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Abstract

“Remember that Time is Money”

— Benjamin Franklin in Advice to a Young Tradesman (1748)

Consider the following setting: a customer has a package and is willing to pay up to some
value v to ship it, but needs it to be shipped by some deadline d. Given the joint prior
distribution from which (v, d) pairs are drawn, we characterize the auction that yields optimal
revenue, contributing to the limited understanding of optimal auctions beyond single-parameter
settings. Our work requires a new way of combining and ironing revenue curves which illustrate
why randomization is necessary to achieve optimal revenue. Finally, we strengthen the emerging
understanding that duality is useful for both the design and analysis of optimal auctions in
multi-parameter settings.

1 Introduction

Consider the pricing problem faced by FedEx. Each of their customers has a deadline d by which
he needs his package to arrive, and a value v for receiving the package by the deadline. The
customer’s utility for getting his package shipped by day i at a price of p is v − p if i ≤ d (i.e.,
it is received by his deadline) and −p otherwise. Of course, a customer’s (v, d) pair is the private
information of the customer. We study the Bayesian setting, where this pair (v, d) is drawn from
a prior distribution known to FedEx, and address the question of optimal (revenue maximizing)
mechanism design. Note that the prior distribution may be arbitrarily correlated.

Suppose that FedEx offers a discrete set of shipping options (1-day, 2-day, 3-day, up to m-day
shipping). The prior that FedEx has on its customer’s needs is given by a probability distribution
(q1, q2, . . . , qm), where qi is the probability that the customer has a deadline i days from now, and
a set of marginal value distributions, where Fi, for 1 ≤ i ≤ m, is the distribution of values given
that the customer’s deadline is i.
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We consider the single agent problem in this paper, or equivalently, the setting where FedEx
sells to identically drawn buyers and has constraints on the number of buyers it can supply. We
obtain a closed form, clean, and optimal auction for this setting. Our work adds to the relatively
short list of multi-parameter settings where a closed form solution is known. (See related work
below for more on this.)

The pricing problem we consider is extremely natural and arises in numerous scenarios, whether
it is Amazon.com providing shipping options, Internet Service Providers offering bandwidth plans,
or a myriad of other settings in which a seller can price discriminate or otherwise segment her
market by delaying service, or providing lower quality/cheaper versions of a product. In particular,
this setting is relevant whenever a customer has a value and a sensitivity to time or some other
feature of service. A “deadline” represents the base level of need, imposed on a buyer by outside
circumstances, whereas a valuation represents the buyer’s own willingness to pay. It is important
to understand how buyer deadline constraints impact the design of auctions and what leverage
they give to the auctioneer to extract more revenue.

1.1 Related Work

The FedEx setting is a variant of price discrimination in which the customers are grouped by their
deadline. Price discrimination offers different prices to users with the goal of improving revenue
[Bergemann et al., 2015]. Alternatively one can view the FedEx problem as a multi-dimensional
optimal auction problem. There are two ways to express the FedEx problem in this way. First,
as a 2-dimensional (value × deadline) problem of arbitrary joint distribution in which the second
variable takes only integer values in a bounded interval. Alternatively, as a very special case of the
m-dimensional unit-demand problem with correlated values (the customer buys a shipping option
among the m choices)—his value for the first d options is v, and for the last m− d is 0.

There is an extensive body of literature on optimal auction design. The seminal work of
Myerson [1981] has completely settled the case of selling a single item to multiple bidders and
extends directly to the more general framework of single-parameter settings. Note that Riley and
Zeckhauser [1983] also prove that the optimal single-parameter mechanism is deterministic, and
that Bulow and Roberts [1989] are responsible for the interpretation of virtual values as a marginal
contribution to revenue.

The most complicated part of Myerson’s solution is his handling of distributions that are not
regular by “ironing” them, that is, by replacing the revenue curves by their upper concave envelope.
Myerson’s ironing is done in quantile space. In this work, we also need to iron the revenue curves,
but we need to do this in value space.

Extending Myerson’s solution to the multi-dimensional case has been one of the most important
open problems in Microeconomics. For the case of unit-demand agents, a beautiful sequence of
papers [Chawla et al., 2007; Briest et al., 2015; Chawla et al., 2015, 2010; Alaei, 2011; Cai and
Daskalakis, 2011] showed how to obtain approximately optimal auctions. For the case of finite type
spaces, [Cai et al., 2012, 2013b,a] are able to use linear and convex programming techniques to
formulate and solve the optimal auction problem. This gives a black-box reduction from mechanism
to algorithm design that yields a PTAS for revenue maximization in unit-demand settings. For
the case of additive agents, additional recent breakthroughs [Hart and Nisan, 2017; Li and Yao,
2013; Babaioff et al., 2014; Yao, 2015; Cai et al., 2016; Cai and Huang, 2013] have also resulted in
approximately optimal mechanisms.

But if we insist on optimal auctions for continuous probability distributions, no general solution
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is known for the multi-dimensional case—even for the two-dimensional single-bidder case—and it
is very possible that no such simple solution exists for the general case. One of the reasons that
the multi-dimensional case is so complex is that optimal auctions are not necessarily deterministic
[Pavlov, 2011; Thanassoulis, 2004; Briest et al., 2015; Hart and Reny, 2012; Hart and Nisan, 2013;
Manelli and Vincent, 2006; Pycia, 2006; Daskalakis et al., 2013]. The optimal auction for the
FedEx problem also turns out to be randomized with exponentially many different price levels in
the worst case [Saxena et al., 2018].

There are some relevant results that solve special cases of the two-parameter setting. One of
the earliest works is by Laffont et al. [1987] who study a distant variant of the FedEx problem.
In their problem, the bidder has two parameters, a and b, each uniformly distributed on [0, 1],
and the bidder’s utility function is very specifically the quadratic function ax − 1

2(b + 1)x2 − p.
Here, x is a single-dimensional allocation variable and p is the payment variable. The idea is that
both the slope and the intercept of the buyer’s demand curve are unknown to the seller. To solve
this problem, Laffont et al. come up with a change of variable technique to use only one variable
when solving for the allocation in both parameters. By solving the optimization problem and the
resulting integration by hand with this technique, they provide a highly non-trivial closed-form
allocation rule, demonstrating that even the simplest independent two-parameter settings are far
more difficult than single-parameter settings.

McAfee and McMillan [1988] study a generalization of this problem. First, they characterize
incentive-compatibility precisely in direct, deterministic, and differentiable mechanisms. Then,
they reference a notion of “single-crossing” which says that the marginal rate of substitution1,
must be monotone increasing in the buyer’s type. McAfee and McMillan generalize this condi-
tion to multi-parameter settings, and then extend the analysis of Laffont et al. (using the same
change of variables technique) to any number of variables if they satisfy generalized single-crossing
and other small conditions. However, their analysis only applies when the optimal mechanism is
deterministic. Finally, McAfee and McMillan also consider the setting where a buyer has indepen-
dent valuations for m heterogenous items. They prove that under a “regularity” condition2, for
m = 2, the optimal mechanism is deterministic, and they further reason from prior results that
the optimal mechanism would set a price for each item individually as well as the grand bundle.

