
Hessian Calculations using AD

Devendra Ghate and Mike Giles

December 6, 2006

Chapter 1

Hessian Calculation using AD

1.1 Introduction

An algorithm to calculate the Hessian of a functional of interest is outlined here. In the con-
text of aerodynamics, the examples of functionals of interest are lift, drag or total pressure
loss. Typically these quantities are calculated after an iterative solution of nonlinear partial
differential equations. This makes it difficult to calculate the gradients and the Hessian.
The most widely used method of finite difference is sensitive to step-size selection and is
computationally expensive.

We have already demonstrated the effective use of Automatic Differentiation (AD) to
automate the process of Jacobian calculation[6]. The Jacobian obtained by this method
is theoretically accurate to machine precision[8]. Also, AD helps in keeping the linearised
version of the nonlinear codes in-sync with the continuous changes made in the nonlinear
code. The proposed method for Hessian calculation is a natural extension of this.

The Hessian thus obtained has various applications in the fields of optimisation algo-
rithms, Monte Carlo simulations, surrogate modelling and uncertainty analysis.

1.1.1 Background

The idea of calculating Hessians using AD is not new and the AD community has been
addressing the issue of calculating higher order derivatives for a number of years now. In one
of the earliest papers, Christianson[1] describes an algorithm for Hessian calculation using
reverse accumulation. There are two commonly used methods for calculating Hessians using
AD: forward-on-forward and forward-on-reverse. Forward-on-forward is a straightforward
double application of AD to the original code in forward mode. If there are n independent
variables, then the computational cost of this approach is O(n2). Similarly in forward-on-
reverse mode, the code is differentiated first in the reverse mode and then in the forward
mode. The computational cost for a functional of interest of dimension m and n independent
variables is O(m × n).

Presently, most of the AD tools (ADOL-C, ADIFOR, TAPENADE) can be used to
calculate the Hessian using forward-on-forward or the forward-on-reverse modes. In addi-
tion ADOL-C provides in-built driver routines that calculate the Hessian or Hessian-vector

1

products. However the computational cost of direct application of AD as a black-box is
unacceptable for large iterative solution codes.

The method described here was initially investigated by Taylor et. al.[10] along with
various other algorithms, but the publication does not go into the implementation details
for a generic fluid dynamics code. This paper aims to demonstrate the method in detail with
the help of a 2D airfoil code. The order of computational cost, efficient AD implementation
and the mathematical background behind the idea are presented.

1.2 Basic Formulation

We are interested in the Hessian of a functional of interest j(α) = J(α,w(α)), j ∈ R
m with

respect to independent variables α ∈ R
n such that w(α) ∈ R

p satisfies the state equation

R(α,w) = 0. (1.1)

Henceforth w will be referred to as the intermediate variable. To take an example from
the fluid dynamics code,

w = [x, u]

where,

x are the grid variables which change according to the design variables, and

u are referred to as the state variables which are obtained by solving the state equation,
for e.g. the discretised Navier-Stokes equations.

R(α,w) refers to such state equations augmented by the grid generation equations.
Typically equation (1.1) is a set of nonlinear equations and is solved using some fixed point
iteration method which is computationally expensive.

For simplicity consider that j is uni-dimensional, i.e. m = 1. The derivative of j with
respect to one individual component of α is given by

∂j

∂αi
=

∂J

∂αi
+

∂J

∂w

∂w

∂αi
. (1.2)

Differentiating equation (1.2) again gives us

∂2j

∂αi∂αj

=
∂2J

∂αi ∂αj

+
∂2J

∂αi∂w

(

∂w

∂αj

)

+
∂2J

∂αj∂w

(

∂w

∂αi

)

+
∂2J

∂w2

(

∂w

∂αi

∂w

∂αj

)

+
∂J

∂w

(

∂2w

∂αi ∂αj

)

(1.3)

The above equation tells us that the calculation of the Hessian requires the linear sensi-
tivities of w. Also the last term on the right hand side of the equation requires the second
order sensitivity of w. The computational cost of this calculation is

• one baseline nonlinear solution w,

2

• O(n) linear solutions of ∂w
∂αi

,

• O(n2) second derivatives of ∂2w
∂αiαj

, and

• O(n2) evaluations of the right-hand side of equation (1.3).

