
M
A

E
G
NS

I
T A T

MOLEM

U
N IVERSITAS  WARWICENSIS

Non-Markovian Network Epidemics

by

Fergus Cooper

Thesis

Submitted to The University of Warwick

Mathematics Institute

April, 2013



Contents

1 Introduction 1

1.1 Stochastic or continuum model? . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Project outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The K-M SIR model 4

2.1 Underlying stochastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Deterministic ODE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Initial epidemic growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Final epidemic size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Solving the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Simulation of dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Non-markovian SIR model 8

3.1 Handling a new infection variable . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The new deterministic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Analytic solution of the PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Initial epidemic growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 DDE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Simulation of dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Comparison with the K-M SIR model . . . . . . . . . . . . . . . . . . . . . . 13

4 Pairwise SIR model 14

4.1 Graphs and pairwise variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Constructing the deterministic pairwise SIR model . . . . . . . . . . . . . . 15
4.3 Closure assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Initial growth rate and final epidemic size . . . . . . . . . . . . . . . . . . . . 17
4.5 Solving the pairwise SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Pairwise non-markovian SIR model 18

5.1 Deriving the non-markovian pairwise SIR PDE model . . . . . . . . . . . . 18
5.2 Full set of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Initial epidemic growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 History functions for DDE model . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5 DDE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Conclusions and extensions 23

6.1 What do these different models tell us? . . . . . . . . . . . . . . . . . . . . . 23
6.2 Where can we go from here? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Appendix A: Matlab and Mathematica code 25

7.1 K-M SIR simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Non-markovian SIR simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Sample use of NDSolve for DDE system . . . . . . . . . . . . . . . . . . . . . 27
7.4 Sample use of ode45 for ODE system . . . . . . . . . . . . . . . . . . . . . . . 27

ii



1 Introduction

Mathematical modelling of epidemics is a large and growing research area. Understanding

the spread of infectious disease allows us to develop improved control measures which help

to save lives. One particularly well established epidemiological model, and the one on

which this report focusses, is the so-called SIR (susceptible–infected–recovered) model.

First proposed by Kermack and McKendrick in 1927[1], the model attempted to cap-

ture the phenomenon that, during epidemics, infection rises rapidly then falls. The sim-

plicity of the model allows relative ease in understanding its behaviour, and yet in certain

circumstances it has been shown to provide a remarkable fit with actual infection data. In

the original 1927 paper, Kermack and McKendrick demonstrated this with plague deaths

recorded among the human population of Bombay between December 17, 1905 and July

21, 1906. Although the model is not seen frequently in the literature until a paper by

Anderson and May in 1979[2], variations on the original SIR equations have subsequently

been used to model a vast range of diseases including cholera[3], bubonic plague[4] and

influenza[5].

1.1 Stochastic or continuum model?

When modelling a process such as an epidemic it is necessary to keep in mind the biology

underlying the transmission of infection through a population. One problem facing any

mathematical model is that there are many different levels upon which the situation may

be considered.

Perhaps the most natural would be a model centred around individuals. Each individ-

ual, as in the SIR model, may be considered to occupy one, and only one, state from the

state space of the model. The state space, S = {S, I,R}, for the SIR model contains the

states S (susceptible), I (infected) and R (recovered). In this regime, any compartmental

model with discrete states carries with it certain assumptions. First, that the transition

between states is instantaneous; an individual may be susceptible at one moment and

infected the next. Second, that the transition between states is discontinuous; there is no

middle ground between, say, being infected and having recovered, other than by means

of adding additional states to S. Thus, already, by the choice of model we are removing

biological realism even before we make assumptions on how infection and recovery occur.

One could attempt to construct a ‘better’ model by drilling down to the smaller-scale

agents behind infection, perhaps by modelling effects of pathogens on the immune system

of each individual. This may confer additional biological realism but would make models

significantly more complex, and would mix vastly different length- and timescales, adding

additional complication. Whatever model is used, assumptions are made, and so any

results or predictions must only be held valid for situations in which the assumptions do

not deviate far from reality.

The models presented here will, at their base level, take account only of individuals.
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Transmission of, and recovery from, infection will be considered stochastic so that, under

the conditions of the model, transition between states will occur with certain probability.

Under this regime, given a population and rules determining infection and recovery, an

epidemic may be considered as a particular instantiation of the outcome of the stochastic

processes, such that each epidemic will probably be different under the exact same rules.

If a population is large, however, we may consider probabilities of changing between

states as rates, and derive differential equations. These describe the expected proportion of

the (large) population in each state at each time, as the continuum limit of the stochastic

processes. Proof that the stochastic processes have a limit in the differential equations

will not be given (though it can be done); however, simulations will be presented to lend

credibility to such continuum models. The usefulness of a differential equation approach is

that it is deterministic; it tells us something about an average epidemic, whereas any one

instantiation of the stochastic processes does not give insight into how the next epidemic

might unfold.

1.2 Project outline

The goal of this project is to modify the original SIR model in an attempt to make the

biological assumptions more realistic. This aim will see four different models discussed:

(a) The original Kermack–McKendrick (K-M) SIR model. This will assume infection is

a mass action process, and the recovery of infected individuals is markovian.

(b) The non-markovian SIR model. Infection will still be assumed a mass action process

but the markovian recovery property will be relaxed.

(c) The pairwise SIR model. This relaxes the original mass action assumption but re-

introduces markovian recovery.

(d) The pairwise non-markovian SIR model. This relaxes both mass action and marko-

vian recovery.

1.3 Definitions

Mass action

The law of mass action, borrowed from chemistry, states that the rate of a reaction is

proportional to the product of the concentrations of the reactants[6, §9].

In our epidemiological context, states in our state space take the place of reactants,

proportions of our total population in each state take the place of concentrations, and

infection is the reaction which we consider. This means that, under mass action, the rate

at which susceptible individuals contract infection is proportional to the product of the

proportions of the population infected and susceptible.

