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0 Background
@ Result and motivation



Coherence theorems for braided and symmetric

pseudomonoids

@ Braided/symmetric pseudomonoids are categorifications of
commutative monoids (e.g. braided/symmetric monoidal
categories in Cat, braided/symmetric 2-vector space, etc).

@ We prove coherence theorems (biequivalences) for
braided and symmetric pseudomonoids.

@ Generalises MacLane’s theorems [4] — in fact, proves
them with string diagrams.

@ Categorifies PROs, PROBs, PROPs for monoids and
commutative monoids.



Motivation: higher algebra

@ This is a first step towards categorification of harder
algebraic theories. [1, 7]

@ Quantum group theory can be formulated
diagramatically [5]. What is e.g. sphericality, modularity,
etc. of a Hopf pseudomonoid?

@ Coherence results for Frobenius pseudomonoids —
TQFT [3], surface foams [2].



0 Background

@ Full generality from semistrictness



What's new: our results are proved in semistrict

braided/symmetric monoidal bicategories

@ Quasistrict [9] braided/symmetric monoidal bicategories
are simpler than fully weak, but still:

Lemma (Semistrictness of quasistrict braided and symmetric

monoidal bicategories)

The free weak braided/symmetric monoidal bicategory Fy/(X)
on a theory X is (braided/symmetric) monoidally biequivalent to
Fq(X), the free quasistrict braided/monoidal bicategory on that
theory.

@ The biequivalence identifies certain 1-morphisms and
sends corresponding coherence 2-morphisms to the
identity.



Semistrictness means our results apply in fully weak

monoidal bicategories

@ Algebraic theory generated by presentation X.

@ An X-algebra in C is a strict homomorphism Fy/(Xx) — C.
@ Suppose we want to know if two 2-morphisms in Fiy (X x)
are equal.
e Map along Fw(Xx) = Fo(Xx).
e Biequivalences are faithful on 2-cells, so they are equal iff
their images in Fo(Xx) are equal.



0 Background

@ Introduction to semistrict bicategories: Gray monoids



Gray monoids: ordered string diagrams

@ To get Gray monoids we weaken planar isotopy of string
diagrams in strict 2-categories.

@ Ordered string diagrams are string diagrams where none
of the generating 1-cells occur at the same vertical height.
The equivalence relation is ordered planar isotopy, where
string diagrams must remain ordered throughout the

isotopy.



0 and 1-cells in a Gray monoid

@ Generating 0-cells are string labels.

@ Generating 1-cells are boxes with specified input and
output strings.

@ 1-cellsin G(Cy, Cy, Cy) are equivalence classes of ordered
string diagrams under ordered planar isotopy.



The interchanger isomorphism

@ Instead of equality of 1-cells, we now have an interchanger
2-isomorphism to control the isotopy:

AN

@ The interchanger swaps the heights of two vertically
adjacent unconnected 1-cells. Example:

- -



2-cells in a Gray monoid

@ Generating 2-cells have ordered string diagrams as source
and target.
7,2 72,3 Yn—1,n
@ 2-cells Dy — Dy are sequences Dy = Do = ... =" Dy,
where D; are 1-cells and v; ;¢ are either:
@ A generating 2-cell such that D; and D, 1 differ only by the
application of ; ;.1 on a rectangular subregion.
e An interchanger 2-cell (next slide).
@ If we draw them out, 2-cells are movies of ordered string
diagrams.
@ E.g. the associator:
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Equalities of 2-cells

@ We can also specify certain equalities of 2-cells in our
computad, provided they have the same source and target:

m sm = 5n—n
[Ds 28 D, & ... Dt]_[Ds 22D, % =" Dy

@ For example, the ‘pentagon’:

[%f%-]
Bl |

@ These generating equalities can be applied to contiguous
subsequences on rectangular subregions.
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The projection of a 2-morphism

@ Viewing a 2-morphism frame-by-frame can be
unilluminating.

@ At the cost of some information, we can view the whole
2-morphism in one planar diagram.

[ - =
| =R

e
l}s:

j.
D

™ e
Il




Reuvisiting the last example
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Structural equalities of a Gray monoid: Type |

@ If two 2-cells on disjoint rectangular subregions occur one
after the other in a movie, we can exchange their order.

- -

@ This corresponds to an interchanger in the projection.



Structural equalities of a Gray monoid: Type Il

@ We can insert 2-cell and its inverse at any frame containing
a rectangular subregion with its source. We call this an
inverse insert.

@ Going the other way is called cancellation.
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Structural equalities of a Gray monoid: Type I

@ Interchanging with all the nodes in a 2-cell, then
performing the 2-cell, is equal to performing the 2-cell and
then interchanging.

