
Carpooling in Social Networks
Amos Fiat∗1, Anna R. Karlin2, Elias Koutsoupias3, Claire
Mathieu4, and Rotem Zach1

1 Department of Computer Science
Tel Aviv University

2 Department of Computer Science
University of Washington in Seattle

3 Department of Computer Science
University of Oxford

4 Department of Computer Science
CNRS, Ecole Normale Superieure

“It was then that Hook bit him. Not the pain of this but its unfairness was what dazed Peter.”
— J.M. Barrie, Peter Pan (1911)

Abstract
We consider the online carpool fairness problem of [Fagin and Williams, 1983] in which an

online algorithm is presented with a sequence of pairs drawn from a group of n potential drivers.
The online algorithm must select one driver from each pair, with the objective of partitioning
the driving burden as fairly as possible for all drivers. The unfairness of an online algorithm is
a measure of the worst-case deviation between the number of times a person has driven and the
number of times they would have driven if life was completely fair.

We introduce a version of the problem in which drivers only carpool with their neighbors in
a given social network graph; this is a generalization of the original problem, which corresponds
to the social network of the complete graph. We show that for graphs of degree d, the unfairness
of deterministic algorithms against adversarial sequences is exactly d/2.

For random sequences of edges from planar graph social networks we give a [deterministic]
algorithm with logarithmic unfairness (holds more generally for any bounded-genus graph). This
does not follow from previous random sequence results in the original model, as we show that
restricting the random sequences to sparse social network graphs may increase the unfairness.

A very natural class of randomized online algorithms are so-called static algorithms that
preserve the same state distribution over time. Surprisingly, we show that any such algorithm
has unfairness Θ̃(

√
d) against oblivious adversaries. This shows that the local random greedy

algorithm of [Ajtai et al, 1996] is close to optimal amongst the class of static algorithms. A
natural (non-static) algorithm is global random greedy (which acts greedily and breaks ties at
random). We improve the lower bound on the competitive ratio from Ω(log1/3(d)) to Ω(log d).
We also show that the competitive ratio of global random greedy against adaptive adversaries is
Ω(d).

1998 ACM Subject Classification F.1.2 Online Computation, F.2.0 Analysis of Algorithms and
Problem Complexity

Keywords and phrases Online algorithms, Fairness, Randomized algorithms, Competitive ratio,
Carpool problem

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.XXX

∗ Both Amos Fiat and Rotem Zach were supported by Israel Science Foundatation grant no. 1841-14

XXX:2 Carpooling in Social Networks

1 Introduction

In multiple experimental studies involving hundreds of graduate students, Loewenstein,
Thompson, and Bazerman [8] give evidence that individuals are strongly averse to out-
comes where they are at a disadvantage relative to others. Moreover, albeit significantly
less so, the grad students were also averse to outcomes where they have a relative advantage
in payoff. Fehr and Schmidt [6] coined the phrase inequity aversion to describe this phe-
nomena. Festinger [7] had much earlier introduced the concept of cognitive dissonance, and
inequity aversion is modeled as a special case thereof. Supposedly, inequity aversion may
lead individuals to make significant changes, including stopping interpersonal relationships
where inequities arise.

The carpool problem, introduced by Fagin and Williams [5], is a stylized mathematical
model in which one can study questions related to minimizing inequity. As described in [5],
“suppose that n people, tired of spending their time and money in gasoline lines, decide to
form a carpool. We present a scheduling algorithm for determining which person should
drive on any given day. We want a scheduling algorithm that will be perceived as fair by
all the members.” A priori, it seems that fairness should not be hard to achieve, but —
unfortunately — precise answers as to what extent one can avoid inequity have been sought
over two decades with seemingly little progress.

Formally, each day t, a set of people St ⊆ {1, . . . , n} form a carpool. The goal is to choose
who drives, so that on all days t, the overall driving burden to date has been partitioned
fairly: Let fi(t) be driver i’s fair share of the driving on day t, which is 1/|St| for each i ∈ St
and 0 otherwise. Define Fi(t) to be driver i’s fair share of the driving on all days up to day
t, that is Fi(t) =

∑
τ≤t fi(τ), and let Di(t) be the number of times i has actually driven

out of the first t days. For a particular sequence {St}Tt=1, and algorithm for deciding who
drives, we define

the unfairness on day t = max
driver i

|Di(t)− Fi(t)|. (1)

A carpool algorithm decides which person in St drives on day t; the maximum unfairness of
the algorithm is

max
T≥1

max
{St}T

t=1

[unfairness on day T] .

Notice that the definition of unfairness takes into account all trips i took, regardless of who
i’s companions were on that trip, that is, it is a global notion of fairness.

The offline version of the problem, when {St}Tt=1 is known in advance, is easy: there is
an algorithm that guarantees maximum unfairness of 1 and this is optimal (see, e.g. [10].)