2



Markovian

A stochastic process is said to be markovian if it satisfies the Markov property[7, §1]: the

conditional probability distribution of future states of the system depends only on the

current state.

To say that recovery is a markovian process would forbid, for instance, the probability

of recovery being a function of the time since infection was acquired, because deciding

whether a recovery event would occur would require memory of when the infection hap-

pened. Translating this to our continuum case, recovery is markovian if it happens at a

constant rate.

We begin with a discussion of the properties of the K-M SIR model.
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2 The K-M SIR model

2.1 Underlying stochastic model

We proceed with the following assumptions:

• The state space is S = {S, I,R}, so that each individual may only be either suscepti-

ble, infected or recovered. We assume, therefore, that ‘infectious’ and ‘infected’ are

synonymous; everyone infected is able to infect others.

• The population is large, of size N , and we neglect the effects of births or deaths, so

that N is constant.

• Initially, the population is totally susceptible, bar a small number of infected indi-

viduals added at time zero.

• The population can mix uniformly, so that every individual interacts identically with

every other; this becomes the mass action assumption when the model is written in

its deterministic form.

• Interactions occur at discrete steps in time.

• Infection happens between an infected and a susceptible individual, each timestep,

with a constant probability.

• Recovery of an infected individual occurs with constant probability, each timestep;

this is the markovian assumption.

2.2 Deterministic ODE model

Converting the above to an ODE (ordinary differential equation) model in continuous time

can be done rigorously, as in the original K-M paper[1], but here it will suffice to make

a few observations. First, for this deterministic model let us set N = 1 so that we now

talk about proportions of the total population rather than number of individuals, and

create time-dependent variables S(t), I(t) and R(t) to represent the proportions of the

population in each state.

Observe that susceptible individuals may only be depleted; there is no mechanism

allowing those infected or recovered to re-enter the S state. The law of mass action then

states that this depletion happens at a constant rate proportional to S(t)I(t); call the
constant of proportionality, β, the rate of infection. Next, the increase in I(t)must balance

the decrease in S(t), and depletion from I(t) by recovery happens at a constant rate, call

it γ. Finally, the recovered state fills at a rate to balance those coming out of the infected

state.

Thus, our system is described by the following ODEs, with overdot representing deriva-

tive with respect to time:
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(i) Ṡ(t) = −βS(t)I(t)
(ii) İ(t) = βS(t)I(t) − γI(t)
(iii) Ṙ(t) = γI(t)

(1)

There are several properties of (1) worth mentioning:

2.3 Initial epidemic growth

With constant infection and recovery rates it is straightforward to calculate the initial

growth rate of the epidemic. Taking the equation for İ(t) in isolation, we can examine

the early behaviour when a small amount of infection is invading a totally susceptible

population. Notice that, as we neglect births and deaths, S(t) + I(t) + R(t) = 1 at any

time so that, at an early enough time, I(t) being small means S(t) ≈ 1. This gives us the
following linearised equation for I(t), valid for small t, provided I(0) ≪ 1:

İ(t) = (β − γ)I(t) ⇒ I(t) = I(0)e(β−γ)t. (2)

This gives the growth rate, r, for the K-M SIR model as β − γ. The infection will

invade and initially increase exponentially provided β − γ > 0, and it will fail to invade if

not. This invasion criterion can, equivalently, be stated in terms of an important quan-

tity in epidemiology: the basic reproductive ratio, R0. Defined as ‘the average number

of secondary cases produced by an average infectious individual in a totally susceptible

population’[8], we see that for this simple model R0 = β/γ. The condition β − γ > 0 is

equivalent to R0 > 1.
2.4 Final epidemic size

In this setting, we can determine analytically the final size of the epidemic. We define this

final size to be R(∞), the total proportion of the population who ever enter the recovered

state. Because every infected individual must recover in finite time, this is equal to the

total number of people who ever contract the infection and, additionally, as the system is

closed:

I(∞) = 0 ⇒ R(∞) = 1 − S(∞). (3)

To calculate R(∞), we divide (1)(i) by (1)(iii) which, remembering that R0 = β/γ,
gives:

dS(t)
dR(t) = −R0S(t) ⇒ S(t) = e−R0R(t). (4)

Evaluating this at infinity, and by applying (3), we obtain the following transcendental

equation for R(∞):
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R(∞) = 1 − e−R0R(∞). (5)

Thus, we see that the final size of the epidemic is a function of only one variable;

R0 = β/γ. If R0 ≤ 1, R(∞) = 0 as the infection fails to invade but, as R0 →∞, R(∞) → 1

which indicates that a greater proportion of the population becomes infected if the rate

of infection is higher, as one would expect from intuition. R(∞) increases monotonically

with R(0), as can be seen in Figure 1 below.
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Figure 1: Reproductive ratio R0 against final epidemic size R(∞)

2.5 Solving the system

There is no closed-form analytical solution for the equations in (1) as functions of time[1],

but they can easily be numerically solved with, for instance, ode45 in Matlab or NDSolve

in Mathematica. Below are plots of the proportion infected and recovered against time,

with results from (2) and (5) included.
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Figure 2: Blue: numerical solution of system (1), with parameters β = 0.25 and γ = 0.06. Red:
exponential with initial growth rate 0.19 (left) and final epidemic size 0.983 (right).

We see from Figure 2 that the exponential describing the early growth rate does indeed

fit the dynamics well for early time. The slowdown in infection is due to the the decrease

in the number of susceptible individuals in the population which, due to mass action,

reduces the rate at which new cases are created. It is worth noting that the final epidemic

size is always < 1; the population is never entirely depleted of susceptible individuals by
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an epidemic.

2.6 Simulation of dynamics

In order to demonstrate the usefulness of the deterministic dynamics in predicting the

likely outcome of individual epidemics, one can perform stochastic simulations according

to the scheme set out at the beginning of this section. There are a few items to note:

• The speed of the simulation reduces significantly with an increase in population size

so, for simulations to take a sensible amount of time, only N = 5000 is used.