Sy ™y I
U d 27T IR
@ In the projection, this is a pullthrough:




0 Background

@ Quasistrict braiding and symmetry



Quasistrict braided structure: |

@ A quasistrict braided Gray monoid has an additional four
‘braiding’ 1 -cells for every pair A, B of generating 0- ceIIS'

/\/\
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° Brardings on products of generating 0-cells are

compositions, e.g UA®B c= (0A®c ® ]13) (1a® oBge):
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Quasistrict symmetric structure

@ The symmetric structure [9] is exactly the same as the
braided structure, except with the additional equality:

B A B A

N /



Braided and symmetric monoidal bicategories in

Globular

@ The braided and symmetric monoidal bicategories in
Globular are roughly Crans type [3] - weaker than
quasistrict.

@ In the full paper [10], we use Crans axioms.

@ Requires use of simple normalisation routine (‘top string
normal form’) and additional case checking.



e Coherence for pseudomonoids
@ Presentations of pseudomonoids



Example: The pseudomonoid computad

@ O-cells: {C}.
@ 1cellssm:CxC—Candu:l— C.

m:fl\ u=1

@ 2-cells: « (associator), A (left unitor) and p (right unitor), all
isomorphisms.

A e e



The equalities of the pseudomonoid computad

Pentagon
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Braided pseudomonoids

(%

=
@ Extra commutator 2-isomorphism: Q fl\
@ Hexagon equality 1:

(-0
SRR

@ Hexagon equality 2:

L8200 & 01T A (8]



Symmetric pseudomonoids

@ Symmetry equality:

[ATLA-8°Q Al



e Coherence for pseudomonoids

@ An overview of the proof



What we will show in this presentation

@ In this presentation we consider braided pseudomonoids in
symmetric monoidal bicategories.

@ In the paper we show a symmetric monoidal biequivalence
between the free symmetric Gray monoid on the braided
pseudomonoid computad and a certain strict symmetric
monoidal bicategory.

@ Here we ignore the compositional structure and show two
consequences:

e A ‘normal form’ for 2-morphisms.
@ A solution to the word problem for 2-morphisms.



The PROP for commutative monoids

@ In the PROP for commutative monoids, the associator and
unitors are strict equalities.
@ There is a normal form for 1-cells. Take any 1-cell:



The PROP for commutative monoids

@ In the PROP for commutative monoids, the associator and
unitors are strict equalities.
@ There is a normal form for 1-cells. Take any 1-cell:

@ Pull all the units upwards and eliminate them using the
unitor equalities if attached.



The PROP for commutative monoids
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The PROP for commutative monoids

@ In the PROP for commutative monoids, the associator and
unitors are strict equalities.
@ There is a normal form for 1-cells. Take any 1-cell:

é

@ Pull the multiplications up above the braidings...



The PROP for commutative monoids
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The PROP for commutative monoids

@ In the PROP for commutative monoids, the associator and
unitors are strict equalities.
@ There is a normal form for 1-cells. Take any 1-cell:

é

@ Then use commutators and associators to left bracket the
trees, with ordered inputs.



The PROP for commutative monoids

@ In the PROP for commutative monoids, the associator and
unitors are strict equalities.
@ There is a normal form for 1-cells. Take any 1-cell:

é

@ Then use commutators and associators to left bracket the
trees, with ordered inputs.



The word problem for the commutative monoid PROP,

solved by a normal form

@ A 1-cell in this normal form corresponds exactly to a
function {1,...,m} — {1,..., n}, which it is easy to read
off [8].

é

@ All the equalities in the commutative monoid PROP
preserve this function.

@ So this normal form solves the word problem — every
1-cell f is equal to some Ny, and obviously f = f” iff
Nf = Ny,



Going up to 2 dimensions

@ This equality in the 1D case becomes an isomorphism in
the 2D case.

@ This means that all 1-cells are in the isomorphism class of
exactly one 1-cell in this standard form.

@ Moreover, two one-cells f, ' are isomorphic iff Ny = Ny
@ We want to know when two 2-cells o, 5 : f — g are equal.



‘Coherence theorem’: normal form for 1-morphisms

and ‘word problem’ solution for 2-morphisms

@ Everything is an isomorphism.

@ So the result for 1-morphisms means that to solve the
equality problem for 2-morphisms, we need only solve it for
loops on 1-morphisms in normal form:

. W\V



A normal form for loops

@ To solve the equality problem for 2-loops « : Ny — Nf on
normal form 1-cells N;, we find a normal form for such
loops, such that every o : Ny — Nt is equal to some unique
Na : Nf — Nf.

@ We now specify this normal form.



Normal form for 2-loops on normal form 1-cells

_fm

Step 1. =—— oy

Permutation of inputs




Normal form and equality

@ One normal form loop for each choice of product pure
braid group element o4 x --- x o t0 be absorbed.

@ None of the equalities of the braided pseudomonoid
(pentagon, triangle, hexagons) change the braid group
element absorbed — so none of these normal form loops
is equal.



The task of rewriting a given loop

@ We are presented with some loop on a normal form 1-cell.

@ Our task: rewrite it into normal form using structural
equalities, pentagon, triangle and hexagons. For example:
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e Coherence for pseudomonoids

@ Proof step 1: Removing unitors



Unitors and inverse unitors cancel

@ Notice that there are no attached units on 1-cells in normal
form.