These initial results were followed by more general results. In particular, Haghpanah and
Hartline [2015] consider the problem of selling a product with multiple quality levels to unit-
demand bidders. The mechanism they consider is selling only the highest quality product at a
posted price. (In the FedEx problem, this corresponds to having a single price for every shipping
option.) When the buyers’ value distributions have a specific type of positive correlation, then this
mechanism is optimal, because the high-valued customers are less quality-sensitive, and thus will
not pay a premium for a different outcome. Haghpanah and Hartline solve for when this mechanism
is a point-wise virtual value maximizer, with expected revenue equal to virtual welfare, and then
solve for the paths of tight IC constraints to integrate over, effectively reverse engineering the
virtual value functions. This approach also corresponds to proving when bundling is optimal in
particular additive settings. Their work generalizes results from Armstrong [1996].

Daskalakis et al. [2017] establish a duality framework where the primal is expressed in terms
of utility and a transformed measure µ of the buyer distributions, and the dual is an optimal

1This is equal to the derivative of utility with respect to the allocation divided by the negative derivative of
utility with respect to payment. This also the negative shadow price.

2They assume that t · f ′(t) + (m + 1)f(t) ≥ 0. Note that this is not Myerson’s regularity condition, but would
be if the (m+ 1) were replaced by 1.
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transport problem. The dual variables are a measure µ′ that stochastically dominate the primal
measure µ, and the objective is the distance between the positive part of the measure µ′+ and the
negative part of the measure µ′−. First, Daskalakis et al. establish that strong duality holds in
their duality framework, so the dual can be used to solve for or certify the optimal primal. Then,
using their duality framework, for any mechanism with a finite menu size (number of outcomes),
they give a characterization in terms of the stochastic dominance conditions on the measure µ.
One application of this result proves that for m items distributed i.i.d. on [c, c+1] for large enough
c, grand bundling is optimal.

Our approach is based on a duality framework. Two such frameworks have been proposed. The
first framework by Daskalakis et al. [2017] expresses the primal in terms of utility and a transformed
measure µ of the buyer distributions, and the dual is an optimal transport problem. The dual
variables are a measure µ′ that stochastically dominate the primal measure µ, and the objective
is the distance between the positive part of the measure µ′+ and the negative part of the measure
µ′−. First, Daskalakis et al. establish that strong duality holds in their duality framework, so the
dual can be used to solve for or certify the optimal primal. Then, using their duality framework,
for any mechanism with a finite menu size (number of outcomes), they give a characterization in
terms of the stochastic dominance conditions on the measure µ. One application of this result
proves that for m − 1 items distributed i.i.d. on [c, c + 1] for large enough c, grand bundling is
optimal.

The second framework is by Giannakopoulos and Koutsoupias [2014], which is based on ex-
pressing the revenue maximization problem as an optimization problem in terms of utility functions
and their partial derivatives. They find primal and dual variables that are both feasible and also
satisfy complementary slackness, and thus via weak duality and complementarity, have equal ob-
jectives. Using their framework, they prove that the Straight-Jacket-Auction3 is optimal for an
additive bidder whose item valuations are i.i.d. from U [0, 1] for up to six items. In [Giannakopoulos
and Koutsoupias, 2015], the authors subsequently use their framework to give closed-form optimal
allocation and payment rules for several independent non-identical two-item problems (where the
distributions are from monomial or exponential families over [0, H]), and the mechanisms are no
longer deterministic. The duality framework of Giannakopoulos and Koutsoupias is a fairly gen-
eral approach, but their applications still require fairly strong assumptions about the distributions
in order to make progress on characterizing optimal auctions. Our solution of the FedEx problem
follows this latter duality framework.

For much more on both exact and approximate optimal mechanism design, see [Daskalakis,
2015; Chawla and Sivan, 2014; Roughgarden, 2015; Hartline, 2013; Cai et al., 2011]. For back-
ground on duality in infinite linear and convex programs, see e.g., [Anderson and Nash, 1987;
Luenberger, 1997].

1.2 Our Contribution

Our result is one of the first explicit closed-form generalizations of [Myerson, 1981] to multi-
parameter settings with arbitrary (joint) distributions, and contributes to recent breakthroughs
in this space. We use a duality framework where we prove optimality by finding primal and

3The Straight-Jacket-Auction for m items is a deterministic mechanism where a price is set for every bundle
size, bound by sale probabilities. The price for the bundle of size r, p

(m)
r , is such that, given prices p

(m)
1 through

p
(m)
r−1 already set, a buyer with value v ∼ [0, 1]r × 0m−r will not buy any bundle of size r or smaller with probability

1− r
m+1

.
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dual solutions that satisfy sufficient conditions. The optimal primal and dual variables have an
interesting inductive structure, and the allocation rule is potentially randomized over at most 2i−1

prices on i-day. Our approach strengthens the emerging understanding that duality is useful for
determining the structure of the optimal auction in non-trivial settings, in addition to its use in
analyzing the auction.

In Myerson’s setting, the “ironing” of revenue curves and virtual valuations to determine
the optimal auction is required to enforce incentive compatibility constraints among multiple
bidders. In our setting, we need a form of ironing even for one bidder in order to enforce incentive
compatibility constraints among the multiple options. This work also suggests that ironing is one
of the biggest hurdles in extending Myerson to more general settings.

2 Preliminaries

As discussed above, the type of a customer is a (value, deadline) pair. An auction takes as input a
reported type t = (v, d) and determines the shipping date in {1, . . . ,m} and the price. We denote
by ai(v) the probability that the package is shipped by day i when the agent reports (v, i), and by
pi(v) the corresponding expected payment (the expectation is taken over the randomness in the
mechanism).

Our goal is to design an optimal mechanism for this setting. By the revelation principle, we
can restrict our attention to incentive compatible mechanisms. In this setting, when an agent with
type (v, i) reports a type of (v′, i′), he has utility

u(v′, i′ | v, i) =

{
vai′(v

′)− pi′(v′) if i′ ≤ i
−pi′(v′) otherwise.

The incentive compatibility requirement is that

u(v, i) ≥ u(v′, i′ | v, i) ∀v′, i′. (1)

We also require individual rationality, i.e., u(v, i) ≥ 0 for all (v, i). Without loss of generality, ai(v)
is the probability that the package is delivered on day i, since any incentive compatible mechanism
which delivers a package early can be converted to one that always delivers on the deadline, while
retaining incentive compatibility and without losing any revenue.

For each fixed i, this implies the standard (single parameter) constraints [Myerson, 1981],
namely

∀i, ai(v) is monotone weakly increasing and in [0, 1]; (2)

∀i, pi(v) = vai(v)−
∫ v

0
ai(x)dx and hence u(v, i) =

∫ v

0
ai(x)dx. (3)

Clearly no agent would ever report i′ > i, as this would result in non-positive utility. However,
we do need to make sure that the agent has no incentive to report an earlier deadline, and hence
another IC constraint is that for all 2 ≤ i ≤ m:

u(v, i− 1|v, i) ≤ u(v, i) (4)
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which is equivalent to ∫ v

0
ai−1(x)dx ≤

∫ v

0
ai(x)dx ∀i s.t. 1 < i ≤ m. (5)

We sometimes refer to this as the inter-day IC constraint. Since ai(v) is the probability of allocation
of i-day shipping given report (v, i), constraints (2), (3) and (5) are necessary and sufficient, by
transitivity, to ensure that

u(v, i) ≥ u(v′, i′|v, i)

for all possible misreports (v′, i′).