• If the number of initial infected cases is too small, it is likely that infection could

die out or not initially increase quickly. It is, therefore, important to pick I(0)
sufficiently large. Here, I(0) = 10 is used.

• At each timestep in the simulation, each currently susceptible individual must be

tested against each currently infected individual to see whether they become infected.

The per capita infection probability is now β/N .

• Infection and recovery events are decided by picking uniformly distributed random

numbers in the unit interval, with the transition probabilities β/N and γ as thresh-

olds.

Below is a plot showing I(t) as a proportion of N for three such simulations (red),

alongside the numerical solution of (1) (blue):
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Figure 3: Outcome of simulations with parameters β = 0.25 and γ = 0.06
We would expect the simulations to more closely match the deterministic equation as

N and I(0) become large, provided I(0) remains small as a proportion of N . Matlab

source code for this simulation is presented in the appendix.

We now attempt to increase the biological realism by relaxing the markovian recovery

assumption used in this model.
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3 Non-markovian SIR model

Of the two assumptions (mass action and markovian recovery) detailed in the introduction,

we first relax the latter. To see why, let us examine whether there is any biological

underpinning for the markovian recovery assumption.

Turning to the underlying stochastic model, assume that an individual becomes in-

fected at some time t = t′. Then, according to the scheme set up in §1, the probability

of the individual recovering one timestep δt in the future is precisely γ, which means the

probability that they do not recover is 1 − γ. The probability that they still have not

recovered after two timesteps must be conditional on them having not recovered after one

timestep, and so is (1 − γ)2. The leads to the following probability distribution for the

chance of an infected individual still being infected n timesteps after infection:

P(still infected at time t′ + nδt) = (1 − γ)n. (6)

As γ is a positive constant, this starts at 1 (when n = 0) and tends to 0 as n → ∞.

This, clearly, bears little relation to reality, where one would expect to stay infected for a

certain time before having the possibility of recovering. So, instead of a model in which it

is possible to recover straight after becoming infected, how can we modify the SIR model

to deal with a situation in which, once infected, an individual remains infected for precisely

a certain time? Let us denote this constant infectious period by the positive constant ξ.

3.1 Handling a new infection variable

To move forward, we will now need to keep track of the time that has elapsed since an

individual became infected. Let us decide upon the following use of language:

• time: the system time, starting with zero at the start of the epidemic. This will be

denoted by the non-negative variable t.

• age: the time which has elapsed, for an infected individual, since infection. This will

be denoted by the non-negative variable a.

With this language in place, we construct a two-dimensional variable ia(t, a) which we

use to denote the density of age a infected individuals at time t. We use a lower-case i to

distinguish from I(t) which remains the total proportion of the population infected, and

the need for subscript a will become apparent later.

In order to construct a deterministic model in this new situation we will need to be

able to do calculus on this ia variable. In particular, we are interested in how it changes

over time, so would like its time derivative. Consider a small change in time δt, and let us

perform a Taylor expansion to examine how ia changes if we jump forwards in time (and

therefore, at the same rate, in age):
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ia(t + δt, a + δt) = ia(t, a) + δt( ∂
∂t
+ ∂

∂a
) ia(t, a) +O(δt2). (7)

Taking the limit as δt→ 0, we obtain the following form for the derivative:

d

dt
ia(t, a) = lim

δt→0

( ia(t + δt, a + δt) − ia(t, a)
δt

) = ( ∂
∂t
+ ∂

∂a
) ia(t, a). (8)

Alternatively, using the standard formula for the total derivative[9], we can write:

d ia(t, a) = ∂i(t, a)
∂t

dt + ∂i(t, a)
∂a

da. (9)

We note that, as time and age tick at the same rate, i.e. da
dt
= 1, dividing through by

dt gives back the result in (8). This partial differential operator will be used extensively

going forward, so let us define the following for ease of notation:

Φ(⋅) = ( ∂
∂t
+

∂

∂a
)(⋅) (10)

3.2 The new deterministic model

We are now in a position to write down new differential equations governing the dynamics

of the system. As it is only recovery which we seek to change, (1)(i) will remain unchanged

but we must modify (1)(ii) and (1)(iii). Let us introduce, first, a general recovery function

γ(a). A function now of age, it is no longer necessarily constant.

Infection, we assume, is still a mass action process, so still happens at a rate βS(t)I(t).
Here, I(t) is the total number of infected individuals, which must obey I(t) = ∫ ∞0 i(t, a)da.
Additionally, when an individual is newly infected they are constrained to start with age

0. This information can be supplied in the form of a boundary condition, or we may make

use of the Dirac delta function and incorporate it into the main equation. The latter

approach is presented here. Finally. the rate of recovery of those infected individuals of

age a is simply γ(a).
The change in recovered class must be accounted for by all those recovering, at whatever

age they are recovering. While we will eventually wish everyone to recover at the same

age, ξ, for now we can maintain generality, and the rate of change of recovery will simply

occur as the sum over all ages of infected individuals, weighted by the recovery function

γ(a).
Putting this reasoning together, our system becomes:

(i) Ṡ(t) = −βS(t)I(t)
(ii) Φ(ia(t, a)) = δ(a)βS(t)I(t) − γ(a)ia(t, a)
(iii) Ṙ(t) = ∫ ∞

0

γ(a)ia(t, a)
(11)

There are, in principle, methods which can be used to numerically solve such systems
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which contain PDEs (partial differential equations). Usually, however, it is better (in

the sense of providing more precise numerical solutions) to integrate ODEs[10, §1], as

derivatives with respect to only one variable are present in the equations. To this end, we

head towards deriving a system of DDEs (delay differential equations).