@ An inverse unitor creates an attached unit.

@ The attached unit can’t be made unattached using any of
the 2-cells.

@ Since the movie ends on a 1-cell in normal form, the
attached unit must be removed by a unitor.

@ So every inverse unitor is paired with a unitor which
removes the created unit.

@ |dea: move the inverse unitor back to the end of the movie,
so that it meets the unitor and so may be cancelled.



Easy case: Part |

@ Consider the last inverse unitor in the loop.

@ Suppose that no 2-cell affects the created multiplication
node throughout the loop, apart from the unitor which
removes it.

@ We will now show how to cancel the unitor with its inverse.

[
%m%%%-]




Easy case: Part Il

@ Because the braiding in the quasistrict category is trivial,
the unit and multiplication will form an loop in the projection
unentangled with the other morphisms.

@ Push the inverse unitor up using Type | rewrites.

@ [f this becomes impossible, it will be due to a chain of
downwards interchangers (it can’t be another inverse
unitor, since this is the last one).

@ Go to the end of the chain of downwards interchangers
and push the last one back using Type | rewrites.

@ [f this is impossible it will be due to an upwards
interchanger or a 2-cell acting on the 1-cell with which the
unit was interchanged; this may be pulled through.

@ Repeating this, we remove the loop.



Easy case: Example

In the projection:




Reducing to the easy case: |

@ It may be that there is some 2-cell other than the unitor
which acts on the last created multiplication node.
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Reducing to the easy case: |

@ In this case, use Type Il rewrites to insert interchangers
and their inverses immediately before the 2-cell so that the
unit node goes straight up to the multiplication, returns and
then the 2-cell occurs.

@ Use Type | rewrites to bring the 2-cell before the pulldowns.

@ Insert a unit destruction operator and its inverse
immediately before the 2-cell.

@ Eliminate the first unit creation operator and the inserted
destruction operator (Case I).

@ Now use Type | rewrites so that the 2-cell happens
immediately after the unit creation.



Reducing to the easy case: | (Example)

@ In the projection:

@ So now we reduced to the case where the 2-cell happens
straight after the inverse unitor.



Reducing to the easy case: |l

@ Now we must consider cases individually.

@ We consider each 2-cell that can occur on the
multiplication node immediately after the unitor.

@ We show that there is always some rewrite that ‘pulls the
unitor through’ the 2-cell.

@ We show some examples.



Example I: Multiplication node lower partner in

associator

[A-1-MA1- [A-11- 1)



Example 2: Commutator acts on multiplication node

O-R-1- -

[




Reducing to the easy case: Il

@ By using these rewrites for all the 2-cells on the
multiplication node, we reduce to the easy case.

@ We then cancel the last inverse unitor in the loop.

@ lterating, we remove all the unitors/inverse unitors in the
loop.



e Coherence for pseudomonoids

@ Proof step 2: Fixing trees



Fixing trees: the idea

@ The next step is to get the loop into the following form:

Tree
2

Tree

Tree

Braid in 1-morphism
I I

@ In the red region, only associators occur. In the grey
region, only commutators. In the green region, nothing
happens (because the braid relations are equalities).

@ This uses the pentagon and hexagon equalities.




e Coherence for pseudomonoids

@ Proof step 3: Showing braid relations



Showing the braid relations

@ The movie is in the above form, where some braid is
absorbed.

@ Recall that our normal form distinguished only between
isotopy classes of pure braids absorbed.

@ Right now any word in the generators of the braid group
might be absorbed.

@ So, we need to show that the movies can be rewritten
using the relations in the braid group.



Two easy properties

@ Associativity of composition is easy, because in the Gray
monoid associativity holds strictly.

@ For inverses, just perform a cancellation.



Braid relation 1

@ We need to show that o;0; = gjo; for |i — j| > 1.
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Braid relation 2

@ We need to show that ojoj 10; = 0j110i0/11.

(81 &= (8- (4= §)- )]
()= 4]
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Braid relation 2: Proof
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Braid relation 2: Proof



Conclusion of proof

@ So, we rewrote each loop to a normal form loop.
@ All the normal form loops are non-equal.
@ So this solves the word problem.

@ In the paper we use this to build a symmetric monoidal
biequivalence with a symmetric monoidal 2-category
constructed from the data of normal form loops.



In the paper

@ We prove this using weaker Crans axioms.

@ We prove biequivalences.
@ We prove similar results for all possible combinations:
e Pseudomonoids in monoidal, braided monoidal and
symmetric monoidal bicategories.
e Braided pseudomonoids in braided monoidal and
symmetric monoidal bicategories.
e Symmetric pseudomonoids in symmetric monoidal
bicategories.



@ We can do higher algebra with string diagrams in the weak
case.

@ Quasistrict bicategories and Globular make things a lot
easier.

@ Outlook

o Next stop: pseudobialgebras, pseudo-Hopf algebras
e Can this proof be directed so as to use rewriting
techniques [6]?

@ Thanks for listening!
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