
A mathematical and computational

framework for modelling

epithelial cell morphodynamics

Fergus Cooper

Somerville College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2018



To dad.



Acknowledgements

Many thanks must go to my excellent supervisors Ruth Baker and

Alexander Fletcher. How they had the patience to put up with me I

may never know. Thanks, too, to my examiners Miguel Bernabeu and

Peter Minary for their thorough examination of, and valuable feedback

on, this thesis.

Many others have given me their time and expertise in ways directly

beneficial to this work. Thanks, in particular, go to Jeremy Green,

Jingjing Li, Jochen Kursawe, Martin Robinson, Gary Mirams, Joe Pitt-

Francis, Jonathan Cooper and David Gavaghan.

During my time in Oxford I am fortunate to have been surrounded by so

many excellent people, who have not only made my time here memorable

but who kept me going when this thesis threatened to get the better

of me. I must thank Joanna Raisbeck in particular, as well as Ben

Lambert, Jean-Michel Johnston, Katharine Lauderdale, Hazel Tubman,

Tobias Lutzi, Heidi Dritschel and Chris Lester. I have necessarily omitted

many names, including from the Mathematical Institute, the Somerville

College graduate community, and Oxford more widely, and I hope they

will forgive a more general but nonetheless heartfelt thanks.

As well as those I have met in Oxford, I also wish to mention Jon Sherry,

Tessa Simkins, Sam Ballance, Vicky Webb and Veronika Lipińska. Over

the duration of my DPhil they have helped, in intangible ways, more than

they know.

Finally, and most importantly, thanks to my parents, Alex and Jim

Cooper. I could not have written this thesis without a lifetime of

encouragement and support.



Abstract

Mathematical and computational modelling provides a useful framework

within which to investigate the organisation of biological tissues. As

experimental biologists generate increasingly detailed descriptions of

cellular behaviour, models that consider cells as discrete entities have

become a common tool to study how cell-level processes affect collective

dynamics, form and function at the tissue level.

To date, however, models incorporating detailed biophysical descriptions

of cell shape dynamics have gained little traction among the modelling

community. Few model implementations are publicly available, and there

often remains no comprehensive account of their method of solution,

computational implementation, or analysis of parameter scaling, hindering

our ability to utilise such models in practice. In addition, the quality of

software underpinning such models (and academic research more widely)

is coming under increasing scrutiny, with a growing recognition of the

need for correct, reliable and sustainable research software tools.

This thesis aims to address these needs for one such cell-based modelling

approach, the immersed boundary method. We develop and analyse

the immersed boundary method and provide an efficient, open source

implementation for simulating cell populations. The implementation is

undertaken within Chaste, an open source C++ library that allows one

to easily change constitutive assumptions, and is designed and built with

software best practices in mind.

We explore such best practices and refine and add to the infrastructure

and functionality of Chaste. We then carefully compare the immersed

boundary method with the vertex model, a competing cell-based

modelling approach for epithelial tissues, clearly elucidating relative

strengths and weaknesses of the immersed boundary method. This

furthers our understanding of the circumstances under which the

immersed boundary method and similar cell-based approaches are an



appropriate computational tool. Finally, to demonstrate the efficacy of the

immersed boundary method, we investigate the mechanics underpinning

a novel form of epithelial bending, advancing our understanding of the

formation of placodes, structures of epithelial thickening in the cranial

region of developing embryos. Together, the contributions in this thesis

advance the use of reproducible software development approaches in cell-

based modelling.

5



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mathematical models of morphogenesis . . . . . . . . . . . . . . . . . 2

1.2.1 Cell-based models . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Incorporating mechanical complexity . . . . . . . . . . . . . . 7
1.2.3 Incorporating additional geometric complexity . . . . . . . . . 7

1.3 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Numerical analysis of the IBM for cell-based simulation 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 IBM formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Non-dimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Discrete Dirac delta function . . . . . . . . . . . . . . . . . . . 26
2.4.2 Discretization of IBs . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Discrete force relations . . . . . . . . . . . . . . . . . . . . . . 27
2.4.4 Discretization of the Navier–Stokes equations . . . . . . . . . 28
2.4.5 Discretization of force relation . . . . . . . . . . . . . . . . . . 28
2.4.6 Discretization of position-updating relation . . . . . . . . . . . 29
2.4.7 Discretization of fluid sources . . . . . . . . . . . . . . . . . . 29
2.4.8 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Computational implementation . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Chaste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Implementation of cellular processes . . . . . . . . . . . . . . . 33
2.5.3 Computational efficiency and profiling . . . . . . . . . . . . . 35

2.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.1 Node spacing ratio and volume change . . . . . . . . . . . . . 38
2.6.2 Scaling of individual cell properties . . . . . . . . . . . . . . . 39
2.6.3 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Potential applications to epithelial morphogenesis . . . . . . . . . . . 43
2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8.1 Stokes or Navier–Stokes . . . . . . . . . . . . . . . . . . . . . 46
2.8.2 Discrete delta function . . . . . . . . . . . . . . . . . . . . . . 47
2.8.3 Intercellular interaction terms . . . . . . . . . . . . . . . . . . 48

i



2.8.4 Balancing sources . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8.5 Constant viscosity . . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Efficient implementation and exploration of cell-based models within
an open source framework 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Reinhart and Rogoff: a cautionary tale . . . . . . . . . . . . . 52
3.2 General contributions to the Chaste libraries . . . . . . . . . . . . . . 55

3.2.1 Using modern C++ . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.3 Monitoring test performance over time . . . . . . . . . . . . . 57

3.3 Specific contributions to the Chaste libraries . . . . . . . . . . . . . . 60
3.3.1 Voronoi vertex mesh generator . . . . . . . . . . . . . . . . . . 60
3.3.2 Fully periodic spatial decomposition algorithm . . . . . . . . . 67

3.4 Pipeline for running simulations and presenting output . . . . . . . . 71
3.4.1 Infrastructure for parallel execution . . . . . . . . . . . . . . . 73
3.4.2 Presenting simulation output . . . . . . . . . . . . . . . . . . 74

3.5 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Comparing individual-based models of cell surface mechanics 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Details of the VM . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Extensions to existing IBM and VM descriptions . . . . . . . . . . . . 81

4.2.1 Cell neighbours in IBM simulations . . . . . . . . . . . . . . . 82
4.2.2 Allowing IB cells to modulate their size . . . . . . . . . . . . . 84
4.2.3 Adding noise to simulations . . . . . . . . . . . . . . . . . . . 85

4.3 Cell sorting as a model system for comparison . . . . . . . . . . . . . 94
4.3.1 Recapitulating cell sorting in the VM . . . . . . . . . . . . . . 96
4.3.2 Extending the understanding of VM cell sorting . . . . . . . . 98
4.3.3 Adding correlated noise to VM simulations . . . . . . . . . . . 100
4.3.4 Cell sorting in the IBM . . . . . . . . . . . . . . . . . . . . . . 101
4.3.5 IB sorting and diffusion strength . . . . . . . . . . . . . . . . 103
4.3.6 The impact of correlated noise on IB cell sorting . . . . . . . . 104
4.3.7 The impact of cell gap on IB cell sorting . . . . . . . . . . . . 106

4.4 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 A computational model of early placode morphogenesis 109
5.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.1 Computational modelling of out-of-plane deformations . . . . 110
5.1.2 Characterisation of the model system . . . . . . . . . . . . . . 113

5.2 Computational modelling of this system . . . . . . . . . . . . . . . . 116
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 An IB model of early placode development . . . . . . . . . . . 116
5.3.2 IB region tagging . . . . . . . . . . . . . . . . . . . . . . . . . 122

ii



5.3.3 IB remeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.4 The IB framework for this study . . . . . . . . . . . . . . . . . 125

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.1 Increased apical adhesion . . . . . . . . . . . . . . . . . . . . . 126
5.4.2 Active cytoskeletal remodelling . . . . . . . . . . . . . . . . . 128
5.4.3 Cyclic cytoskeletal remodelling . . . . . . . . . . . . . . . . . 134
5.4.4 Additional diagonal tensile element . . . . . . . . . . . . . . . 137

5.5 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.1 Summary of model progression . . . . . . . . . . . . . . . . . 139
5.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Discussion and outlook 143

A Obtaining the source code 149
A.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B Technical details 151
B.1 Implementation details of skewness algorithm (Section 5.3.1) . . . . . 151
B.2 Implementation details of IB region tagging (Section 5.3.2) . . . . . . 151
B.3 Mathematical details of IB remeshing (Section 5.3.3) . . . . . . . . . 152

Bibliography 155

iii



List of Figures

1.1 Examples of mathematical modelling of morphogenetic processes . . . 4

2.1 Schematic of IBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 An example IBM simulation . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Scaling properties in the IBM framework . . . . . . . . . . . . . . . . 37
2.4 Convergence of computational implementation . . . . . . . . . . . . . 42
2.5 Convergence of cell division implementation . . . . . . . . . . . . . . 43
2.6 Simulated epithelial tissues . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Aspects of software development at the University of Oxford . . . . . 54
3.2 Interface for tracking simulation performance over time . . . . . . . . 59
3.3 Conceptual overview of mesh generation algorithm . . . . . . . . . . . 62
3.4 PCD in simulations using different mesh generators . . . . . . . . . . 64
3.5 Aspects of IB Voronoi mesh generation . . . . . . . . . . . . . . . . . 65
3.6 Aspects of the spatial decomposition algorithm . . . . . . . . . . . . . 68
3.7 Schematic of executable–output pipeline . . . . . . . . . . . . . . . . 72
3.8 Example HTML index page . . . . . . . . . . . . . . . . . . . . . . . 76
3.9 Schematic of video generation pipeline . . . . . . . . . . . . . . . . . 77

4.1 A T1 swap in the Chaste VM implementation . . . . . . . . . . . . . 81
4.2 Voronoi superdomains disambiguate cell neighbours . . . . . . . . . . 83
4.3 Determining cells on the edge of an IB population . . . . . . . . . . . 84
4.4 Instantiation of GRFs . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Effect on field distribution of varying trace proportion . . . . . . . . . 92
4.6 Effect of correlation length on eigenvalues and trace proportion . . . . 93
4.7 Snapshot of VM cell sorting on periodic domain . . . . . . . . . . . . 97
4.8 Effect of rearrangement threshold and diffusion strength on VM sorting 99
4.9 Effect of noise correlation lengthscale on VM cell sorting . . . . . . . 101
4.10 Snapshot of IB cell sorting simulation . . . . . . . . . . . . . . . . . . 104
4.11 Effect of noise strength on IB cell sorting . . . . . . . . . . . . . . . . 105
4.12 Effect of noise correlation lengthscale on IB cell sorting . . . . . . . . 106
4.13 Effect of differing cell gap on IB cell sorting . . . . . . . . . . . . . . 107

5.1 Viscoelastic model of embryonic cross-section . . . . . . . . . . . . . . 111
5.2 VM of Drosophila ventral furrow formation . . . . . . . . . . . . . . . 112
5.3 Three-dimensional model of molar development . . . . . . . . . . . . 112

iv



5.4 Simplified schematic, and microscopy slide, of the tooth placode . . . 113
5.5 Elements of the model system . . . . . . . . . . . . . . . . . . . . . . 115
5.6 Schematic of vertical telescoping . . . . . . . . . . . . . . . . . . . . . 116
5.7 Cell and tissue geometry in IBM simulations of epithelial bending . . 119
5.8 Skewness measure of planar-body asymmetry . . . . . . . . . . . . . 121
5.9 Determining outward lean of cells . . . . . . . . . . . . . . . . . . . . 122
5.10 Increased apical adhesion . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.11 Reduced inner apical stiffness . . . . . . . . . . . . . . . . . . . . . . 130
5.12 Explicit cell polarity resists epithelial buckling . . . . . . . . . . . . . 132
5.13 Reduced inner apical stiffness with explicit polarity . . . . . . . . . . 133
5.14 Overextended apical protrusions . . . . . . . . . . . . . . . . . . . . . 135
5.15 Cyclic stiffness reduction . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.16 Adding a diagonal support . . . . . . . . . . . . . . . . . . . . . . . . 139
5.17 Additional diagonal tensile element . . . . . . . . . . . . . . . . . . . 140

v



List of abbreviations

Chaste Cancer, Heart And Soft Tissue Environment

CPM cellular Potts model

DFT discrete Fourier transform

ESF elongation shape factor

GDP gross domestic product

GRF Gaussian random field

IB immersed boundary

IBM immersed boundary method

JKR Johnson–Kendall–Roberts

MVM ‘many vertex’ model

ODE ordinary differential equation

PCD polygon class distribution

PDE partial differential equation

SEM subcellular element model

SVG scalable vector graphic

VM vertex model

vi



Chapter 1

Introduction

Embryonic epithelia, the sheets of tissue lining structures and cavities in the embryo,

achieve complex morphogenetic movements including bending and folding through

the coordinated action and rearrangement of individual cells. Recent technical

advances in molecular and live-imaging studies of epithelial dynamics provide an

excellent opportunity to better understand how cell-level processes facilitate these

large-scale tissue rearrangements [90]. In combination with experimental approaches,

computational modelling allows us to challenge and refine our current understanding

of epithelial morphogenesis and to explore experimentally intractable questions. To

this end a variety of ‘cell-based modelling’ approaches have been developed to describe

how processes at the cell scale determine tissue-level behaviour. In many cases,

however, the tools necessary to model observed biological processes are not yet

developed, or are insufficiently refined to fully utilise the high-resolution information

now available on the cellular scale. As such, the overarching aim of this thesis is to

develop such mathematical and computational approaches, in order to improve our

understanding of the role that individual cells play in facilitating tissue shape changes

during morphogenesis, with particular emphasis on the development of placodes in

developing cranial epithelia.

1.1 Background

Morphogenesis is frequently driven by the growth and deformation of epithelial

tissues, which form polarized sheets of cells with distinct apical and basal surfaces

and tight lateral attachments nearer their apical surface. The coordinated movement,

shape change and intercalation of cells in an epithelial sheet facilitate complex

morphogenetic processes, from tissue elongation through convergent extension [87], to

1



bending and invagination [98] and tube formation [92]. Well-studied examples of such

processes include convergent extension in the mouse neural plate [171] and ventral

furrow formation in Drosophila [128]. Importantly, understanding the functions of,

and mechanisms giving rise to, these structures constitutes a significant step toward

improving regenerative therapies and engineered tissues.

The mechanical forces driving epithelial morphogenesis affect individual cell

morphologies, and are exerted on neighbouring cells and extracellular matrix

through membrane-bound adhesion components, leading to tissue-level stresses and

strains [10, 78, 81]. Cells can also be influenced by extrinsic forces arising, for example,

from underlying tissues [20]. Until recently, such forces were not experimentally

measurable, and thus the role of mechanics in morphogenetic processes not well

characterized. This has changed, however, with recent advances in measurement

techniques, in particular in vivo [158]. These advances, together with finer grained

cell-scale imaging, improve the ability with which descriptions of mechanics can be

probed and understood.

This interface between mechanics and predictive computational models is a driving

motivation for this thesis. We begin by first reviewing the development of models that

have sought to elucidate the mechanistic underpinnings of biological processes. This

chapter draws on material from an invited review article published in Philos. Trans.

Royal Soc. B [45], on which I am a co-author, and relevant sections are reproduced

with permission.

1.2 Mathematical models of morphogenesis

Mechanistic mathematical modelling of morphogenesis dates back to the work of

Turing, who first demonstrated symmetry-breaking pattern formation using reaction-

diffusion models [166] (Figure 1.1a). Continuum models, based on Turing’s and

other mechanisms, have since been successful in advancing our understanding of

the processes underlying developmental phenomena. The ‘French flag’ model,

for example, links positional information and morphogen concentration with

phenotype [173], while the ‘clock and wavefront’ model has provided a mathematical

basis for observed specificity in somite number and size during somitogenesis [25].

More recent work has demonstrated that domain growth, of particular relevance

to development, can have an impact on patterns and their robustness [29]. Such

work demonstrates the enduring utility of partial differential equation (PDE) models

in morphogenetic contexts, but these models typically remain phenomenological in

2



nature.

Increasingly, advances in experimental techniques allow us to probe developmental

processes at a cellular and molecular level. As detailed cell-level information

becomes available, and aided by advances in computer hardware, cell-based modelling

approaches able to describe tissue-scale dynamics are becoming more prevalent. Such

models have had success in explaining a broad range of biological processes. A

brief overview of competing modelling approaches is given in Section 1.2.1; for more

detailed reviews see, for example, [121, 163].

As the placode morphogenesis application described in detail in Chapter 5

highlights, we are able to capture cell shape dynamics with increasingly fine levels of

detail, and so the nature of the biological questions being asked requires models

capable of incorporating these more detailed descriptions of cell shape. When

considering developmental processes characterised by movement and deformation on

a cellular level, therefore, existing modelling frameworks summarised in Section 1.2.1

may not provide a detailed enough description of cell shape dynamics. Instead, we

will require frameworks able to model cell shape on ever finer scales.

In a class of more detailed biophysical models of individual cell dynamics, cell

shape is an emergent property. We refer to this class of models as being ‘more

geometrically detailed’, as the description of cell shape is (theoretically) possible at

arbitrary precision. Such models include the ‘many vertex’ model (MVM) [162],

the subcellular element model (SEM) [113], and the immersed boundary method

(IBM) [124]. These frameworks encode points representing spatial locations inside

or on the cell membranes, and rules governing the motion of these points, and are

summarised in Section 1.2.1.