3.3 Analytic solution of the PDE

We can find a solution to (11)(ii) in bulk (ignoring the boundary condition) by means

of separation of variables. We first notice that an arbitrary function f(t − a) solves the

homogeneous equation Φ(ia) = 0. Next, we use the following ansatz, for some unknown T

and A, to find a particular solution:

ia(t, a) = T (t) ⋅A(a) (12)

Using our definition of Φ, this ansatz becomes:

Φ(ia(t, a)) = T ′(t)A(a) + T (t)A′(a) = ia(t, a)(T ′(t)
T (t) +

A′(a)
A(a) ) . (13)

Combining (11) and (13) we have:

T ′(t)
T (t) +

A′(a)
A(a) = −γ(a). (14)

We can now separate this into two equations, because the right-hand side of (14) is a

function only of a which means each term in the left-hand side must also be a function only

of a. First,
T ′(t)
T (t) = 0, which gives T (t) = const; however, this constant can be absorbed into

the arbitrary function f(t − a). Second,
A′(a)
A(a) = −γ(a) yields A(a) = e−∫ a

0
γ(α)dα. Putting

these together, we have a general solution, in bulk, for ia(t, a):
ia(t, a) = f(t − a)e−∫ a

0
γ(α)dα. (15)

This is subject to the boundary condition

ia(t,0) = βS(t)I(t), (16)

so (15) and (16) describe the solution to (11)(ii). In general, we cannot apply the boundary

condition to pin down our unknown function f(t−a). We can, however, attempt to describe

the early-time behaviour of the epidemic, as we did in the K-M SIR model.

3.4 Initial epidemic growth

If we consider time early in an epidemic, shortly after a small quantity I(0) ≪ 1 of infection

is introduced into a totally susceptible population, we would expect the proportion of

infected individuals to initially grow exponentially, at some unknown rate r. This means

10



that, for small t, S(t) ≈ 1 and we can approximate to I(t) = I(0)ert. Substituting this

approximation into the boundary condition (16), we have:

ia(t,0) = βI(0)ert
(15)©= f(t), (17)

and so the unknown f(t−a) is constrained to be I(0)βer(t−a). This updates (15) for small

times:

ia(t, a) = I(0)βer(t−a)e−∫ a

0
γ(α)dα. (18)

We now pin down the unknown growth rate r by integrating (18) over all ages:

I(0)ert = I(t) = ∫ ∞

0

i(t, a)da = ∫ ∞

0

(I(0)βer(t−a)e−∫ a

0
γ(α)dα)da (19)

which yields, upon cancellation, the integral equation for r:

1 = β ∫ ∞

0

e−ra

(*)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
e−∫

a

0
γ(α)dα da. (20)

In general, we cannot extract r from (20) as it depends on the arbitrary function γ.

We are, however, interested in a particular functional form for the recovery: we want that

each infected individual is infected for a constant time ξ before recovering. In this case,

our recovery function γ must be such that ∫ a
0
γ(α)dα = 0 for all a < ξ, and ∫ a

0
γ(α)dα =∞

for all a ≥ ξ.
This means that (*) in (20) is 1 for a < ξ and 0 for a ≥ ξ, which simplifies (20) to:

1 = β ∫ ξ

0

e−rada. (21)

The initial growth rate r in which we are interested, therefore, is the non-zero solution

of the transcendental equation:

r = β (1 − e−rξ) . (22)

3.5 DDE model

Because of our choice of γ, we have a model in which infected individuals recover with a

fixed delay. This allows us to set up a DDE model; the rate of change of I depends on the

system one timestep of size ξ in the past as well as on the system at the current time.

The additional information we need is a set of history functions; how S, I and R

behave in the first time interval [0, ξ]. Provided ξ is not too large, the exponential growth

of I with rate r derived above will serve as a good approximation to the dynamics in this

first time interval.
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To construct the model we observe that, at any time t, only those infected individuals

of age ξ recover, and are thus the only ones removed from the pool of infection. They

were all infected at precisely time t−ξ, at which time the rate of infection (from (11)) was

βS(t − ξ)I(t − ξ). Thus, at each time, infection is gained at a rate βS(t)I(t) and lost at

a rate βS(t − ξ)I(t − ξ). Hence, our DDE model is:

(i) Ṡ(t) = −βS(t)I(t)
(ii) İ(t) = βS(t)I(t) − βS(t − ξ)I(t − ξ)
(iii) Ṙ(t) = βS(t − ξ)I(t − ξ),

(23)

subject to the history functions:

(i) S(t) = 1 − I(0)ert ∀t ∈ [0, ξ]
(ii) I(t) = I(0)ert ∀t ∈ [0, ξ]
(iii) R(t) = 0 ∀t ∈ [0, ξ].

(24)

In practice, most DDE systems cannot be solved analytically; however, there are several

numerical approaches for solving them: dde23 in Matlab and NDSolve in Mathematica

are both capable of numerically solving such equations. See appendix for input code from

a Mathematica notebook designed to numerically solve (23) subject to (24). Below is

a plot of the numerical solution, where values for parameters β, ξ and I(0) have been

chosen for illustrative purposes. The blue curve is S(t) and the red is I(t). Notice

that explicit calculation of R(t) is not necessary as the equations are still conservative;

R(t) = 1 − S(t) − I(t).
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Figure 4: Evolution of (23) subject to (24), with β = 2.3, ξ = 1 and I(0) = 10−5

3.6 Simulation of dynamics

As with the K-M SIR model, we can carry out simulations to demonstrate that our

deterministic system makes useful predictions about the underlying stochastic processes.

This simulation is similar to the previous one, and the code can be found in the appendix.
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Below is a plot showing I(t) as a proportion of N for three simulations (red) alongside

the numerical solution of (23) (blue):
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Figure 5: Outcome of simulations with parameters β = 2.3 and ξ = 1, giving r ≈ 1.98

3.7 Comparison with the K-M SIR model

Before comparing the models like-for-like, let us investigate how the initial growth rate,

r, varies with β and ξ.

From (2) and (22), we see that the initial growth rates coincide (with value β) in the

absence of recovery. In the K-M SIR model, ‘no recovery’ is achieved by setting γ = 0

while in the non-markovian model we set ξ =∞.

