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Coherence theorems for braided and symmetric
pseudomonoids

Braided/symmetric pseudomonoids are categorifications of
commutative monoids (e.g. braided/symmetric monoidal
categories in Cat, braided/symmetric 2-vector space, etc).
We prove coherence theorems (biequivalences) for
braided and symmetric pseudomonoids.
Generalises MacLane’s theorems [4] — in fact, proves
them with string diagrams.
Categorifies PROs, PROBs, PROPs for monoids and
commutative monoids.



Motivation: higher algebra

This is a first step towards categorification of harder
algebraic theories. [1, 7]
Quantum group theory can be formulated
diagramatically [5]. What is e.g. sphericality, modularity,
etc. of a Hopf pseudomonoid?
Coherence results for Frobenius pseudomonoids —
TQFT [3], surface foams [2].
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What’s new: our results are proved in semistrict
braided/symmetric monoidal bicategories

Quasistrict [9] braided/symmetric monoidal bicategories
are simpler than fully weak, but still:

Lemma (Semistrictness of quasistrict braided and symmetric
monoidal bicategories)

The free weak braided/symmetric monoidal bicategory FW (X )
on a theory X is (braided/symmetric) monoidally biequivalent to
FQ(X ), the free quasistrict braided/monoidal bicategory on that
theory.

The biequivalence identifies certain 1-morphisms and
sends corresponding coherence 2-morphisms to the
identity.



Semistrictness means our results apply in fully weak
monoidal bicategories

Algebraic theory generated by presentation X .
An X -algebra in C is a strict homomorphism FW (ΣX )→ C.
Suppose we want to know if two 2-morphisms in FW (ΣX )
are equal.

Map along FW (ΣX )
∼→ FQ(ΣX ).

Biequivalences are faithful on 2-cells, so they are equal iff
their images in FQ(ΣX ) are equal.
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Gray monoids: ordered string diagrams

To get Gray monoids we weaken planar isotopy of string
diagrams in strict 2-categories.
Ordered string diagrams are string diagrams where none
of the generating 1-cells occur at the same vertical height.
The equivalence relation is ordered planar isotopy, where
string diagrams must remain ordered throughout the
isotopy.
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0 and 1-cells in a Gray monoid

Generating 0-cells are string labels.
Generating 1-cells are boxes with specified input and
output strings.
1-cells in G(C0,C1,C2) are equivalence classes of ordered
string diagrams under ordered planar isotopy.



The interchanger isomorphism

Instead of equality of 1-cells, we now have an interchanger
2-isomorphism to control the isotopy:

⇒
g

fg
f

ιf ,g

The interchanger swaps the heights of two vertically
adjacent unconnected 1-cells. Example:

α⇒ ι⇒ α⇒



2-cells in a Gray monoid

Generating 2-cells have ordered string diagrams as source
and target.
2-cells D1 → Dn are sequences D1

γ1,2⇒ D2
γ2,3⇒ . . .

γn−1,n⇒ Dn,
where Di are 1-cells and γi,i+1 are either:

A generating 2-cell such that Di and Di+1 differ only by the
application of γi,i+1 on a rectangular subregion.
An interchanger 2-cell (next slide).

If we draw them out, 2-cells are movies of ordered string
diagrams.
E.g. the associator:

m :
α⇒

α⇒ α⇒ α⇒



Equalities of 2-cells

We can also specify certain equalities of 2-cells in our
computad, provided they have the same source and target:

[Ds
γ1,2⇒ D2

γ2,3⇒ . . .
γm−1,m⇒ Dt ] = [Ds

δ1,2⇒ D̃2
δ2,3⇒ . . .

δn−1,n⇒ Dt ]

For example, the ‘pentagon’:

[ α⇒ α⇒ α⇒ ]
=

[ α⇒ ι⇒ α⇒ ]
These generating equalities can be applied to contiguous
subsequences on rectangular subregions.



