq} p_2 \ M_2 \ \langle G_2 \rangle {\geq} q_2 \end{array} (ASYNC)$

 $\langle A_1, A_2 \rangle {\geq} p_1 p_2 \ M_1 \ \big| \big| \ M_2 \ \langle G_1 \lor G_2 \rangle {\geq} (q_1 {+} q_2 {-} q_1 q_2)$

A quantitative approach

- For (non-compositional) probabilistic verification
 - prefer quantitative properties: $Pr_M^{min}(G)$, not $M \models P_{\geq p_G}[G]$
 - can we do this for compositional verification?
- Consider, for example, AG rule (ASym)
 - this proves $Pr_{M_1 || M_2}^{min}(G) \ge p_G$ for certain values of p_G
 - i.e. gives lower bound for $Pr_{M_1||M_2}^{min}(G)$
 - for a fixed assumption A, we can compute the maximal lower bound obtainable, through a simple adaption of the multiobjective model checking problem
 - we can also compute upper bounds using generated adversaries as witnesses
 - furthermore: can explore trade-offs in parameterised models by approximating Pareto curves

 $\begin{array}{c} \langle true \rangle \; M_1 \; \langle A \rangle_{\geq p_A} \\ \langle A \rangle_{\geq p_A} \; M_2 \; \langle G \rangle_{\geq p_G} \\ \langle true \rangle \; M_1 \; || \; M_2 \; \langle G \rangle_{\geq p_G} \end{array} \end{array}$

Implementation + Case studies

- Prototype extension of PRISM model checker
 - already supports LTL for Markov decision processes
 - automata can be encoded in modelling language
 - added support for multi-objective LTL model checking, using LP solvers (ECLiPSe/COIN-OR CBC)
 - Two large case studies
 - randomised consensus algorithm (Aspnes & Herlihy)
 - minimum probability consensus reached by round R
 - Zeroconf network protocol
 - maximum probability network configures incorrectly
 - minimum probability network configured by time T

Case study [parameters]		Non-compositional		Compositional		
		States	Time (s)	LP size	Time (s)	
	3, 2	1,418,545	18,971	40,542	29.6	
consensus	3,20	39,827,233	time-out	40,542	125.3	
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1	
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9	
	4	313,541	103.9	20,927	21.9	
ZeroConf [K]	6	811,290	275.2	40,258	54.8	
[13]	8	1,892,952	592.2	66,436	107.6	
ZeroConf time-bounded [K, T]	2,10	65,567	46.3	62,188	89.0	
	2,14	106,177	63.1	101,313	170.8	
	4,10	976,247	88.2	74,484	170.8	
	4,14	2,288,771	128.3	166,203	430.6	

Case study [parameters]		Non-compositional		Compositional		
		States	Time (s)	LP size	Tir	ne (s)
	3, 2	1,418,545	18,971	40,542		29.6
consensus	3,20	39,827,233	time-out	40,542		125.3
(3 processes)	4, 2	150,487,585	78,955	141,168		376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168		471.9
	4	313,541	103.9	20,927		21.9
ZeroConf الا1	6	811,290	275.2	40,258		54.8
[1]	8	1,892,952	592.2	66,436		107.6
ZeroConf time-bounded [K, T]	2,10	65,567	46.3	62,188		89.0
	2,14	106,177	63.1	101,313		170.8
	4,10	976,247	88.2	74,484		170.8
	4,14	2,288,771	128.3	166,203		430.6

• Faster than conventional model checking in a number of cases

Case study [parameters]		Non-compositional		Compositional		
		States	Time (s)	LP size	Time (s)	
	3, 2	1,418,545	18,971	40,542	29.6	
consensus	3,20	39,827,233	time-out	40,542	125.3	
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1	
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9	
	4	313,541	103.9	20,927	21.9	
ZeroConf [K]	6	811,290	275.2	40,258	54.8	
[13]	8	1,892,952	592.2	66,436	107.6	
ZeroConf time-bounded [K, T]	2,10	65,567	46.3	62,188	89.0	
	2,14	106,177	63.1	101,313	170.8	
	4,10	976,247	88.2	74,484	170.8	
	4,14	2,288,771	128.3	166,203	430.6	

• Verified instances where conventional model checking is infeasible

Case study [parameters]		Non-compositional		Compositional		
		States	Time (s)	LP size	Time (s)	
	3, 2	1,418,545	18,971	40,542	29.6	
consensus	3, 20	39,827,233	time-out	40,542	125.3	
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1	
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9	
	4	313,541	103.9	20,927	21.9	
ZeroConf [K]	6	811,290	275.2	40,258	54.8	
[1]	8	1,892,952	592.2	66,436	107.6	
ZeroConf time-bounded [K, T]	2,10	65,567	46.3	62,188	89.0	
	2,14	106,177	63.1	101,313	170.8	
	4,10	976,247	88.2	74,484	170.8	
	4,14	2,288,771	128.3	166,203	430.6	

• LP problem generally much smaller than full state space (but still the limiting factor)

Overview (Part 4)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Generating assumptions

- Can model check M₁||M₂ compositionally
 - but this relies on the existence of a suitable assumption P≥p_A[A]

- 1. Does such an assumption always exist?
- 2. When it does exist, can we generate it automatically?
- Our approach: use algorithmic learning techniques
 - inspired by non-probabilistic AG work of [Pasareanu et al.]
 - uses L* algorithm to learn finite automata for assumptions
 - we use a modified version of L*
 - to learn probabilistic assumptions for rule (ASYM) [QEST'10]