If the intermediate variables w are an explicit function of the design variables, then this
is a simple task using AD. The original routines can be differentiated twice in the forward
mode to propagate the second order sensitivities. The calculation of the linear and second
order sensitivities of the intermediate variables will be computationally inexpensive.

However, we know that in case of fluid dynamics, the intermediate variables are an im-
plicit function of the design variables and they require an iterative procedure for the solution.
This makes the calculation of the linear and second order sensitivities of the intermediate
variables computationally expensive. A different formulation is presented henceforth to
reduce this computational cost.

Equation (1.3) can be rearranged as

∂2j

∂αi∂αj

=
∂J

∂w

∂2w

∂αi∂αj

+ D2
i,jJ, (1.4)

where

D2
i,jJ =

∂2J

∂αi ∂αj
+

∂2J

∂αi∂w

(

∂w

∂αj

)

+
∂2J

∂αj∂w

(

∂w

∂αi

)

+
∂2J

∂w2

(

∂w

∂αi

∂w

∂αj

)

. (1.5)

Differentiating the state equation (1.1) gives

∂R

∂αi
+

∂R

∂w

∂w

∂αi
= 0. (1.6)

Differentiating again we get,

∂R

∂w

∂2w

∂αi∂αj
+ D2

i,jR = 0, (1.7)

where D2
i,jR is similarly defined as D2

i,jJ in equation (1.5).

Now substituting for ∂2w
∂αi∂αj

in equation (1.4) from equation (1.7) we get

∂2j

∂αi∂αj

= −
∂J

∂w

(

∂R

∂w

)

−1

D2
i,jR + D2

i,jJ

= vT D2
i,jR + D2

i,jJ. (1.8)

3

Here v is the adjoint solution associated with the functional of interest J defined by the
adjoint equation

(

∂R

∂w

)T

v +

(

∂J

∂w

)T

= 0. (1.9)

Equation (1.8) is used to calculate the complete Hessian. The entire formulation presented
here is also valid for a multi-dimensional functional of interest. Various methods for calcu-
lation of the adjoint solutions are available[5].

Now let us look at the computational cost for calculating the entire Hessian. First
we need the solution of the state equation (1.1) to calculate the intermediate variables w0

corresponding to the design variables α0 at which we need the Hessian. Then looking at
equation (1.8) it is clear that we need a single adjoint solution v(w0) corresponding to
J . Also, equation (1.5) tells us that we need calculation of the n linear solutions ∂w

∂αi
(w0)

corresponding to n independent variables αi. If these solutions are available then we only
need to evaluate D2

i,jJ and D2
i,jR for each entry of the Hessian, i.e. we evaluate these

functions for each pair of αi and αj.

Hence the total computational cost of the entire Hessian calculation is:

• Single baseline nonlinear solution w0,

• O(n) linear flow ∂w
∂αi

(w0),

• single adjoint solution v(w0),

• O(n2) evaluations of D2
i,jJ, D2

i,jR, and

• O(n2) dot products for vT D2
i,jR.

As a single evauluation is much cheaper than an iterative solution, the computational
cost of calculating the entire Hessian is O(n).

The entire argument presented above for a single dimensional functional of interest J

also holds true for the general case of m dimensions. The net computational cost would
be of the order O(n + m) because of the O(m) adjoint solutions corresponding to all the
functionals of interest.

The basic concept behind the Hessian calculation for a general case has been explained
in this section. But the mathematical formulation used in our implementation is slightly
different and is presented in the next section.

1.3 Formulation for Fluid Mechanics

We are interested in the Hessian of a functional of interest j(α) = J(α, x(α), u(α)), j ∈ R
m

with respect to the independent variables α ∈ R
n such that x(α) and u(α) satisfy the state

equation

R(α, x(α), u(α)) = 0. (1.10)

4

α are the design variables and we are interested in the Hessian of the functional of
interest with respect to these design variables.

x are the grid variables which change according to the design variables. u are referred
to as the flow variables.