1.2.1 Cell-based models

In this section, before describing these more geometrically detailed modelling

frameworks, we first review a range of cell-based modelling approaches, focussing

on off-lattice models.

Cellular Potts models. The cellular Potts model (CPM) is lattice-based, and

seeks to incorporate cell shape by defining a cell as the union of contiguous lattice

sites [55]. Each site carries a positive integer ‘spin’ representing the identity of the

cell currently in occupation at that site. The basis of the model is a Hamiltonian

energy function, H, which we seek to minimise by updating cell lattice site identities.

3



(a) (b) (c)

(d) (e) (f)

(g)

–0.3 –0.2 –0.1 0 0.1 0.2 0.3

–0.2

0

0.2

(h)

Figure 1.1: Examples of mathematical modelling approaches for describing
morphogenetic processes. (a) A continuous reaction-diffusion model of a morphogen
system displaying a ‘dappled’ pattern, reproduced from [166] (Figure 2) with permission
from the Royal Society. (b) A CPM of branching in the kidney, reproduced from [66]
(Figure 4c) with permission from Elsevier. (c) A particle model of the C. elegans germ
line, reproduced from [3] (Figure 8) with permission from The Company of Biologists. (d)
A VM modelling the apical surface of cells during Drosophila ventral furrow formation,
reproduced from [150] (Figure 2e) under the Creative Commons Attribution License. (e)
A cross-sectional model of ventral furrow formation in Drosophila, reproduced from [116]
(Figures 8a and 8h) with permission from Elsevier. (f) An MVM of Nematostella vectensis
gastrulation, reproduced from [162] (Figure 3f) with permission from Elsevier. (g) A SEM,
showing a tightly clustered ball of interacting cells, reproduced from [143] (Figure 4a) with
permission from IOP Publishing. (h) An IBM model of the villous trophoblast bilayer,
reproduced from [139] (Figure 5a) with permission from Springer Nature.

A typical Hamiltonian takes the form

H =
∑
<i,j>

J (τ(σ(i)), τ(σ(j))) (1− δ(σ(i), σ(j)))+
∑
i

λv (V (σ(i))− Vt(σ(i)))2 , (1.1)

where the first sum is over neighbouring lattice sites, the second is over all lattice sites,

4



τ(σ) is the type of cell σ, J is a constant defining the surface energy between two cell

types, δ is the Kronecker delta function, λv is a cell-volume penalization strength,

V is the cell volume, and Vt is a cell-type-specific target volume. Note that, in two

dimensions, these volume terms refer to surface area, but this description naturally

generalises to higher dimensions.

Updating of the lattice sites is performed stochastically via a Metropolis algorithm,

defining the probability p of a given lattice site changing spin as

p =

{
1, if ∆H < 0,

e−k∆H , otherwise,
(1.2)

where ∆H is the change in Hamiltonian associated with the proposed spin change,

and k is a constant analogous to temperature that governs the propensity with which

energetically unfavourable spin changes are made.

One application of the CPM to developmental biology is a study of tube-branching

in the kidney [66] (Figure 1.1b), where the authors used the CPM to investigate the

impact of physical and chemical factors on branching morphology. While efficient

CPM implementations exist that allow the simulation of many cells in two and three

dimensions, it can be difficult to relate model parameters to real-world quantities,

and there are risks of lattice anisotropies and cell fragmentation. It is worth noting

that some such issues have been addressed: Mango and colleagues [93], for instance,

include an explicit representation of cell cortical tension which, in their framework,

improves cell cohesion and thereby mitigates problems of cell fragmentation.

Particle models. In these models, each cell is represented by a point in space and

one or more parameters define the radius (or principal axes) of an ellipsoid centred at

that point. Descriptions of cell–cell contact include the Hertz and Johnson–Kendall–

Roberts (JKR) models [121]. In both cases, cell–cell interactions are modelled as

soft-ellipsoid interactions with a certain potential function. The JKR model is a

more advanced variant, which also considers adhesion [23].

Figure 1.1c shows an example of a particle model applied to the development of

gonads in C. elegans [3], where the authors demonstrate that germ cell pressure may

have a mechanical feedback on the cell cycle. Particle models are more physically

motivated than lattice-based models and generalise naturally to three dimensions,

however they lack any explicit description of cell shape.

5



Vertex models. In a vertex model (VM), cells are represented by polygons or

polyhedra. Changes in cell shape over time are driven by the motion of points in

two or three dimensional space, defined as the vertices of the polygons or polyhedra.

Several geometric and mechanical assumptions are typically made in VMs, resulting in

a coupled system of first-order ordinary differential equations (ODEs) for the evolution

of the position of each vertex [47]. The VM is suitable for slow velocity, short-length-

scale movements where inertial terms are negligible compared to viscous forces. These

assumptions lead to overdamped motion governed by a system of equations of the form

η
dri
dt

= Fi = −∇iE, (1.3)

where η is a constant related to viscosity and defines the timescale over which motion

occurs, ri is the position of vertex i at time t, Fi is the sum of all forces acting on

vertex i at time t, and E is the free energy, a phenomenological term we assume

to be minimised by the motion of vertices (but which may be disrupted by certain

other model choices, such as vertex rearrangements). Here, the index i runs over all

vertices.

One widely adopted force law is that proposed by Farhadifar and colleagues [42],

based on earlier work by Nagai and Honda [112]. We assume that the free energy

of the epithelial tissue is comprised of three components: an area elasticity term, in

which each element attempts to attain a target area; a perimeter contractility term,

in which cells try to decrease their perimeter; and a line tension term associated with

cell–cell adhesion. The free energy, E, is given by

E =
∑
α

Kα

2

(
Aα − A(0)

α

)2
+
∑
α

Γα
2
L2
α +

∑
<i,j>

Λijlij, (1.4)

where the first two sums are over all cells and the third is over all pairs of adjacent

vertices; Kα, Γα and Λij are, respectively, constants defining the area, perimeter and

line tension penalties; Aα, Lα and lij are, respectively, the cell area, cell perimeter

and junction length; and A
(0)
α is the cell target area. As vertices move to minimise

the energy function (1.4), various vertex rearrangements occur, about which there is

more detail in Section 4.1.1.

Figure 1.1d shows a VM of Drosophila ventral furrow formation [150], a widely

studied model system for epithelial bending. The authors highlight that mechanical

interactions can explain a number of important biological observations with the

need for very little genetic regulation. While the VM allows straightforward

6



generation of experimentally testable summary statistics and explicitly incorporates

a number of cell neighbour rearrangements, biophysical processes such as cell–matrix

adhesion [168] and active cytoskeletal remodelling [131] are typically not considered.

While there are numerous extensions to the VM, such as an attempt to incorporate

curved cell–cell interfaces in order to improve the representation of cell shape [72],

the VM fundamentally lacks the ability to faithfully represent complex cell shapes.

1.2.2 Incorporating mechanical complexity

Viscoelastic element model. While successful in recapitulating much of the

gross behaviour of planar epithelial sheets, VMs lack resistance to shear deformation

through active remodelling of cytoskeletal components. One approach to including

cytoskeletal remodelling is to introduce viscoelastic elements representing the

cell membrane and cytoplasm. This approach was first adopted by Odell and

colleagues [115, 116], who modelled a cross section of an embryo as a ring of cells

with interconnected vertices subject to a viscoelastic force (Figure 1.1e). The authors

assumed that apical edges actively contract in response to stretch. With additional

system-specific assumptions, this model recapitulated patterns of deformation as

observed in, for example, sea urchin gastrulation and Drosophila ventral furrow

formation.

Several more recent studies have focused on the different patterns of cell

mechanical properties that can generate observed tissue deformations. For example,

models of Drosophila ventral furrow formation have suggested a possible role for

pushing by cells neighbouring the furrow, or buckling due to uniform tissue-wide

changes in apical tension [130]. In contrast to the VM, these models include active

cytoskeletal remodelling, however cells are still constrained to form confluent tissues.

1.2.3 Incorporating additional geometric complexity

‘Many vertex’ model. Another recent polygon-based model by Tamulonis and

colleagues [162] represents each cell by a polygon in two dimensions comprising many

vertices, allowing for much more complex cell shapes (Figure 1.1f), and the model

incorporates the effect of filopodia, small projections from the cytoplasm containing

actin filaments. Membrane elasticity is modelled by associating a linear spring with

each cell edge, whose stiffness and equilibrium length varies according to whether the

edge is apical, basal or lateral. The apical (and, in some simulations, basal) corners

of neighbouring cells are also connected by very stiff springs, representing adherens

7



junctions. Apical constriction is implemented via an intracellular spring between each

endodermal cell’s apical corners. This model has been applied to study gastrulation

of the starlet sea anemone Nematostall vectensis.

The authors were able to recapitulate key biological observations of bottle cell

formation, invagination and zippering in Nematostella vectensis gastrulation, and

were able to make a number of specific testable hypotheses based on their findings.

The strength of such models is their explicit description of cell shape, but this comes

at the cost of increased computational complexity, reducing the number of cells that

can be simulated in practice.

Subcellular element model. The three previous models discussed share the

common assumption that cell shape is well approximated by a polygon of specified

degree. We next consider the (SEM), where discrete elements are used to represent

both the cell membrane and cytoplasm. This model assumes that a cell’s volume is

divided into a number of subcellular elements. Each such element is represented by

a point in space, which interacts with other such points via various potentials [144].

In addition to representing cells themselves, subcellular elements may be used to

represent the extracellular matrix, the cell membrane, or individual organelles. The

SEM was initially developed by Newman [113] as a flexible framework for simulating

the detailed dynamics of emergent cell shape changes in response to mechanical

stimuli.

In a similar way to the VM, each point moves as a result of an applied force, in

an overdamped manner, and thus also obeys Equation (1.3). The simplest force law

in the SEM is the gradient of potentials due to intra- and intercellular interactions,

with additive Gaussian noise simulating the random motion of particles. This leads

to an equation for the position rαi
of each subcellular element αi of the form

η
drαi

dt
= ξαi

−∇i ({intra}+ {inter}) , (1.5)

where η is the viscous drag constant, ξ is a Gaussian-distributed random variable.

Figure 1.1g shows an aggregation of cells modelled using the SEM.

The SEM allows detailed and emergent cell shapes in response to mechanical

stimuli, but is computationally costly to simulate. This can be mitigated to a certain

extent by careful parallel model implementation [64], but nonetheless remains costly.

In addition, it may be difficult to relate the interaction function between different

subcellular elements to specific cytoskeletal components or organelles.

8



Immersed boundary method. The immersed boundary method (IBM) is a

numerical method to solve fluid–structure interaction problems and, like the SEM,

allows for a richer variety of emergent and dynamic cell shapes than models such

as the VM [27, 35, 124, 137, 138, 139, 164]. Figure 1.1h shows a bilayer of cells in

the placenta, the villous trophoblast, modelled by the IBM, with arrows showing the

underlying fluid flow. The authors used their IBM study to elucidate the roles of cell

proliferation and cell fusion on the development of trophoblast tissue.

Originally developed to study the flow of blood around heart valves [123], the

IBM considers the dynamics of one or more elastic membranes, which represent

cell boundaries, immersed in a viscous incompressible fluid, which represents the

cytoplasm, extracellular matrix and fluid [136]. The numerical scheme of the IBM

allows the fluid–structure interaction to be decoupled from the discretisation of the

immersed boundaries (IBs) in the sense that the fluid mesh does not need to conform

to the geometry of the IBs. For this reason, after numerical discretisation, the fluid

problem can be solved on a fixed grid that is independent of the geometry of the IBs,

leading to efficient methods of solution. The fluid dynamics obey the Navier–Stokes

equations with an imposed body force acting due to the elastic interactions of each

cell. The precise functional form of this body force may be formulated rigorously as a

strain relation [124], or else by decomposing it into intra- and intercellular interaction

contributions [138]. Each IB moves due to the fluid flow without slipping. The

numerical solution of this model involves discretising the fluid onto a regular square

grid, while each IB is represented by a finite number of points along its length.

The first application to collective cell dynamics, by Rejniak and colleagues, focused

on the growth of solid tumours under differing geometric configurations, initial

conditions and progression models [137, 138]. Although not yet used extensively

to model epithelial morphogenesis, the IBM has been applied in biology and

elsewhere [35, 109, 139]. The flexibility of the IBM is exemplified by an application

by Dillon and colleagues to vertebrate limb bud morphogenesis, where an IB now

represents a tissue domain rather than a cell [34].

As with the SEM and MVM, the IBM incorporates an emergent cell shape from

mechanical stimuli, however the fluid properties may be difficult to relate directly to

biology. A much more thorough treatment of the strengths and weaknesses of the

IBM can be found in Chapters 2 and 4.

Of the three more geometrically detailed frameworks described in this section,

this thesis focusses on the IBM. While each has strengths and weaknesses, the

MVM is not well characterised and has no reference software implementation. The

9



SEM, while well described, also has no reference software implementation and suffers

from the increased computational overhead of representing the subcellular as well

as the boundary elements, increasing the associated computational cost. The IBM

is well characterised in a number of domains and has a mathematically rigorous

underpinning. For this reason, we choose the IBM as the basis for much of the work

in this thesis.

1.3 Software tools

The cell-based models outlined in Section 1.2 all require software implementations.

No single framework has one canonical implementation, and no two implementations

of the same underlying mathematical model are the same in every detail. In this

section we introduce the ecosystem of simulation frameworks that are available, and

highlight features and applications of several prominent implementations.

First, we must define ‘available’. Computational results based on all modelling

frameworks described in Section 1.2 are generated by running an executable program.

That executable program results from code that has been written to perform some

computational work, as specified by the mathematical rules of the framework being

implemented. A software framework may be ‘available’ to the community if the

underlying source code is published. This is ‘open source’ as anyone (in principle)

can obtain the code and use it to reproduce the results presented by the authors. If the

source code is not publicly available, it may be that the executable files necessary to

reproduce the results are still published, and anyone (in principle) can still reproduce

those results. We refer to this as ‘closed source’. If neither the source code nor

the executable programs are made available, there is no possibility of precisely

reproducing published results as it is simply infeasible for every implementation choice

to be detailed.

Not all software tools are available to the scientific community. The work by

Tamulonis and colleagues on bottle cell formation [162], the work by Mao and

colleagues on planar polarization [94] and differential proliferation rates [95], and the

work by Sandersius and colleagues on modelling cell rheology [143], for instance, all

use implementations of cell-based modelling frameworks that, at the time of writing,

are not publicly available either as open or closed source software.

While this by no means invalidates the results presented by these and other authors

whose computational implementations remain unpublished, strong arguments can be

made for the software to be published alongside the results generated by it, and

10



for a more detail on this topic see, for instance [101, 172]. The first argument is

reproducibility. Without the availability of software implementations, work can be

very difficult for other researchers to reproduce, and this feeds the reproducibility

crisis in academia. This leads into the second argument, which is wasted time

(and by implication, money). There is a substantial overhead in time spent

simply to recapitulate existing work when confirming, extending, or investigating

further published results. While the process of implementing a modelling framework

from scratch may well be beneficial for the implementers’ understanding, published

implementations greatly reduce the time to new results: adding new functionality

to an existing implementation is clearly preferable over reinventing the wheel. This,

though, leads to our final argument: quality. If an implementation is not open source,

then the scientific community has no way of ascertaining its quality. By this, I mean

the extent to which the software faithfully represents the underlying mathematical

model, and whether bugs exist that might invalidate results generated by the software.

Open source implementations can be scrutinised by the community, and poor quality

code cannot easily be hidden. Indeed, entire journals such as the Journal of Open

Source Software1 and SoftwareX 2 now exist to publish open source software tools,

allowing software implementations to be cited and peer-reviewed by the academic

community.

These arguments highlight the need for high quality, open source implementations

in cell-based modelling. As already highlighted, far from all computational modelling

implementations have been made public. There are many, however, that have. While

this section is not intended as an exhaustive list of software available for cell-based

simulations, it is instructive to outline a number of popular frameworks together with

some of their strengths and weaknesses. Table 1.1 shows a high level overview of

several frameworks.

In my experience, general considerations for each of these pieces of software include

the following. Who is the target user: experienced programmers, or scientists with

little computational experience? What is the scale of the target biological problems:

dozens of cells in high levels of detail, or billions of cells? Where will the code

be run: on a laptop or a supercomputer? There are a large number of different

cell-based computational frameworks, with each balancing these considerations to

different degrees. As a result, each framework has unique characteristics that make it

more or less suitable for addressing particular biological questions, and more or less

1https://joss.theoj.org/
2https://www.journals.elsevier.com/softwarex

11

https://joss.theoj.org/
https://www.journals.elsevier.com/softwarex


Software Open
GUI

On-lattice Off-lattice
Refs

package source CA CP PM VT VM IBM SEM
Chaste × × × × × × ×1 ×2 [107, 127]
CompuCell3D × × × [161]
Morpheus × × × [153]
EPISIM × ×3 × [159]
CellSys × × [69]
PhysiCell × × [51]
Biocellion × [75]
VirtualLeaf × × × [103]
LBIBCell × × [164]
EmbryoMaker × × ×4 ×5 [96]

Table 1.1: Software tools for computational modelling. GUI: graphical user interface.
CA: cellular automata. CP: cellular Potts. PM: particle model. VT: Voronoi tessellation.
VM: vertex model. IBM: immersed boundary method. SEM: subcellular element model.
Notes: 1 the IBM is implemented in a separate named branch of the Chaste software
repository, the implementation of which is the subject of Chapter 2 ([27]). 2a partial
implementation of the SE exists in Chaste, but is not yet publicly accessible. 3EPISIM
interfaces with a variety of on- and off-lattice biomechanical models. 4EmbryoMaker uses a
mixture of spheres and cylinders, but most closely relates to particle models. 5EmbryoMaker
implements SEM-type dynamics for certain cell types, but this does not appear to incorporate
subcellular resolution of cell shape.

suitable for particular users.