Due to the exponential term in (22), an increase in ξ from 1 causes very swift growth

of r towards β which means that, for a K-M SIR epidemic to have the same initial growth

rate, γ must be almost zero. Thus, comparing cases with equal β and r, with ξ > 1,

the non-markovian model exhibits significantly reduced total infection, as the K-M SIR

recovery mechanism becomes too slow at removing people from the infected state.

In the case where ξ is small, the rate of infection becomes very low. This pushes γ

higher in the K-M SIR model if one wishes to maintain the same initial rate of increase,

but still the fixed recovery period gives reduced total infection.

In conclusion, if one fixes the transmission rate β and wishes to maintain the same

initial rate of infection increase, r, the non-markovian model has significantly reduced

total infection.

We now turn our attention to the mass action assumption used in these previous two

models.
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4 Pairwise SIR model

In certain circumstances the mass action approximation may be warranted. Plague deaths

in Bombay, for instance, used to demonstrate Kermack and McKendrick’s original model,

do make good use of mass action; the underlying vector causing infection is rats. Assuming

that rats are fairly uniformly distributed, it is reasonable to assume that infection in

humans could be devoid of any structure in human interactions, which would allow mass

action to describe the dynamics well.

If, however, we consider other epidemics transmitted human-to-human via contact or

proximity, we might be better off taking into account that some members of the population

will not interact with others. In order to model SIR dynamics in this way, we turn our

attention to networks.

4.1 Graphs and pairwise variables

Let us consider a graph, G = G(V,E), which is defined as a finite non-empty set V together

with an irreflexive, symmetric relation R on V . We denote by E the set of symmetric pairs

in R[11].

Here, V is the vertex set and E is the edge set. We now consider the population as

a graph; each individual is represented by a vertex, so V = {v1 . . . vN} is the vertex set

representing a population with N individuals. The model is, again, compartmental, so

that each vj is assigned a state, either S, I or R. We will use the shorthand vj = I, for
instance, to convey that the jth individual is currently infected.

To keep track of which individuals in a population are connected (which, for us, will

indicate that infection can pass between them), we introduce the adjacency matrix which

is an N ×N matrix G = (Gjk) associated with G, defined as:

Gjk =
⎧⎪⎪⎨⎪⎪⎩

1 if vertices j and k are linked

0 otherwise
(25)

We assume that infection can travel both ways, so we do not care that the links be

ordered. This means G will be symmetric, and so G = GT . In this setting, it does not

make sense for an individual to be able to infect themself, so Gjj = 0 ∀j.

We are now in a position to define the variables we will use in our model. The key

concept behind this model will be that infection can only happen between a susceptible

and an infected individual if they are linked. Thus, we will need language to describe not

just the number of individuals in each state but the number of pairs and triples, which

are strings of individuals linked on G.

In the underlying stochastic model, at each time we will care about the number of

S − S pairs (the number of connections which have a susceptible vertex at each end), the

number of S − I pairs (the number of connections which have a susceptible vertex at one

end and an infected vertex at the other), and so on. To write down a deterministic model,
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however, we will be interested in the expected values of such quantities. To that end, we

define the following time-dependent variables, where each variable is still time-dependent;

however, we omit the explicit reminder of this ([X] rather than [X](t)) in order to keep

the equations reasonably succinct:

[X] = E⎛⎝
N

∑
j=1

I{vj ∈ V ∶ vj =X}⎞⎠
[XY ] = E⎛⎝

N

∑
j,k=1

I{vj , vk ∈ V ∶ vj =X, vk = Y , Gjk = 1}⎞⎠
[XY Z] = E⎛⎝

N

∑
j,k,l=1

I{vj , vk, vl ∈ V ∶ vj =X, vk = Y , vl = Z, Gjk = 1, Gkl = 1}⎞⎠

(26)

where each of X, Y and Z can be any of S, I or R, E represents the expectation, and I is

the indicator function.

4.2 Constructing the deterministic pairwise SIR model

In this section, we will revert to markovian recovery in order to familiarize ourselves with

the workings of this model before relaxing the assumption again later. For the infection

dynamics, this means that recovery happens again at constant rate γ, but now infection

transform S − I pairs into I − I pairs at a constant rate, τ .

Thus, the number of susceptible individuals [S] is depleted at rate τ[SI], which is also

the rate of increase of infected individuals [I]. Infection is, as in Chapter 2, depleted at

rate γ[I], which is the rate of increase in [R]. So far, this looks very similar to the K-M

SIR model, but we must also form expressions for the dynamics of the pairs.

For clarity of notation, let us adopt the notation that [X ↪ Y Z] indicates the action of

a vertex in state X onto a Y −Z pair. Then, [SS] is depleted by [I ↪ SS] and [SS ↩ I].
[SI] is replenished by [SS ↩ I] but depleted by [I ↪ SI], [S ↩ I] and recovery of the

I vertex in the S − I pair. The other changes in doubles can be derived similarly and,

putting them all together, this leads to the following system describing the dynamics of

an average epidemic:

˙[S] = −τ[SI], ˙[SS] = −2τ[SSI],
˙[I] = τ[SI] − γ[I], ˙[SI] = τ([SSI] − [ISI] − [SI]) − γ[SI],
˙[R] = γ[I], ˙[SR] = −τ[ISR] + γ[SI],

˙[II] = 2τ([ISI] + [SI]) − 2γ[II],
˙[IR] = τ[ISR] + γ([II] − [IR]),
˙[RR] = γ[IR].

(27)
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4.3 Closure assumption

This system completely describes the dynamics of such epidemics, but it is unclosed.

There are several ways in which we could proceed from here. We could continue to write

down equations for the triples in terms of quadruples; however, this would become very

untidy and we would still be left with an unclosed system. Instead, we will make a closure

assumption by writing triples in terms of pairs. Several possibilities exist for how to do

this, but here we will assume that the graph is n-regular; that is, each vertex is connected

to precisely n other vertices.