Ajtai, Aspnes, Naor, Rabani, Schulman, and Waarts [1] studied the online version of
problem, in which the algorithm must select a driver on day t, based only on the history
up to time t. They obtained a number of extremely interesting results. First, they showed
that, up to losing a factor of 2, one may assume that all the sets St consist of two persons.
Thus, one can think of the process as a sequence of edge additions (requests), say St = (i, j)
at time t, to a multigraph on {1, . . . , n} (the people), with the algorithmic decision being
one of choosing the orientation of the edge (towards the driver for that carpool). The goal
then is to minimize

max
vertex i

| indegree(i)− outdegree(i) | .

Ajtai et al. obtained results for two different online settings: when the requests (car-
pools) are selected uniformly at random, and when the request sequence is selected by an

A. Fiat, A. R. Karlin, E. Koutsoupias, C. Mathieu, and R. Zach XXX:3

oblivious adversary that knows the algorithm, but not the outcome of any random choices
the algorithm makes.

The first algorithm they considered was Global Greedy: on request (i, j), the driver among
i and j with minimum unfairness (as defined in equation (1)) drives,; in case of a tie, the
choice is arbitrary. For a uniformly random request sequence, they showed that for each t,
Global Greedy has expected unfairness on that day of O(log logn).

For the adversarial case, Ajtai et al showed that every deterministic algorithm has un-
fairness bn/2c. They also showed that this is tight: Global Greedy has unfairness at most n/2
for every request sequence. They were able to obtain a better upper bound using Random-
ized Local Greedy: This algorithm considers each pair of drivers separately, and alternates
which one drives each time they form a carpool. The only randomness is in the uniformly
random choice of which of the two drives the very first time they carpool. They showed that
Randomized Local Greedy has maximum unfairness equal to Θ(

√
n logn).

They conjectured that Randomized Global Greedy, the variant of Global Greedy in which
ties are broken at random is much better, perhaps even polylog(n).

Finally, they proved that every randomized algorithm has maximum unfairness of at
least Ω

(
(logn)1/3).

Our Results
We study the carpool problem in the setting where the people involved belong to a social
network G, and every request (carpool) is a pair of people that are connected in the social
network, i.e. an edge of G. In this context, the work of [5, 1] can be seen as studying the
special case where the social network is a clique.

We prove the following results for request sequences restricted to edges of a social network
G with n vertices, and of maximum degree d.

Deterministic algorithms, adversarial requests
We show that for every deterministic algorithm there exists a request sequence on G resulting
in unfairness of at least bd/2c. This is tight: we give a deterministic algorithm that never
generates unfairness greater than d/2 (Theorem 2.1).

What is most interesting about this result is that, in contrast to the case where the graph
is complete, the optimal deterministic algorithm is not the Global Greedy algorithm. In fact,
we show that for every connected G (irrespective of its maximum degree), there is a request
sequence on which Global Greedy has worst-case unfairness ≥ bn/2c (Theorem 2.2). Thus,
Global Greedy can be a factor Ω(n) worse than the optimal deterministic algorithm (e.g.,
when the graph has constant degree).

Random requests
Our second set of results concerns random requests: We show that if the sequence of requests
is generated by choosing edges of G uniformly at random, then the removal of edges from
the graph can increase the unfairness for the Global Greedy algorithm: When G is a path,
Global Greedy has expected unfairness at least Ω((logn/ log logn)1/3) (Theorem 3.3). This
stands in contrast to the O(log logn) upper bound of Ajtai et al when the graph G is a
clique.

For a social network G of bounded genus (e.g., planar graphs, the torus, etc.) — we
introduce the “star algorithm” - an algorithm with expected maximum unfairness O(logn)
(Corollary 3.2).

ICALP 2016

XXX:4 Carpooling in Social Networks

Randomized algorithms, adversarial requests

Oblivious Adversaries:
Oblivious adversaries determine the event sequence in advance, the algorithm may toss

coins, and one considers the expected cost to the algorithm.
The results of Ajtai et al. show that Randomized Local Greedy gives maximum expected

unfairness of O(
√
d log d), since each vertex has degree at most d and the unfairness at each

node is the expected value of the sum of at most d random variables that are equally likely to
be 1 or -1. One can view this algorithm as maintaining an invariant probability distribution
over unfairness configurations: for each t, regardless of the history of requests, each edge is
oriented uniformly at random. In this sense, it is a static algorithm. Static algorithms form
a very natural class of randomized online algorithms. Intuitively, they render an adversary
powerless to construct a bad request sequence: every request sequence will perform the same
against such an algorithm. We show that unfortunately, this intuition is incorrect and that
the competitive ratio of every static algorithm is at least Ω(

√
d).

As mentioned above, the Randomized Global Greedy algorithm has been conjectured to
give a good competitive ratio against oblivious adversaries. We prove that Randomized
Global Greedy has unfairness Ω(logn) (on a clique of size n), improving upon the previous
lower bound of Ω

(
(logn)1/3) from [1]. This involves a rather complex proof, for which we

only give a high level sketch here, the full details are available online.
Adaptive Adversaries:

Adaptive adversaries determine the next event in the event sequence as a function of
the previous responses of the online algorithm. I.e., as a function of how the previous car
pooling events were addressed.

We show that no randomized algorithm (static or not) has unfairness better than d/4
against an adaptive adversary [11].