Chaste. Chaste (Cancer, Heart And Soft Tissue Environment) is an open source

simulation package for the numerical solution of mathematical models arising in

physiology and biology. Chaste, and its extensions, are used and described in detail

throughout this thesis. Its development has been driven primarily by applications to

continuum modelling of cardiac electrophysiology (‘cardiac Chaste’), to discrete cell-

based modelling of soft tissues (‘cell-based Chaste’), and to modelling of ventilation

in lungs (‘lung Chaste’).

Cell-based Chaste focusses on efficient and validated implementations of a

variety of cell-based modelling frameworks and, as such, it places an emphasis on

reproducibility and employs extensive automated testing to ensure software quality

and reliability. Chaste includes implementations of the cellular automaton model,

the cellular Potts model, cell-centre models (including particle based and Voronoi

tessellation), and the VM [118]. In addition, Chapter 2 (published; [27]) details an

implementation of the IBM in Chaste, and this implementation is explored and used

in this thesis. Chaste also has an implementation of the SEM [64], although this

is not yet complete nor publicly available. The particle model is implemented in

12



parallel [64] and scales to ∼ 106 cells on supercomputers.

While Chaste has focussed on a wide range of cell-based modelling frameworks,

and has an emphasis on high-quality well-tested code, it is a complex C++ library

with a steep learning curve for those without a software development background.

As of September 2018, 39 publications have resulted from cell-based Chaste.

Selected applications have included the dynamics of intestinal homeostasis and

carcinogenesis [2, 38], vascular tumour growth [60] and the dynamics of embryonic

epithelia [84].

CompuCell3D. CompuCell3D is a software package that implements the CPM

to model the morphology of cells, and is the successor to a previous software, the

Tissue Simulation Toolkit [102]. Application development has focussed on multiscale

modelling, with support for subcellular simulations using integrated ODE and PDE

solvers. The software is open source, and available for download both as source code

and in binary form for cross-platform use3. Via a graphical user interface, users can

run simulations without significant programming experience.

Development of CompuCell3D is ongoing; it been under continuous development

for at least the last six years. A diverse range of studies have been made possible by

CompuCell3D, including understanding the roles of cell adhesion and proliferation in

kidney disease [8], the CD8+ T-cell immune response [49], and somitogenesis [33].

Limitations of the software include the inability to simulate large cell populations

(105 and above) [51], and only having the choice of the CPM for representing cellular

biophysics.

Morpheus. In many ways, Morpheus is similar to CompuCell3D. It implements the

CPM as the underlying biophysical model, and has built-in ODE and PDE solvers to

allow the coupling of cell biophysics to subcellular dynamics. The software is open

source, and available both as source code and as cross-platform binaries4.

A great strength of Morpheus is that it is user friendly: an intuitive graphical user

interface allows simulations to be performed without writing any code whatsoever.

Development of the software is still active. An example study using the CPM

biophysical model in Morpheus looked at the role of vascular endothelial growth

factor in vascular network patterning [80], while a recent study used the ODE solution

capabilities of Morpheus to understand the fluid dynamics of bile in the liver [104].

3http://www.compucell3d.org/
4https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php

13

http://www.compucell3d.org/
https://imc.zih.tu-dresden.de/wiki/morpheus/doku.php


As with CompuCell3D, limitations of Morpheus include the size of cell populations

that can be simulated, and the lack of alternative biophysical models.

EPISIM. EPISIM uses ‘process diagrams’ inside a graphical interface to allow

the easy composition of the problem description. This is achieved by use of the

Systems Biology Markup Language (SBML)5, which allows models to be imported

and exported from the software in a portable format that could, in theory,

be loaded directly into other software compatible with the SBML. The model

description is then translated automatically into executable code to allow two- and

three-dimensional simulations through a closed source simulation framework. The

underlying biomechanical models implemented in EPISIM include an ellipsoid-based

particle model and a lattice-based model.

EPISIM has been used to model wound healing [141] and barrier formation in the

epidermis [160].

While the intuitive model construction is designed to allow those without a

computational background to be able to conduct simulations, this, coupled with the

closed source implementation, significantly limits both extensibility and the extent to

which precise details of the model solution can be determined.

CellSys. CellSys implements an off-lattice particle model, with built-in support

for cell cycle, signalling and migration. CellSys employs a graphical interface for

constructing models, and has a specific focus on performance, making use of OpenMP6

for shared memory parallelism, allowing simulations in excess of 105 cells.

To date, applications have focussed on the liver, including studies on liver tissue

regeneration [70, 68, 37] and disease [146]. Similar to EPISIM, CellSys is closed

source, but free for academic use and, as such, suffers from the same problems of

extensibility and detailed understanding of the underlying algorithms. The future

direction of CellSys appears to be a new package, TiSim, which will be an open

source successor, although few details are available at the time of writing.

PhysiCell. PhysiCell is another mechanistic particle model implementation with

facilities to simulate the cell cycle, cell death, volume changes, motility and adhesion.

The software is open source and cross platform, and simulations can be run on both

desktops and supercomputers.

5http://sbml.org/Main_Page
6https://www.openmp.org/

14

http://sbml.org/Main_Page
https://www.openmp.org/


PhysiCell brings high-performance off-lattice simulations of cell dynamics to

an open source project, and aims to be an independent codebase able to cross-

validate predictions made by other frameworks including Chaste, CellSys/TiSim and

Biocellion.

The target application area for PhysiCell is cancer biology and, while the software

is only recently released at the time of writing, one study describes the use of PhysiCell

in cancer hypothesis testing [119].

Biocellion. Biocellion is a closed source commercial software solution for the

simulation of extremely large cell populations, using a particle model framework.

Biocellion is capable of simulating ∼ 106 cells on a desktop computer, scaling up to

∼ 109 cells on a supercomputer, several orders of magnitude more cells than can be

simulated by any competing simulation framework.

While the software is free for academic use, it is closed source. This prevents

detailed knowledge of the implementation details and extending of functionality, and

it is impossible to assess to what extent the functionality is rigorously tested. The

software has not yet seen wide adoption despite being the only solution for simulating

billions of cells, but one simulation study demonstrates the applicability of such

capabilities to the patterning of yeast colonies [76].

VirtualLeaf. VirtualLeaf is a simulation framework for modelling plant tissue

growth and development. The software is open source, and consists of an

implementation of the VM, but one in which relative motion between cells is

restricted; this being appropriate for the study of plant tissues. VirtualLeaf

incorporates ODE-based transport models, as well as PDE reaction–diffusion models

coupled to the underlying mechanical model. A main difference compared to the VM

described in Section 1.2, in addition to the restricted relative cell motion, is that the

energy function is minimised by use of a Monte Carlo algorithm; vertices are moved

in a random direction with movements rejected if the energy function is not reduced.

Due to the specific requirement of plant tissue modelling, VirtualLeaf is necessarily

not widely applicable beyond its main application area. Studies to date include root

vascular patterning [100], growth and patterning during vascular tissue formation [15],

auxin transport [36] and emergence of tissue polarization [170].

LBIBCell. LBIBCell is, other than Chaste, the only software framework to

implement any of the more geometrically detailed models described in Section 1.2.3.

15



LBIBCell implements the IBM using a Lattice–Boltzmann-based fluid solver, and has

a focus on coupling cell signalling with the biophysical model of cell geometry.

LBIBCell is open source7, but at the time of writing no development of the code

is evident since early 2015, and no simulation studies that make use of it have been

published. A major drawback to LBIBCell is the low number of cells that can be

feasibly simulated on a desktop computer, but this is a consequence of the increased

geometric and biophysical realism of the model itself, and not a criticism of the

software implementation.

EmbryoMaker. EmbryoMaker implements a model that is capable of explicitly

representing epithelia, extracellular matrix and mesenchyme as having different

mechanical properties. This has been identified as important is a range of different

biological scenarios [11], and so the EmbryoMaker framework has been built to

treat the three differently: epithelial cells as cylinders, and extracellular matrix and

mesenchymal cells as spheres, with differing properties. While drawing on the SEM

model, there is no indication that EmbryoMaker seeks to model complex cell shapes

by using numerous subcellular elements.

An application of EmbryoMaker investigates the role of tissue growth and cell

adhesion in early tooth morphogenesis [11], and a recent review showcases several

aspects of the software [147].

Summary. The software frameworks highlighted here show a wide range of tools

available for cell-based simulation, and each is best suited to a specific problem

domain. I believe it is worth highlighting several of those domains. Biocellion leads

the way in high-performance simulation of particle models, being the only simulation

framework having demonstrated the simulation of billions of cells. PhysiCell occupies

a similar application space, although does so in the open source domain, which is a

major drawback to using Biocellion. Morpheus, while capable of simulating far fewer

cells, leads the way in terms of ease of use, with an intuitive GUI allowing non-expert

users to conduct simulation studies. Chaste occupies yet another niche: focussing on

a wider variety of frameworks, and on high-quality code, being the only framework

with a rigorous testing infrastructure.

Choosing the right tool for the job is important, and having a range of high-quality

open source simulations tools available to the academic community is therefore an

important step towards understanding the processes of developmental biology.

7https://bitbucket.org/tanakas/lbibcell

16

https://bitbucket.org/tanakas/lbibcell


1.4 Thesis structure

In this chapter we have reviewed the mathematical and computational tools that

have been developed to explore cell-scale problems in developmental biology. In the

process, we have identified the need for more geometrically detailed cell-based models

to tackle a class of problems where cell shapes are complex and emergent.

It is worth noting that work in this thesis includes an implementation of

the IBM for cell-based simulation. Work on this implementation began in

2014, contemporaneous with that of Tanaka’s LBIBCell implementation which

was published in 2015. While it may have been possible to extend Tanaka’s

implementation had it been available before work on my Chaste implementation

began, LBIBCell focusses on coupled morphogenetic problems, while my Chaste

implementation focusses on the ability to modulate mechanical properties while

interfacing with the rich utility of the underlying Chaste framework. While there

is, inevitably, some overlap between my work and that of Tanaka, the work was

independent and was tailored to address different biological questions.

There are, nonetheless, few computational implementations of such geometrically

detailed models, and those that do exist are typically not open source or developed

with software engineering best practices in mind. Perhaps as a result of this lack of

availability, there are very few examples of such models being used to understand the

dynamics of cell populations and, in addition, there are no comprehensive account

of the relative strengths and weaknesses of such models, hindering our ability to

effectively utilise them. This thesis addresses these key themes, and is structured as

follows.

Chapter 2 addresses the need for high-quality implementations of more

geometrically detailed cell-based models by implementing one such model, the IBM,

within Chaste. This implementation is accompanied by a comprehensive account

of the model, method of solution, computational implementation and analysis of

parameter scaling, giving the firm grounding necessary to utilise it and to accurately

compare it to other models.

Chapter 3 explores in greater detail the software engineering practices that

underpins high-quality academic software, and describes work to develop and refine

those practices within Chaste.

17



Chapter 4 addresses the need for careful comparisons between different cell-based

modelling frameworks. This chapter compares the IBM with the VM on a benchmark

problem of cell sorting and advances both the fundamental implementation details

necessary for such a comparison, and our understanding of the IBM. No such

comparison has been undertaken previously, and this work substantially increases

our understanding of the scenarios under which the IBM is an appropriate tool for

computational modelling.

Chapter 5 then demonstrates the efficacy of the IBM within developmental biology

by applying it to understand the mechanics underpinning a novel form of epithelial

bending. This work, in direct collaboration with experimental biologists, addresses a

real and relevant question in developmental biology that hinges on out-of-equilibrium

cell morphodynamics.

Main contributions of this thesis. Utilising an implementation of a more

geometrically detailed cell-based model, my work advances the understanding of

mechanics involved in a novel form of epithelial bending in a hitherto poorly

understood biological system. This work, in direct collaboration with experimental

biologists, used a novel computation model to advance our understanding of early-

stage placode development and, further, demonstrated for the first time that such cell-

based models can be effectively utilised to study problems involving out-of-equilibrium

cell shapes. This not only proved the utility in a specific domain area, but importantly

demonstrates the potential wider efficacy of such models in general.

While the headline contribution of this work is the demonstration that such models

can be used to understand complex biology, other advancements to the state of the

art are also presented. Work in this thesis for the first time contextualises the

IBM next to other modelling frameworks, improving our ability to appropriately

select computational models. Furthermore, the availability of an open-source

implementation of an IBM for cell-based modelling, along with careful demonstration

of convergence, provides the first such detailed account in the literature, serving as a

useful benchmark for future researchers and library implementers. Finally, numerous

technical advancements underpin work in this thesis, each of which is described in

detail in the forthcoming chapters.

18



Chapter 2

Numerical analysis of the IBM for

cell-based simulation

Having discussed the state of the art in cell-based modelling approaches and their

software implementations, we now focus on one particular approach, the IBM,

and undertake the first systematic numerical analysis of this model applied to cell

populations. The contents of this chapter were first published in the SIAM J.

Sci. Comput [27], published by the Society for Industrial and Applied Mathematics

(SIAM). Copyright © by SIAM. Unauthorised reproduction of this chapter is

prohibited.

2.1 Introduction

Chapter 1 reviews a range of cell-based models and highlights a subset that are more

geometrically detailed and capable of explicitly representing complex cell shapes.

However, a firm mathematical and numerical foundation for the analysis of such

models, which is required for confidence in the conclusions drawn from them, remains

lacking. Surprisingly few numerical analyses of such models have been undertaken;

see [83] for a rare exception. To help address this gap we present a detailed

examination of the IBM, one such geometrically detailed model, and a computational

implementation thereof, designed to study interacting populations of eukaryotic cells.

The IBM is a numerical framework for simulating the dynamics of one or more

elastic membranes immersed in a viscous Newtonian fluid. It was first developed by

Peskin to investigate flow patterns around heart valves [123]. The model is formed

from two coupled components: elastic boundaries representing, for instance, heart

valves or cell membranes, and a fluid extending over the entire spatial domain. The

19



h

Fint

Fext

Figure 2.1: Schematic of IBs. Circular nodes represent an off-lattice discretization of the
IB contours. The regular grid behind the boundaries represents points on which a viscous
Newtonian fluid, ubiquitous across the domain, is discretised. Adhesion links, specified as
explicit force terms, exist between nodes within each IB as well as between neighbouring
boundaries. The terms h, Fint and Fext are defined in the main text.

elastic boundaries exert a force on the fluid, which induces a flow that, in turn,

causes the boundaries to move. In the context of interacting cell populations, each

IB may be thought of as representing the membrane of an individual cell or, more

generally, structures on smaller or larger scales such as intracellular detail [35] or

multicellular regions of tissue [34]. Intra- and intercellular interaction terms, which

represent phenomena such as cortical tension in the cell membrane and the action

of adhesive transmembrane proteins, are specified as explicit forces acting between

discrete locations on each IB. A schematic of parts of three neighbouring IBs is shown

in Figure 2.1. The set of such interactions defines, at any given time, a resultant force

acting on the membranes. This resultant force is applied to the fluid, which induces

a flow. This flow carries the membranes along with it, thereby updating the positions

of the boundaries. Thus, the role of the fluid is to provide a mechanism by which

the boundary locations are updated; a more detailed discussion of this mechanism is

presented in Section 2.2.

The IBM has several features that make it well suited to modelling the collective

dynamics of cell populations. First, and most importantly, the shape of cell

boundaries can be represented with theoretically arbitrary precision. This enables

investigation of processes at a subcellular scale while allowing cell shapes to be

an emergent property rather than a constraint of the model, in contrast to other

approaches such as VMs [128, 150] and particle-based models [69]. Second, volume

is preserved within any given closed contour of the fluid unless specifically altered by

fluid sources or sinks. Thus, the IBM allows for the study of regulated processes

20



that affect cell size, such as cell growth, shrinkage, division and death. Third,

implementations of the IBM typically have a small number of parameters. As shown

in Section 2.3, the fluid dynamics depend only on the Reynolds number while cell

mechanical interactions are usually modelled by means of simple forces such as linear

springs. This opens the possibility of calibration against biological data; Rejniak, for

instance, has demonstrated this by successfully parametrising an IBM implementation

with numerical values estimated from various experimental studies [138]. Finally,

unlike numerical schemes that employ structured or unstructured grids conforming

to the immersed body, in the IBM the fluid is discretised using a regular Cartesian

grid that may be generated with ease. This allows a relatively simple numerical

scheme, discussed in Section 2.4.8, which has a fairly straightforward and efficient

computational implementation and enables the use of a fast and direct spectral

method for computing the fluid flow.

Several previous studies have detailed aspects of the IBM, including a thorough

treatment of the underlying mathematics in a general three-dimensional setting by

Peskin [124]. Biological applications include those by Rejniak and colleagues, who

use an IBM implementation to investigate the growth of solid tumours under differing

geometric configurations, initial conditions and tumour progression models [137, 138].

The same authors have investigated the mechanics of the bilayer of trophoblasts in the

developing placenta [139]. Rejniak and Dillon employ a similar framework to explain

the variety of different architectural forms in intraductal tumours [135]. Dillon and

Othmer use an IBM to model spatial patterning of the vertebrate limb bud [34],

and an IBM framework for tackling general morphogenetic problems is presented by

Tanaka and colleagues [164]. Cell deformation is investigated by several authors; by

Bottino in the context of passive actin cytoskeletal networks [14], by Jadhav and

colleagues with a three-dimensional implementation in the context of cell rolling [73],

and by Li and colleagues [86], Bagchi [6], Fedosov and colleagues [43] and Krüger and

colleagues [82] who use the IBM to study deformation and flow of red blood cells.