For simplicity consider that j is uni-dimensional, i.e. m = 1. The derivative of j with
respect to one individual component of α is given by

∂j

∂αi

=
∂J

∂αi

+
∂J

∂x

∂x

∂αi

+
∂J

∂u

∂u

∂αi

. (1.11)

Differentiating equation (1.11) again gives us

∂2j

∂αi∂αj
=

∂J

∂u

∂2u

∂αi∂αj
+ D2

i,jJ (1.12)

where,

D2
i,jJ =

∂2J

∂αi ∂αj
+

∂J

∂x

∂2x

∂αi∂αj

+
∂2J

∂αi∂u

(

∂u

∂αj

)

+
∂2J

∂αj∂u

(

∂u

∂αi

)

+
∂2J

∂u2

(

∂u

∂αi

∂u

∂αj

)

+
∂2J

∂αi∂x

(

∂x

∂αj

)

+
∂2J

∂αj∂x

(

∂x

∂αi

)

+
∂2J

∂x2

(

∂x

∂αi

∂x

∂αj

)

(1.13)

Similarly, the entire process can be repeated for the state equation (1.10) to give

∂R

∂u

∂2u

∂αi∂αj

+ D2
i,jR = 0, (1.14)

where, D2
i,jR is similarly defined as D2

i,jJ in equation (1.13).

Now substituting for ∂2u
∂αi∂αj

in equation (1.12) from equation (1.14) we get

∂2j

∂αi∂αj
= −

∂J

∂u

(

∂R

∂u

)

−1

D2
i,jR + D2

i,jJ

= vT D2
i,jR + D2

i,jJ. (1.15)

where v is the adjoint solution associated with the functional of interest J defined by the
adjoint equation

(

∂R

∂u

)T

v +

(

∂J

∂u

)T

= 0. (1.16)

5

Equation (1.15) is used to calculate the complete Hessian. It should be noted here that
only the second derivative of flow variables is replaced here by the flow adjoint solution.
Typically, grid generation process is computationally much cheaper than the iterative flow
solutions. Also, because of the involvement of the CAD packages in the grid generation
process, it is difficult to develop the adjoint codes for the grid generation process. Hence in
our implementation we do not use grid adjoint solutions. The linear and second derivatives
of the grid variables x(α) are calculated in the forward mode and then passed on to the
routines in the flow solver.

However if the grid adjoint solution capability exists or is desirable then the earlier
more generic formulation can be used. The entire formulation presented here is also valid
for a multi-dimensional functional of interest. The order of the computational cost remains
same as the earlier generic formulation. The next section discusses some of the related
implementation issues.

1.4 Implementation

Hessian code development process is a natural extension of the linear and adjoint code
development reported in our earlier work[6]. The entire nonlinear code has to be written
in a modular fashion with all the nonlinear bits separated out from the time integration
loop. Each of these functions containing nonlinear bits are then double differentiated in
the forward mode using the AD software. For example the original nonlinear wall flux
calculation subroutine is

flux wall(x1,x2,q,res),

where, x1 and x2 are the nodes defining the wall edge, q is the state vector of the interior
cell and res is the residue vector. This subroutine is differentiated in forward mode using
an AD software with x1,x2 and q as the independent variables and res as the dependent
variable. The differentiated subroutine is

flux wall d(x1,x1d,x2,x2d,q,qd,res,resd),

where all the variables appended with d are the perturbation variables. This subroutine is
again differentiated in the forward mode with x1, x1d, x2, x2d, q and qd as the independent
variables while res and resd are the dependent variables.

flux wall d2(x1,x1d0,x1d,x1dd,x2,x2d0,x2d,x2dd,

q,qd0,qd,qdd,res,resd0,resd,resdd)

Effectively each of the original variable gets linearised twice and we also have the sec-
ond order perturbation in the variables appended by dd. These variables correspond to
the complete second order derivative of the original variable, i.e. resdd is the complete
second order derivative given by an expression similar to equation (1.12) if x1d, x2d, qd are
initialised with perturbations with respect to αi and x1d0, x2d0, qd0 are initialised with
perturbations with respect to αj . Now if we set qdd = 0, then essentially we are calculating
the D2

i,j operator applied to res. These perturbations have to be carried forward through-

out the solver code in a similar fashion to calculate the complete D2
i,jR over the entire grid.