The prior. We assume that the agent’s (value, deadline) comes from a known joint prior dis-
tribution F . Let qi be the probability that the customer has a deadline i ∈ {1, . . . ,m}, that
is,

qi = Pr(v,d)∼F [d = i]

and let Fi(·) be the marginal distribution function of values for bidders with deadline i. That is,

Fi(x) = Pr(v,d)∼F [v ≤ x | d = i].

We assume that Fi is atomless and strictly increasing, with density function defined on [0, H]. Let
fi(v) be the derivative of Fi(v).

The objective. Let ϕi(v) = v − 1−Fi(v)
fi(v)

be the virtual value function for v drawn from distri-

bution Fi. Applying the Myerson payment identity (3) implies that the expected payment of a
customer with deadline i is

Ev∼Fi [pi(v)] = Ev∼Fi [ϕi(v)ai(v)].

Thus, we wish to choose monotone allocation rules ai(v) for days 1 ≤ i ≤ m, so as to maximize

E(v,i)∼F [pi(v)] =

m∑
i=1

qiEv∼Fi [pi(v)] =

m∑
i=1

qiEv∼Fi [ϕi(v)ai(v)] =

m∑
i=1

qi

∫ H

0
ϕi(v)fi(v)ai(v)dv,

subject to (2) and (5).

A trivial case and discussion. If we knew that the customer that would arrive would have
deadline i and we could thus condition on this event, ensuring that his value is drawn from the
marginal distribution Fi, then the optimal pricing would be trivial, as this is a single-agent, single-
item auction. In this case, the optimal mechanism for such a customer is to set the price for
service by day i to the reserve price ri for his prior. If we just had a number of single-dimensional
problems, one for each deadline, we would want to set a price of ri for each i-day shipping option.
If it is the case that ri ≥ ri+1 for each i, then the entire Fedex problem is trivial, since setting ri
as the price for i-day shipping satisfies all of the IC constraints, and this pointwise optimizes each
conditional distribution.

Note that even should the marginal distribution for buyer values for 1-day shipping stochasti-
cally dominate the marginal distribution for 2-day shipping and so on, the later shipping options
may still have higher reserve prices. For example, if F2 is uniform over the set {1, 10}, the reserve
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is 10. If F1 is uniform over the set {9, 10}, the reserve is 9. Hence, we do not make the assumption
that the reserve prices are weakly decreasing with the deadline.

In fact, we do not make the assumption of stochastic domination either in order to be fully
general. The prior F captures the result of random draws from a population consisting of a
mixture of different types. Obviously any particular individual with deadline i is at least as happy
with day i − 1 service as with day i service, but two random individuals may have completely
uncorrelated needs. To give an example, an individual ordering a last minute birthday present
may have a lower value than an individual scheduling the delivery of surgical equipment that is
needed to perform open heart surgery in three weeks time. In fact, for more valuable packages,
one could imagine that people take the time to plan ahead.

Another factor has to do with costs. It is likely that the cost that FedEx incurs for sending a
package within i days is higher than the cost FedEx incurs for sending a package within i′ > i days,
since in the latter case, for example, FedEx has more flexibility about which of many planes/trucks
to put the package on, and even may be able to reduce the total number of plane/truck trips to a
particular destination given this flexibility. More generally, in other applications of this problem,
the cost of providing lower quality service is lower than the cost of providing higher quality service.
Thus, even if reserve prices tend to decrease with i, all bets are off once we consider a customer’s
value for deadline i conditioned on that value being above the expected cost to FedEx of shipping
a package by deadline i for each i.

In this paper, we are not explicitly modeling the costs that FedEx incurs, the optimization
problems that it faces, the online nature of the problem, or any limits on FedEx’s ability to ship
packages. These are interesting problems for future research. The discussion in the preceding few
paragraphs is here merely to explain why the problem remains interesting and relevant even in
the with distributions that do not have decreasing reserve prices in the deadlines. Further, note
that in Figure 1, FedEx actually did post a larger price for a later shipping option, implying that
they estimate the underlying distributions to have increasing reserve prices.4

Figure 1: FedEx posted a higher price posted for a later shipping option, implying the underlying
distributions do not have decreasing reserve prices in the real world. Note also that these prices
are not incentive compatible.

4Of course, these prices are not incentive compatible, and the author that purchased shipping when presented
with these prices did in fact misreport her deadline.
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3 Warm-up: The case of m = 2

Suppose that the customer might have a deadline of either one day or two days from now. By the
taxation principle, the optimal mechanism is a menu, and in this setting consists of a (potentially
randomized) price pi for having the package delivered i days from now.

Let Ri(v) be the i-day revenue curve, that is, Ri(v) := v · [1− Fi(v)]. Let ri := argmaxvRi(v)
be the price at which expected revenue from a bidder with value drawn from Fi is maximized,
and let R∗i := Ri(ri) denote this maximum expected revenue. Since R∗i is the optimal expected
revenue from the agent [Myerson, 1981], conditioned on having a deadline of i, then q1R

∗
1 + q2R

∗
2

is an upper bound on the optimal expected revenue for the two-day FedEx problem. If r1 ≥ r2,
then this optimum is indeed achievable by an IC mechanism: just set the 1-day shipping price p1
at r1 and the 2-day shipping price p2 at r2.

But what if r2 > r1? In this case, the inter-day IC constraint (5) is violated by this pricing (a
customer with i = 2 will pretend his deadline is i = 1).

Attempt #1: One alternative is to consider the optimal single price mechanism (i.e., p1 =
p2 = p). In this case, the optimal choice is clear:

p := argmaxv [q1R1(v) + q2R2(v)] , (6)

i.e., set the price that maximizes the combined revenue from both days. There are cases where
this is optimal, e.g., if both F1 and F2 are regular. A proof is given in Subsection 4.2.

Attempt #2: Another auction that retains incentive compatibility, and, in some cases, im-
proves performance is to set the 1-day price p1 at p and the 2-day price at

p2 := argmaxv≤p R2(v). (7)

However, even if we fix p1 = p, further optimization may be possible if F2 is not regular.
Attempt #3: Consider the concave hull of R2(·), i.e., the ironed revenue curve. If R2(v) is

maximized at r2 > p and R2(·) is ironed at p, then offering a lottery on 2-day with an expected
price of p yields higher expected revenue than offering any deterministic 2-day price of p2. As we
shall see, for this case, this solution is actually optimal. (See Figure 2.)

However, if p > r2, (which is possible if F1 and F2 are not regular, even if r1 < r2), then we
will see that the optimal 1-day price is indeed higher than r2, but not necessarily equal to p.

Attempt #4: If p > r2, set the 1-day price at

p1 := argmaxv≥r2 R1(v).

This should make sense: if we’re going to set a 1-day price above r2, we may as well set the 2-day
price at r2, but in that case, the 2-day curve should not influence the pricing for 1-day (except to
set a lower bound for it).

Admittedly, this sounds like a tedious case analysis, and extending this reasoning to three or
more days gets much worse. Happily, though, there is a nice, and relatively simple way to put all
the above elements together to describe the solution, and then, as we shall see in Section 5, prove
its optimality via a clean duality proof.

A solution for m = 2. Define R̂(·) to be the concave (ironed) revenue curve corresponding to
revenue curve R(·). We define the following combined revenue curve, depicted in Figure 3. Let

R12(v) :=

{
q1R1(v) + q2R̂2(v) v ≤ r2
q1R1(v) + q2R2(r2) v > r2.