Under this assumption, let us derive an approximate form for an arbitrary triple.

S

X Y

Figure 6: Vertex configuration

We are considering the vertex configuration pictured in Figure 6; X − S − Y triples in

an n-regular graph, G. We seek an expression for [ASB] in terms of [SA], [SB] and n.

First, we need to calculate P(X = A). As G is n-regular, there are n[S] links emanating

from all vertices in state S. Of these, precisely [SX] link to a vertex in state X. Therefore,

if G has N vertices, provided nN is large we have:

P(X = A) = [SA]
n[S] , and similarly: P(Y = B) = [SB]

n[S] (28)

Now, we consider P((X = A)∧(Y = B)). We will assume that the two probabilities are

independent of each other(**), so that we may simply multiply the results in (28). Under

this assumption, we have:

P((X = A) ∧ (Y = B)) = P(X = A)P(Y = B) = [SA][SB]
n2[S]2 (29)

Finally, around each vertex in state S there are n(n− 1) triples: n choices for the first

vertex in the triple and n − 1 choices remaining for the third vertex. Thus, in total, there

are n(n − 1)[S] triples in G which have centre vertex in state S. Equation (29) tells us

the probability that, in each possible triple, one vertex is in state A and one is in state B

so we have, writing η = (n−1)
n

:

[ASB] = η [SA][SB][S] (30)

We have assumed that the probabilities (28) are independent. This need not necessarily

be the case, and others have dealt with more sophisticated methods of providing a closure

assumption for dependent probabilities[12]; however, it is reported that this assumption is
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numerically extremely accurate for SIR dynamics[13], and so we will make use of it here.

4.4 Initial growth rate and final epidemic size

In this situation, we can easily reason that the initial growth rate for the epidemic will

be r = (n − 2)τ − γ. If we only had one infected individual the rate would be just nτ − γ

but, because we assume an epidemic starts with multiple infected individuals, each one

must be connected to one vertex which infected them and, on average, one which they

have infected. Thus, the average number of susceptible vertices adjacent to each initially

infected individual is n − 2; hence the factor which appears in the initial growth rate.

The final epidemic size can be calculated analytically[12][13], but it requires much more

algebraically messy manipulations of the equations in (27) and so we shall not present it

here. Of relevance, though, is that the final epidemic size calculated in (5) is obtained

again from this model if we hold β = nτ constant while taking n→∞.

4.5 Solving the pairwise SIR model

We note that the system is still closed, in the sense that [S] + [I] + [R] = 1. Notice also

that in order to fully describe the dynamics of [S], [I] and [R], we need only concern

ourselves with the pairs [SS] and [SI]. Combining the original system (27) with the

closure assumption (30), our dynamics are fully described by the following reduced system:

˙[S] = −τ[SI], ˙[SS] = −2τη [SS][SI][S] ,

˙[I] = τ[SI] − γ[I], ˙[SI] = τ (η [SS][SI] − [SI]2[S] − [SI]) − γ[SI].
(31)

This system can be solved in the same way as the K-M SIR system, for instance using

ode45 in Matlab or NDSolve in Mathematica. The dynamics are very similar to those

of the K-M SIR model; however, infection spreads much more slowly in the pairwise

case, with the final size of the epidemic being smaller. This is precisely what we would

expect from intuition, as the population is now no longer able to mix uniformly; only

certain individuals are connected, so infection is less freely able to propagate through the

population.

Because of having to keep track of which individuals are connected in the system,

it becomes much more computationally time-intensive to carry out simulations of these

dynamics. For that reason, none are presented here and we move on to relaxing the

non-markovian assumption used in this model.
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5 Pairwise non-markovian SIR model

Using the tools and language built up in the non-markovian and pairwise SIR models,

we aim to relax both the mass action and markovian recovery assumptions in the original

K-M SIR model.

Relaxing markovian recovery, we can derive differential equations where, in complete

generality, both τ(a) (infection across an S−I pair) and γ(a) (recovery of a vertex in state

I) are arbitrary functions of age. This means that, to relax mass action as well, we must

consider [X], [XY ] and [XY Z] where X, Y and Z can be any of S, I, ia, or R. Thus,

variables of the form [Sia], which represents the expected density of S − I pairs where the

infected individual has age a at time t, are of importance. Terms of this type (containing

our two-dimensional variable ia(t, a)) will, as in the non-markovian SIR model, involve

our differential operator, Φ.

5.1 Deriving the non-markovian pairwise SIR PDE model

As with the standard pairwise SIR model, we can see that only equations for ˙[S],
Φ([S]), ˙[SS] and Φ([Sia]) will be necessary to fully describe the temporal dynamics

of [S], [I] and [R]. We will, therefore, describe in some detail the derivation of these four

equations, but will state later the full system including differential equations for all pairs.

[S]:

• Depleted only by infection: [S ↩ ia], but this is at rate τ(a) and can happen at any

age a.

˙[S] = −∫ ∞

0

τ(α)[Siα]dα (32)

[ia]:

• Replenished by infection: [S ↩ ia] but when an individual becomes newly infected

they must start with age a = 0.
• Depleted through recovery: [ia]→ [R], which happens at rate γ(a).

Φ([ia]) = δ(a)∫ ∞

0

τ(α)[Siα]dα − γ(a)[ia] (33)

[SS]:

• Depleted by infection: [ia ↪ SS] and [SS ↩ ia], at rate τ(a), at any age a.

˙[SS] = −2∫ ∞

0

τ(α)[SSiα]dα (34)
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[Sia]:

• Depleted by: (i) [S ↩ ia], at rate τ(a).
• Depleted by: (ii) [ib ↪ Sia], at rate τ(b), but for any age b.

• Depleted by: (iii) [Sia]→ [SR], at rate γ(a).
• Replenished by: (iv) [SS ↩ ia], at rate τ(a), for any age a, but new infection must

start with age 0.