Other Related Work

Another problem that can model fairness issues is Tijdeman’s chairman assignment problem
[10] where a chairman has to be appointed by a community of unequal groups. An axiomatic
approach to the problem and its relationship to the Shapley value of a game was given in
[9]. Generalizations of the carpool problem appear in [4, 3, 2].

Notation

In what follows, we often suppress the dependence on t in our notation for the unfairness
of driver i at time t. Specifically, we use xi to denote the unfairness of driver i at time t
(i.e. xi := 2

(
Di(t)− Fi(t)

)
= indegree(i)− outdegree(i)), where t is understood. Note that∑

i xi =
∑
i[indegree(i)− outdegree(i)] = 0 at all times, and that we are assuming that all

carpools are of size 2.

2 Deterministic algorithms

I Theorem 2.1. Let G be a graph of maximum degree d. Then for every deterministic
algorithm A, there exists a request sequence σ such that after A processes σ the unfairness
is dd/2e. This is tight: there is a deterministic algorithm such that after it processes every
request sequence the unfairness is at most dd/2e.

A. Fiat, A. R. Karlin, E. Koutsoupias, C. Mathieu, and R. Zach XXX:5

Proof. For the first part, we restrict our sequences to the subgraph of G consisting of
a maximum degree vertex and all of its neighbors, i.e., a star with d leaves. For each
deterministic algorithm, we will prove that either the unfairness is unbounded or there is a
sequence of requests for which the root of the star has unfairness ±dd/2e.

Fix a deterministic algorithm. We will say that it is in state ~x = (x1, . . . , xd) when the
unfairness of leaf i is xi (any ordering of the children is fine) and therefore the unfairness of
the root is −

∑d
1 xi. Let S be the set of states that can be reached by some request sequence.

We can assume that for all i, |xi| ≤ dd/2e; if not, we are done. Therefore, S is bounded.
Select ~x ∈ S which minimizes ϕ(~x) = x1 + 2x2 + · · · + 2d−1xd. Let r be a request

sequence that reaches ~x. If we extend r with request (root, 1), then by the minimality of
ϕ(~x), the online algorithm is not allowed to move to (x1 − 1, ~x−1), so it will move to state
(x1 + 1, ~x−1). More generally, for k ∈ [1, d], suppose that we extend r by requests (root plus
leaves) 1, 2, . . . , k. Then since ϕ(x1 +1, . . . , xk−1 +1, xk−1, xk+1, . . . , xd) > ϕ(~x), the online
algorithm will end up at state (x1 + 1, . . . , xk−1 + 1, xk + 1, xk+1, . . . , xd). If we then extend
r by the sequence 1, 2, . . . , d, the online algorithm will move to state ~x + ~1. The first state
has root unfairness −

∑d
1 xi and the second state has root unfairness d −

∑d
1 xi, so one of

those two numbers is greater than or equal to dd/2e in absolute value.
For the second part, we show that any G can be oriented so that the indegree and

outdegree of every vertex differ by at most 1. We then run the online algorithm that serves
requests for the edge {i, j} by alternatingly having i as a driver and j as a driver, starting
with i iff the edge is directed from j to i. J

I Theorem 2.2. Consider the Greedy algorithm and assume that ties are broken by an
adversary. Then for any connected request graph, there exists a request sequence for which
Greedy has unfairness at least bn/2c.

Proof. (sketch) The proof is by induction, restricting requests to a subgraph that is a tree.
The idea is to increase the spread of the values by taking an edge {i, j} between a subtree
with low average unfairness and a subtree with high average unfairness. Then perform
requests in the first subtree to maximize xi, in the second subtree to minimize xj . Then,
if xi > xj , requesting edge {i, j} will result in an even greater unbalance between the two
subtrees. J

3 Random requests

3.1 Random requests on bounded genus graphs
We first prove the result for a star.

I Theorem 3.1. Let G be a star with d leaves, root r and suppose that the requests are
uniformly random. Then there is an algorithm such that for any time t, the unfairness at
each leaf is at most one and the root has expected unfairness O(1), with an exponential tail:
Pr(|Unfairness(r)| > k) ≤ cλk for some (c, λ) with c > 0 and 0 < λ < 1.

Sketch of proof of Theorem 3.1. The “star algorithm” is the following:
1. Every leaf 1 ≤ i ≤ d has a counter xi ∈ {−1, 0, 1}. Initially, set xi = 0 for all i ∈ S0 =
{1, . . . , d/2}.1 Set xi = 1 for all i ∈ S1 = {d/2 + 1, . . . , 3d/4}, and set xi = −1 for all
i ∈ S−1 = {3d/4 + 1, . . . , d}. The root r maintains a counter x0 = −

∑n
1 xi, which is

initially equal to zero.

1 For simplicity, we will assume that d is a multiple of four; this is not necessary.

ICALP 2016

XXX:6 Carpooling in Social Networks

2. When a random request (r, i) arrives, if xi 6= 0 then the algorithm orients the edge so
that xi = 0. If xi = 0 and x0 6= 0 then the algorithm orients the edge so that |x0|
decreases. If xi = x0 = 0 then the choice is random.