Example: a rewrite of 2-cells in G(P)

[ α⇒ α⇒ α⇒ α⇒

α⇒ α⇒ α⇒ α⇒ α⇒ ]
=

[ α⇒ α⇒ α⇒ α⇒

α⇒ α⇒ α⇒ α⇒ α⇒ ]



The projection of a 2-morphism

Viewing a 2-morphism frame-by-frame can be
unilluminating.
At the cost of some information, we can view the whole
2-morphism in one planar diagram.

[ α⇒ α⇒ α⇒ ]

[ α⇒ ι⇒ α⇒ ]



Revisiting the last example

[ α⇒ α⇒ α⇒ α⇒

α⇒ α⇒ α⇒ α⇒ α⇒ ]
=

[ α⇒ α⇒ α⇒ α⇒

α⇒ α⇒ α⇒ α⇒ α⇒ ]



Structural equalities of a Gray monoid: Type I

If two 2-cells on disjoint rectangular subregions occur one
after the other in a movie, we can exchange their order.

[ ⇒ ⇒ ] = [ ⇒ ⇒ ]

This corresponds to an interchanger in the projection.

=



Structural equalities of a Gray monoid: Type II

We can insert 2-cell and its inverse at any frame containing
a rectangular subregion with its source. We call this an
inverse insert.
Going the other way is called cancellation.

[ ] = [ ⇒ ⇒ ]
=

[ ] = [ ⇒ ⇒ ]
=



Structural equalities of a Gray monoid: Type III

Interchanging with all the nodes in a 2-cell, then
performing the 2-cell, is equal to performing the 2-cell and
then interchanging.

[ ⇒ ⇒ ⇒ ] =

[ ⇒ ⇒ ⇒ ]
In the projection, this is a pullthrough:
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Quasistrict braided structure: I

A quasistrict braided Gray monoid has an additional four
‘braiding’ 1-cells for every pair A,B of generating 0-cells:

σ−1
AB

ABA B

A AB B

σAB σ−1
BA

A BAB

A AB B

σBA

Braidings on products of generating 0-cells are
compositions, e.g σA⊗B,C = (σA⊗C ⊗ 1B) ◦ (1A ⊗ σB⊗C):

=

A⊗ B

A⊗ BC

C C

C A B

A B



Quasistrict braided structure: II

Braidings obey the following strict equalities:

= =

f

f

=

f

f

=

f

f

= =
f

f



Quasistrict symmetric structure

The symmetric structure [9] is exactly the same as the
braided structure, except with the additional equality:

=

A

B

BB

A

A

AB



Braided and symmetric monoidal bicategories in
Globular

The braided and symmetric monoidal bicategories in
Globular are roughly Crans type [3] - weaker than
quasistrict.
In the full paper [10], we use Crans axioms.
Requires use of simple normalisation routine (‘top string
normal form’) and additional case checking.
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Example: The pseudomonoid computad

0-cells: {C}.
1-cells: m : C × C → C and u : I → C.

m = u =

2-cells: α (associator), λ (left unitor) and ρ (right unitor), all
isomorphisms.

α⇒ λ⇒ ρ⇒



The equalities of the pseudomonoid computad

Pentagon

[ α⇒ ι⇒ α⇒ ] = [ α⇒ α⇒ α⇒ ]

Triangle [ α⇒ λ⇒ ] = [ ρ⇒ ]



Braided pseudomonoids

Extra commutator 2-isomorphism:
c⇒

Hexagon equality 1:

[ c⇒ α−1
⇒ c⇒ ]

= [ α−1
⇒ =

c⇒ α−1
⇒ ]

Hexagon equality 2:

[ α⇒ =
c⇒ α⇒ ] = [ c⇒ α⇒ c⇒ ]



Symmetric pseudomonoids

Symmetry equality:

[ ] = [ =
c⇒ c⇒ ]
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What we will show in this presentation

In this presentation we consider braided pseudomonoids in
symmetric monoidal bicategories.
In the paper we show a symmetric monoidal biequivalence
between the free symmetric Gray monoid on the braided
pseudomonoid computad and a certain strict symmetric
monoidal bicategory.
Here we ignore the compositional structure and show two
consequences:

A ‘normal form’ for 2-morphisms.
A solution to the word problem for 2-morphisms.