(i) and (ii) − τ(a)[Sia] −∫ ∞

0

τ(α)[iαSia]dα
(iii) − γ(a)[Sia]
(iv) δ(a)∫ ∞

0

τ(α)[SSiα]dα
(35)

Collecting these together gives:

Φ([Sia]) = δ(a)∫ ∞

0

τ(α)[SSiα]dα −∫ ∞

0

τ(α)[iαSia]dα − (τ(a) + γ(a))[Sia] (36)

5.2 Full set of equations

Some of these equations contain triples, so are not closed. We can apply our closure

assumption (30) to close the system, and we will proceed with τ(a) = τ = const.

Core equations

(i) ˙[S] = −τ ∫ ∞

0

[Siα]dα
(ii) Φ([ia]) = δ(a)τ ∫ ∞

0

[Siα]dα − γ(a)[ia]

(iii) ˙[SS] = −2τη [SS][S] ∫
∞

0

[Siα]dα

(iv) Φ([Sia]) = ητ (δ(a)[SS] − [Sia][S] )∫ ∞

0

[Siα]dα − (τ + γ(a))[Sia]

(37)
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Secondary equations

(v) ˙[R] = ∫ ∞

0

γ(α)[iα]dα

(vi) ˙[SR] = ∫ ∞

0

(γ(α) − ητ [SR][S] ) [Siα]dα

(vii) Φ([Iia]) = τη

[S] ([Sia] + δ(a)[SI])∫
∞

0

[Siα]dα

−∫
∞

0

(γ(a) + γ(α))[iαia]dα + τ[Sia]

(viii) Φ([Ria]) = ητ δ(a)[SR][S] ∫
∞

0

[Siα]dα +∫ ∞

0

γ(α)[iαia]dα − γ(a)[Ria]

(ix) ˙[RR] = ∫ ∞

0

γ(α)[Riα]dα

(38)

Now that we have our closed-form differential equations (37) describing the behaviour

of our system, we next aim to solve them. We will proceed in the same manner as with

the non-markovian SIR model; take the particular functional form for γ in which we are

interested (a fixed recovery time ξ), find history functions for the interval [0, ξ] and write

down a DDE system which can be numerically solved for the temporal dynamics of S, I

and R in this regime. The main step will be to calculate the initial epidemic growth rate,

r, in this setting.

5.3 Initial epidemic growth

In order to calculate r, we will need to consider equations (37)(ii) and (37)(iv) at early

time. We will solve them in bulk (ignoring boundary conditions), then make an ansatz

which will allow us to integrate the equations and find the unknown initial growth rate.

As we start our epidemic with a very small proportion of the population infected, we

know that [ia] and [Sia] will be small. Equation (37)(ii) is already linear in [ia], in bulk,

but we must linearise equation (37)(iv). This is straightforward as we can simply discard

the [Sia] ∫ ∞0 [Siα]dα term, which is O([Sia]2).
We can simplify the boundary conditions as well; at early time when there is nearly

no infection, [SS] ≈ nN and [S] ≈ N . Switching notation, we can also write [SI] =
∫ ∞0 [Siα]dα, which will make the equations somewhat less cumbersome.

Hence the PDEs we are left with to solve, at early time, are:

(i) Φ([ia]) = −γ(a)[ia]
(ii) Φ([Sia]) = −(τ + γ(a))[Sia], (39)

subject to the boundary conditions:
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(i) [ia](t,0) = τ[SI](t)
(ii) [Sia](t,0) = (n − 1)τ[SI](t), (40)

Both of the bulk PDEs in (39) are in the same form as the bulk PDE (11), and so the

solutions, obtained by separation of variables, will be the same:

(i) [ia](t, a) = f(t − a)e−∫ a

0
γ(α)dα

(ii) [Sia](t, a) = g(t − a)e−τae−∫ a

0
γ(α)dα

(41)

for arbitrary functions f(t − a) and g(t − a).
We now make the ansatz that the infection initially grows exponentially; that is, for

small time, [SI] = k2ert for some constant k2 and some unknown growth rate r. Using the

initial conditions (40), this gives us that f(t−a) = τk2er(t−a) and g(t−a) = (n−1)τk2er(t−a),
in the same manner as for the non-markovian SIR model. This pins down both of our

arbitrary functions f(t − a) and g(t − a), and updates our solutions as follows:

(i) [ia](t, a) = τk2er(t−a)e−∫ a

0
γ(α)dα

(ii) [Sia](t, a) = (n − 1)τk2er(t−a)e−τae−∫ a

0
γ(α)dα.

(42)

Integrating (42)(ii) over age gives us the unknown growth rate, r:

k2e
rt = [SI](t) = ∫ ∞

0

[Sia](t, a)da = ∫ ∞

0

((n − 1)τk2er(t−a)e−τae−∫ a

0
γ(α)dα)da. (43)

We can simplify e−∫
a

0
γ(α)dα in the same way as in the non-markovian SIR model and,

cancelling k2e
rt from both sides, we are left with the following integral equation for r:

1 = ∫ ξ

0

(n − 1)τe−(r+τ)ada, (44)

which simplifies to give the following transcendental equation for r:

r + τ = (n − 1)τ (1 − e−(r+τ)ξ) . (45)

It is worth noting that this equation coincides with the initial growth rate in the

markovian pairwise SIR model under the condition of no recovery. If there is no recovery

(γ = 0 or, equivalently, ξ =∞), the initial growth rate in both models is r = (n− 2)τ . This
gives credibility to the answer and also reassures us that our ansatz was reasonable.

5.4 History functions for DDE model

We require a history function for each of the [S], [I], [SS] and [SI] equations as these are
the four necessary to fully solve for the temporal behaviour of this non-markovian pairwise
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SIR model. We have, however, already got two: [SI](t) = k2ert, where k2 = [SI](0), and
so [SS](t) = n − k2ert. It remains to find the history function for [I].