D2
i,jJ is evaluated in a similar fashion.

6

1.5 Validation checks

Although AD by definition removes all the user intervention and associated errors, it is
always good practice to introduce validation checks to ensure the correctness of the imple-
mentation. Validation checks for Hessian calculation are developed on the similar lines as
discussed in our earlier publication for the linear and adjoint code development[6]. Unfor-
tunately, it is not so straightforward as the linear and adjoint code development. Still some
simple checks can be introduced.

Given fully converged nonlinear u and linear ∂u
∂αi

solutions the following equations should
be satisfied in the entire domain to machine precision

R(x, u) = 0, and
∂R

∂x

∂x

∂αi
+

∂R

∂u

∂u

∂αi
= 0.

These checks ensure that the converged nonlinear and linear solutions are being correctly
introduced in the Hessian code. Also, it is desirable to ensure that the adjoint solution is
consistent with the linear solutions using the checks discussed in our earlier publication [6].

Finally, it should be tested that the calculated Hessian is symmetric, i.e.

∂2j

∂αi∂αj
=

∂2j

∂αj∂αi
.

This identity should be satisfied to machine precision. This calculation would require n2

evaluations of the D2
i,jJ and D2

i,jR functions. Once this has been validated then only the

upper diagonal Hessian matrix can be calculated requiring n(n+1)
2 evaluations.

However the final validation has to be the comparison with finite difference results. All
these checks are implemented in the test airfoil code which can be downloaded from our
website[4]. The next section presents results for a test airfoil code developed to demonstrate
these ideas.

1.6 Airfoil code

The airfoil code[3] used to demonstrate the ideas of linear and adjoint code development
using AD is extended to calculate the Hessian. The entire source code along with a driver
program can be downloaded from our website[4].

The code calculates the two dimensional flow around a NACA0012 airfoil solving the
Euler equations. The grid is stored in an unstructured format in the form of vertices,
edges and cells. An explicit time integration method using predictor-corrector algorithm is
implemented. Fluxes across the edges are calculated using the average of the neighbouring
cells added with constant diffusion term. A more detailed description of the airfoil code can
be found in this report[2].

Three modes of artificial perturbation are introduced to the baseline geometry. Fig-
ure 1.1 shows the three modes of perturbation namely: thickness, angle-of-attack and lead-
ing edge shape[2].

A Makefile is written to calculate all the relevant linear, nonlinear and adjoint versions
of the code using Tapenade[9]. A separate program air hes is written which calls all the

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0.1

Mode 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0.1
Mode 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0.1
Mode 1

Figure 1.1: Artificial modes of perturbation introduced in NACA0012 airfoil

appropriate double differentiated subroutines to calculate the D2
i,jR and D2

i,jJ functions,
and finally the entire Hessian with respect to these three modes. Despite the fact that
the Hessian is symmetric, all the nine fields are calculated. The Hessian thus calculated is
compared with the central finite difference approximation given by

∂2j

∂αi∂αj
(α0) =

1

2∆αj

(

∂j
∂αi

(α0 + ∆αj) −
∂j
∂αi

(α0 − ∆αj)
)

.

This expression is used instead of the second order finite difference of the nonlinear
solution to minimise the sensitivity to the step-size. Also, the linear perturbations calculated
using a linear solver are accurate to machine precision.

Table 1.6 shows the comparison between the Hessian calculated directly and the finite
difference calculations using appropriate stepsize. Good agreement between these two is
the final verification of the corretness of the Hessian code implementation.