To analyze this, observe that, in expectation, half of the leaves have value 0. If the root
has unfairness x, then a request to an edge connecting the root to a non-zero leaf might
increase |x|, but any request to an edge connecting the root to a 0 leaf reduces |x|. Hence,
with some work, we obtain a proof that |x| is bounded on average and that its distribution
has an exponential tail. J

I Corollary 3.2. Let G be a bounded genus graph on n vertices and suppose that the requests
are random. Then there is a deterministic algorithm with average maximum unfairness
O(logn).

Proof. We partition the edges of G into stars so as to ensure that each vertex is a leaf of at
most a constant number of stars, and the center of exactly one star. To handle a sequence
of requests, for each star, handle the subsequence of the requests that are edges of that star
using the algorithm from Theorem 3.1. J

3.2 Poor performance of Global Greedy for random requests on the line
Ajtai et al. [1] prove that a uniformly random sequence of requests in the complete graph
induces a unfairness of O(log logn) for Global Greedy with any tie breaking rule. We show
that this is not necessarily true when the possible requests are restricted to edges in the
social network.

I Theorem 3.3. Consider a sequence of independent requests drawn uniformly at random
when the graph is a line. Then the Global Greedy algorithm, with ties broken at random,
has expected unfairness Ω

(
(logn/ log logn)1/3).

To prove this theorem, we will need the following lemma.

I Lemma 3.4. When the graph G is a line with n vertices, there exists a sequence of length
f(n) = Θ(n3) that creates maximum unfairness of n/2 for the Global Greedy algorithm
with adversarial tie-breaking. After f(n)/2 steps of that sequence the maximum unfairness
is already at least n/8.

Proof. (of Theorem 3.3)
The idea is to consider multiple short segments of the line. The segments are of length

k (to be determined below, about log1/3 n), every segment has 2 extra vertices on the right,
so there are about n/k different segments. We refer to the two extra vertices on the right
of each segment as the “buffer zone" of the segment.

Consider a sequence of L random requests on the line, and focus on those, among those
L requests, that fall into a particular segment and its buffer zone. A segment received Lk/n
requests on average. Let L be such that Lk/n = (3/4)f(k) and restrict attention to good
segments, i.e. those segments that receive a number of requests in [f(k)/2, f(k)].

With probability about (1/k)k3 the leftmost and rightmost buffer edges are never re-
quested, and the requests to the segment follow the exact pattern of (a prefix of) the f(k)
requests required for the lower bound of Lemma 3.4. Conditioned upon this happening,
the probability that the decisions made for tie breaking are as in Lemma 3.4 is at least
(1/2)f(k), thus the probability that an unfairness of at least k/8 is reached in a particular
good segment is ≥ (1/(2k))f(k).

A. Fiat, A. R. Karlin, E. Koutsoupias, C. Mathieu, and R. Zach XXX:7

With probability at least 1/2, the number of good segments is Ω(n/k), and by inde-
pendence of the request sequence inside each segment, the probability that no segment gets
unfairness k/8 is at most

(
1− 1

(2k)f(k)

)Ω(n/k)
. This is at most 1/e for Ω(n/k) > (2k)Θ(k3).

Taking the logarithm gives logn = Θ(k3) log(k), hence k = Θ
(
(logn/ log logn)1/3). J

4 Lower bounds against Adaptive Adversaries

In this section we show an adaptive adversary which achieves an Ω(d) lower bound for any
randomized algorithm, on a star with d leaves.

Let V = {i1, i2, . . . , id} be the leaves of the star and let r be the root. Define the subsets:

V + =
{
ij ∈ V |xij > 0

}
,

V − =
{
ij ∈ V |xij < 0

}
,

V 0 =
{
ij ∈ V |xij = 0

}
.

I Remark. For simplicity, we assume that d is divisible by 4, but this is not necessary.
Our adversary generates a sequence, until either |xr| ≥ d/4 or there is a leaf ij such that

|xij | ≥ d/4. The sequence is generated as follows:
1. If there is a leaf ij such that v ∈ V 0 then issue the request (r, ij).
2. If V 0 = ∅ and |V +| ≥ d/2 then let V + = {i1, . . . , ik} such that xij ≤ xij+1 and issue the

requests (r, ij) in order of increasing j. Stop after processing a request increases xij .
3. If V 0 = ∅ and |V −| > d/2 then let V − = {i1, . . . , ik} such that xij ≥ xij+1 and issue the

requests (r, ij) in order of increasing j. Stop after processing a request decreases xij .

The following lemma is proved in [11].

I Lemma 4.1. The request sequence generated by the adaptive adversary described above is
well defined, i.e.,
1. Exactly one of the three cases happens at each iteration.
2. In case 2 either the unfairness of a leaf increases or xr > d/4.
3. In case 3 either the unfairness of a leaf decreases or xr < −d/4.

For our analysis we define the potential function

Φ(V) =
∑
i∈V

d|xi|.

Note that this potential function does not take into account xr.

I Lemma 4.2. After each iteration of the adversary’s decision loop the potential Φ(V)
increases by at least d− 1 or |xr| ≥ d/4.