(8)

8



1

p r2

p

1

p

1

p

Figure 2: A two-day case: Suppose that the optimal thing to do on 1-day is to offer a price of p.
In the upper left, we see the corresponding allocation curve a1(v). The bottom left graph shows
the revenue curve R2(·) for 2-day (the thin black curve) and the ironed version R̂2(·) (the thick
blue concave curve). Optimizing for 2-day subject to the inter-day IC constraint

∫ v
0 a1(x)dx ≤∫ v

0 a2(x)dx suggests that the most revenue we can get from a deadline d = 2 customer is R̂2(p)
on 2-day, which can be done by offering the price of p with probability 1/3 and a price of p with
probability 2/3 (since, in this example, p = (1/3)p+ (2/3)p). This yields the pink allocation curve
a2(v) shown in the upper right. The fact that these curves satisfy the inter-day IC constraint
follows from the fact that the area of the two grey rectangles shown in the bottom right are equal.
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Note that because R̂2(·) is the least concave upper bound on R2(·) and by definition of r2 that
R̂2(r2) = R2(r2). The optimal solution is to set

p1 := argmaxvR12(v),

and then take
p2 := r2 if r2 ≤ p1 and E(p2) := p1 otherwise,

where the randomized case is implemented via the lottery as in the example of Figure 2.

The key idea: R12(v) describes the best revenue we can get if we set a price of v for 1-day
shipping as shown in Figure 3. Since r2 is the optimal 2-day price, if we are going to set a price
above r2 for 1-day shipping, then the remaining 2-day optimization problem is unconstrained.
On the other hand, if the 1-day price is below r2, then it would constrain the 2-day price via
the inter-day IC constraint (5), and ironing the 2-day revenue curve may be necessary. This is
precisely what the definition of R12(·) in (8) does for us. The asymmetry between 1-day and
2-day, specifically the fact that the 1-day curve is never ironed, whereas the 2-day curve is, is a
consequence of the inter-day IC constraint (5). We generalize this idea in the next section to solve
the m-day problem.

4 An optimal allocation rule

4.1 Preliminaries

As we discussed regarding the objective, our goal is to choose monotone allocation rules ai(v) for

days 1 ≤ i ≤ m so as to maximize
∑m

i=1 qi
∫ H
0 ϕi(v)fi(v)ai(v)dv.

For a distribution fi(·) on [0, H] with virtual value function ϕi(·) = v− 1−Fi(v)
fi(v)

, define γi(v) :=

qiϕi(v)fi(v). Then we aim to choose ai(v) to maximize
∑m

i=1

∫ H
0 γi(v)ai(v)dv.

Let Γi(v) =
∫ v
0 γi(x)dx. Observe that this function is the negative of the revenue curve, that

is, Γi(v) = −qiRi(v) = −qiv[1− Fi(v)]. 5 Thus, Γi(0) = Γi(H) = 0 and Γi(v) ≤ 0 for v ∈ [0, H].

Definition 1. For any function Γ, define Γ̂(·) to be the lower convex envelope 6 of Γ(·). We say
that Γ̂(·) is ironed at v if Γ̂(v) 6= Γ(v).

Since Γ̂(·) is convex, it is continuously differentiable except at countably many points and its
derivative is monotone (weakly) increasing.

Definition 2. Let γ̂(·) be the derivative of Γ̂(·) and let γ(·) be the derivative of Γ(·).

Claim 1. The following facts are immediate from the definition of lower convex envelope (See
Figure 4.):

• Γ̂(v) ≤ Γ(v) ∀v.

5 Γi(v) = qi
∫ v

0
[xfi(x)− (1− Fi(x))] dx. Integrating the first term by parts gives

∫ v

0
xfi(x) dx = vFi(v) −∫ v

0
Fi(x) dx. Combining this with the second term yields Γi(v) = −qiv(1− Fi(v)).
6 The lower convex envelope of function f(x) is the supremum over convex functions g(·) such that g(x) ≤ f(x)

for all x. Notice that the lower convex envelope of Γ(·) is the negative of the ironed revenue curve R̂(v).
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Figure 3: Left: The scaled revenue curve for deadline 1, q1R1(·). Right: The pink curve is the
scaled revenue curve for deadline 2, q2R2(·). The dotted curve represents the ironed q2R̂2(·). At
any possible 1-day price v, the highest pink point at v is the best revenue that can be obtained
from 2-day shipping given that a price of v is set for 1-day. This is either the revenue from the
ironed curve q2R̂2(v) or, when possible, the revenue of setting a price of r2, which yields q2R2(r2).
The higher green curve is R12(·), the sum of the green curve from the left and the upper pink
envelope, which gives the combined revenue from setting a price of v for 1-day and then doing the
best thing for 2-day shipping.
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• Γ̂(vmin) = Γ(vmin) where vmin = argminvΓ(v). (This implies that there is no ironed interval
containing vmin.)

• γ̂(v) is an increasing function of v and hence its derivative γ̂′(v) ≥ 0 is non-negative for all
v.

• If Γ̂(v) is ironed in the interval [`, h] , then γ̂(v) is linear and γ̂′(v) = 0 in (`, h).

0

h

H

Figure 4: The black curve is Γi(v), and its lower convex envelope Γ̂(v) is traced out by the thick
light blue line. The curve is ironed in the interval [`, h] (among others), so in that interval, Γ̂(v)
is linear, and thus has second derivative equal to 0.

We next define the sequence of functions that we will need for the construction:

Definition 3. Let

Γ≥m(v) := Γm(v) and r≥m := argminvΓ≥m(v).

Inductively, define, for i := m− 1 down to 1,

Γ≥i(v) :=

{
Γi(v) + Γ̂≥i+1(v) v < r≥i+1

Γi(v) + Γ̂≥i+1(r≥i+1) v ≥ r≥i+1

and r≥i := argminvΓ≥i(v).

The derivative of Γ≥i(·) is then

γ≥i(v) :=

{
γi(v) + γ̂≥i+1(v) v < r≥i+1

γi(v) v ≥ r≥i+1

.

Rewriting this yields

γ≥i(v)− γi(v) =

{
γ̂≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

. (9)
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Consider when m = 2. Since Γi(·) is the negative revenue curve for i-day shipping scaled by
the probability qi of drawing a customer with deadline i, then when m = 2, Γ̂2(·) is the scaled,
negative, ironed, revenue curve for i-day shipping, and we aim to minimize it.

Now, we can observe that Γ≥1(v) is precisely the revenue from setting a price of v for 1-day
shipping and optimizing the revenue for 2-day shipping constrained by the price of v set for 1-day
shipping. Under this constraint, the best revenue for 2-day shipping is attained by implementing
the optimal price from the ironed revenue curve for 2-day shipping that is at most v (using a
lottery if needed). Then deadline 2 customers contribute revenue −1 · minp2≤v Γ̂2(p2). Observe
the pink curve in Figure 3: since Γ̂2(·) is concave, the minimum is achieved at min{v, r2}. This
is exactly what Γ≥1(v) accounts for: if v ≤ r2, then we get the revenue from setting a price of v
for 1-day shipping and the ironed revenue of v for 2-day shipping (possibly via lottery), earning
Γ1(v) + Γ̂2(v). If v ≥ r2, then we get the revenue from setting a price of v for 1-day shipping and
from setting the price of r2 for 2-day shipping.