Also in three dimensions is a comprehensive model of the cochlea by Givelberg and

Bunn [53], in a very different Reynolds number regime, demonstrating the versatility

and range of IBMs. More recently, IBMs in three dimensions have been applied to ever

more complex geometries, and studies include an investigation of the hydrodynamics

of diatom chains [114], a model of actively swimming jellyfish [71], and a study of

aortic heart valve dynamics [57]. These studies utilise the IBAMR implementation1.

Finally, a review by Mittal and Iaccarino gives excellent background on the method

1https://github.com/IBAMR

21

https://github.com/IBAMR


and cites many other examples of its use across various, including non-biological,

application areas [109].

While, collectively, these papers provide an excellent overview of the IBM and

several implementations thereof, there remains no comprehensive account of the

model, method of solution, computational implementation or analysis of parameter

scaling. The aim of this work is therefore to provide comprehensive details of

an IBM implementation aimed specifically at describing the collective dynamics

of multicellular tissues. We provide a free, open source implementation of the

IBM complete with example simulations: we build on the established Chaste

library [107, 127] to ensure that the code is robust and well-tested; we present

the code necessary to reproduce all figures in this chapter; and we conduct a

thorough numerical analysis detailing how parameters scale with respect to each

other in order to build a recipe allowing consistent parametrisation of models. It

is worth noting that, while there are a number of IBM implementations in three

dimensions, there are several reasons for which we choose to focus on a two-

dimensional implementation in the present work. The computational demands of

a fully three-dimensional implementation are high, and important advances continue

to be made: the use of distributed-memory parallel processing to compute larger

three-dimensional problems, and improvements to the IBM framework itself such as

adaptive mesh refinement, have been instrumental in undertaking several of the three-

dimensional studies mentioned above [59]. While this work opens up many avenues

for future study, we target our framework at applications in multicellular tissues

where we wish to simulate many hundreds of cells, and for which two-dimensional

simulation is able to effectively capture important mechanisms. Thus, our focus is

on the integration of biological processes into a two-dimensional IBM framework, in

order to address specific questions in the field of epithelial morphogenesis.

The remainder of this chapter is structured as follows. Sections 2.2 to 2.4

give details of the IBM, its discretization and a numerical solution using a fast-

Fourier transform algorithm. Section 2.5 outlines the C++ implementation in Chaste.

Section 2.6 details a numerical analysis demonstrating that the computational

implementation converges, and elaborating on how parameters scale relative to each

other. Section 2.7 provides a prototype simulation study, and details specific biological

questions that the IBM is well suited to explore. Section 2.8 concludes with a

discussion of the choices made in our implementation, and future work in this area.

22



2.2 IBM formalism

Consider a viscous Newtonian fluid, with velocity u = u(x) = u(x, y), flowing in a

two-dimensional, doubly periodic domain Ω = [0, L]× [0, L]. The fluid motion obeys

the Navier–Stokes equations

ρ
∂u

∂t
+ ρ (u · ∇) u +∇p− µ

(
∇2u +

1

3
∇s
)
− ρf = 0, (2.1a)

∇ · u = s, (2.1b)

where ρ and µ are the fluid density and viscosity, respectively, and are both assumed

constant; p is the pressure field; f is the force per unit area acting on the fluid; and s

is the fluid source field, representing the proportional volume change per unit time.

The periodic boundary conditions enforce u(x, 0) = u(x, L) and u(0, y) = u(L, y),

for 0 ≤ x, y ≤ L.

We next consider a set of N non-overlapping closed curves in the fluid, which

we will refer to as IBs, and which we think of as representing cell membranes. We

associate upper-case Roman indices (e.g. F and X) with the IBs, and lower-case

Roman indices (e.g. f and x) with the fluid domain Ω. Let Γ1, . . . ,ΓN denote the

collection of IBs, and let each IB Γk be parametrised by γk. Further, let

Γ =
N⋃
k=1

Γk (2.2)

denote the union of these IBs, parametrised by γ, which is composed of γ1, . . . , γN

in the natural way. Let X = X(γk, t) denote the coordinates of the kth IB and let

X = X(γ, t) be the combined coordinates of all IBs.

We denote the resultant force acting on the IBs by F = F(γ, t). The precise

functional form of the resultant force F varies with application, and is formulated in

Section 2.4. We relate the resultant force on the IBs to the body force acting on the

fluid through the relation

f(x, t) =

∫
Γ

F(γ, t) δ(x−X(γ, t)) dγ =
N∑
k=1

∫
Γk

F(γk, t) δ(x−X(γk, t)) dγk, (2.3)

where δ(·) denotes the Dirac delta function. The force on the fluid at location x thus

vanishes away from the IBs, and equals the resultant force F at location X on an IB

precisely at x = X.

23



The IBs are assumed to move due to the fluid flow without slipping, so that a

point along Γ moves at precisely the local fluid velocity:

∂X(γ, t)

∂t
= u (X(γ, t)) =

∫
Ω

u(x, t) δ(x−X(γ, t)) dx. (2.4)

Thus, the velocity of an arbitrary IB point X(γ) is equal to the velocity of the fluid

at x = X.

The source field, s, is considered to be a finite linear combination of individual

point sources. The number, location and strength of each source is formulated in

Section 2.4, but for now we consider s as an arbitrary (but known) scalar field.

2.3 Non-dimensionalization

We non-dimensionalize the model to reduce the number of parameters and allow us

to estimate the relative importance of each term. For the Navier–Stokes equations,

we introduce the standard choices for viscous dynamics: a length scale, L; velocity

scale, U ; time scale, L/U ; pressure scale, Uµ/L; source scale, U/L; and force scale,

U2/L. Substituting the rescaled variables and operator

x = L
∗
x, u = U

∗
u, t =

L

U

∗
t, p =

Uµ

L

∗
p, s =

U

L

∗
s, f =

U2

L

∗
f , ∇ =

1

L

∗
∇, (2.5)

into Equations (2.1a) and (2.1b) and dropping the stars yields

∂u

∂t
+ (u · ∇) u +

1

Re

(
∇p−∇2u− 1

3
∇s
)
− f = 0, (2.6a)

∇ · u = s, (2.6b)

where Re = ρLU/µ, the Reynolds number, represents the ratio of inertial to viscous

forces. At very low Reynolds number it is appropriate to take the limit Re → 0 in

Equation (2.6a) and, assuming the body force, f , to be of order 1/Re, obtain the

Stokes equations

∇2u−∇p+
1

3
∇s+ f = 0, (2.7a)

∇ · u = s. (2.7b)

Note that we assume f ∼ O(1/Re) as otherwise no flow would be induced by the

force on the IBs.

24



Small scale systems typically exhibit low velocities, and thus Reynolds numbers for

biological regimes can be very small. Small swimming organisms, for instance, may

experience Reynolds numbers as low as Re ≈ 10−4 [129]. Tanaka and colleagues [163]

estimate Reynolds numbers for the fluid-like properties of embryonic tissues as Re ≈
10−13 using assumptions of L = 10−3[m], U = 10−8[ms−1] and µ/ρ = 102[m2s−1].

Rejniak and colleagues [139] arrive at Re ≈ 10−9 by considering the length scale to

be the size of a large cytotrophoblastic cell (20µm) and a characteristic velocity of

30µm in 24 hours.

The Stokes equations (2.7a) and (2.7b) are computationally less expensive than

the full Navier–Stokes equations (2.6a) and (2.6b) to solve; for example, their linearity

permits the use of efficient Green’s function methods [24]. This raises the question of

the circumstances under which it is appropriate to assume Stokes flow for the IB fluid

component, as described in [17, 88]. Here, we choose to solve the full Navier–Stokes

equations, the reasons for which are discussed in Section 2.8, while keeping in mind

that there are particular simulations for which the reduced problem may be suitable

and computationally less expensive to solve.

Having chosen to solve the non-dimensional Navier–Stokes equations (2.6a)

and (2.6b), we non-dimensionalize Equations (2.3) and (2.4) using the rescaled

parameters

X = L
∗
X, F =

U2

L

∗
F, γ = L

∗
γ, (2.8)

dropping the stars, as before.

2.4 Discretization

We solve the coupled problem, consisting of Equations (2.3), (2.4), (2.6a) and (2.6b),

numerically, as follows. The IBs are discretised into a finite union of points (small

circles in Figure 2.1) that we call nodes. The fluid domain Ω is discretised onto a

regular Cartesian grid (square lattice in Figure 2.1) that we refer to as the mesh. In

our non-dimensional coordinates, Ω = [0, 1] × [0, 1] is discretised with N × N grid

points with mesh spacing h. We must also discretize Equation (2.3) relating the force

F on the IBs with the body force f acting on the fluid, and Equation (2.4) relating

the fluid and node velocities.

In the following, time is discretised in steps of ∆t, and we refer to an arbitrary

function Φ(·, t) at the nth time step by Φ (·, n∆t) = Φn (·).

25



2.4.1 Discrete Dirac delta function

In the discretised system, the fluid and IBs interact only via a discrete version of the

Dirac delta function. To approximate the Dirac delta function on the discrete mesh,

we require a function with finite support for which, when interpolating between the

IB and fluid domains, the contributions at each fluid mesh point in the support sum

to unity. Various such functions have been proposed, of which four examples from

different IBM implementations are detailed by Mittal and Iaccarino [109].

Here, we make the common choice of a trigonometric function, used in several

other IBM implementations [34, 138, 139], given by

δh(d) =
1

h2
φ

(
dx
h

)
φ

(
dy
h

)
, (2.9)

where h is the mesh spacing, d = (dx,dy) is an arbitrary distance from the origin,

and the function φ is given by

φ(r) =


1

4

(
1 + cos

(πr
2

))
, |r| ≤ 2,

0, otherwise.
(2.10)

This choice of φ differs from, but takes extremely similar numerical values to, that

derived and used by Peskin [124]. Given the numerical similarity, the choice of

function is unlikely to make much practical difference, and we have found the version

presented here to be less computationally expensive to compute (see Section 2.8).

We also note that, due to the bounded support of both functions, δh(d) will only

ever be non-zero at the 4 × 4 mesh points closest to any given node. The choice

of support size is discussed by Peskin [124], and is made purely on computational

grounds: one could choose a delta function approximation with wider support, but

each node on an IB would then interact with many more mesh points, slowing down

the computation.

2.4.2 Discretization of IBs

We discretize each IB Γk by a set ofNk nodes whose positions are given by Γ1
k, . . . ,Γ

Nk
k .

We suppose that these nodes are initially spaced equally along the original parameter

range γk = (0, γmaxk ), so that the length element ∆γk associated with the kth IB is

equal to the initial node spacing, γmaxk /Nk. Because we impose the condition that

each IB forms a closed contour we have ΓNk+1
k = Γ1

k.

26



2.4.3 Discrete force relations

We are now in a position to define the resultant force F acting on the IBs. The

discretization treats F as the union of a finite set of point forces given by the resultant

force on each node in each IB.

We will consider the resultant force on each node as the combination of two types

of force: ‘internal’ forces, that depend on the positions of other nodes in the same IB;

and ‘external’ forces, that depend on the positions of nodes in different IBs. Here,

we introduce specific choices for the force terms to represent both the mechanical

properties of the actomyosin cortex of a cell and the protein–protein interactions

between neighbouring cells. We represent both these mechanical interactions by linear

springs, following previous IBM implementations [34, 137, 138, 139, 164], although

different functional forms could, in principle, be chosen.

Internal forces represent the contractile properties of a eukaryotic cell’s actomyosin

cortex, which we describe by connecting each node to its neighbours by a linear spring

of stiffness κint and rest length lint. The internal force acting on node Γp
k is thus given

by

Fint (Γp
k, t) = κint

∑
j=p±1 mod Nk

Γj
k − Γp

k

||Γj
k − Γp

k||
(
||Γj

k − Γp
k|| − lint

)
. (2.11)

External forces represent the adhesive properties of transmembrane proteins, such

as integrins and cadherins, linking neighbouring cells. We assume that any node in

an IB is connected to all nodes in different IBs that are situated within a distance dext

by a linear spring with stiffness κext and rest length lext. The external force acting on

the node Γp
k is given by

Fext (Γp
k, t) = κext

N∑
q=1
q 6=k

Nq∑
j=1

H
(
dext − ||Γj

q − Γp
k||
) Γj

q − Γp
k

||Γj
q − Γp

k||
(
||Γj

q − Γp
k|| − lext

)
,

(2.12)

where the outer sum runs over all other IBs, the inner sum runs over the Nq

nodes in boundary q, and H(·) is the Heaviside step function. Our choice of linear

spring interactions is motivated primarily by their ease of implementation and low

computational overhead (see Section 2.8), although in our software implementation

the user is free to define their own functional forms.

The total force F on a node is given by the sum of the internal and external forces,

F (Γp
k, t) = Fint (Γp

k, t) + Fext (Γp
k, t) . (2.13)

27



2.4.4 Discretization of the Navier–Stokes equations

Due to the periodicity of the spatial domain, we employ a fast-Fourier transform

algorithm to solve Equations (2.6a) and (2.6b) numerically. We use the following

numerical scheme, used by Peskin and McQueen [125] and later, with the addition of

fluid sources, by Dillon and Othmer [34]. The numerical scheme is due to Chorin [21,

22] who demonstrated applicability of the following temporal discretisation, where

the sums are taken over the two dimensions, d ∈ {1, 2}:

un+1 − un

∆t
+
∑
d

undD
±
d un +

1

Re

(
D0pn+1 −

∑
d

D+
d D

−
d un+1 − 1

3
D0sn

)
− fn = 0,

(2.14)

D0 · un+1 = sn,

(2.15)

where the forward and backward divided difference operators, D+
d and D−d , the

vector of central divided difference operators, D0, and the upwind divided difference

operator, D±dd, are defined by

(
D+
d φ
)

(x) =
φ(x + hed)− φ(x)

h
, (2.16)(

D−d φ
)

(x) =
φ(x)− φ(x− hed)

h
, (2.17)(

D0
dφ
)

(x) =
φ(x + hed)− φ(x− hed)

2h
, (2.18)

D0 =
(
D0
x, D

0
y

)
, (2.19)

undD
±
dd =

{
undD

−
d , if und > 0,

undD
+
d , if und < 0,

(2.20)

respectively. Here, ed denotes the unit vector in the dth dimension.

2.4.5 Discretization of force relation

We discretize Equation (2.3), relating the force on the fluid to the force on the IBs,

as follows. For each point x in the fluid mesh, we sum the force contributions from

every IB node using the discrete delta function to assign the appropriate weight,

fn(x) =
N∑
k=1

(
Nk∑
j=1

Fn(Γj
k) δh(x− Γj

k) ∆γk

)
, (2.21)

28



where the outer sum runs over the N IBs, the inner sum runs over the Nk nodes in

the kth IB, and ∆γk is the length element associated with the kth IB.

2.4.6 Discretization of position-updating relation

For simplicity, we discretize Equation (2.4) using a forward Euler scheme. At the nth

time step, a given IB node Γj
k is displaced by ∆t un(Γj

k). Because, in general, Γj
k will

not coincide with a fluid mesh point, the value un(Γj
k) is an interpolation of the 4× 4

fluid mesh points closest to Γj
k. The discretised relation for updating node locations

is therefore given by

(
Γj
k

)n+1
=
(
Γj
k

)n
+ ∆t

∑
x∈N(Γj

k)

un+1(x) δh(x− Γj
k) h

2, (2.22)

where N
(
Γj
k

)
represents the 4× 4 fluid mesh points nearest Γj

k (the only points with

non-zero contributions, due to the implementation of δh).

2.4.7 Discretization of fluid sources

The source term, s, allows individual regions enclosed by contours in the fluid domain

to increase or decrease in volume. In the absence of s, due to the volume conservation

property of the IBM, the quantity of fluid within any given closed contour remains

fixed. In the context of simulating multicellular biological systems, the source term,

s, allows the modulation of cell size.

To allow the fluid volume within each IB to be modulated, we decompose s into

a finite number of point sources and initially put a single source at the centroid of

each IB. To ensure a constant total volume of fluid in the domain Ω, we additionally

include a number of sinks (sources with a negative strength) located outside all IBs

which balance the magnitude of the N sources associated with the boundaries.

Suppose there are M combined sources and sinks, s1, . . . , sM , with M > N ,

located at the positions s1, . . . , sM . Each source sk has specified strength Tk, where∑M
k=1 Tk = 0, and the source field s(x) at an arbitrary fluid mesh point x then satisfies

s(x) =
M∑
k=1

Tkδh(x− sk). (2.23)

A convenient method to ensure that fluid sources always remain inside (or outside)

IBs entails updating their locations in the same way as for the IB nodes,

29



(sk)
n+1 = (sk)

n + ∆t
∑

x∈N (sk)

un+1(x) δh(x− sk) h
2, (2.24)

where N (sk) represents the 4× 4 fluid mesh points nearest sk.

The regulation of source strengths depends on the application and on the biological

process underlying the cell size change, and may, for example, be linked to a

description of cell cycle progression and growth. Some examples of biological processes

and their feedback on source strengths are discussed in Section 2.5.2. Note also that

the number of extra ‘balancing sources’ is not fixed, and this choice is discussed in

Section 2.8.