Clearly, [I] will have the same initial growth as [SI], so [I] ∝ ert, but what is the

initial condition [I](0)? Call the constant of proportionality k1. It turns out that, with

the assumptions we have made in this regime, k1 is determined by integrating (42)(i) over

age:

k1e
rt = [I](t) = ∫ ∞

0

[ia](t, a)da = ∫ ∞

0

(τk2er(t−a)e−∫ a

0
γ(α)dα)da (46)

Simplifying this in the same manner as (43), we obtain the following expression for the

ratio k1 ∶ k2, i.e. [I](0) ∶ [SI](0):
k1

k2
= τ

r
(1 − e−ξr) . (47)

We now have all the information necessary for the four history functions:

(i) [S](t) = 1 − k1ert ∀t ∈ [0, ξ]
(ii) [I](t) = k1ert ∀t ∈ [0, ξ]
(iii) [SS](t) = n − k2ert ∀t ∈ [0, ξ]
(iv) [SI](t) = k2ert ∀t ∈ [0, ξ].

(48)

5.5 DDE model

In principle we should now be able to write down a DDE system as we did in the case of

the mass-action non-markovian SIR model.

The equations corresponding to the first three history functions in (48) are easy to

write down:

(i) ˙[S](t) = −τ[SI](t)
(ii) ˙[I](t) = τ[SI](t) − τ[SI](t − ξ)
(iii) ˙[SS](t) = −2τ[SSI](t),

(49)

but the fourth is not. Only τ[SSI](t − ξ) will involve any delay in the fourth equation as

it is the only term which creates new S − I pairs at time t− ξ. The problem is that in the

interval [t − ξ, t] it is possible for those S − I pairs to become I − I pairs due to infection

across their link.

It is, therefore, more difficult to pin down the form for this final equation, so the

resolution of this is not presented here.

This concludes our treatment of the four different SIR models.
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6 Conclusions and extensions

6.1 What do these different models tell us?

We have now explored a basic epidemiological model and have adapted it in three different

ways, each designed to relax different assumptions.

What is clear is that, despite the changes made to the original K-M SIR model,

each new model has roughly the same qualitative behaviour. All four models capture the

increase and subsequent decrease in the proportion of the population infected during an

epidemic.

One might argue that, as there is no biological justification for assuming markovian

recovery, one should always attempt to use a more sophisticated model with biological

underpinning. As we have seen, though, this complicates the problem significantly, while

leaving the result qualitatively very similar. Therefore, in the case of the markovian

recovery assumption it remains unclear (and, indeed, subjective) whether or not either

model is ‘better’ than the other.

Regarding the mass-action assumption, we can say something slightly stronger. There

are cases (such as bubonic plague) in which mass action might describe the epidemic

dynamics well, whereas epidemics which spread through contact are likely to be modelled

much more accurately if a pairwise model is used. In this regard, then, the choice of model

depends very much on the specific epidemic being studied.

In conclusion, one must always hope to understand the biology behind the epidemic be-

ing modelled in order to best set up an epidemiological model to make accurate predictions.

It should be noted, however, that non-markovian pairwise models do allow mathematical

investigation, and so are a potentially useful avenue in modelling epidemics.

6.2 Where can we go from here?

There are several ways in which this investigation could be taken forward.

With the two markovian models we discussed it is straightforward to include additional

information about the population. For instance, if a particular epidemic is likely to occur

over quite a large timescale, one might wish to add birth and death rates to each variable.

Additionally, the markovian models can include a variety of extra components such as

vaccination or immunity[13]. Finally, if a disease is potentially fatal, and a significant

proportion of the population might become infected, death of individuals will reduce the

population size. All of these amendments could, in theory, be incorporated into non-

markovian pairwise models.

Another avenue worth exploration is altering the rate of infection, τ . When deriving

the PDE system (37) we initially allowed τ(a) to be an arbitrary function of age. This was

relaxed in order that τ be taken outside the integrals, which enabled our ansatz to work.

In reality, it is unlikely that an infected individual is as infectious at all times between

catching a disease and recovering from it; each disease will have its own infectiousness
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profile τ(a) which could be incorporated to make the dynamics of certain infections more

realistic.

In terms of mass action, our models assumed the underlying graph was n-regular. Of

course, this is not always going to be the case; normally in networks we would expect

clustering. Thinking in terms of human interaction, some people are much more gregar-

ious than others. These people are likely to have a large number of connections which

makes them both more likely to become infected and more effective at disseminating

further infection. The assumption of n-regularity was convenient for providing a simple

closure assumption, but closure assumptions better tuned to certain networks should be

incorporated into models for use in those circumstances.

Finally, we have taken no account of closed loops in networks. The number of closed

triangles is a quantity of importance in epidemiological modelling[12], and account of this

could be taken by means of altering the closure assumption we made.

I hope that this exploration of SIR dynamics demonstrates that new models can be

investigated with relatively simple mathematical tools, and I would urge interested readers

to investigate further the models presented here.
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7 Appendix A: Matlab and Mathematica code

7.1 K-M SIR simulation
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7.2 Non-markovian SIR simulation
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7.3 Sample use of NDSolve for DDE system

Ξ = 1;

I0 = 10-5;

tend = 12;

r = Hx �. NSolve @x � Β*H1 - Exp@-x ΞDLDL@@2DD;

eqns = 8

Sus ' @t D � -Β*Sus@t D* Inf @t D,

Inf ' @t D � Β*Sus@t D* Inf @t D - Β*Sus@t - ΞD* Inf @t - ΞD,

Sus@t �; t £ ΞD � 1 - I0 Exp@r t D,

Inf @t �; t £ ΞD � I0 Exp@r t D

<;

sol = NDSolve @eqns , 8Sus@t D, Inf @t D<, 8t , 0, tend <D;

Plot @Evaluate @8Sus@t D, Inf @t D< �. sol D, 8t , 0, tend <, PlotStyle ® Thick, Filling ® Axis D

7.4 Sample use of ode45 for ODE system

Based on code written by M. Keeling and P. Rohani[14, §7]
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