The PROP for commutative monoids

In the PROP for commutative monoids, the associator and
unitors are strict equalities.
There is a normal form for 1-cells. Take any 1-cell:

Pull all the units upwards and eliminate them using the
unitor equalities if attached.
Pull the multiplications up above the braidings...
Then use commutators and associators to left bracket the
trees, with ordered inputs.
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The word problem for the commutative monoid PROP,
solved by a normal form

A 1-cell in this normal form corresponds exactly to a
function {1, . . . ,m} → {1, . . . ,n}, which it is easy to read
off [8].

All the equalities in the commutative monoid PROP
preserve this function.
So this normal form solves the word problem — every
1-cell f is equal to some Nf , and obviously f = f ′ iff
Nf = Nf ′ .



Going up to 2 dimensions

This equality in the 1D case becomes an isomorphism in
the 2D case.
This means that all 1-cells are in the isomorphism class of
exactly one 1-cell in this standard form.
Moreover, two one-cells f , f ′ are isomorphic iff Nf = Nf ′ .
We want to know when two 2-cells α, β : f → g are equal.



‘Coherence theorem’: normal form for 1-morphisms
and ‘word problem’ solution for 2-morphisms

Everything is an isomorphism.
So the result for 1-morphisms means that to solve the
equality problem for 2-morphisms, we need only solve it for
loops on 1-morphisms in normal form:

f g

α

Nf
ν

fν

Nf g

f

α

β−1ν−1
β

α = β iff ν−1 ◦ β−1 ◦ α ◦ ν = idNf .



A normal form for loops

To solve the equality problem for 2-loops α : Nf → Nf on
normal form 1-cells Nf , we find a normal form for such
loops, such that every α : Nf → Nf is equal to some unique
Nα : Nf → Nf .
We now specify this normal form.



Normal form for 2-loops on normal form 1-cells

. . .
Permutation of inputs

. . .

σ1

. .
.

. . .

. .
.

Step 2.

Step 1.

Step 2n.

Step
2n − 1.

. . .

. . .

. . .

σn

. .
.



Normal form and equality

One normal form loop for each choice of product pure
braid group element σ1 × · · · × σn to be absorbed.
None of the equalities of the braided pseudomonoid
(pentagon, triangle, hexagons) change the braid group
element absorbed — so none of these normal form loops
is equal.



The task of rewriting a given loop

We are presented with some loop on a normal form 1-cell.
Our task: rewrite it into normal form using structural
equalities, pentagon, triangle and hexagons. For example:
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Unitors and inverse unitors cancel

Notice that there are no attached units on 1-cells in normal
form.
An inverse unitor creates an attached unit.
The attached unit can’t be made unattached using any of
the 2-cells.
Since the movie ends on a 1-cell in normal form, the
attached unit must be removed by a unitor.
So every inverse unitor is paired with a unitor which
removes the created unit.
Idea: move the inverse unitor back to the end of the movie,
so that it meets the unitor and so may be cancelled.



Easy case: Part I

Consider the last inverse unitor in the loop.
Suppose that no 2-cell affects the created multiplication
node throughout the loop, apart from the unitor which
removes it.
We will now show how to cancel the unitor with its inverse.

[ α⇒ α⇒ α⇒ α⇒

α⇒ α⇒ α⇒ α⇒ ]



Easy case: Part II

Because the braiding in the quasistrict category is trivial,
the unit and multiplication will form an loop in the projection
unentangled with the other morphisms.
Push the inverse unitor up using Type I rewrites.
If this becomes impossible, it will be due to a chain of
downwards interchangers (it can’t be another inverse
unitor, since this is the last one).
Go to the end of the chain of downwards interchangers
and push the last one back using Type I rewrites.
If this is impossible it will be due to an upwards
interchanger or a 2-cell acting on the 1-cell with which the
unit was interchanged; this may be pulled through.
Repeating this, we remove the loop.