2.4.8 Numerical solution

We are now in a position to solve Equations (2.6a) and (2.6b) numerically. We

reiterate that this numerical scheme is due to Peskin and McQueen [125] with

updates by Dillon and Othmer [34]. Equation (2.21) allows the direct computation

of fn, but Equation (2.22) requires un+1, which we must compute, given fn, from

Equations (2.14) and (2.15).

Rearranging Equation (2.14) to separate the terms evaluated at different time

steps yields (
I − ∆t

Re

∑
d

D+
d D

−
d

)
un+1 +

∆t

Re
D0pn+1 = Rn, (2.25)

where

Rn =

(
I −∆t

∑
d

undD
±
dd

)
un +

∆t

3Re
D0sn + ∆tFn, (2.26)

and I is the 2× 2 identity matrix.

We solve Equations (2.15) and (2.25) directly for un+1 by applying a discrete

Fourier transform (DFT) to eliminate pn+1. For our domain Ω = [0, 1] × [0, 1]

discretised using an N × N square mesh of spacing h, we define the DFT from the

spatial coordinates (·)x,y to the spectral coordinates (̂·)k1,k2 by

(̂·)k1,k2 =
N−1∑
y=0

N−1∑
x=0

(·)x,y exp

(
−2πi

N
(xk1 + yk2)

)
. (2.27)

30



Under this transformation, Equations (2.15) and (2.25) become(
1 +

4∆t

h2Re

∑
d

sin2

(
πkd
N

))
(ûd)

n+1
k1,k2

+
i∆t

hRe
sin

(
2πkd
N

)
p̂n+1
k1,k2

=
(
R̂d

)n
k1,k2

, (2.28)

i

h

∑
d

sin

(
2πkd
N

)
(ûd)

n+1
k1,k2

= (ŝ)nk1,k2 , (2.29)

where i is the imaginary unit, sums are taken over dimension, d ∈ {1, 2}, and each

equation is now of a single variable so holds for d = 1, 2.

We substitute Equation (2.29) into Equation (2.28) to solve directly for

p: multiplying Equation (2.28) by (i/h) sin(2πkd/N), summing it over the two

dimensions, and rearranging for p̂ gives

p̂n+1
k1,k2

=

(
1 + 4∆t

h2Re

∑
d sin2

(
πkd
N

))
(ŝ)nk1,k2 −

i
h

∑
d sin

(
2πkd
N

) (
R̂d

)n
k1,k2

∆t
h2Re

∑
d sin2

(
2πkd
N

) , (2.30)

where every term on the right-hand side depends only on information available

at the current time step. We can therefore substitute Equation (2.30) back into

Equation (2.28) to solve for ûn+1
k1,k2

, obtaining

(ûd)
n+1
k1,k2

=

(
R̂d

)n
k1,k2
− i∆t

hRe
sin
(

2πkd
N

)
p̂n+1
k1,k2

1 + 4∆t
h2Re

∑
d sin2

(
πkd
N

) . (2.31)

Care must be taken at the mesh points (k1, k2) = (0, 0), (0, N/2), (N/2, 0) and

(N/2, N/2), where the denominator of the right-hand side of Equation (2.30) vanishes.

At these points, however, the sine term multiplying p̂n+1
k1,k2

in Equation (2.28) also

vanishes, and we may thus solve directly for (ûd)
n+1
k1,k2

. We therefore avoid this problem

by setting p̂n+1
k1,k2

= 0 in Equation (2.31). Finally, having computed (ûd)
n+1
k1,k2

, we apply

the inverse DFT to obtain un+1,

(ud)
n+1
x,y =

1

N2

N−1∑
k2=0

N−1∑
k1=0

(ûd)
n+1
k1,k2

exp

(
2πi

N
(xk1 + yk2)

)
. (2.32)

2.5 Computational implementation

In this section, we describe the time-stepping algorithm for solving the IBM and how

it fits into the computational modelling framework Chaste. We go on to highlight

some of the computational challenges addressed during the implementation of this

31



method, and we present some benchmarking and profiling results. Finally, we detail

how rule-based processes such as cell division, needed for simulating populations of

cells, are handled within this IBM implementation.

2.5.1 Chaste

We have implemented our IBM framework as part of the Chaste C++ library [107, 127].

The IBM code is released as a feature branch of the latest development version of

Chaste2, which is open source and available under the 3-clause BSD licence. Chaste

is developed with a test-driven approach using the unit testing framework CxxTest3.

Using this framework, unit tests verify the correctness of every individual method

within the implementation, and simulations are themselves written as test suites.

Details of how to obtain the IBM implementation, as well as code to recreate all

simulations from this chapter, can be found in Appendix A.1.

As it is written in C++, Chaste is fast and able to utilise object orientation and

class inheritance, enabling modularity and easy extensibility of the code base. This

structure enables the IBM to integrate with Chaste as a new example of the pre-

existing class of ‘off-lattice simulations’, within which much of the core functionality

such as simulation setup, time stepping and cell cycle models are already implemented

and thoroughly tested. In addition, new specialised functionality is built upon existing

abstract classes, meaning a consistent and familiar interface is presented to existing

code users.

Using the numerical method described in Section 2.4, we solve the IBM by iterating

through the following fixed time-stepping algorithm:

1. update the cell population to take account of cellular processes including

cell death, division, growth, shrinkage and procession through the cell cycle,

discussed shortly;

2. calculate the internal and external forces acting on each node, using

Equation (2.13);

3. loop over each IB node and propagate the associated force to the fluid mesh

domain, as described by Equation (2.21);

4. loop over each fluid source and propagate the associated strength to the fluid

mesh domain, as described by Equation (2.23);

2http://www.cs.ox.ac.uk/chaste/download.html
3http://cxxtest.com/

32

http://www.cs.ox.ac.uk/chaste/download.html
http://cxxtest.com/


5. solve the Navier–Stokes equations, Equations (2.6a) and (2.6b), using the fast-

Fourier transform algorithm detailed in Section 2.4.8 to generate new fluid

velocities;

6. use the new fluid velocities to update IB node and fluid source locations as

described by Equations (2.22) and (2.24).

The computational complexity of this timestepping algorithm is described in

Section 2.5.3. An example of a simple simulation performed using this implementation

within Chaste is visualised in Figure 2.2, where an elliptical IB relaxes over time

towards a circular shape. The fluid flow is shown as a vector field of arrows.

2.5.2 Implementation of cellular processes

Sections 2.2 to 2.4 detail our IBM and a numerical solution thereof, and together

these constitute a method of solving fluid–structure interactions. In addition to this,

we need the facility to include various cellular processes that occur when modelling a

multicellular tissue. Such processes include regulated cell growth, division and death,

and can be thought of as a collection of rules by which the properties of the IBs or

fluid sources are altered, but which do not directly alter the underlying fluid problem.

An example of rule-based modification of IBs is cell division. Within Chaste,

we make use of existing functionality for encoding cell cycle progression. In this

framework, a cell may at some time step be deemed ‘ready to divide’, at which time

the following scheme is employed to replace the single IB (representing the cell about

to divide) with two IBs (representing the daughter cells). First, a division axis through

the centroid of the IB is selected, by means of some rule chosen by the user. This rule

may, for instance, select the shortest axis of the IB, or a random axis, depending on

the biological assumptions particular to the scenario being modelled. Second, with

the division axis fixed, the boundary is divided in two: nodes on each side of the

axis define the shape of each daughter cell, with the daughter cells separated by a

pre-determined fixed distance. This fixed distance is selected to mimic the average

distance between cells in the simulation, however it must be large compared to the

fluid mesh spacing h to avoid the problem of ‘locking’ where IBs cannot move relative

to one another due to insufficient precision in the fluid discretisation; this problem,

as well as guidance on a suitable distance, is discussed at length in Section 4.3.7. We

make the choice that each daughter cell is represented by the same number of nodes

as the parent cell, and a re-meshing process instantaneously spaces these nodes evenly

around the outline of each daughter cell.

33



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0 1 2 3 4 5

Time

1.0

1.1

1.2

1.3

1.4

1.5

E
S

F

(c)

Figure 2.2: An example IBM simulation. An elliptical IB relaxing over time under
the action of internal forces (Section 2.4.3), and no fluid sources. In this simulation,
h = 1/32, ∆t = 0.05 and N = 128 nodes. Full details of all parameters can be found
in the simulation code, available as part of the test suite ‘TestNumericsPaperSimulations’
(see Appendix A.1). (a) State of the simulation after one time step, where flow is acting to
reduce the elliptical IB in height and expand it in width. (b) State of the simulation after
100 time steps, where flow vanishes at the boundary. (c) Dynamics of the aspect ratio of
the ellipse, quantified by its elongation shape factor (ESF; see Section 2.6 for details), over
time.

We remark that this scheme defines a rule-based implementation of cell division

as a process occurring during a single time step. Depending on the time scale

over which the tissue is modelled, one may wish to explicitly represent pinching

during cytokinesis, as implemented by Rejniak and colleagues [137, 139]. This can

be achieved within Chaste, using existing functionality that allows feedback between

the cell cycle and arbitrary cell properties such as a ‘target’ surface area that cells

seek to attain. In this manner, when a cell is selected to divide, processes such as an

increase in size followed by the formation of a contractile furrow could be specified

(for instance, via a feedback with fluid source strengths); however, we stress that our

34



implementation is left flexible and extendible. The modular and hierarchical nature

of Chaste allows the user to easily specify appropriate cell cycles, division rules and

cell property modifiers for a given biological scenario.

Modelling such biological processes does pose certain problems which must be

carefully accounted for. First, as a cell grows by means of an active fluid source,

the length of the associated IB increases. As a result, the boundary nodes become

spaced further apart, increasing the energy stored in the membrane and resulting

in a cell cortex that is more resistant to deformation. A method to mitigate these

issues requires adaptive insertion and re-meshing of the nodes along the boundary so

as to keep the elastic properties constant. Currently within Chaste we have elected

not to re-mesh, but this necessitates careful choice of h with respect to the largest

node spacings that might occur, so as to ensure volume conservation. This, thus,

necessitates the selection of a sufficiently refined node spacing, and this is described

in more detail in Section 2.6.1. Second, as boundaries move around and change size,

changes in connectivity are necessitated between neighbouring cells. Within Chaste,

all connections between neighbouring cells are recalculated every time step based

on a list of all pairwise nodes within the threshold distance dext. To prevent this

recalculation being prohibitively costly, an efficient spatial decomposition algorithm

is employed, as described in Section 2.5.3. Finally, with the active motion of, and

interaction between, IBs, the node spacings within a single boundary inevitably

fluctuate. To cope with this, Chaste implements a static re-meshing algorithm to

redistribute the existing nodes around a given boundary in a volume-preserving

manner, when required.

2.5.3 Computational efficiency and profiling

The two most computationally demanding components per timestep in our IBM

implementation are solving the Navier–Stokes equations and calculating the forces

acting on the IB nodes. The former is demanding due to the calculations necessary

in the finite difference scheme, the five two-dimensional DFTs per time step, and the

term-by-term calculation of the pressure field, of which the DFTs dominate and is

thus O(N2 log(N)) for a fluid grid with N × N points. The latter is costly due to

the potentially large number of pairwise interactions between nodes on neighbouring

IBs that must be kept track of, which is O(k2), where k is bounded above by the

total number of IB nodes, as discussed shortly. The complexity of the timestepping

algorithm depends, therefore, on the balance between the fineness of the fluid-mesh

and that of the IB discretisation.

35



h = 1/512 h = 1/1024 h = 1/2048

Approximate memory footprint (MiB) 39 102 355
Time to advance 2000 time steps (s) 73.9 211 817
Time solving the fluid problem (%) 40.7 62.7 77.3

Table 2.1: Code profiling. The memory footprint, time to complete 2000 time steps,
and the proportion of time spent solving the Navier–Stokes equations is presented for each
of three increasingly fine simulation representations. Each simulation comprises a regular
hexagonal lattice of 20 IBs, allowed to relax for the fixed number of time steps. Each
boundary has 300, 600 and 1200 nodes in separate simulations with 512, 1024 and 2048
fluid mesh points, respectively. Profiling was performed on a desktop machine with an Intel
Xeon E5-1650 v3 CPU and 16GiB RAM, using the GNU gprof profiler. For details of how
to obtain the code for these profiling simulations, see Appendix A.1.

To reduce the time spent dynamically allocating memory used in solution of the

Navier–Stokes equations, we ensure that all arrays storing values needed during the

computation are created during simulation set up, and remain in place in memory

throughout the simulation. For N × N fluid mesh points, this means permanently

storing 12N2 double-precision numbers. The result of this is a drastic speed-up

compared to dynamically allocating memory, with the drawback of a large memory

footprint. In practical terms, this scheme puts an upper bound of N ≈ 4096 when

running a single simulation on a desktop computer, which is not prohibitive.

To optimise the second problem of efficiently calculating pairwise interactions

between nearby IB nodes, we employ a spatial decomposition algorithm [64]. The

domain is broken into squares each with side length equal to the interaction distance,

dext, and at each time step the nodes are placed into their corresponding square. For

a given node, the only possible set of interactions are then between nodes in the same

or neighbouring squares. Thus, we dramatically reduce the computation necessary

when dext � 1.

Table 2.1 shows various profiling statistics for a prototype simulation of 20 cells

initially arranged in an hexagonal packing. The columns of Table 2.1 each represent

a successive doubling of the resolution of both the fluid mesh and the number of IB

nodes. As can be seen, solution of the fluid problem scales less well than calculation

of the forces; however, neither component individually dominates the simulation

runtime.

36



0 1 2 3 4

Node spacing ratio

0.00

0.02

0.04

0.06

0.08

0.10

0.12

V
o
lu

m
e

ch
a
n
g
e

(a)

0 10 20 30 40 50

Time

1.0

1.2

1.4

1.6

1.8

2.0

E
S

F

(b)

0 10 20 30 40 50

Time

1.4

1.5

1.6

1.7

1.8

1.9

2.0

E
S

F

(c)

Figure 2.3: Scaling properties in the IBM framework. (a) Node spacing ratio
and volume change. A set of simulations of a single circular IB, each run for the same
fixed simulation time. Across the set of simulations the node spacing ratio, ∆γk/h, is
varied and the proportional volume change of the IB is recorded. As the node spacing ratio
increases beyond 2.0 there is a sharp increase in the proportional volume change, as a result
of fluid escaping between the distantly spaced nodes. (b) Scaling intracellular spring
properties with node spacing. Two simulations, each of an ellipse relaxing towards a
circle, are run with the ESF sampled at 21 time points. Circles represent a simulation in
which the IB is represented by N = 256 nodes, with intracellular spring constant κint = κ̄.
Crosses, coinciding with the circles, represent a simulation with a modified representation
of N = 512 nodes and intracellular spring constant κint = 4κ̄. (c) Scaling intercellular
spring properties with node spacing. Two simulations, each of two neighbouring
ellipses relaxing, are run in which the ESF of one ellipse sampled at 21 time points. Circles
represent a simulation in which the IB is represented by N = 256 nodes, with intercellular
spring constant κext = κ̄. Crosses, coinciding with the circles, represent a simulation with
a modified representation of N = 512 nodes and intercellular spring constant κext = 0.5κ̄,
and with the intracellular spring properties scaled as in (b). For details on how to obtain
the code for these simulations, which contains full details of all parameter values used, see
Appendix A.1.

2.6 Numerical results

In this section, we run a number of simulations to demonstrate various properties of

our IBM implementation. We first highlight an important relationship between the

37



IB node spacing, ∆γk, and the fluid mesh spacing, h. We go on to explore how certain

parameters in the IBM scale with each other, and use this to work towards a recipe

by which a model of a particular biological process may be simulated. Finally, we

demonstrate that the implementation converges in time step, in fluid mesh spacing,

and in IB node spacing. We employ a summary statistic for an individual cell in a

simulation, referred to as the elongation shape factor (ESF). For a polygon this is

a dimensionless positive real number that defines a measure similar to aspect ratio.

Formally, it is defined as
√
i2/i1, where i1 < i2 are the eigenvalues of the matrix of

second moments of area of the polygon around its principal axes [41]. The ESF for a

circle is 1, and for an ellipse it is the ratio of major to minor axis length.

2.6.1 Node spacing ratio and volume change

In the continuous IBM, IBs are carried at precisely the local fluid velocity

(Equation (2.4)) because they are impermeable to fluid, in the sense that any given

fluid particle will remain either inside or outside a particular IB for all time. In

the discretised IBM, however, there is a gap of average length ∆γk between any two

adjacent nodes in boundary k. If this gap is much larger than the fluid mesh spacing

h, fluid flow between the nodes will have no impact on the propagation of node

locations, and this discretisation error invalidates the volume conservation property

of the IBM. In general, lack of volume conservation is a known problem with IBM

numerical methods themselves [124]. While various improvements to the numerical

method can be made [58, 126], these are often technically complex and bring with

them a computational cost, and it is worth noting that these errors go to zero with

the mesh spacing h and ∆γk in any case [124].

Therefore, to ensure conservation of fluid volume within each IB, ∆γk must be

small enough in relation to h, and h must also be small; the trade-off of making these

parameters overly small is simply computational expense.