Modes Finite Difference Direct

1 - 1 − 3.111309E − 07 −3.111203E − 07

1 - 2 −2.097548E − 06 −2.097600E − 06

1 - 3 −9.958056E − 07 −9.959223E − 07

2 - 2 −2.159470E − 04 −2.159687E − 04

2 - 3 −1.746514E − 04 −1.749954E − 04

3 - 3 −1.970521E − 05 −1.970937E − 05

Table 1.1: Comparison between direct Hessian calculation and finite difference calculation
for Lift

8

2.9 2.92 2.94 2.96 2.98 3 3.02 3.04 3.06 3.08 3.1

−1

−0.5

0

0.5

1

1.5
x 10−8

α

Di
ffe

re
nc

e
in

 lif
t

Low Subsonic

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

Figure 1.2: Comparison between quadratic and adjoint corrected linear extrapolation for
low subsonic case (Mach = 0.4 and AOA = 3o)

1.7 Extrapolation

One of the major applications of the Hessian thus obtained is in extrapolation. It is inter-
esting to compare the performance of the quadratic extrapolation using linear and Hessian
solutions with the linear extrapolation using adjoint correction[7]. For the sake of complete-
ness, the two expressions are given here. The quadratic extrapolation is given by

jα = jα0
+ ∂j

∂α
(α − α0) + 1

2
∂2j
∂α2 (α − α0)

2,

while adjoint corrected linear extrapolation is

jα = jα0
+ ∂j

∂α
(α − α0) − v(α0)

T R
(

x(α), u(α0) + ∂u
∂α

(α − α0)
)

.

The adjoint corrected linear extrapolation thus obtained has a third order leading error
(i.e. O

(

(∆α)3
)

). Extrapolation about a base angle-of-attack (AOA) is carried out using
the second mode of perturbation. A set of nonlinear simulations converged to full machine
precision is carried out by varying α from 2.9o to 3.1o in the steps of 0.001o. The nonlinear
lift thus obtained is compared with the two methods of extrapolation described above.
Figure 1.2 plots the error between these extrapolations and a cubic fit of the lift (calculated
using nonlinear simulations) for the low subsonic range (Mach = 0.4 and AOA = 3o)
against the angle-of-attack. Both the approaches look equally accurate in this case. As the
perturbation in α is very small, we see extremely small error with respect to the cubic fit
of the nonlinear lift.

Similarly, figure 1.3 shows comparison for a higher subsonic test case with Mach = 0.65
and AOA = 10o. The behaviour of the nonlinear lift is not smooth with some pronounced

9

9.9 9.92 9.94 9.96 9.98 10 10.02 10.04 10.06 10.08 10.1
−10

−8

−6

−4

−2

0

2

4
x 10−8

α

Di
ffe

re
nc

e
in

 lif
t

High Subsonic

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

Figure 1.3: Comparison between quadratic and adjoint corrected linear extrapolation for
high subsonic case (Mach = 0.65 and AOA = 10o)

kinks. Further investigation of this curious behaviour revealed that these kinks are arising
because of the fundamental non differentiability of the underlying function.

A key quantity adt in the nonlinear calculations is calculated as

adt =

∑

i

|u dyi − v dxi| + c

√

dx2
i + dy2

i

CFL
, (1.17)

Here, u and v are the velocity components in x and y directions respectively, while dx

and dy are the projections of the length of an edge. CFL is the Courant-Friedrichs-Lewy
number. The summation is over the four edges forming a cell.

Because of the term with absolute function, though this is C0 continuous, it is not C1

continuous. To elaborate the problem more clearly, consider a generic function

g(x) = |f(x)|

Now g(x) is C0 continuous on the entire real line but there is a C1 discontinuity at all x

with f(x) = 0. Investigation of a relatively large kink in figure 1.3 at α = 9.995o revealed
that |u dy − v dx| changes its sign in multiple cells between α = 9.994 and α = 9.995.
These small perturbations accumulated over multiple cells account for the sudden change
in the nonlinear lift value. If the Hessian is calculated about such a sensitive point then it
introduces error.

It should be noted here that these errors are extremely small and in comparison to the
convergence and discretisation errors in the real-life applications, these are not significant.