For the general case, intuitively, these combined curves account for the fact that when i-day
shipping’s price is low enough to interfere (with respect to the inter-day IC constraint) with the
prices that we would like to set for options i + 1 through m, we need to consider the problem of
setting all of these prices together. However, when i-day’s price is high enough not to interfere with
the later days, we can just use the optimal choice on days i + 1 through m (from Γ≥i+1(r≥i+1))
and worry about i-day shipping separately. They also take into account the ironing needed to
ensure incentive compatibility.

We can draw an analogy to the ironing in Myerson’s optimal auction for irregular distributions.
Using the ironed curves ensures incentive compatibility and gives an upper bound on the optimal
revenue. Myerson shows that this upper bound is in fact achievable using randomization. Similarly,
our combined and ironed curves yield upper bounds on the revenue, and we show how to actually
achieve these upper bounds by implementing lotteries.

4.2 The allocation rule

We define the allocation curves ai(·) inductively. We use the curve Γ≥i(·) and the constraint from
the (i + 1)-day allocation rule to achieve exactly the revenue that the Γ≥i(·) curves suggest. We
will show later that they are optimal. Each allocation curve is piecewise constant. For 1-day
shipping, set

a1(v) =

{
0 if v < r≥1,

1 otherwise.

Suppose that ai−1 has been defined for some i < m, with jumps at v1, . . . , vk, and values 0 = β0 <
β1 ≤ β2 . . . ≤ βk = 1. That is,

ai−1(v) =


0 if v < v1,

βj vj ≤ v < vj+1 1 ≤ j < k

1 vk ≤ v.

Thus, we can write

ai−1(v) =
k∑
j=1

(βj − βj−1)ai−1,j(v)

13



where

ai−1,j(v) =

{
0 if v < vj

1 v ≥ vj .

Next we define ai(v).

1

1

Figure 5: This figure shows an example allocation curve ai−1(v) in purple, and illustrates some
aspects of Definition 4. The curves Γ≥i(v) and Γ̂≥i(v) are shown directly below the top figure. In
this case, r≥i ∈ [vj+1, vj+2), so j∗ = j + 1. The bottom figure shows how ai,j(v) is constructed
from ai−1,j(v).

Definition 4. Let j∗ be the largest j such that vj ≤ r≥i. For any j ≤ j∗, consider two cases:

• Γ̂≥i(vj) = Γ≥i(vj), i.e. Γ̂≥i not ironed at vj : In this case, define

ai,j(v) =

{
0 if v < vj

1 otherwise.
.
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• Γ̂≥i(vj) 6= Γ≥i(vj): In this case, let

– vj := the largest v < vj such that Γ̂≥i(v) = Γ≥i(v) i.e., not ironed, and

– vj := the smallest v > vj such that Γ̂≥i(v) = Γ≥i(v) i.e., not ironed.

Let 0 < δ < 1 such that
vj = δvj + (1− δ)vj .

Then Γ̂≥i(·) is linear between vj and vj :

Γ̂≥i(vj) = δΓ≥i(vj) + (1− δ)Γ≥i(vj).

Define

ai,j(v) =


0 if v < vj
δ vj ≤ v < vj

1 otherwise.

Finally, set ai(v) as follows:

ai(v) =


∑j∗

j=1(βj − βj−1)ai,j(v) if v < r≥i,

1 v ≥ r≥i.
(10)

Remark: In order to continue the induction and define ai+1(v) we need to rewrite ai(v) in terms
of functions ai,j(v) that take only 0/1 values. This is straightforward.

An Alternate Description: Note that it is equivalent to view ai−1(·) as a randomization over
prices where a price of vj is offered with probability (βj − βj−1). For each possible price vj on
day i− 1, we select the optimal choice for i-day shipping using the negative revenue curve Γ̂≥i(·).
That is, we determine pi,j = argminp≤vj Γ̂≥i(p), which is equal to the best constrained price less
than vj to set for i-day shipping to earn revenue for all deadlines i through m, and we implement
this price pi,j . Note that by convexity, pi,j = min{r≥i, vj}. In the case that pi,j = vj and Γ̂≥i(·)
is ironed at vj , this price is implemented by randomizing over vj with probability δ and vj with
probability 1− δ. We multiply each price (or randomized two prices) for i-day shipping with the
probability that vj was offered for i− 1-day shipping, giving a randomization over prices for i-day
shipping as well, resulting in ai(·).

In Section 3 we mention that for m = 2 days, when the reserve prices are increasing, that
is, r1 < r2, and both distributions F1 and F2 are regular, the optimal mechanism sets a single
price. We now see that the optimal auction sets a price of r≥1 on 1-day. Since F2 is regular, the
negative revenue curve Γ2(·) is convex, so there is no ironing. Then the best 2-day option is always
a price. Furthermore, because F1 is regular and thus Γ1(·) is convex with its minimum r1 < r2,
the minimum r≥1 of Γ≥1 will occur between r1 and r2. Since r≥1 ≤ r2, then the best price on
2-day will be precisely r≥1, so there will be a single price.

Note that for each possible price on day i − 1 we could offer as many as two prices on i-day,
hence there is a trivial upper bound of 2i−1 options for i-day shipping. Saxena et al. [2018] provides
a matching lower bound.
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In the special case that each combined curve Γ≥i(·) is convex for each i, then the allocation rule
will be a deterministic pricing. This occurs when each scales revenue curve is concave, or when
fi(v)ϕi(v) is monotone weakly increasing. This condition is called declining marginal revenues
(DMR).7 However, even in this case, determining the allocation rule is more complicated than
one might imagine at first glance. For example, for three deadlines, the optimal deterministic
mechanism can require 1, 2, or 3 distinct prices, and determining how many prices to use and how
to set them is non-trivial using standard revenue curve approaches. However, our definition of the
curves Γ≥i(·) makes determining the optimal pricing immediate.

Lemma 1. The allocation curves ai(·), for 1 ≤ i ≤ m, are monotone increasing from 0 to 1 and
satisfy the inter-day IC constraints (5). Moreover, each ai(·) changes value only at points where
Γ̂≥i(·) is not ironed.

Proof. That the allocation curves ai(·) are weakly increasing, start out at 0, and end at 1 is
immediate from the fact that they are convex combinations of the monotone allocation curves
ai,j(·). Also, by construction, each ai(·) changes value only at points where Γ̂≥i(v) is not ironed.

So we have only left to verify that∫ v

0
ai−1(x)dx ≤

∫ v

0
ai(x)dx.

From the discussion above, for v ≤ r≥i, we have

ai−1(v) =

j∗∑
j=1

(βj − βj−1)ai−1,j(v) and ai(v) =

j∗∑
j=1

(βj − βj−1)ai,j(v)

since ai−1,j(v) = 0 for v ≤ r≥i and j > j∗. Thus, it suffices to show that for each j ≤ j∗ and
v ≤ r≥i ∫ v

0
ai−1,j(x)dx ≤

∫ v

0
ai,j(x)dx.

If Γ̂≥i is not ironed at vj , then this is an equality. Otherwise, for v ≤ vj , the left hand side is 0
and the right hand side is nonnegative. For vj ≤ v ≤ vj the left hand side is (v − vj), whereas
the right hand side is δ(v − vj). Rearranging the inequality vj = δvj + (1− δ)vj ≥ δvj + (1− δ)v
implies that v − vj ≤ δ(v − vj). This completes the proof that (5) holds.