To determine how small is small enough, Figure 2.3a shows the results of a set

of simulations relating the change in volume of a circular IB to the node spacing

ratio, ∆γk/h. In each simulation, a circular cell is simulated for a fixed number of

time steps. The intracellular spring properties are set with lint < ∆γk to ensure the

linear springs are under tension and will, in the absence of the volume conservation

property of the IBM, contract to reduce the perimeter of the IB. For each simulation

we measure the proportional area change of the cell (the absolute change in area of

the polygon divided by the original area), for a particular initial value of the node

spacing ratio. From Figure 2.3a, we see that a node spacing ratio much above 2.0

38



results in poor volume conservation. A node spacing ratio below 1.0, though, seems

to ensure that the numerical scheme matches the continuum limit well, from which

we also conclude that h is sufficiently small to mitigate the issues brought about by

the choice of numerical method.

2.6.2 Scaling of individual cell properties

A single cell represented by an IB that is displaced out of equilibrium by, say,

stretching, will relax back to a circle. If we were to run an identical simulation

with half the time step, we would expect the dynamics to remain unchanged (up

to numerical imprecision introduced as a result of the numerical scheme). Likewise,

halving the fluid mesh spacing h would, provided we obey the criteria of Section 2.6.1,

leave the simulation output unchanged. Changing the IB representation, however,

by altering the number of nodes per boundary, Nk, requires a scaling of various

parameters if we wish to recapitulate the same simulation.

To investigate this interplay, we consider the case where the node spacing in a

single IB is decreased by a factor of α, starting from a reference value. Our goal

is to derive the scaling required to ensure that the fluid flow, which determines the

dynamics, remains unchanged. Two effects come in to play. First, the node spacing

∆γk, which appears explicitly in the discretised force relation Equation (2.21), is

reduced by a factor α, and therefore F must be increased by this factor in order

to compensate. Second, because the boundary is represented by linear springs, we

are now considering a system with α times the number of springs, each with length

reduced by a factor α. Assuming the rest length, lint, scales proportionally with the

length of the connection, the average energy of a spring in the reference configuration

is given by

Eref =
1

2
κrefint (∆γk − lint)2 , (2.33)

whereas the average energy of a spring in the new configuration is given by

Enew =
1

2
κnewint

(
∆γk
α
− lint

α

)2

. (2.34)

To ensure the potential in the IB is identical in both the reference and the new

configurations, we must equate Eref with αEnew, giving κnewint = ακrefint . Combining

the scaling by α from both considerations, we thus find that to increase the number

of nodes in an IB by a factor α we require an α2 increase in κint. Figure 2.3b verifies

this scaling.

39



We now consider the case of two interacting cells with identical mechanical

properties. If we alter the resolution of nodes around each IB, how must we change the

cell–cell interaction force parameters kext and lext to recapitulate the same dynamics

in a given simulation? Increasing the number of nodes by a factor α in each IB relative

to a reference scenario will also increase the number of connections, determined via

Equation (2.12), by a factor α. As the IBs are unchanged in size, lext should remain

the same, and thus the potential contained within the boundary interactions will have

increased in proportion to the number of connections. Thus, κnewext = κrefext/α is the

necessary scaling to ensure the simulation dynamics remain unchanged. Figure 2.3c

shows summary statistics from a simulation verifying this scaling.

Putting these two results together, when increasing the density of nodes in a

simulation by a factor α we must scale κint by α2 and κext by 1/α. To encapsulate

this within our computational framework, we introduce an ‘intrinsic length’ relative

to which the scaling described here is applied. Due to this, the required scaling is not

manually applied by the user; the simulation dynamics remain unchanged when the

user alters the node spacing.

2.6.3 Convergence analysis

Here, we demonstrate how the numerical implementation converges with time step,

fluid mesh spacing, and IB node spacing. We conduct this convergence analysis using

a simple prototype simulation of an elliptical IB undergoing relaxation for a fixed

simulation time. For each of the three parameters of interest, ∆t, h, and ∆γk, we

perform a series of simulations where only the parameter of interest is varied, and

collect a single summary statistic, the ESF, from which we can verify convergence.

To analyse convergence with time step, we run the relaxation simulation nineteen

times, starting with ∆t = 0.5 and each time reducing ∆t by a factor of
√

2. Figure 2.4a

demonstrates convergence of the ESF with time step. We assume the ESF associated

with the finest time step to be the best approximation to the continuum limit, and

define the error in ESF for each simulation to be the absolute difference between the

ESF and this best value. Omitting the penultimate value, the gradient of a log–log

plot of this error against time step is 1.11, demonstrating the order of convergence is

approximately linear.

Similarly, to demonstrate convergence with fluid mesh spacing we run fifteen

relaxation simulations starting with h = 1/32 and each time reducing h by a factor of√
2. We need to pick a fixed large number of IB nodes to eliminate the node spacing

ratio issue discussed in Section 2.6.2, and so as not to vary ∆γk. Figure 2.4c shows

40



convergence of the ESF with h. Defining the error in a similar manner to above,

we find the log–log gradient to be 1.37, demonstrating the order of convergence to

be subquadratic. Finally, to demonstrate convergence with IB node spacing, we run

sixteen relaxation simulations, starting with ∆γk ≈ 0.014 and each time reducing

∆γk by a factor of 3
√

2. Figure 2.4 shows the ESF converging. The log–log gradient

is 1.49, demonstrating the order of convergence to be subquadratic.

In addition to convergence of the numerical implementation, we also require our

implementation of cell division to converge with IB node spacing: for a given cell

division, the shape of the resulting daughter cells should be independent of the choice

of boundary parametrisation. We verify this convergence by performing cell division

operations on a number of elliptical IBs, each represented by a different number of

nodes, and using the ESF as a summary statistic of daughter cell shape. Figure 2.5

shows results with a log–log gradient of 1.96, demonstrating the order of convergence

to be quadratic.

41



2 4 6 8 10

− log2(∆t)

1.50

1.52

1.54

1.56

1.58
E

S
F

(a)

2 3 4 5 6 7 8 9 10

− log2(∆t)

4

6

8

10

12

−
lo

g
2
(|e

rr
o
r|)

(b)

5 6 7 8 9 10 11 12

− log2(h)

1.590

1.595

1.600

1.605

E
S

F

(c)

5 6 7 8 9 10 11

− log2(h)

6

8

10

12

14

−
lo

g
2
(|e

rr
o
r|)

(d)

7 8 9 10 11

− log2(∆γk)

1.4197

1.4198

1.4199

1.4200

1.4201

1.4202

1.4203

1.4204

E
S

F

(e)

7 8 9 10 11

− log2(∆γk)

11

12

13

14

15

16

17

−
lo

g
2
(|e

rr
o
r|)

(f)

Figure 2.4: Convergence of computational implementation. (a) Convergence with
time step. Nineteen simulations with different values of ∆t were run for a fixed duration
of 10 time units, with the following fixed parameters: initial ESF = 2.0, N = 128 nodes,
lint = 50% of node spacing, κint = 107, Re = 10−4, with 128 × 128 fluid mesh points,
relative to an intrinsic spacing of 0.01. (b) Linear fit between error and time step, with
a gradient of 1.11. (c) Convergence with fluid mesh spacing. Fifteen simulations with
different fluid mesh spacings, h, were run, for a fixed duration of 10 time units, with the
following fixed parameters: initial ESF = 2.0, N = 8192 nodes, lint = 50% of initial node
spacing, κint = 107, Re = 10−4, and ∆t = 0.01, relative to an intrinsic spacing of 0.01. (d)
Linear fit between error and fluid mesh spacing, with a gradient of 1.37. (e) Convergence
with IB node spacing. Sixteen simulations with different numbers of IB nodes, therefore
modulating ∆γk, were run for a fixed duration of 10 time units, with the following fixed
parameters: initial ESF = 2.0, lint = 50% of initial node spacing, κint = 107, Re = 10−4,
∆t = 0.01, and 64×64 fluid mesh points, relative to an intrinsic spacing of 0.01. (f) Linear
fit between error and node spacing, with a gradient of 1.49. For details on how to obtain
the code for these simulations, see Appendix A.1.

42



6 7 8 9 10 11 12 13 14

− log2(∆γk)

1.0014

1.0016

1.0018

1.0020

1.0022

1.0024

E
S

F

(a)

6 7 8 9 10 11 12 13

− log2(∆γk)

10

12

14

16

18

20

22

24

−
lo

g
2
(|e

rr
o
r|)

(b)

Figure 2.5: Convergence of cell division implementation. (a) Seventeen simulation
results showing the ESF of an IB resulting from the application of the cell division algorithm
(Section 2.5.2), from elliptical IBs with varying values of ∆γk. (b) Linear fit between
error and ∆γk, with a gradient of 1.96. For details on how to obtain the code for these
simulations, see Appendix A.1.

Guideance on choice of parameter values. With this convergence analysis

completed, we can give a sensible rule of thumb for selecting appropriate values of ∆t,

h and ∆γk. As we can see from Figures 2.4 and 2.5, the choice of ∆γk is by far the

least important in the sense that the error over sensible choices of ∆γk is much smaller

than for ∆t and h. We, therefore, suggest first choosing an appropriate value for h

based on the modelling constraints. Next, selecting an appropriate ∆γk to ensure the

node spacing ratio remains less than 1 (see Section 2.6.1) will certainly not increase

the magnitude of any error. Finally, with reference to Figure 2.4 selecting ∆t ≈ h will

keep the error due to timestepping roughly equivalent to the error associated with

the fluid mesh spacing.

2.7 Potential applications to epithelial morphogenesis

Simple epithelia are cell monolayers that cover many surfaces in complex organisms,

and are important systems to study due to the effects of their complex cellular

rearrangements on embryonic development. We design the following prototype

simulation study to draw comparisons with, and propose extensions to, studies of

epithelial packing using VMs, such as those of the Drosophila wing imaginal disc

presented by Farhadifar and colleagues [42]. The aims of this section are threefold.

First, we demonstrate that our implementation is capable of simulating proliferation

and the growth of entire tissues, comprising hundreds and potentially thousands of

cells. Second, we elaborate on details of how our computational implementation

43



can be used to explore problems in developmental biology, where cell geometries are

impacted by biological processes such as progression through the cell cycle. Finally,

we highlight specific questions relating to epithelial morphogenesis which could be

investigated by an IB implementation, but which could not be readily studied with

previously presented frameworks such as VMs.

VMs, which treat the apical surface of simple epithelia as a tessellation of polygons,

have been successfully used to probe many questions in developmental biology [47].

We aim to simulate an initially small group of cells that undergo repeated rounds of

division, using our IBM framework. Specifically, we begin each simulation with nine

cells represented by hexagonal IBs arranged in a honeycomb packing. We permit

cells to follow a cell cycle model where they can grow and divide a fixed number

(five) of times. The duration of the G1 (growth) phase in the cell cycle model is

drawn randomly from an exponential distribution. We finish each simulation when all

proliferation has finished, with approximately 500 cells. We choose to implement cell

divisions, as described above, as occurring on a time scale faster than that of the bulk

tissue mechanics, and therefore that they occur during a single time step. Figure 2.6a

shows a snapshot of one such simulated tissue resembling, at least qualitatively, the

apical surface of the wing imaginal disc epithelium.

Between different simulations, we vary two parameters: the internal and external

spring constants (κint and κext). We collect the polygon class distribution (PCD),

the distribution of cell neighbour numbers, as a simple summary statistic that can be

quantitatively compared to living tissues as well as other simulation studies, and which

constitutes one simple readout of the tissue morphology. It is not straightforward to

calculate the PCD for a population of IB cells, and detailed method for matching a

PCD between vertex and IB populations lies outside the scope of this chapter. It is,

however, explored in detail in Section 4.2.1 where a robust algorithm for this purpose

is described. Figure 2.6b shows the variation in PCD for a fixed value of κint while κext

is varied. Using such summary statistics, we can hope to relate parameters between

different models to allow like-for-like comparisons.

In addition to the PCD, Farhadifar and colleagues present the area distribution

as a summary statistic quantifying the behaviour of the model in different parameter

regimes in their VMs. The area distribution is the average area of each polygon

class (squares, pentagons, hexagons, etc): in the Drosophila wing imaginal disc,

experimental work shows a linear relationship in area distribution, with squares being

on average roughly a third the size of octagons. The details of this are presented in

Figure 2 of [42]. This linear distribution is recapitulated for certain parameter regimes

44



(a)

Polygon class

Pr
op

or
tio

n 
of

 t
iss

ue

0.0

0.4

0.1

0.2

0.3

(b)

(c)

Polygon class

Pr
op

or
tio

n 
of

 t
iss

ue

0.0

0.4

0.1

0.2

0.3

constant area
normal area

(d)

Figure 2.6: Simulated epithelial tissues. (a) Snapshot of tissue morphology for one
realisation with kint = kext = 107, N = 48 nodes per boundary, with 256× 256 fluid mesh
points. (b) Polygon class distribution varies with κext, for fixed κint = 107. (c) Snapshot
of a growing tissue simulation, displaying several four-cell and higher-order junctions,
highlighted with red dots. (d) Polygon class distribution varies with area distribution. Left
hand bars: constant target area for each cell. Right hand bars: cell target areas drawn
from a normal distribution. For details on how to obtain the code for these simulations,
including all parameter values, see Appendix A.1.

in the VM, but varies dramatically; ‘soft networks’ (Farhadifar’s case III) have a flat

distribution where polygons of each class are, on average, the same size.

The area distributions, however, are emergent properties of the VM, and cannot

themselves be altered directly. By contrast, in the IBM the sizes of cells are precisely

determined via fluid sources and sinks. This makes the IBM an excellent candidate

for probing the effect of variability in cell size on the tissue morphology.

Figure 2.6d shows a dependence on polygon distribution, for fixed κint and κext, on

the choice of cell target area: in one simulation, each cell attains a globally fixed target

area, while in the other, each cell’s target area is is picked from a normal distribution.

45



This dependence highlights the potential to explore the role of regulated changes in

cell size on tissue morphology, a question that cannot be directly probed using a VM.

Moreover, this size control on the cellular scale could also be used to explore the effect

of regulated cell death on tissue morphology.

Finally, an additional morphological feature present in developing epithelia, but

not in standard vertex simulations, are multicellular rosettes [47]. Rosettes are

structures in which a single central junction is shared by five or more cells. Settings

in which rosettes are observed include epithelia in zebrafish and Drosophila, the

vertebrate pancreas and the neural stem cell niche [62], and in the mouse anterior

visceral endoderm, where they have been shown to play an important role in

development [47]. While rosettes do not form naturally in VMs, Figure 2.6c shows

several examples in a single snapshot of rosette and similar four-cell structures forming

spontaneously. The IBM, therefore, presents itself as a natural framework within

which to study the role of rosettes on tissue morphology.

While there is work left to do to allow a meaningful comparison between the

two models, we nonetheless have identified several clear applications within epithelial

morphology for which IBM frameworks appear well suited.

2.8 Discussion

In this chapter, we have presented a thorough description of the equations governing

the IBM, and full details of a common discretisation approach and method of

numerical solution. We have presented an efficient computational implementation,

as part of a mature and thoroughly tested C++ library designed specifically for

computational biology simulations. We have demonstrated numerically various

parameter scaling properties of the IBM, and have demonstrated the convergence

properties of our implementation. Finally, we have demonstrated, through a

prototype simulation study, the potential utility of the IBM to investigate questions

in epithelial morphogenesis. In this section, we return to several choices made during

the formulation of our IBM framework.

2.8.1 Stokes or Navier–Stokes

The first such choice was whether to solve the full Navier–Stokes equations, or whether

to solve the Stokes equations in the low Reynolds Number limit. To address this

question, we first emphasize that the ‘fluid’ underlying the IBM need not have a direct

physical correlate. It may be helpful to think of the fluid simply as a tool by which

46



the positions of the boundaries are updated, and which has certain ‘nice’ properties

(such as volume preservation inside closed contours), although some authors have

nevertheless sought to draw parallels between this fluid and the cell cytoplasm and

extracellular medium [138]. A concrete example, though, of the difference between

the IBM fluid and the fluid-like properties of the underlying biological system is

in the case of a stationary circular boundary: if there is a resultant elastic force,

there will be a non-zero body force in the IBM fluid and therefore an induced flow.

As the fluid cannot be assumed to faithfully represent underlying biology, it is not

obvious that modelling a biological situation with small Reynolds number necessarily

means the Reynolds number in an associated IB problem need also be small. Rejniak

and colleagues, for instance, derive a ‘biological’ Reynolds number of 10−9, but use

the value 5.9 × 10−5 for their simulations [139], a value chosen so as to recapitulate

the relevant dynamics. This discrepancy demonstrates that the IBM fluid cannot

be expected to adequately mimic the fluid-like properties of the underlying biology,

and thus that we must take care in assuming an appropriate Reynolds number in

IBM simulations need necessarily be very small. Further investigation is required

to ascertain the relationship between ‘fluid’ properties in vivo and in silico for the

IBM. Cutting experiments, for instance, where tissue is observed to recoil after

ablation, could be used to fit an appropriate Reynolds number for the IBM in order

to match in vivo dynamics. While IBM implementations based on Stokes flow do

exist [17, 88, 165], we have chosen to implement the full generality of the Navier–

Stokes problem. This keeps open the possibility of modelling situations where inertial

effects cannot necessarily be neglected, while acknowledging that there are scenarios

in which the reduced problem may be appropriate, and computationally much less

expensive to solve.

2.8.2 Discrete delta function

We made a specific choice for the form of the discrete delta function. Peskin [124]

derived the following form for φ, in contrast to that presented in Equation (2.10):

φ(r) =


1

8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1

2
− φ(2− |r|), 1 ≤|r| ≤ 2,

0, 2 ≤|r|,

(2.35)

While the functional form appears quite different, the numerical values taken by the

different formulations of φ are very similar (differing by less than 0.008 at any point in

47



the domain). Given this remarkable similarity, using one form rather than the other

may be decided by computational efficiency. In practice, we find the trigonometric

function slightly quicker to compute during a simulation, which is probably due

to difficult branch prediction of the ‘if’ statement necessary to compute φ using

Equation (2.35). The proportion of the total simulation time spent evaluating the

discrete delta function is, however, small enough that in practical terms the choice of

φ is immaterial.