Proof. (sketch) We prove this by case analysis:
1. If there exists a leaf ij such that ij ∈ V 0 then the potential increases by exactly d− 1.
2. If |V +| ≥ d/2 then from Lemma 4.1 the unfairness of one leaf was increased and at most

the unfairness of d− 1 leaves was decreased.
3. If |V −| > d/2 then from Lemma 4.1 the unfairness of one leaf was decreased and at most

the unfairness of d− 1 leaves was increased.

In all three cases, the increase in potential caused by just one leaf is greater by more
than d− 1 than the decrease caused by the other leaves. J

ICALP 2016

XXX:8 Carpooling in Social Networks

I Theorem 4.3. Assume that the social network is a star with d leaves. For any randomized
algorithm, the adaptive adversary presented achieves unfairness Ω(d).

Proof. From Lemma 4.1 the request sequence generated by the adversary is well defined and
from Lemma 4.2, after each iteration of the adversary’s decision loop either the potential
Φ(V) increases by at least d− 1 or |xr| ≥ d/4.

The initial potential is Φ(V) = d. If after (d · dd/4−1)/(d− 1)− 1 iterations of the loop
the inequality |xr| < d/4 always holds then

Φ(V) ≥ d · dd/4−1 − (d− 1) + d ≥ d · dd/4−1 + 1.

So there must be at least one leaf with unfairness ≥ d/4. J

5 Lower bounds against Oblivious Adversaries

5.1 Static Algorithms
Next, we consider static algorithms and bound the optimal unfairness that can be achieved
by an algorithm in this class.

I Definition 5.1. A state is a vector (xi)i where xi ∈ Z represents the unfairness of vertex
i. A randomized online algorithm is called static if there exists a probability distribution π
over the set of states such that if the algorithm starts in π (i.e., it starts at a state drawn
according to π) then it remains in π after every possible request sequence.

Let U(~x) denote the maximum unfairness of state x. Then2 the expected maximum
unfairness of a static algorithm is ∑

~x

π(~x) · U(~x).

As discussed in the introduction, Randomized Local Greedy preserves the distribution π
in which each edge is oriented uniformly at random, and so Randomized Local Greedy is a
static algorithm. The expected unfairness of every vertex i is Θ(

√
di), where di is the degree

of i, and the maximum unfairness is at most O(
√
n logn) [1]. In particular, for the star with

d leaves the unfairness of each leaf is at most 1, and the unfairness of the root is Θ(
√
d).

I Theorem 5.2. Assume G is the star with d leaves.
1. A slight variant of Local Greedy (Balanced Local Greedy) has optimal unfairness.
2. This value is Θ(

√
d).

Since states ~x that correspond to unfairness always satisfy
∑
i∈V xi = 0, one of the

coordinates can be inferred from the others. For compactness, we will drop the coordinate
associated to the root and represent the state as a vector indexed by the leaves only.

To prove Theorem 5.2, we first state a property satisfied by the static distributions of
static algorithms for the star with d leaves.

2 There is a subtlety here in that the algorithm does not actually move initially to a state drawn from
this distribution. Rather, it “pretends” to, and hence this definition of expected unfairness can be off
by a factor of 2.

A. Fiat, A. R. Karlin, E. Koutsoupias, C. Mathieu, and R. Zach XXX:9

I Lemma 5.3. Fix a static algorithm and let π(~x) be the corresponding static distribution.
Fix a leaf j and ~x−j . Then the probability of states with even xj must be equal to the
probability of states with odd xj:∑

k∈Z
π(k, ~x−i)(−1)k = 0. (2)

Proof. Suppose that the next request is the edge from root to leaf j. Conditioning on being
on one of the states with given ~x−j , the state moves from even xj to odd xj and vice versa.
Since the distribution before and after the request is the same, the two events must be
equiprobable. J

[Proof of Theorem 5.2] We define an infinite linear programming relaxation P with one
variable π(~x) for each ~x ∈ Zd. By Lemma 5.3, the expected unfairness of any static algorithm
is at least

min
∑
x

π(~x)U(~x) s.t.
{ ∑

~x π(~x) = 1∑
k π(k, ~x−i)(−1)k = 0 ∀i∀~x−i

Consider a vector ~x such that xi = 0. Then, by elimination, the second constraint
determines π(~x) in terms of the variables π(k, ~x−i) for k 6= 0, and the vectors (k, ~x−i) have
one fewer zero coordinate than ~x. Extending this by induction on the number of non-zero
coordinates of ~x, we show in Claim 5.4 below that each variable π(~x) with at least one
zero coordinate in ~x can be expressed as a linear combination of the variables π(~y) with
~y ∈ (Z6=0)d.

I Claim 5.4. Let Q(~x) = {~y : xi(yi − xi) = 0 and yi 6= 0, for all i}. Then for all ~x

π(~x) = (−1)#0(~x)
∑

~y∈Q(~x)

π(~y)(−1)
∑

i
yi−xi . (3)

Moreover, the set of Equations (3) for all ~x 6∈ (Z6=0)d are equivalent to the set of Equations
(2) in the linear program P .

