Exercise Sheet 3

Elias Koutsoupias (with thanks to Stefan Kiefer and Stanislav Živný)

- 1. Suppose you are given a biased coin that has Pr(Heads) = p for some unknown p. Given $\varepsilon > 0$ describe a random experiment that with probability at least 0.99 tells you the value of p to within ε . Justify your answer.
- 2. Suppose that we can obtain t independent samples X_1, X_2, \ldots, X_t of a random variable X and that we want to use $\sum_{i=1}^{t} X_i/t$ as an estimate of $\mathbf{E}[X]$. We want the estimate to be within $\varepsilon \mathbf{E}[X]$ of the true value with probability at least 1δ . We may not be able to use Chernoff's bound directly if X is not a 0-1 random variable. We develop an alternative approach that requires only a bound on $\mathbf{Var}[X]$. Let $r = \frac{\sqrt{\mathbf{Var}[X]}}{\mathbf{E}[X]}$.
 - (a) Show using Chebyshev's inequality that $O(\frac{r^2}{\varepsilon^2 \delta})$ samples are sufficient to solve the above problem.
 - (b) Suppose that we only need a weak estimate that is within $\varepsilon \mathbf{E}[X]$ with probability at least 3/4. Briefly argue that $O(\frac{r^2}{\varepsilon^2})$ samples suffice.
 - (c) Show that by taking the median of $O(\log(1/\delta))$ weak estimates, we can obtain an estimate within $\varepsilon \mathbf{E}[X]$ of $\mathbf{E}[X]$ with probability at least 1δ . Conclude that we only need $O(\frac{r^2 \log(1/\delta)}{\varepsilon^2})$ samples.

[Hint: Apply a Chernoff bound to a suitable family of 0-1 random variables.]

- 3. We prove that the Randomized Quicksort algorithm sorts a set U of n numbers in time $O(n \log n)$ with high probability. Consider the following view of Randomized Quicksort. Every point in the algorithm where it decides on a pivot element is called a *node*. Suppose the size of the set to be sorted at a particular node is s. The node is called *good* if the pivot divides the set into two parts, each of size no more than 2s/3. Otherwise the node is called *bad*. The nodes can be thought of as forming a tree, following the recursive nature of the algorithm.
 - (a) Give an upper bound on the number of good pivot elements along any path in the recursion tree from the root to a leaf.
 - (b) Fix an element $k \in U$. Give an upper bound on the length of the path in the recursion tree from the root to the node labelled k that holds with high probability.
 - (c) Conclude that the running time of Quicksort is $O(n \log n)$ with high probability.