
Probability and Computing Hilary 2017

Exercise Sheet 2

Elias Koutsoupias (with thanks to Stefan Kiefer and Stanislav Živný)

1. Let A be a randomised algorithm and F a function such that A either returns F (x) or timeout
on any input x. Assume that there exists p > 0 such that for all inputs x, A returns F (x)
with probability at least p. Give an algorithm A′ that almost surely (i.e., with probability
1) returns F (x) on input x and whose expected running time is within a constant of the
expected running time of A.

2. Let A be a randomised algorithm and F a function such that A returns F (x) on any input x.
Furthermore suppose that the expected running time of A is O(n), where n denotes the input
size. Note that we only know the expected running time; the actual running time may vary
arbitrarily. For example, the running time may be exponential in n for some inputs. Give an
algorithm that is guaranteed to terminate in time O(n) for every input, and which on input
x outputs F (x) with probability at least 0.99 and otherwise returns timeout.

3. Suppose there are two integer multisets respectively stored in arrays A[1..n] and B[1..n].
We want to determine whether the two sets are identical, i.e., each element has the same
multiplicity in both A and B.

(a) Describe a deterministic algorithm for testing equality of multisets with complexity
O(n lg n).

(b) Give a reduction of the multiset-equality problem to polynomial identity testing.

(c) Over which field would you define and evaluate your polynomials in Part (b)?

4. Let a1, a2, . . . , an be a list of n distinct numbers. We say that ai and aj are inverted if i < j
but ai > aj . The Bubblesort algorithm works by swapping adjacent inverted numbers until
there are no inverted numbers. Suppose that the input to Bubblesort is a permutation
chosen uniformly at random from any of the n! permutations of the n distinct numbers.
Determine the expected number of swaps performed by Bubblesort.

5. Consider the following algorithm RandomSelect for finding the kth smallest element of an
unsorted set S of size n:

RandomSelect(S, k)

Pick an element p ∈ S at random

By comparing p to each element of S, compute

S1 := {x ∈ S | x < p}
S2 := {x ∈ S | x > p}

If |S1| = k − 1 then output p

If |S1| > k − 1 then output RandomSelect(S1, k)

1

If |S1| < k − 1 then output RandomSelect(S2, k − |S1| − 1)

Let T (n, k) denote the expected time (number of comparisons) required by RandomSelect
to find the kth smallest element of a set of size n, and let T (n) = maxk T (n, k). Show that
T (n) is at most 4n.

[Hint: Establish a recurrence for T (n).]

6. The analysis of the algorithm for MAX-3-SAT showed that a random truth assignment sat-
isfied a 7/8-fraction of the clauses in expectation. Using Markovs inequality, show that for
0 < ε ≤ 7/8, repeating the randomized algorithm t = O(1/ε) times and taking the best of
the t solutions satisfies at least (7/8− ε)-fraction of the clauses with probability at least 1/2.

2

