Probability and Computing Hilary Term 2019 Exercise Sheet 3

- 1. Consider a sequence of n unbiased coin flips and let X be the length of the longest contiguous sequence of heads. Show that
 - (a) $\mathbb{P}(X \ge 2\log n) \le \frac{1}{n}$
 - (b) $\mathbb{P}(X < \log n 2\log \log n) \le \frac{1}{n}$.

to conclude that $E[X] = \Theta(\log n)$.

- 2. Suppose you are given a biased coin that has $\mathbb{P}(\text{Heads}) = p$ for some unknown p. Given $\varepsilon > 0$ describe a random experiment that with probability at least 0.99 tells you the value of p to within ε . Justify your answer.
- 3. The analysis of the algorithm for MAX-3-SAT showed that a random truth assignment satisfied a 7/8fraction of the clauses in expectation. Using Markov's inequality, show that for $0 < \epsilon \leq 7/8$, repeating the randomized algorithm $t = O(1/\epsilon)$ times and taking the best of the t solutions satisfies at least $(7/8 - \epsilon)$ -fraction of the clauses with probability at least 1/2.
- 4. Suppose that we can obtain t independent samples X_1, X_2, \ldots, X_t of a random variable X and that we want to use $\sum_{i=1}^t X_i/t$ as an estimate of $\mathbb{E}[X]$. We want the estimate to be within $\varepsilon \mathbb{E}[X]$ of the true value with probability at least 1δ . We may not be able to use Chernoff's bound directly if X is not a 0-1 random variable. We develop an alternative approach that requires only a bound on $\mathbb{V}ar[X]$. Let $r = \frac{\sqrt{\mathbb{V}ar[X]}}{\mathbb{E}[X]}$.
 - (a) Show using Chebyshev's inequality that $O\left(\frac{r^2}{\varepsilon^2\delta}\right)$ samples are sufficient to solve the above problem.
 - (b) Suppose that we only need a weak estimate that is within $\varepsilon \mathbb{E}[X]$ with probability at least 3/4. Briefly argue that $O(\frac{r^2}{\varepsilon^2})$ samples suffice.
 - (c) Show that by taking the median of $O(\log(1/\delta))$ weak estimates, we can obtain an estimate within $\varepsilon \mathbb{E}[X]$ of $\mathbb{E}[X]$ with probability at least 1δ . Conclude that we only need $O(\frac{r^2 \log(1/\delta)}{\varepsilon^2})$ samples. [Hint: Apply a Chernoff bound to a suitable family of 0-1 random variables.]
- 5. We prove that the Randomized Quicksort algorithm sorts a set U of n numbers in time $O(n \log n)$ with high probability. Consider the following view of Randomized Quicksort. Every point in the algorithm where it decides on a pivot element is called a *node*. Suppose the size of the set to be sorted at a particular node is s. The node is called *good* if the pivot divides the set into two parts, each of size no more than 2s/3. Otherwise the node is called *bad*. The nodes can be thought of as forming a tree, following the recursive nature of the algorithm.
 - (a) Give an upper bound on the number of good pivot elements along any path in the recursion tree from the root to a leaf.

- (b) Fix an element $k \in U$. Give an upper bound on the length of the path in the recursion tree from the root to the node labelled k that holds with high probability.
- (c) Conclude that the running time of Quicksort is $O(n \log n)$ with high probability.