Notice that
∫ v
0 ai−1,j(x)dx =

∫ v
0 ai,j(x)dx for v < vj and v > vj , so ai−1(v) = ai(v) unless Γ≥i

is ironed at v, or v ≥ r≥i. We will use this fact in the proof of Claim 4 below.

5 Proof of optimality

In this section, we prove that the allocation rules and pricing of the previous section are optimal.
To this end, we formulate our problem as an (infinite) linear program. We discussed the objective
and constraints of the primal program in Section 2, and we have already shown above that our
allocation rules are feasible for the primal program. We then construct a dual program, and a
feasible dual solution for which complementary slackness holds. This implies strong duality holds,
and thus, that our solution is optimal.

7A one-dimensional distribution F satisfies Declining Marginal Revenues if v(1?F (v)) is concave. See Devanur
et al. [2017] for examples and more discussion. For an example, uniform distributions are DMR, along with any
distribution of bounded support and monotone non-decreasing density.
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5.1 The linear programming formulation

Recall the definitions from Section 2: The function γi(v) is the derivative of Γi(v) =
∫ v
0 qiϕi(x)fi(x) dx,

where ϕi(v) = v − 1−Fi(v)
fi(v)

is the i-day virtual value function and qi is the fraction of bidders with

deadline i. Similarly γ̂i(v) is the derivative of Γ̂i(v). We use [m] to denote the set of integers
{1, . . . ,m}.

The Primal

Variables: ai(v), for all i ∈ [m], and all v ∈ [0, H].

Maximize
m∑
i=1

∫ H

0
ai(v)γi(v)dv

Subject to∫ v

0
ai(x)dx−

∫ v

0
ai+1(x)dx ≤ 0 ∀i ∈ [m− 1] ∀v ∈ [0, H] (dual variables αi(v))

ai(v) ≤ 1 ∀i ∈ [m] ∀v ∈ [0, H] (dual variables bi(v))

−a′i(v) ≤ 0 ∀i ∈ [m] ∀v ∈ [0, H] (dual variables λi(v))

ai(v) ≥ 0 ∀i ∈ [m] ∀v ∈ [0, H].

Note that a′i(v) denotes d
dvai(v).

The Dual

Variables: bi(v), λi(v), for all i ∈ [m], and all v ∈ [0, H], αi(x) for i ∈ [m− 1] and all x ∈ [0, H].

Minimize

∫ H

0
[b1(v) + · · ·+ bm(v)] dv

Subject to

b1(v) + λ′1(v) +

∫ H

v
α1(x)dx ≥ γ1(v) ∀v ∈ [0, H] (primal var a1(v))

bi(v) + λ′i(v) +

∫ H

v
αi(x)dx−

∫ H

v
αi−1(x)dx ≥ γi(v) ∀v ∈ [0, H], i = 2, . . . ,m− 1

(primal var ai(v))

bm(v) + λ′m(v)−
∫ H

v
αm−1(x)dx ≥ γm(v) ∀v ∈ [0, H] (primal var am(v))

λi(H) = 0 ∀i ∈ [m]

αi(v) ≥ 0 ∀v ∈ [0, H], i ∈ [m− 1]

bi(v), λi(v) ≥ 0 ∀i ∈ [m]∀v ∈ [0, H].

Note that λ′i(v) denotes d
dvλi(v).
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5.2 Conditions for strong duality

As long as there are feasible primal and dual solutions satisfying the following conditions, strong
duality holds. See Appendix A for a proof that these conditions are sufficient.

ai(v) > 0 ⇒ λi(v) continuous at v i ∈ [m] (11)

ai(v) < 1 ⇒ bi(v) = 0 i ∈ [m] (12)

a′i(v) > 0 ⇒ λi(v) = 0 i ∈ [m] (13)∫ v

0
ai(x)dx <

∫ v

0
ai+1(x)dx ⇒ αi(v) = 0 i ∈ [m− 1] (14)

bi(v) + λ′i(v) +

∫ H

v
αi(x)dx−

∫ H

v
αi−1(x)dx > γi(v) ⇒ ai(v) = 0 i = 2, . . . ,m− 1 (15)

b1(v) + λ′1(v) +

∫ H

v
α1(x)dx > γ1(v) ⇒ a1(v) = 0 (16)

bm(v) + λ′m(v)−
∫ H

v
αm−1(x)dx > γm(v) ⇒ am(v) = 0 (17)

We allow a′i(v) ∈ R ∪ {+∞}, otherwise we could not even encode a single-price auction.8

5.3 The proof

Theorem 1. The allocation curves presented in Subsection 4.2 are optimal, that is, obtain the
maximum possible expected revenue.

Proof. To prove the theorem, we verify that there is a setting of feasible dual variables for which
all the conditions for strong duality hold. To this end, set the variables as follows:

λi(v) = Γ≥i(v)− Γ̂≥i(v) (18)

bi(v) =

{
0 v < r≥i

γ̂≥i(v) v ≥ r≥i
(19)

αi(v) =

{
γ̂′≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

(20)

The dual variables are selected precisely to satisfy complementary slackness conditions and
therefore ensure optimality.

The dual variable λi(·) corresponds to the monotonicity constraint on ai(·) in the primal. Since
Γ≥i(·) is the curve used to set ai, it is intuitive the dual variable λi(v) corresponds to how much
we needed to iron Γ≥i(v) for ai(·) to be monotone at v.

There are m constraints (other than non-negativity) in the dual program, one corresponding
to each deadline. We set them so that the constraint for m-day shipping is satisfied with equality.

8 In particular, ai(v) may have (countably many) discontinuities, in which points a′i(v) = +∞ > 0. However,
in our proof of optimality a′i(v) appears only as a factor of the product a′i(v)λi(v). Every time a′i(v) = +∞, the
corresponding dual value of λi(v) is 0—by condition (13). See also Appendix A.
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We can then add constraints m and m− 1, and the remaining set of m− 1 constraints correspond
precisely to an m− 1 deadline problem. Herein lies the basis for the induction.

From Claim 1, it follows that λi(v), αi(v) ≥ 0 for all v and i. Since r≥i is the minimum of
Γ̂≥i(·), we have γ̂≥i(r≥i) = 0. Moreover, since γ̂≥i(·) is increasing, bi(v) ≥ 0 for all v and i.

Taking the derivative of (18), and using Equation (9), we obtain:

γi(v)− λ′i(v) =

{
γ̂≥i(v)− γ̂≥i+1(v) v < r≥i+1

γ̂≥i(v)− 0 v ≥ r≥i+1

(21)

γm(v)− λ′m(v) = γ̂m(v) (22)

Also, using (20) and the fact that γ̂≥i+1(r≥i+1) = 0, we get:

Ai(v) :=

∫ H

v
αi(x) dx =

{
−γ̂≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

(23)

Condition (11) from Section 5.2 holds since Γ≥i(v) and Γ̂≥i(v) are both continuous functions. The
proofs of all remaining conditions for strong duality from Section 5.2 can be found below.

Claim 2. Condition (12): For all i and v, ai(v) < 1 =⇒ bi(v) = 0.

Proof. If ai(v) < 1, then v < r≥i, so by construction, bi(v) = 0.

Claim 3. Condition (13): For all i and v, a′i(v) > 0 =⇒ λi(v) = 0.

Proof. From Subsection 4.2, a′i(v) > 0 only for unironed values of v, at which λi(v) = 0.