Easy case: Example

In the projection:

= = = = =



Reducing to the easy case: I

It may be that there is some 2-cell other than the unitor
which acts on the last created multiplication node.

[ α⇒ α⇒ α⇒ α⇒

α⇒ α⇒ ]



Reducing to the easy case: I

In this case, use Type II rewrites to insert interchangers
and their inverses immediately before the 2-cell so that the
unit node goes straight up to the multiplication, returns and
then the 2-cell occurs.
Use Type I rewrites to bring the 2-cell before the pulldowns.
Insert a unit destruction operator and its inverse
immediately before the 2-cell.
Eliminate the first unit creation operator and the inserted
destruction operator (Case I).
Now use Type I rewrites so that the 2-cell happens
immediately after the unit creation.



Reducing to the easy case: I (Example)

In the projection:

= = = = =

So now we reduced to the case where the 2-cell happens
straight after the inverse unitor.



Reducing to the easy case: II

Now we must consider cases individually.
We consider each 2-cell that can occur on the
multiplication node immediately after the unitor.
We show that there is always some rewrite that ‘pulls the
unitor through’ the 2-cell.
We show some examples.



Example I: Multiplication node lower partner in
associator

[ ⇒ ⇒ ] = [ ⇒ ⇒ ]



Example 2: Commutator acts on multiplication node

[ ⇒ ⇒ ⇒ ] = [ ⇒ ]



Reducing to the easy case: III

By using these rewrites for all the 2-cells on the
multiplication node, we reduce to the easy case.
We then cancel the last inverse unitor in the loop.
Iterating, we remove all the unitors/inverse unitors in the
loop.
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Fixing trees: the idea

The next step is to get the loop into the following form:

Tree
1

Tree
2

Tree
3

. . .

. . .

. . .

. . .

. . .

. . .

Braid in 1-morphism

In the red region, only associators occur. In the grey
region, only commutators. In the green region, nothing
happens (because the braid relations are equalities).
This uses the pentagon and hexagon equalities.
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Showing the braid relations

The movie is in the above form, where some braid is
absorbed.
Recall that our normal form distinguished only between
isotopy classes of pure braids absorbed.
Right now any word in the generators of the braid group
might be absorbed.
So, we need to show that the movies can be rewritten
using the relations in the braid group.



Two easy properties

Associativity of composition is easy, because in the Gray
monoid associativity holds strictly.
For inverses, just perform a cancellation.



Braid relation 1

We need to show that σiσj = σjσi for |i − j | > 1.

[ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

⇒ ]

= [ = ⇒ ⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ ]



Braid relation 1: Proof

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ ⇒ ⇒ ⇒



Braid relation 1: Proof

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

⇒



Braid relation 2

We need to show that σiσi+1σi = σi+1σiσi+1.

[ ⇒ ⇒ ⇒ ⇒ ⇒ ]

= [ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

⇒ ⇒ ]



Braid relation 2: Proof

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ ⇒ ⇒



Braid relation 2: Proof

⇒ ⇒ ⇒ ⇒



Conclusion of proof

So, we rewrote each loop to a normal form loop.
All the normal form loops are non-equal.
So this solves the word problem.
In the paper we use this to build a symmetric monoidal
biequivalence with a symmetric monoidal 2-category
constructed from the data of normal form loops.



In the paper

We prove this using weaker Crans axioms.
We prove biequivalences.
We prove similar results for all possible combinations:

Pseudomonoids in monoidal, braided monoidal and
symmetric monoidal bicategories.
Braided pseudomonoids in braided monoidal and
symmetric monoidal bicategories.
Symmetric pseudomonoids in symmetric monoidal
bicategories.



Summary

We can do higher algebra with string diagrams in the weak
case.
Quasistrict bicategories and Globular make things a lot
easier.

Outlook
Next stop: pseudobialgebras, pseudo-Hopf algebras
Can this proof be directed so as to use rewriting
techniques [6]?

Thanks for listening!
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