Proof. We transform Equations (2) to the form of Equations (3), inductively by the number
of zero entries of ~x.

The base case, in which ~x has no 0’s is vacuous. For the induction step, assume that
Equation (3) holds for all ~x that have at most k 0’s. Consider some ~x that has k + 1 0’s:
~x = (0, ~x−i) for some x−i that has k 0’s. Solving (2) for π(~x) we get

π(0, ~x−i) = −
∑
yi 6=0

π(yi, ~x−i)(−1)yi

= −
∑
yi 6=0

(−1)#0(~x−i)
∑

~y−i∈Q(~x−i)

π(yi, ~y−i)(−1)
∑

k 6=i
yk−xk (−1)yi

= (−1)#0(~x)
∑

~y∈Q(~x)

π(~y)(−1)
∑

i
yi−xi .

Notice that there are k + 1 different equations in the set of Equations (2), one for each 0 in
~x, that are transformed into the same equation. J

To simplify the linear program P , substitute the right hand side of every equality of the
form given in Equation (3) for π(~x) (for all ~x 6∈ (Z6=0)d) into the constraint

∑
~x π(~x) = 1.

This yields∑
~y 6∈(Z6=0)d

α~yπ(~y) = 1, (4)

ICALP 2016

XXX:10 Carpooling in Social Networks

for some constants {α~y}.
By construction, any solution to this equation can be extended to a solution to the set

of Equations (2). This allows us to reduce the linear programing relaxation to one with a
single constraint. Therefore it has an optimal solution with only one non-zero variable. Let
π(~y∗) denote this variable. By substituting back to (3), we get that π(~x) is zero unless

~x ∈ H := {~z s.t. for all i zi ∈ {0, y∗i }}.

Moreover, since for ~x ∈ H, there is only one non-zero term on the right hand side of (3), we
can conclude that ∀~x ∈ H, either π(~x) = π(~y∗) or π(~x) = −π(~y∗).

Next, observe that all coordinates of ~y∗ must be odd. Indeed, if some y∗i is even, then
(3) implies that for every vector ~x ∈ H we have π(y∗i , ~x−i) = −π(0, ~x−i), which implies that
the sum of π on the vectors in H is 0, a contradiction. Thus, all coordinates of ~y∗ are odd,
and so π(~x) = π(~y∗) for all ~x ∈ H. Since these probabilities sum to 1, they must all be
equal to 1/2d.

Let |~x| = |
∑
i xi|. The expected unfairness of the root is∑
~x

π(~x)|~x| =
∑
x∈H

π(~x)|~x| =
∑

x∈{0,y∗
i
}d

1
2d |~x| = E[|

∑
i

y∗iXi|],

where Xi are 0-1 unbiased Bernoulli random variables. The following claim shows that this
quantity is minimized when exactly half (bd/2c, to be precise) of the y∗i ’s are 1 and the rest
are −1, exactly as in the case of Balanced Local Greedy.

I Claim 5.5. Let y∗1 , . . . , y∗d be odd integers and X1, . . . , Xn be independent unbiased
Bernoulli variables. The expectation

E[|
∑
i

y∗iXi|]

is minimized when half (bd/2c, to be precise) of the y∗i ’s are -1 and the remaining are +1.
This minimum value is Θ(

√
d).

It follows from the theorem that the optimal unfairness among static algorithms is at
least equal to the unfairness at the root of the Balanced Local Greedy. Since its unfairness
on the leaves is at most one, Balanced Local Greedy has almost optimal unfairness among
the static algorithms, within an additive term of 1. In fact, the additive term can be reduced
to O(1/

√
d).

The main result of this section dashes any hopes to find a static algorithm with small
unfairness. However, many natural algorithms—among them the Global Greedy algorithm—
are not static and we hope that they will be shown to have small unfairness (substantially
less than O(

√
d)).

5.2 Bounds on Randomized Global Greedy
A very natural algorithm, Randomized Global Greedy is a candidate algorithm to give small
competitive ratios against an oblivious algorithm. This algorithm is greedy, choosing the
driver with the lower number of times to her credit, and breaking ties at random. The
difference between Randomized Global Greedy and Randomized Local Greedy is that Ran-
domized Local Greedy only uses randomization initially to determine the initial state and
then alternates drivers whenever the same pair reappear.

A. Fiat, A. R. Karlin, E. Koutsoupias, C. Mathieu, and R. Zach XXX:11

Previously, the lower bound on the competitive ratio of Randomized Global Greedy was
Ω(log1/3 n) (on a clique) whereas the upper bound was O(n). We improve the lower bound
to Ω(logn). To do this we make use of a potential function, the sum over drivers of the
differences between the number of trips minus the number of times that the driver drove.

The key idea is to repeatedly generate unfairness and “push” it to some target set of
drivers. This process works essentially as follows:
1. Apply a sequence of requests to generate potential in some set of drivers.
2. “Push” the potential to a target set of drivers.
3. Repeat.
4. Eventually, the target set will have high potential, which implies high unfairness.