2.8.3 Intercellular interaction terms

Third, we will briefly discuss the choice of functional form for the intercellular

interaction terms. The sharp cut-off represented by the interaction distance dext in

Equation (2.12) may be unphysical, as it implies that when boundaries move apart,

the opposing force linearly increases with distance until instantaneously becoming

zero at distance dext. A different functional form may mirror the underlying behaviour

more closely, and one such example is the Morse potential [111], which has a functional

form V (r) = κ
(
1− e−a(r−l))2

where κ and a denote the depth and width of the

potential well, respectively, r is the distance between the interacting nodes, and l

is the equilibrium distance of the bond. The force between two IB nodes would, as

a result of such a potential, be exponentially repulsive at short distances, have an

attractive peak at a medium distance, and tail off at long distance. A cut-off at a

value of dext would still be needed for computational reasons, but this cut-off would be

at a low value of the force, rather than at the maximum value as is the case with linear

springs. To what extent the choice of functional form influences IBM simulations is

an open question, and a topic for further study.

2.8.4 Balancing sources

Fourth, in Section 2.4.7 we gave no precise formulation for the number of fluid sources,

M−N , in excess of those associated with IBs. The purpose of these additional sources

is to balance the net fluid creation due to processes such as cell growth, to ensure

a constant fluid volume within the domain Ω. In our implementation we choose

M ≈ 2N , and initially place these equidistant along the boundary y = 0. Rejniak

and colleagues [139] use a similar approach but do not specify the number of such

additional sources, while Dillon and Othmer [34] use exactly four but do not specify

their initial locations. The implications of such choices have not been systematically

investigated, and to what extent these choices impact upon the results of simulations

48



is a topic for further study.

2.8.5 Constant viscosity

Finally, we address the assumption that the fluid viscosity, µ, is constant across

the entire fluid domain. This choice is common but not ubiquitous in IBM studies,

with Fedosov and colleagues [43], for instance, choosing different fluid viscosities

inside and outside red blood cells. They found that the characteristic timescale of

boundary deformation was dependent on the difference between the internal and

external viscosities. This is an interesting result that came from domain specific

knowledge of relevant viscosities. It is worth noting, however, that more recent

studies in the same area (for instance by Krüger and colleagues [82]) do not choose

different viscosities and this choice is made primarily for the substantial simplification

of solving the fluid problem. Further work is needed to fully establish the extent to

which non-constant viscosity drives dynamics in IBM simulations, for for the work

presented in this thesis we shall keep µ constant.

2.9 Conclusion

With the availability of experimental biological data from molecular and live-imaging

studies at ever finer resolutions, we need modelling tools able to represent that

information on arbitrary length scales. This is a driving motivation for developing

frameworks such as this, as they can better incorporate such data on spatial

resolutions finer than existing models. In addition to incorporating such data, the

IBM is one example of a more geometrically detailed cell-based modelling framework

capable of representing cell geometries away from their equilibrium shapes. Both of

these aspects are explored in Chapter 5 where we demonstrate the ability of this

framework to incorporate spatially localised transmembrane protein expression in a

model where cells display defined ‘hook’ shapes.

Furthermore, another major advantage to modelling populations of individual cells

rather than confluent tissues (such as in the VM) is the ability to represent tissue

viscoelasticity. Viscoelasticity is the property of exhibiting both viscous and elastic

characteristics when undergoing deformation, and the ability for cells in the IBM to

‘flow’ past one another is a form of time-dependent strain that models such as the

VM do not typically exhibit. Examples of such viscoelastic behaviour are explored

in Chapter 4, where the ability for relative motion of cells is necessary in the context

of cell sorting.

49



LBIBCell, (Tanaka and colleagues [164]), is another IBM for cell populations.

In comparison to LBIBCell, our Chaste implementation is able to utilise existing

extensive and highly-tested infrastructure for cell-based modelling. Along with built-

in functionality for biological modelling such as cell cycle models, cell area modifiers,

timestepping and solvers for coupled problems, there are two main strengths of

implementing the IBM within Chaste. First is the software quality and reliability,

discussed at length in Chapter 3, which lends confidence to the individual components

underling the IBM implementation, but also enables the IBM implementation itself

to slot into the exiting unit testing and continuous integration framework. Second, a

particular strength of Chaste is the availability of a number of modelling frameworks

in a single software package. This enables the most appropriate modelling framework

to be selected when modelling the given biology and, furthermore, enables direct

comparisons between different modelling frameworks on benchmark problems, which

is described in detail in Chapter 4.

Finally, a strength of models such as the IBM is the ease with which cellular

heterogeneity (for example, through patterning mechanisms) may be incorporated,

and the consequences for tissue-scale behaviour be simulated and explored. The

development of methods to efficiently explore the parameter space of such models,

perform inference and model calibration against quantitative datasets, and analyse

the tissue-level mechanical properties of such models remain avenues for future work

in this area.

50



Chapter 3

Efficient implementation and

exploration of cell-based models

within an open source framework

Having now presented a detailed description of the IBM, and a careful numerical

analysis of its implementation within Chaste, we turn our focus to the software

engineering principles that underpin such research software, and research software

in academia more generally. The work to develop and refine software best practices

within Chaste, some of which is presented in this chapter, has led to a manuscript to

be submitted to J. Open Source Softw., on which I will be the first author.

3.1 Introduction

Software is an integral part of modern research. Indeed, the importance of investing

in software development has recently been recognised by the EPSRC through their

Collaborative Computational Projects and their research software engineer fellowship

scheme [40]. A national survey across 15 Russell Group universities in 2014 found that

research software is fundamental to 67% of researchers, and that 56% of researchers

develop their own software [16]. A smaller survey conducted at the University of

Oxford in 2018 reinforces these figures, with 71% of respondents reporting that they

develop their own research software, and 70% reporting that it is vital to their

work [26]. Ought we to be worried, then, that the majority of those developing

software are self taught, or that few are confident in basic software engineering skills?

Research software ranges greatly in size and complexity, from short scripts used

to process data or plot graphs, to large libraries for high-performance simulation.

51



Software is an indispensable component of this thesis. Evidence strongly suggests a

need to ensure the quality, availability, and maintainability of research software, no

matter the number of lines of code involved.

We suggest that all research software should adhere to three principles. First,

code should be robust, correct and fit for purpose. Second, code used to generate

results or process data ought to be published alongside the work itself. Third, code

should be maintainable: minimal effort should be required to keep software working

over time, and someone coming across the code in several years time should be able

to use it. These three principles will be explored in greater detail shortly, but by way

of motivation we begin with a cautionary tale.

3.1.1 Reinhart and Rogoff: a cautionary tale

In 2010, shortly after the global financial crisis, a paper was published by Reinhart

and Rogoff, two influential economists with Rogoff a chair in public policy at Harvard

University and former Chief Economist at the IMF. Their paper, Growth in a Time

of Debt [133], investigated the relationship between a country’s external debt as a

percentage of gross domestic product (GDP), and its economic growth. Reinhart and

Rogoff concluded the existence of a debt threshold above which GDP growth suffered

significantly.

This paper influenced public policy. George Osborne, then UK Chancellor of the

Exchequer, cited Reinhart and Rogoff’s work prominently in his 2010 Mais Lecture

A new economic model [117]; while Paul Ryan, then US House Budget Committee

Chairman, delivered a budget The Path to Prosperity that cited only Reinhart and

Rogoff [140]. Both the UK and the USA embarked on policies of austerity to

reduce public debt and, while Reinhart and Rogoff were far from the only economists

publishing similar findings, their paper was among the most stark and was certainly

the most highly cited.

The paper, however, contained errors. In addition to methodological flaws

(disputed by Reinhart and Rogoff [134]), there were a number of undisputed coding

errors in the spreadsheet used for their analysis that directly affected the strength

of the published results. These coding errors were identified after Reinhart and

Rogoff allowed access to their original data and analysis to fellow economists Herdon

and colleagues, these authors finding that “selective exclusion of available data,

coding errors and inappropriate weighting of summary statistics lead to serious

miscalculations that inaccurately represent the relationship between public debt and

GDP growth” [65]. They concluded that average GDP growth was 2.2% not the

52



−0.1% published by Reinhart and Rogoff.

This is one example of a coding error identified in published research. While

the instance of Reinhart and Rogoff influenced policy in a much larger way than

most academic papers, several aspects to the story are widely applicable. First, in

most instances, it would have been impossible to identify that coding errors were

made. Perhaps only because of the magnitude of the impact that this paper had did

it become necessary for the authors to make their original analysis available. This

raises the (unanswerable) question of how many other coding errors underlie published

results. As the majority of code written is not published alongside results, it would

be impossible to ascertain the true magnitude of the problem, but there are certainly

indications. At the University of Oxford, 63% of students and postdocs who develop

their own research software have either not heard of, or are not confident with, unit

testing (testing the correctness of individual code units), and the number is 29% even

for version control (a system for tracking changes in source code), a fundamental and

indispensable tool in software development (see Figure 3.1 for further details). This

may not be surprising given that 70% of researchers who develop their own research

software are self taught, but it does indicate the huge extent to which software is

written in academia by people without formal training, and who are not confident in

the basic tools necessary to generate good-quality software. These numbers indicate

that a large proportion of published results are underpinned by poor quality code,

even if that code is not necessarily wrong.

Second, problems are exacerbated by the analysis code not being made available

during publication. This has two substantial impacts. First, large mistakes, such

as those present in Reinhart and Rogoff’s spreadsheet, would have a greater chance

of being caught at the review stage. Even if not explicitly caught, knowing that

code is available for reviewers to examine would probably increase the code quality

and documentation by requiring researchers to have more confidence in it before

submitting it for review. Second, making code available greatly helps reduce problems

related to reproducibility, which is a growing concern [99]. It is not practical for every

detail of an implementation or analysis to be presented in the text of a publication,

but having code available enables those attempting to reproduce results to obtain

every detail if necessary. Indeed, several of the pieces of work described later in this

chapter invite the reader to look in the source code for full implementation details

(instructions for accessing the source code are available in Appendix A.2). Third, code

should be easy to maintain, allowing software to remain useful with the inevitable

flux of people and resources available.

53



Not heard of /
never use

Not
confident

Fairly
confident

Confident /
frequently use

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Student & postdoc devs: confident with unit testing?  (N=171)

(a)

Not heard of /
never use

Not
confident

Fairly
confident

Confident /
frequently use

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 Student & postdoc devs: confident with version control?  (N=171)

(b)

Self taught Formal training in
programming or

software development

Formal training in
software engineering

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 How do developers obtain the skills they need?  (N=252)

(c)

Figure 3.1: Aspects of software development at the University of Oxford. (a)
Proportion of students and postdocs developing research software who are confident with
unit testing. (b) Proportion of students and postdocs developing research software who are
confident with version control. (c) How researchers obtain the skills necessary for developing
software. (a-c) Error bars are 95% credible intervals, assuming a multinomial likelihood
and an uninformative Dirichlet prior. Data are from the University of Oxford Research
Software Engineering survey [26].

Software errors can lead, at best, to retractions if caught [106], and at worst

misinform future research and public policy. These issues, illustrated by the Reinhart

and Rogoff affair, inform the three principles outlined above. It is precisely because

of the current problems around code quality in academia that we advocate strongly

for the application of software best practices when writing code, and of spending the

time necessary to ensure the quality, robustness, availability and maintainability of

code.

It is in this context that we frame the work presented in this chapter, which

is split into three sections: first, general contributions I have made to the Chaste

libraries; second, specific contributions I have made to the Chaste libraries; and

third, a general pipeline that I have developed for running simulations and presenting

54



results to collaborators.

Section 3.2 deals with adding to the quality, robustness, and maintainability

of Chaste as a high-quality piece of research software, focussing on the software

engineering of the project itself rather than particular features of code. In Section 3.3

we focus on specific contributions to Chaste, and detail several algorithms and

additions that I have made to the core Chaste libraries that underpin modelling

and simulation work presented in this thesis, but which do not clearly fit into other

chapters specifically. Section 3.4 introduces a software tool for running simulations

and presenting the output to colleagues in a generic manner, avoiding the need for

access to any specific software. While this tool interfaces specifically with Chaste,

the concept is applicable more widely.

3.2 General contributions to the Chaste libraries

The Chaste project is an excellent example of software that has been well engineered,

and conforms to a number of software best practices. Chaste [107, 127], as

introduced in Chapter 2, has extensive test suites ensuring 100% statement coverage

(every statement in the source code is hit during unit testing), employs test-driven

development to ensure error-free code, and employs continuous integration to verify

that codebase changes have no unintended consequences. In addition, as part of

the continuous integration, Chaste is tested with several operating systems and

combinations of dependencies to ensure maximum compatibility and maintainability

over longer periods of time. Because of the lengths gone to in ensuring the codebase

is well engineered, Chaste is a stable and reliable piece of software that has existed

for over 13 years.

In spite of this, over time as technologies and best practices change, additions and

alterations are necessary to keep a codebase at the leading edge and to maintain its

credibility as a well-engineered product that can be relied upon into the future. This

section contains details of a number of additions and improvements that I have made

to Chaste, and these collectively improve the foundations that underpin the research

Chaste enables.

Chaste is a large C++ project. C++ is a natural choice of language for a project

such as Chaste as it is both object-oriented (allowing for high-level abstractions that

make it easier to reason about, and organise the structure of, individual components of

the library), and fast. Downsides of C++ include that it is complicated, often requires

the manual allocation and deallocation of memory, and is a difficult language for

55



newcomers to write well [156].

Since Chaste was started in 2005, the C++ programming language has undergone

significant changes. Three new ISO standards have been published which

fundamentally change a number of paradigms and best practices recommended for

using the language. In addition, new tools are now available that, hand-in-hand, help

to identify subtle software flaws and highlight coding errors or bad practice when

writing code.

The ability to utilise these new features and tools is important for two reasons.

First, more confidence can be placed on the quality and reliability of Chaste as a

tool, which is important if we are to trust the results generated with it. Second, the

maintainability of Chaste as a library is improved. Language features are evolving

to make it much easier to write correct code, and tools that allow the automatic

verification of new code, particularly written by non-expert C++ coders, will help

ensure Chaste can be maintained in the future with minimal effort, and that Chaste

can evolve towards language features and paradigms that will be used in the future.

3.2.1 Using modern C++

The C++ programming language was first developed in 1979 by Bjarne Stroustrup

at Bell Labs. It was standardised in 1998 as ISO/IEC 14882:1998, and since then

the standard has been updated in 2003, 2011, 2014 and 2017. Further changes to the

standard are expected every 3 years. The standardisation in 2011, in particular, made

a number of major changes to the language, and these changes enable developers to

write code that is more robust, less error-prone, shorter and easier to read [105].

I worked towards the adoption of C++11 in Chaste, which required substantial

alterations to the build system, source code and interface with dependencies, and

version 2017.11 was the first C++11 version of Chaste to be released. Now that

Chaste supports C++11, work is ongoing to adopt, where appropriate, the new features

available.

3.2.2 Static analysis

While thorough unit tests backed by continuous integration provide a substantial

indication that a piece of software is correct, they can only spot errors that have

been explicitly tested for. Edge cases, poor use of C++ features, and even some copy-

and-paste errors can be overlooked and end up in the software repository. Static

1https://github.com/Chaste/Chaste/releases/tag/2017.1

56

https://github.com/Chaste/Chaste/releases/tag/2017.1


analysis is a term that refers to automated processes for identifying common errors

and oversights in source code that cannot necessarily be caught during normal unit

testing.

One such static analysis tool is clang-tidy2, an extensible tool for analysis

of C++ code that can find errors related to performance, readability, portability,

security and others. Of particular interest to Chaste are checks against the C++

core guidelines [157], a set of rules aimed at making it easier to adopt C++ best

practices.

I have added infrastructure to Chaste that runs clang-tidy on every commit

to the Chaste repository. The results of these checks are uploaded to a publicly

accessible website, allowing developers to check the warnings produced from each

source code file. One such example can be found here: https://chaste.cs.ox.

ac.uk/buildbot/Continuous%20Clang_Tidy/clang_tidy126/. In the future, it is

hoped that these warnings can be addressed, at which point further commits to the

repository will be rejected if new warnings are introduced. The introduction of these

tests gives Chaste developers easy access to the latest coding best practices, which

are constantly being updated, and constitutes a step forward in the reliability and

maintainability of Chaste.

3.2.3 Monitoring test performance over time

Unit tests are the basic tool used to ensure correctness of individual functions within

a codebase. There are two key purposes of unit tests. First, they ensure that specific

functionality is correct; for example if you write code to compute the nth prime

number, then it should find the 854th prime number to be 6619. Second, unit tests

verify that any changes are made in a specific function do not have any unintended

downstream consequences. To ensure this, the entire suite of unit tests must be re-

run each time a change is made to the source code. This is a core component of the

software engineering practice of continuous integration.