Claim 4. Condition (14): For all i and v,
∫ v
0 ai(x)dx <

∫ v
0 ai+1(x)dx =⇒ αi(v) = 0.

Proof. As discussed at the end of the proof of Lemma 1,
∫ v
0 ai(x)dx =

∫ v
0 ai+1(x)dx unless Γ≥i+1

is ironed at v, or v ≥ r≥i. In both of these cases αi(v) = 0 (by part 4 of Claim 1 and Definition 20,
respectively).

Claim 5. Conditions (15)- (17) and dual feasibility: For all i and v, ai(v) > 0 =⇒ the corre-
sponding dual constraint is tight, and the dual constraints are always feasible.

Proof. Rearrange the dual constraint bi(v) +Ai(v)−Ai−1(v) + λ′i(v) ≥ γi(v) to

bi(v)−Ai−1(v) ≥ γi(v)− λ′i(v)−Ai(v).

Fact 1: For i ∈ [m− 1], γi(v)− λ′i(v)−Ai(v) = γ̂≥i(v) for all v. To see this use (21) and (23):

γi(v)− λ′i(v) =

{
γ̂≥i(v)− γ̂≥i+1(v) v < r≥i+1

γ̂≥i(v)− 0 v ≥ r≥i+1

Ai(v) =

{
−γ̂≥i+1(v) v < r≥i+1

0 v ≥ r≥i+1

Fact 2: For i ∈ {2, . . . ,m}, bi(v)−Ai−1(v) = γ̂≥i(v) for all v.

bi(v) =

{
0 v < r≥i

γ̂≥i(v) v ≥ r≥i
−Ai−1(v) =

{
γ̂≥i(v) v < r≥i

0 v ≥ r≥i
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Hence for i ∈ {2, . . . ,m− 1}, bi(v)−Ai−1(v) = γi(v)− λ′i(v)−Ai(v) for all v.
For i = m, since γ≥m = γm, and γm(v)− λ′m(v) = γ̂m(v). Combining this with Fact 2 above,

we get that bm(v)−Am−1(v) + λ′m(v) = γm(v) for all v.
Finally, for i = 1, using Fact 1, for v < r≥1, we get

b1(v) = 0 ≥ γ̂≥1(v) = γ1(v)− λ′1(v)−A1(v)

which is true for v < r≥1. For v ≥ r≥1, we get

b1(v) = γ≥1(v) = γ1(v)− λ′1(v)−A1(v),

so the dual constraint is tight when a1(v) > 0 as this starts at r≥1.

The above claims prove that this dual solution satisfies feasibility and all complementary
slackness and continuity conditions from Section 5.2 hold.

6 Closed-Form Virtual Values

By taking the partial Lagrangian of our primal from subsection 5.1, we can view the optimal mech-
anism as an expected virtual welfare maximizer. By plugging in our closed-form dual variables,
we produce closed-form virtual value functions. We use our above approach combined with the
approximation of Cai et al. [2016], only used for optimal revenue instead of approximation.

We multiply each constraint (aside from feasibility) by its dual variable and move it into the
objective function, minimizing over these non-negative dual variables. The basics of Lagrangian
duality are outlined in Appendix B. The resulting partial Lagrangian primal is:

max
ai(v)∈[0,1]

min
λi(v),αi(v)≥0

L(a, λ)

where

L(a, λ) :=
m∑
i=1

∫ H

0
ai(v)γi(v)dv +

m−1∑
i=1

∫ v

0
αi(v)

[∫ v

0
ai+1(x)dx−

∫ v

0
ai(x)dx

]
dv

+
m∑
i=1

∫ v

0
λi(v)

[
a′i(v)

]
dv

Recall that Ai(v) =
∫ H
v αi(x)dx. Then, using this notation, as well as integration by parts on the

λ terms, and aggregating the a terms, we can rewrite L as follows. (This is similar to the steps
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Figure 6: This figure illustrates what some of the dual variables might be for the case of two
days when r≥1 < r2. The upper figure plots the functions γ̂12(v) and γ̂2(v), and the lower figure

shows b1(v) in dark grey, b2(v) in pink and A1(v) =
∫ H
v α1(x)dx in green. Note that up to r2, the

function A1(v) = −γ̂2(v).

we take in the proof of strong duality in Appendix A.)

L(a, λ) =

∫ H

0

[
a1(v)γ1(v) + λ1(v)a′1(v)− a1(v)A1(v)

]
dv

+

m−1∑
i=2

∫ H

0

[
ai(v)γi(v) + λi(v)a′i(v) + ai(v)Ai−1(v)− ai(v)Ai(v)

]
dv

+

∫ H

0

[
am(v)γm(v) + λm(v)a′m(v) + am(v)Am−1(v)

]
dv

=

∫ H

0
f1(v)a1(v)

[
γ′1(v)

f1(v)
− λ′1(v)

f1(v)
− A1(v)

f1(v)

]
dv

+
m−1∑
i=2

∫ H

0
fi(v)ai(v)

[
γ′i(v)

fi(v)
− λ′i(v)

fi(v)
− Ai(v)

fi(v)
+
Ai−1(v)

fi(v)

]
dv

+

∫ H

0
fm(v)am(v)

[
γ′m(v)

fm(v)
− λ′m(v)

fm(v)
+
Am−1(v)

fm(v)

]
dv
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This gives that L is equal to expected virtual welfare for the following virtual values:

φi(v) =
γ′i(v)

fi(v)
− λ′i(v)

fi(v)
− Ai(v)

fi(v)
+
Ai−1(v)

fi(v)
for i ∈ {2, . . . ,m− 1},

φ1(v) =
γ′1(v)

f1(v)
− λ′1(v)

f1(v)
− A1(v)

f1(v)
, and φm(v) =

γ′m(v)

fm(v)
− λ′m(v)

fm(v)
+
Am−1(v)

fm(v)
.

Recall that our partial Lagrangian primal is of the form

max
ai(v)∈[0,1]

min
λi(v),αi(v)≥0

L(a, λ) = max
ai(v)∈[0,1]

min
λi(v),αi(v)≥0

m∑
i=1

fi(v)ai(v)φi(v).

Note that φ depends on λ, α, and we must find the variables that minimize these functions. We
plug in our optimal dual variables from our closed-form solution to FedEx, giving closed-form
virtual values:

φ1 = γ̂1(v)/f1(v) and φi =

{
0 v < r≥i

γ̂≥i(v)/fi(v) v ≥ r≥i
for i ∈ {2, . . . ,m}.

Then, the allocation rule that maximizes expected virtual welfare for these virtual value functions
is precisely the optimal mechanism. Note that because our closed-form solution exists, strong
duality holds, so the Lagrangian primal is not relaxed.

7 Interdimensional Settings

Many other natural problems fall into this category of “interdimensional” as well. Consider a
buyer with a value for an item and a private budget b which is the most that he can pay [Devanur
and Weinberg, 2017]. Or, suppose a buyer has a value v for each unit of an item up to some
private demand capacity d [Devanur et al., 2017].

We highlight now some of the features of the FedEx setting that are common also to the single-
minded setting in [Devanur et al., 2019], as well as these other interdimensional settings. These
properties also help to explain why duality techniques gain traction.

• Every allocation rule (which lists, for each (value, deadline) pair, a probability of receiving
each of the three items) can be “collapsed” to simply list, for each (value, deadline) pair, a
single probability (of receiving a satisfying item).