We present here a sketch of the lower bound proof, full details of this process can be seen
online at [11]. In this MSc thesis (of one of the authors) one can also see similar techniques
applied to other settings.

First, we begin with a definition of the potential function.

I Definition 5.6. Let i1, i2, . . . , in be n vertices where xij is the unfairness of vertex ij .
Assume that there is a value u ∈ Z such that for all 1 ≤ j ≤ n it holds that xij ∈
{u− 1, u, u+ 1}. Define the potential with respect to base unfairness u as

Φu({xi1 , xi2 , . . . , xin}) =
∑

1≤j≤n
(xij − u).

Now that we have defined the potential function, we define “pushing”.

I Definition 5.7. Let v′, v′′, r ∈ V be distinct vertices and let S = {i1, i2, i3, . . . , in} be a
set of n vertices such that v′, v′′, r /∈ S.

Let α ∈ N be a large number, as a function of n. The sequence pushu({v′, v′′}, S, r) is
composed of three subsequences:

pushs1u ({v′, v′′}, S, r) = (r, v′), (r, v′′),
pushdu({v′, v′′}, S, r) = (r, in), (r, in), (r, in−1), (r, in−1), . . . , (r, i1), (r, i1),

pushs2u ({v′, v′′}, S, r) = (r, v′′), (r, v′).

And,

pushu({v′, v′′}, S, r) =
(
pushs1u ({v′, v′′}, S, r)‖
pushdu({v′, v′′}, S, r)‖pushs2u ({v′, v′′}, S, r)

)α
.

I Remark. Notation: (v, w) is a shorthand for requesting that v and w carpool together.
We use the following property thats holds after the Randomized Global Greedy algorithm

processes pushu({v′, v′′}, S, r):
Define Φinit(S) = Φ(S) and Φinit({v′, v′′}) = Φ({v′, v′′}) as the potentials before pro-

cessing the sequence pushu({v′, v′′}, S, r). Define Φend(S) = Φ(S) and Φend({v′, v′′}) =
Φ({v′, v′′}) as the potentials after processing the sequence.

I Lemma 5.8. Assume that: (a) For some u ∈ Z, xr = u, (b) That x′v, x′′v ∈ {u− 1, u+ 1},
and (c) For all i ∈ S, xi ∈ {u− 1, u+ 1}.

If |(xv′−u)+(xv′′−u)+Φinit(S)| ≤ |S| then, with high probability, after the Randomized
Global Greedy algorithm processes the sequence pushu({v′, v′′}, S, r) the equality Φend(S) =
Φinit(S) + Φinit({v′, v′′}) holds.

ICALP 2016

XXX:12 Carpooling in Social Networks

Proof. (sketch)
Observe that if xv′ = u+1, xv′′ = u+1 and xr = u then after processing the subsequence

(r, v′), (r, v′′), with probability 1/2, xr = u+ 2. Now observe that if xr = u+ 2 and for some
j, xij = u− 1 then after processing the two requests (r, ij), (r, ij) it holds that xij = u+ 1
and xr = u. Thus the potential of {v′, v′′} was “pushed” into ij .

A similar thing happens if xv′ = u− 1, xv′′ = u− 1 and xij = u+ 1. The constant α is
chosen to be large such this occurs with high probability.

The full proof is available online in [11]. J

Now, using this push sequence we “accumulate” a large potential (in respect to base
unfairness u) in a specific set A such that |A| = O(n). I.e., we define a sequence such that
after Randomized Global Greedy processes it Pr(|Φu(A)| > |A/2|) > 1/2. In essence, this is
done by repeatedly using a sequence that creates unfairness in a small set G and “pushing”
this unfairness into A. This is called “accumulation”.

Another useful subsequence is that of “distillation”, which takes the potential of a set and,
with high probability, pushes it into a subset. Let r be a vertex and S = {i1, i2, i3, . . . , im}
be a set of m vertices such that m is even and r /∈ S. The distillu(S, r) event sequence is

distillu(S, r) = pushu({i1, i2}, {i3, . . . , im}, r)‖pushu({i3, i4}, {i5, . . . , im}, r)‖
· · · ‖pushu({im−3, im−2}, {im−1, im}, r).

Define the tail of S, S`, as S` = {ik ∈ S|k ≥ `}.

I Lemma 5.9. With high probability, after the Randomized Global Greedy algorithm pro-
cesses the sequence distillu(S)

Φu(S|S|−|Φu(S)|+1) = Φu(S).

Proof. (sketch) This stems from repeatedly applying Lemma 5.8 to increasingly smaller
sets. The full proof is available online in [11]. J

Now using the sequences “accumulation” and “distillation” we are able to create (with
probability greater than 1/2) a set A such that |A| = O(n) and |Φu(A) = |A|. The latter is
equivalent to all the unfairnesses of vertices in A being equal to either u− 1 or u+ 1.

Now split A into three different sets, A1, A2, and A3 and do “accumulation” and “dis-
tillation” to each set individually. Now, with some probability, one of these subsets has
unfairnesses which are all equal to either u − 2 or u + 2. Repeat this process. In [11] we
prove that this can be repeated Ω(logn) times with constant probability. And thus the
following theorem is proved:

I Theorem 5.10. The sequence above achieves an expected unfairness of Ω(logn) for the
Randomized Global Greedy algorithm when run on a clique.