The L* learning algorithm

- The L* algorithm [Angluin]
 - learns an unknown regular language L, as a (minimal) DFA
- Based on "active" learning
 - relies on existence of a "teacher" to guide the learning
 - answers two type of queries: "membership" and "equivalence"
 - membership: "is trace (word) t in the target language L?"
 - stores results of membership queries in observation table
 - $\cdot\,$ based on these, generates conjectures A for the automata
 - equivalence: "does automata A accept the target language L"?
 - $\cdot\,$ if not, teacher must return counterexample ${\bf c}$
 - (c is a word in the symmetric difference of L and L(A))

The L* learning algorithm

L* for assume-guarantee

- Breakthrough in automated compositional verification
 - use of L* to learn assumptions for A/G reasoning
 - [Pasareanu/Giannakopoulou/et al.]
 - uses notion of "weakest assumption" about a component that suffices for compositional verification (always exists)
 - weakest assumption is the target regular language
- Fully automated L* learning loop
 - model checker plays role of teacher, returns counterexamples
 - in practice, can usually stop early: either with a simpler (stronger) assumption or by refuting the property
- Successfully applied to several large case studies
 - does particularly well when assumption/alphabet are small
 - much recent interest in learning for verification...

Probabilistic assumption generation

- Goal: automate A/G rule (Аsyм)
 - generate probabilistic assumption $P_{\geq p_A}[A]$
 - for checking property $P_{\geq p_G}[G]$ on $M_1 \parallel M_2$
- Reduce problem to generation of non-probabilistic assumption A

- then (if possible) find lowest $\ensuremath{p_A}$ such that premises 1 & 2 hold
- in fact, for fixed A, we can generate lower and upper bounds on $\Pr_{M_1||M_2}^{\min}(G)$, which may suffice to verify/refute $P_{\geq p_G}[G]$

• Use adapted L* to learn non-probabilistic assumption A

- note: there is no "weakest assumption" (AG rule is incomplete)
- but can generate sequence of conjectures for A in similar style
- "teacher" based on a probabilistic model checker (PRISM), feedback is from probabilistic counterexamples [Han/Katoen]
- three outcomes of loop: "true", "false", lower/upper bounds

Probabilistic assumption generation

Implementation + Case studies

Implemented using:

- extension of PRISM model checker
- libalf learning library [Bollig et al.]

Several case studies

- client-server (A/G model checking benchmark + failures)
 . minimum probability mutual exclusion not violated
- randomised consensus algorithm [Aspnes & Herlihy]
 - $\cdot\,$ minimum probability consensus reached by round R
- sensor network [QEST'10]
 - $\cdot\,$ minimum probability of processor error occurring
- Mars Exploration Rovers (MER) [NASA]
 - minimum probability mutual exclusion not violated in k cycles

Experimental results (learning)

Case study [parameters]		Component sizes		Compositional		
		$ M_2 \otimes G_{err} $	M ₁	A ^{err}	Time (s)	
Client-server	3	229	16	5	6.6	
(N failures)	4	1,121	25	6	26.1	
[N]	5	5,397	36	7	191.1	
Randomised consensus [N,R,K]	2, 3, 20	391	3,217	6	24.2	
	2, 4, 4	573	431,649	12	413.2	
	3, 3, 20	8,843	38,193	11	438.9	
Sensor network [N]	2	42	1,184	3	3.7	
	3	42	10,662	3	4.6	
MER [N R]	2,5	5,776	427,363	4	31.8	
	3, 2	16,759	171	4	210.5	

Experimental results (learning)

Case study [parameters]		Component sizes		Compositional		
		$ M_2 \otimes G_{err} $	M ₁	A ^{er}	r	Time (s)
Client-server	3	229	16		5	6.6
(N failures)	4	1,121	25		6	26.1
[N]	5	5,397	36		7	191.1
Randomised	2, 3, 20	391	3,217		6	24.2
consensus	2, 4, 4	573	431,649		12	413.2
[N,R,K]	3, 3, 20	8,843	38,193		11	438.9
Sensor network [N]	2	42	1,184		3	3.7
	3	42	10,662		3	4.6
MER [N R]	2,5	5,776	427,363		4	31.8
	3, 2	16,759	171		4	210.5

• Successfully learnt (small) assumptions in all cases

Experimental results (learning)

Case study		Component sizes		Compositional		
[parameters]		$ M_2 \otimes G_{err} $	M ₁	A ^{err}	Time (s)	
Client-server	3	229	16	5	6.6	
(N failures)	4	1,121	25	6	26.1	
[N]	5	5,397	36	7	191.1	
Randomised consensus [N,R,K]	2, 3, 20	391	3,217	6	24.2	
	2, 4, 4	573	431,649	12	413.2	
	3, 3, 20	8,843	38,193	11	438.9	
Sensor network [N]	2	42	1,184	3	3.7	
	3	42	10,662	3	4.6	
MER [N R]	2,5	5,776	427,363	4	31.8	
	3, 2	16,759	171	4	210.5	

 In some cases, learning + compositional verification is faster (than non-compositional verification, using PRISM)

Summary (Part 4)

- Compositional verification, e.g. assume-guarantee
 - decompose verification problem based on system structure
- Compositional probabilistic verification based on:
 - Markov decision processes, with arbitrary parallel composition
 - assumptions/guarantees are probabilistic safety properties
 - reduction to multi-objective model checking
 - multiple proof rules; adapted to quantitative approach
 - automatic generation of assumptions: L* learning
- Can work well in practice
 - verified safety/performance on several large case studies
 - cases where infeasible using non-compositional verification
- For further detail, see [KNPQ10], [FKP10], [FKN+11]
- Next: PRISM lab session...

Thanks for your attention

More info here: www.prismmodelchecker.org