• Local Incentive Compatibility (IC) constraints imply global IC constraints. That is, any
auction satisfying all local IC constraints is also globally IC.

• A payment identity applies: a simple closed form determines payments as a function of the
allocation rule.

Of course, these three properties are intertwined: without a collapsible allocation rule, no
closed-form payment identity is possible.

There are other commonalities as well. In each of these settings, it has been shown (in this
paper, Devanur et al. [2019], [DW ’17], and [DHP ’17]) that the optimal mechanism is deterministic
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when the marginal distributions satisfy declining marginal revenues (DMR). These works also show
that the degree of randomization (the menu complexity) of the optimal mechanism is larger than
that in single-dimensional settings, but smaller than in multi-dimensional settings, for the FedEx,
budgets, and the single-minded settings.
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A Proof of strong duality

Theorem 2. Let ai(·), bi(·), λi(·), αi(·) be functions feasible for the primal and dual, satisfying
all the conditions from Section sec:CS. Then they are optimal.

Proof. First, we prove weak duality. For any feasible primal and dual:∫ H

0

m∑
i=1

bi(v) dv (24)

=

∫ H

0

m∑
i=1

(1 · bi(v) + 0 · [λi(v) + αi(v)]) dv. (25)

Applying primal feasibility, we see that this quantity is

≥
∫ H

0

m∑
i=1

(
ai(v)bi(v))− a′i(v)λi(v) +

[∫ v

0
ai(x)− ai+1(x)dx

]
αi(v)

)
dv. (26)

We rewrite this expression using the following.

• Applying integration by parts,using the facts that λi(·) is continuous (Condition (11)) and
equal to 0 at any point that a′i(v) =∞,9 we get

−
∫ H

0
a′i(v)λi(v) dv = −ai(v)λi(v)

∣∣∣H
0

+

∫ H

0
ai(v)λ′i(v) dv =

∫ H

0
ai(v)λ′i(v) dv,

since ai(0) = 0 and λi(H) = 0.

• Second, interchanging the order of integration, we get∫ H

0

∫ v

0
[ai(x)− ai+1(x)dx]αi(v) dv =

∫ H

0

(
ai(v)

∫ H

v
αi(x) dx− ai+1(v)

∫ H

v
αi(x) dx

)
dv.

Combining these shows that (26) equals∫ H

0

(
m∑
i=1

ai(v)

[
bi(v) + λ′i(v) +

∫ H

v
αi(x)−

∫ H

v
αi−1(x) dx

])
dv

≥
∫ H

0

H∑
i=1

ai(v)γi(v) dv (27)

where the last inequality is dual feasibility. (Note that α0(·) = αm(·) = 0.)

Comparing (24) and (27) yields weak duality, i.e.,
∑

i

∫ H
0 bi(v) dv ≥

∑
i

∫ H
0 ai(v)γi(v) dv.

If the conditions (11)-(17) hold, we also have strong duality and hence optimality: To show
that (25) = (26), observe that

• (12) ai(v) < 1 implies that bi(v) = 0;

• (13) a′i(v) > 0 implies that λi(v) = 0.

• (14)
∫ v
0 (ai+1(x)− ai(x))dx > 0 implies that αi(v) = 0 for i = 1, . . . , n− 1.

Finally, (27) is an equality rather than an inequality because of conditions (15)-(17).

9a′i(v) can be ∞ at only countably many points.
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B Lagrangian Duality

In this section, we provide the basics surrounding formulating a partial Lagrangian primal and
taking its dual, and understanding the properties of duality.

We begin with a standard maximization problem subject to constraints, which we call the full
primal. The set P here denotes feasibility constraints, while x represents whatever our primal
variables are.

Full primal:

max f(x)

s.t. Ax ≤ b (dual variable λ)

x ∈ P

We denote the optimal solution to the full primal as x∗; that is, x∗ ∈ argmaxAx≤b,x∈Pf(x).
We now form the partial Lagrangian primal by using the Lagrangian multiplier λi for each

constraint of the form (Ax)i ≤ bi and moving it into the objective, where we now minimize over
the multipliers λ. We leave all of the feasibility constraints as is, and define L(x;λ) as this new
objective.

Lagrangian Primal:

max
x∈P

min
λ≥0

L(x;λ) = max
x∈P

min
λ≥0

f(x) + λT (b−Ax)

By reversing the order of the max and the min, we obtain the dual minimization problem. We
notate this dual problem as D(λ).

Lagrangian Dual:

min
λ≥0

D(λ) = min
λ≥0

max
x∈P

f(x) + λT (b−Ax)

We denote the optimal dual solution as λ∗ ∈ argminλ≥0D(λ).
We say that x, λ satisfy complementary slackness if λi ≥ 0 =⇒ bi − (Ax)i = 0.

Relaxation. First, we observe that the (partial) Lagrangian Primal is in fact a relaxation of the
full primal. For any feasible x, λ—that is, Ax ≤ b, x ∈ P, and λ ≥ 0—then f(x) ≤ L(x;λ).

Weak Duality. The value of the full primal is always upper-bounded by the value of the dual
problem. Specifically, the value of the full primal is at most f(x∗) by definition, and any feasible
dual solution must satisfy λ ≥ 0, so the dual objective is larger: f(x∗) ≤ D(λ).

Proof.

f(x∗) ≤ f(x∗) + λT (b−Ax∗) λ ≥ 0, Ax∗ ≤ b
≤ max

x∈P
f(x) + λT (b−Ax) x∗ ∈ P

= D(λ)
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Strong Duality. Strong duality implies that the value of the full primal is equal to the value
of the Lagrangian primal, and this is equal to the value of the Lagrangrian dual, when they are
all at their optimal solutions. However, strong duality is not a given. We see below that if strong
duality holds, there must exist a pair of primal, dual solutions that are optimal. Further, if there
exist an optimal pair, then strong duality must hold. Either condition is sufficient to show the
other exists.

An Optimal Pair implies Strong Duality. For any choice of dual variables λ̂, if there exists
x̂ that forms an optimal pair with λ̂, that is, x̂ such that:

1. x̂ ∈ argmaxx∈PL(x; λ̂) (x̂ is optimal)

2. Ax̂ ≤ b (x̂ satisfies the Lagrangified constraints)

3. x̂, λ̂ satisfy complementary slackness

then strong duality holds, that is, D(λ̂) = f(x∗).

Proof.

D(λ̂) = max
x∈P
L(x, λ̂)

= f(x̂) + λ̂∗(b−Ax̂) by (1)

= f(x̂) by (3)

≤ f(x∗) by (2), x ∈ P

Strong Duality implies an Optimal Pair. If strong duality holds, that is, minλ≥0D(λ) =
f(x∗), then there exists x̂ such that

1. x̂ ∈ argmaxxL(x;λ∗)

2. Ax̂ ≤ b

3. x̂, λ∗ satisfy complementary slackness

4. f(x̂) = f(x∗).

Proof. From weak duality, we know that

min
λ≥0

D(λ) = D(λ∗) ≥ L(x∗, λ∗) ≥ f(x∗).

These inequalities must all hold with equality for the premise to hold. The first inequality’s tight-
ness implies condition (1), and the second inequality’s tightness implies condition (3). Condition
(2) is true by the definition of x∗.

For further background on Lagrangian duality, see [Rockafellar, 1974].
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