10

9.9 9.92 9.94 9.96 9.98 10 10.02 10.04 10.06 10.08 10.1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10−8

α

Di
ffe

re
nc

e
in

 lif
t

High Subsonic with modified timestep calculation

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

Figure 1.4: Comparison between quadratic and adjoint corrected linear extrapolation for
high subsonic case (Mach = 0.65 and AOA = 10o) with the modified time-step calculation

However, such errors accumulated from multiple sources for highly complex codes may
create significant errors. The current example of a two dimensional inviscid solver is too
simplistic to assess the true extent of errors that might be introduced.

Also it should be noted that the adjoint corrected linear extrapolation performs better
than the quadratic extrapolation in this case. It closely follows the trend of the underlying
nonlinear solution.

To confirm that this was the only source of error for the non-smooth behaviour, we mod-
ified the time-step calculation slightly to avoid the sign change. The time-step calculation
as given in equation 1.17 was modified to

adt =
1

CFL

∑

i

c dsi

(

√

(mx
dyi

dsi
− my

dxi

dsi
)2 + ε2 + 1

)

,

where dsi =
√

dx2
i + dy2

i , mx = u
c
, my = v

c
and ε = 0.1. ε is chosen to ensure that the

derivative of adt is always defined. The entire simulations are carried out again and the
results are presented in figure 1.4. The smooth behaviour of the nonlinear lift confirms the
hypothesis.

1.8 Conclusion

Black-box use of AD on fluid mechanics codes for Hessian calculation is still not com-
putationally acceptable. An alternative computationally cheaper formulation for Hessian

11

calculation has been described. Successful use of AD has been demonstrated for generating
all the necessary double differentiated routines. A Makefile can be generated to automat-
ically keep in-sync with changes in the original nonlinear code. A set of checks have been
introduced which at least point out any obvious inconsistencies in the nonlinear, linear and
adjoint solutions used during the Hessian calculation.

A conscious effort is required while developing any nonlinear solvers to avoid inherently
non-differentiable component functions. It will be increasingly difficult to track down these
problems in complex codes. Adjoint corrected linear extrapolation seems to perform at
least as well as the quadratic extrapolation. In non-smooth regions, adjoint corrected linear
extrapolation closely follows the nonlinear trend in contrast to the quadratic extrapolation
using the Hessian which may introduce relatively large errors.

Acknowledgments

This research was performed as part of the MCDO project funded by the UK Department
for Trade and Industry and Rolls-Royce plc, and coordinated by Yoon Ho, Leigh Lapworth
and Shahrokh Shahpar.

We are very grateful to Laurent Hascoët for making Tapenade available to us, and for
being so responsive to our queries.

12

Bibliography

[1] Bruce Christianson. Automatic hessians by reverse accumulation. IMA Journal of

Numerical Analysis, 12:135–150, 1992.

[2] D. Ghate. Uncertainty analysis of manufacturing errors in engine blades. Technical
report, Oxford University Computing Laboratory, Oxford, UK, 2005.

[3] D. Ghate and M. B. Giles. Source code for airfoil testcase for
forward and reverse mode automatic differentiation using Tapenade
http://www.comlab.ox.ac.uk/mike.giles/airfoil/.

[4] D. Ghate and M. B. Giles. Source code for airfoil testcase for hessian calculation using
Tapenade http://www.comlab.ox.ac.uk/devendra.ghate/hessian/.

[5] M. B. Giles, M. C. Duta, and N.A. Pierce. Algorithm developments for discrete adjoint
methods. AIAA Journal, 42(2), 2003.

[6] M. B. Giles, D. Ghate, and M. Duta. Using automatic differentiation for adjoint CFD
code development. In Indo-French Workshop, Dec. 2005. Also available as NA05/25.

[7] M. B. Giles and N. A. Pierce. Adjoint recovery of superconvergent functionals from
PDE approximations. SIAM Review, 42(2):247–264, 2000.

[8] Andreas Greiwank. Evaluating Derivatives. SIAM, Frontiers in Applied Mathematics,
2000.

[9] Laurent Hascoët. http://www-sop.inria.fr/tropics.

[10] Laura L. Sherman, Arthur C. Taylor III, Larry L. Green, and Perry A. Newman. First-
and second-order aerodynamic sensitivity derivatives via automatic differentiation with
incremental iterative methods. Journal of Computational Physics, 129:307–331, 1996.

13