6 Open Questions

The outstanding open questions that follow immediately from this work are:
Is there any randomized algorithm with unfairness o(

√
d) on the star with d leaves?

Does Randomized Global Greedy have o(n) unfairness on the star or on the line?

At this point we have no non-trivial upper bound on the star. The best algorithm we
know is Randomized Local Greedy, which achieves

√
n unfairness.

A. Fiat, A. R. Karlin, E. Koutsoupias, C. Mathieu, and R. Zach XXX:13

Acknowledgments

We are grateful to Nimrod Fiat and Clemens von Stengel for their help during the early
stages of this work.

The second author acknowledges the support of NSF grant CCF 1420381. The third
author acknowledges the support of ERC Advanced Grant 321171 (ALGAME).

References
1 Miklos Ajtai, James Aspnes, Moni Naor, Yuval Rabani, Leonard J Schulman, and Orli

Waarts. Fairness in scheduling. Journal of Algorithms, 29(2):306–357, 1998.
2 Amihood Amir, Oren Kapah, Tsvi Kopelowitz, Moni Naor, and Ely Porat. The family

holiday gathering problem or fair and periodic scheduling of independent sets. CoRR,
abs/1408.2279, 2014. URL: http://arxiv.org/abs/1408.2279.

3 Joao Pedro Boavida, Vikram Kamat, Darshana Nakum, Ryan Nong, Chai Wah Wu, and
Xinyi Zhang. Algorithms for the carpool problem. IMA Preprint Series, pages 2133–6,
2006.

4 Don Coppersmith, Tomasz Nowicki, Giuseppe Paleologo, Charles Tresser, and Chai Wah
Wu. The optimality of the online greedy algorithm in carpool and chairman assignment
problems. ACM Trans. Algorithms, 7(3):37:1–37:22, July 2011. URL: http://doi.acm.
org/10.1145/1978782.1978792, doi:10.1145/1978782.1978792.

5 Ronald Fagin and John H Williams. A fair carpool scheduling algorithm. IBM Journal of
Research and development, 27(2):133–139, 1983.

6 Ernst Fehr and Klaus M Schmidt. A theory of fairness, competition, and cooperation.
Quarterly journal of Economics, pages 817–868, 1999.

7 L. Festinger. A Theory of Cognitive Dissonance. Mass communication series. Stanford
University Press, 1962. URL: https://books.google.co.il/books?id=voeQ-8CASacC.

8 George F. Loewenstein, Leigh L. Thompson, and Max H. Bazerman. Social utility and
decision making in interpersonal contexts. Journal of Personality and Social Psychology,
57(3):426–441, 1989. URL: http://dx.doi.org/10.1037/0022-3514.57.3.426, doi:10.
1037/0022-3514.57.3.426.

9 Moni Naor. On fairness in the carpool problem. Journal of Algorithms,
55(1):93 – 98, 2005. URL: http://www.sciencedirect.com/science/article/pii/
S0196677404000781, doi:http://dx.doi.org/10.1016/j.jalgor.2004.05.001.

10 R. Tijdeman. The chairman assignment problem. Discrete Mathematics,
32(3):323 – 330, 1980. URL: http://www.sciencedirect.com/science/article/pii/
0012365X80902691, doi:http://dx.doi.org/10.1016/0012-365X(80)90269-1.

11 Zach and Fiat. Lower bounds for carpooling. https://www.cs.tau.ac.il/~fiat/rotem_
msc_thesis.pdf, 2015.

ICALP 2016

http://arxiv.org/abs/1408.2279
http://doi.acm.org/10.1145/1978782.1978792
http://doi.acm.org/10.1145/1978782.1978792
http://dx.doi.org/10.1145/1978782.1978792
https://books.google.co.il/books?id=voeQ-8CASacC
http://dx.doi.org/10.1037/0022-3514.57.3.426
http://dx.doi.org/10.1037/0022-3514.57.3.426
http://dx.doi.org/10.1037/0022-3514.57.3.426
http://www.sciencedirect.com/science/article/pii/S0196677404000781
http://www.sciencedirect.com/science/article/pii/S0196677404000781
http://dx.doi.org/http://dx.doi.org/10.1016/j.jalgor.2004.05.001
http://www.sciencedirect.com/science/article/pii/0012365X80902691
http://www.sciencedirect.com/science/article/pii/0012365X80902691
http://dx.doi.org/http://dx.doi.org/10.1016/0012-365X(80)90269-1
https://www.cs.tau.ac.il/~fiat/rotem_msc_thesis.pdf
https://www.cs.tau.ac.il/~fiat/rotem_msc_thesis.pdf

	Introduction
	Deterministic algorithms
	Random requests
	Random requests on bounded genus graphs
	Poor performance of Global Greedy for random requests on the line

	Lower bounds against Adaptive Adversaries
	Lower bounds against Oblivious Adversaries
	Static Algorithms
	Bounds on Randomized Global Greedy

	Open Questions

