1. Let A be a randomised algorithm with running time $O(T(n))$ and F a function such that A either returns $F(x)$ or \texttt{timeout} on any input x. Assume that there exists a constant $p > 0$ such that for all inputs x, A returns $F(x)$ with probability at least p. Give an algorithm A' that almost surely (i.e., with probability 1) returns $F(x)$ on input x and whose expected running time is $O(T(n)/p) = O(T(n))$.

2. Let a_1, a_2, \ldots, a_n be a list of n distinct numbers. We say that a_i and a_j are inverted if $i < j$ but $a_i > a_j$. The \texttt{Bubblesort} algorithm works by swapping adjacent inverted numbers until there are no inverted numbers. Suppose that the input to \texttt{Bubblesort} is a permutation chosen uniformly at random from any of the $n!$ permutations of the n distinct numbers. Determine the expected number of swaps performed by \texttt{Bubblesort}.

3. Consider the following algorithm \texttt{RandomSelect} for finding the kth smallest element of an unsorted set S of size n:

\begin{verbatim}
RandomSelect(S, k)
 Pick an element $p \in S$ at random
 By comparing p to each element of S, compute
 $S_1 := \{x \in S \mid x < p\}$
 $S_2 := \{x \in S \mid x > p\}$
 If $|S_1| = k - 1$ then output p
 If $|S_1| > k - 1$ then output \texttt{RandomSelect}(S_1, k)
 If $|S_1| < k - 1$ then output \texttt{RandomSelect}(S_2, k - |S_1| - 1)
\end{verbatim}

Let $T(n, k)$ denote the expected time (number of comparisons) required by \texttt{RandomSelect} to find the kth smallest element of a set of size n, and let $T(n) = \max_k T(n, k)$. Show that $T(n)$ is at most $4n$.

[\textit{Hint}: Establish a recurrence for $T(n)$.]}

4. The analysis of the algorithm for MAX-3-SAT showed that a random truth assignment satisfied a $7/8$-fraction of the clauses in expectation. Using Markov’s inequality, show that for $0 < \epsilon \leq 7/8$, repeating the randomized algorithm $t = O(1/\epsilon)$ times and taking the best of the t solutions satisfies at least $(7/8 - \epsilon)$-fraction of the clauses with probability at least $1/2$.

5. A matching in a graph is a set of edges without common vertices. In the Maximum Bipartite Matching problem, we are given a bipartite graph $G(L \cup R, E)$ and we want to find a matching of
maximum cardinality. Consider the following randomised algorithm for this problem: Each edge is selected independently with probability p. All edges that have common points are discarded. Assume that the bipartite graph has $|L| = |R| = n$ and that every vertex has degree 3.

- What is the expected cardinality of the matching returned by the algorithm as a function of p?
- Find the value of p that maximises the expected cardinality of the matching. What is the approximation ratio of this algorithm?
- Show how to derandomise the algorithm.

6. Consider the undirected graph $G(V,E)$ of a social network with n members, where the nodes are the members of the network and edges indicate friendship. For a node u, let d_u indicate the degree of u (the number of its friends).

(a) Show that for a random variable X: $E[X^2] \geq E[X]^2$.

(b) Explain the “friendship paradox”, which roughly says that on expectation people have fewer friends than their friends have. More precisely, select a node u uniformly at random and consider the expected number x of the friends of its friends (defined formally as the sum of the degrees of u’s friends). If the friends of u had exactly the same number of friends as u, this number x would be d_u^2. Show that $x \geq E[d_u]^2$. The friendship paradox is that this is strict inequality for typical networks. Give a small network in which this is strict inequality.

(c) We want to pay a subset P of the members of the network to post a message with the goal of influencing as many members of the network as possible. Let S_P denote the set of influenced members:

$$S_P = \{v : \exists u \in P \text{ such that } [u,v] \in E\}.$$

Note that it is possible for a node to get a payment and not to be influenced.

Finding the optimal subset P, among the subsets of a given cardinality, seems like a hard problem so we will run a randomised algorithm that selects nodes with probability proportional to their degree. Specifically, fix some parameter $w \in (0, 1/d)$, where d is the maximum degree of the network. Consider a random subset P of the network created by selecting each member u with probability wd_u, independently.

Suppose that all the nodes of the network have the same degree d and $w = \varepsilon/d^2$, for some constant $\varepsilon \in (0, d)$. Show that the algorithm achieves a constant approximation ratio, with respect to the optimal algorithm which selects the best wdn nodes to maximise the number of influenced members.

(d) Explain how to use the method of conditional expectations method to derandomise the algorithm and obtain a polynomial-time deterministic algorithm that has the same or better performance than the randomised algorithm.