A key issue that unit testing does not address, though, is how the performance of

a codebase changes over time. Whenever functionality is added to a C++ library, more

machine code is generated, and this can mean slowdowns in simulation runtime. Much

additional functionality is independent of existing functionality, and in these cases no

runtime overhead is necessarily felt, but the problem comes when code refactoring or

enhancements are made to existing functions. In this case, simulation runtime may

increase. This needs to be measured, as even small increases may compounded over

2http://clang.llvm.org/extra/clang-tidy/

57

https://chaste.cs.ox.ac.uk/buildbot/Continuous%20Clang_Tidy/clang_tidy126/
https://chaste.cs.ox.ac.uk/buildbot/Continuous%20Clang_Tidy/clang_tidy126/
http://clang.llvm.org/extra/clang-tidy/


a period of years to have significant effects on the efficiency of the code, and all the

while every unit test will still pass.

This is a surprisingly difficult issue to tackle. Measuring the time taken by an

executable to run depends on a large number of factors. On a run-by-run basis, the

time will fluctuate based on what else the machine is doing at the time, which is

extremely difficult to control for. On the software level, the time will fluctuate based

on the operating system, the kernel version, the compiler version, the compiler, and

the version of any libraries linked against. Finally, on the hardware level, no computer

lasts forever, and upgrading the machine will compound all of the above.

There is no sensible metric that can give an unambiguous value for the length

of time it takes to run a specific simulation. The best we can do is to take

measurements, monitor them over time, and identify any worrying trends that may

indicate that a specific change, or a set of changes, have had a detrimental impact

on code performance. To improve this monitoring for Chaste, I have implemented

a Python interface, as part of the existing continuous integration framework, that

provides comprehensive monitoring of simulation performance over time. This

implementation uses the existing suite of tests that are run for code profiling purposes,

and compiles historical information into an easy-to-access web interface, providing a

tabulated view of each simulation showing ‘sudden increase’ and ‘gradual increase’

warnings (Figure 3.2a), as well as links through to graphs showing historical runtime

performance for visual inspection (Figure 3.2b).

In more detail, the web interface provides a warning if there has been a sudden

or gradual increase in simulation runtime. A sudden increase is defined as whether

the most recent run exceeded the average of the previous 10 runs by > 1.96 standard

deviations. A gradual increase is defined as whether the average of the most recent

10 runs exceeds by > 10% the average of the 10 runs 35 runs previously.

The graphs present the actual runtime in seconds to allow a Chaste developer

to identify potentially worrying trends. The graphs include information such as the

specific version control revision number so that it would be obvious if there was a

specific spike after a certain revision.

The impact of this performance monitoring is to provide a convenient and

automated way of determining how code performance changes over time. This is

of particular relevance in large long-running projects, such as Chaste, where small

increases may compound over time, and having an extensive archive of historical run

times gives at least the possibility of identifying where slowdowns may have been

introduced. Having this resource available represents a significant asset to Chaste,

58



Test Suite Name Profiling
Output

Test Suite
History

Sudden
Increase

Gradual
Increase

CompileTime - ∞ 45 -0.49σ -40.76%

Test2DMeshBasedCryptRepresentativeSimulation svg output ∞ 45 -0.31σ -54.77%

Test2DVertexBasedCryptRepresentativeSimulation svg output ∞ 45 +1.23σ -63.02%

Test2dOffLatticeRepresentativeSimulation svg output ∞ 45 +1.86σ -49.17%

Test2dVertexBasedSimulationWithFreeBoundary svg output ∞ 45 -0.06σ -58.48%

Test3dBidomainProblemForEfficiency svg output ∞ 45 -0.69σ -60.47%

Test3dBidomainProblemForEfficiencyWithFasterOdes svg output ∞ 45 -0.62σ -54.93%

Test3dBidomainProblemWithMetisForEfficiency svg output ∞ 45 -0.55σ -56.44%

Test3dBidomainProblemWithPermForEfficiency svg output ∞ 45 -0.49σ -55.60%

Test3dOffLatticeRepresentativeSimulation svg output ∞ 45 -0.58σ -49.04%

TestLongPostprocessing svg output ∞ 45 -0.44σ -60.15%

TestRepresentative3dNodeBasedSimulation svg output ∞ 45 +0.23σ -45.86%

TestRepresentativePottsBasedOnLatticeSimulation svg output ∞ 45 -0.44σ -53.75%

The "Sudden Increase" column measures how many standard deviations the most recent build time was above the mean
of the previous 10 runs. The warning threshold is 1.96 standard deviations.

The "Gradual Increase" column compares the average run time of the most recent 10 builds, to the 10 builds 35
runs previously. The warning threshold is a 10% increase.

(a)

3
8
6
 
M
a
r
-
2
3
 
6
c
b
b
3
0
7

3
8
7
 
M
a
r
-
2
6
 
6
c
b
b
3
0
7

3
8
8
 
M
a
r
-
2
7
 
6
c
b
b
3
0
7

3
8
9
 
M
a
r
-
2
8
 
6
c
b
b
3
0
7

3
9
0
 
M
a
r
-
2
9
 
6
c
b
b
3
0
7

3
9
1
 
M
a
r
-
3
0
 
6
c
b
b
3
0
7

3
9
2
 
A
p
r
-
0
2
 
6
c
b
b
3
0
7

3
9
3
 
A
p
r
-
0
3
 
6
c
b
b
3
0
7

3
9
4
 
A
p
r
-
0
4
 
6
c
b
b
3
0
7

3
9
5
 
A
p
r
-
0
5
 
6
c
b
b
3
0
7

3
9
6
 
A
p
r
-
0
6
 
6
c
b
b
3
0
7

3
9
7
 
A
p
r
-
0
9
 
6
c
b
b
3
0
7

3
9
8
 
A
p
r
-
1
0
 
1
b
0
3
2
a
6

3
9
9
 
A
p
r
-
1
0
 
1
b
0
3
2
a
6

4
0
0
 
A
p
r
-
1
1
 
d
9
4
7
6
e
a

4
0
1
 
A
p
r
-
1
1
 
d
9
4
7
6
e
a

4
0
2
 
A
p
r
-
1
2
 
d
9
4
7
6
e
a

4
0
3
 
A
p
r
-
1
3
 
d
9
4
7
6
e
a

4
0
4
 
A
p
r
-
1
6
 
d
9
4
7
6
e
a

4
0
5
 
A
p
r
-
1
7
 
d
9
4
7
6
e
a

4
0
6
 
A
p
r
-
1
8
 
d
9
4
7
6
e
a

4
0
7
 
A
p
r
-
1
9
 
6
0
7
7
8
1
2

4
0
8
 
A
p
r
-
1
9
 
6
0
7
7
8
1
2

4
0
9
 
A
p
r
-
2
0
 
6
0
7
7
8
1
2

4
1
0
 
A
p
r
-
2
3
 
3
1
f
a
8
c
d

4
1
1
 
A
p
r
-
2
3
 
3
1
f
a
8
c
d

4
1
2
 
A
p
r
-
2
4
 
3
1
f
a
8
c
d

4
1
3
 
A
p
r
-
2
5
 
3
1
f
a
8
c
d

4
1
4
 
A
p
r
-
2
6
 
3
1
f
a
8
c
d

4
1
5
 
A
p
r
-
2
7
 
3
1
f
a
8
c
d

4
1
6
 
A
p
r
-
3
0
 
5
7
3
3
6
2
6

4
1
7
 
A
p
r
-
3
0
 
5
7
3
3
6
2
6

4
1
8
 
M
a
y
-
0
1
 
5
7
3
3
6
2
6

4
1
9
 
M
a
y
-
0
2
 
5
7
3
3
6
2
6

4
2
0
 
M
a
y
-
0
3
 
5
7
3
3
6
2
6

4
2
1
 
M
a
y
-
0
4
 
5
7
3
3
6
2
6

4
2
2
 
M
a
y
-
0
7
 
5
7
3
3
6
2
6

4
2
3
 
M
a
y
-
0
8
 
5
7
3
3
6
2
6

4
2
4
 
M
a
y
-
0
9
 
5
7
3
3
6
2
6

4
2
5
 
M
a
y
-
1
0
 
5
7
3
3
6
2
6

4
2
6
 
M
a
y
-
1
1
 
5
7
3
3
6
2
6

4
2
7
 
M
a
y
-
1
4
 
5
7
3
3
6
2
6

4
2
8
 
M
a
y
-
1
5
 
5
7
3
3
6
2
6

4
2
9
 
M
a
y
-
1
6
 
5
7
3
3
6
2
6

4
3
0
 
M
a
y
-
1
7
 
5
7
3
3
6
2
6

Build number, date, and git revision

20

30

40

50

60

T
e
s
t
 
s
u
i
t
e
 
t
i
m
e
 
(
s
e
c
)

Test2dOffLatticeRepresentativeSimulation

trix.cs

(b)

Figure 3.2: Interface for tracking simulation performance over time. (a) Example
web interface. Each row is a single profiling simulation, and columns provide warnings on
runtime increases and links to further information. (b) Example profiling history graph.
This graph shows the time taken to complete the previous 45 simulation runs, and the x-axis
marks show the build number, date, and Git version control revision number.

improving the long-term maintainability, reliability and credibility of the library, on

which many results in this thesis are based.

59



3.3 Specific contributions to the Chaste libraries

We have already introduced the IBM implementation in Chaste (Chapter 2). For that

implementation, and other parts of this thesis, to have been made possible, a number

of additions, developments, and innovations have been necessary. In this section, we

turn to my more specific contributions to Chaste, which have had direct relevance to

the results in this thesis.

3.3.1 Voronoi vertex mesh generator

Every simulation of tissue dynamics that is run using VMs must start with an initial

configuration of cells. Typically, simulations begin with a perfect hexagonal lattice

of cells [157], and these cells then undergo dynamic changes such as division or

rearrangements, with the assumption that the initial geometry and cell packing are

unimportant.

The clear benefit of a regular hexagonal pattern is the ease with which it can be

implemented. It is straightforward to calculate the vertex locations and whether or

not any given vertex is on the boundary of the tissue. Importantly, it lends itself

well to the generation of periodic domains, as a regular hexagonal lattice tessellates

perfectly.

Given, however, that many biological systems do not exhibit perfect hexagonal

cell packing, we would prefer to begin simulations from realistic initial conditions.

The summary statistic, PCD, has been studied in detail, and distributions are well

characterised in a number of developing epithelia [42, 52, 142].

Work by Sánchez-Gutiérrez and colleagues [142] demonstrates the applicability of

Lloyd’s algorithm [91] in generating realistic geometries for a variety of developing

epithelia. Lloyd’s algorithm partitions a finite region of Euclidean space into disjoint

non-overlapping subsets as follows:

Input:

• An integer number N of randomly located initial seed points

• An integer number n of ‘relaxation steps’

Output:

• A partition of space into N non-overlapping regions

Algorithm:

1. for i = 1...n

60



• Calculate the Voronoi diagram of the seed locations

• Move the seed locations to the centroid of each Voronoi domain

This algorithm iteratively calculates the Voronoi diagram, reseeded at each iteration

with the centroid of the Voronoi domains from the previous iteration. Sánchez-

Gutiérrez and colleagues demonstrate that applications of Lloyd’s algorithm, with

differing numbers of relaxation steps, have polygon and cell-area distributions in

common with a variety of developing epithelia. The Drosophila prepupal wing

imaginal disc epithelium, for instance, corresponds well to a tissue generated with

five relaxation steps of Lloyd’s algorithm.

Implementation within Chaste This work indicates that such an approach has

the potential to generate biologically realistic initial geometric configurations for

simulations of epithelial dynamics. In this section, we describe an implementation of

Lloyd’s algorithm within Chaste that allows robust identification of boundary nodes,

generation of periodic domains, and arbitrary cell areas. This implementation makes

use of the Boost.Polygon library3 for computing the Voronoi diagrams.

We first state the scenario more rigorously. Given N randomly located seeds in

[0, 1]× [0, 1], we wish to find N Voronoi domains in R2 such that their union forms a

periodic pattern with unit total area. A Voronoi domain about a given seed is defined

as the region of the plane that is closer to that seed than to any other seed, i.e. given

a seed si, the ith Voronoi domain Vi is the set defined as

Vi = {(x, y) ∈ R2 : d(si, (x, y)) < d(sj, (x, y)) ∀j 6= i}, (3.1)

where d(·, ·) is the Euclidean distance between two points. The first issue is that

the Voronoi domain corresponding to any seed on the convex hull of the set of seeds

will extend to infinity. We must add additional seeds in order to keep each Voronoi

domain finite.

The key insight is that if we create a 3×3 tiling of the original N seeds, distributed

now in [−1, 2] × [−1, 2], the Voronoi domains corresponding to the original seed

locations in the larger Voronoi diagram fulfil these requirements. Figure 3.3a shows

the 3× 3 tiling of 16 initial seed locations in the unit square. Figure 3.3b shows the

Voronoi domains generated from the 16 × 9 initial points. For any Voronoi domain

corresponding to one of the original 16 seeds that straddles the boundary of the

3http://www.boost.org/doc/libs/1_66_0/libs/polygon/doc/index.htm

61

http://www.boost.org/doc/libs/1_66_0/libs/polygon/doc/index.htm


(a) (b)

Figure 3.3: Conceptual overview of mesh generation algorithm. (a) Initial seed
points (black dots) are generated in the unit square (black dashed lines), and are then
tiled eight times into a three-by-three square (grey points and dashed lines). (b) When
the Voronoi diagram is calculated, the Voronoi domains corresponding to the initial seed
locations are finite, form a periodic structure, and their areas to sum to unity.

unit square, the tiling guarantees that a corresponding seed elsewhere belongs to a

Voronoi domain of identical shape that encroaches into the unit square an identical

amount, on the opposite side. Thus, after discarding all Voronoi domains that do not

correspond to an original seed, the resulting geometry is perfectly periodic. We can

obtain any desired average cell surface area by scaling the region by the square root

of the desired size.

The following algorithm details the procedure, which is slightly more general than

the conceptual overview presented above.

Input:

• Integer numbers X and Y of cells required in x and y directions

• An integer number n of Lloyd’s relaxation steps

• A target average surface area a for the cells

Output:

• A Chaste vertex mesh object

Defined in:

• VoronoiVertexMeshGenerator

62



Algorithm:

1. Generate XY seeds in the box
[
0, X

max(X,Y )

]
×
[
0, Y

max(X,Y )

]
uniformly at random

2. Tile 9XY seeds into
[

−X
max(X,Y ) ,

2X
max(X,Y )

]
×
[

−Y
max(X,Y ) ,

2Y
max(X,Y )

]
3. Calculate the Voronoi diagram of all 9XY seed locations

4. Discard all Voronoi domains not corresponding to the initial XY seeds

5. Perform the relaxation loop, for i = 1...n:

• Re-seed at the centroid of each of the XY Voronoi domains

• Repeat steps 2 to 4

6. Identify boundary vertices

• Loop over all vertices in the most-recently discarded Voronoi domains

• Boundary vertices in the non-discarded Voronoi domains are exactly those whose

locations perfectly coincide with a vertex in the discarded Voronoi domains: so,

exhaustively compare each discarded vertex with each retained vertex to check

for coincidence of position

7. If a periodic mesh is required, associate congruent vertices

• The periodic domain is of size
[
0, X

max(X,Y )

]
×
[
0, Y

max(X,Y )

]
, and a subset of

boundary vertices will be outside this box

• Relocate all vertices to be within this box by moving them modulo X
max(X,Y ) in

x and modulo Y
max(X,Y ) in y

• Some boundary vertex locations are now perfectly coincident with others.

Iteratively remove these congruent vertices, replacing them with their

counterparts, and removing their boundary vertex status

• When no further boundary vertices exist, all congruent vertices will have been

replaced

8. Rescale mesh to match target surface area

• The current average surface area is 1
max(X,Y )2 , so the required linear scaling

factor to apply to each location is
√
amax(X,Y ).

• Multiply each location by this factor leaving a domain of size [0,
√
aX]×[0,

√
aY ]

Some implementation details are omitted here for brevity, and full details can be

found in the source code (Appendix A.2). It should be noted that the efficiency of

this algorithm could be substantially improved. Under certain circumstances, a full

3×3 tiling is clearly unnecessary, and reducing the tiling would reduce the size of the

Voronoi calculations as well as the exhaustive search for boundary nodes. However,

63



0 2 4 6 8 10 12 14

Simulation time

0.0

0.2

0.4

0.6

0.8

1.0
T

iss
ue

 f
ra

ct
io

n

(a)

0 2 4 6 8 10 12 14

Simulation time

0.0

0.2

0.4

0.6

0.8

1.0

T
iss

ue
 f

ra
ct

io
n

(b)

Figure 3.4: PCD in simulations using different mesh generators. VM simulations
were run starting with 36 cells, with each undergoing one complete round of cell division.
There were 50 repeats each with (a) regular hexagonal initial conditions, and (b) Voronoi
initial conditions with three Lloyd’s relaxation steps. Solid lines represent mean tissue
fraction of pentagons (orange), hexagons (green) and heptagons (blue), with the shaded
area showing one standard deviation either side of the mean.

as the Voronoi calculation is fairly cheap (O (N log(N))), and the mesh generation

is only required once per simulation, the efficiency is unimportant and has not been

addressed in the Chaste implementation.

With an implementation now in hand, we can analyse it in action. Figure 3.4

shows summaries of simple VM simulations initiated with a regular hexagonal initial

condition and a Voronoi initial condition with three Lloyd’s relaxation steps. The

initial setup in each simulation was a 6× 6 lattice, and the simulation was allowed to

evolve over time with each of the 36 cells undergoing a single round of division.

While the distribution of tissue fractions ends up very similar in the two cases,

there is a significant ‘burn-in’ time required in simulations using the regular hexagonal

initial conditions (Figure 3.4a) whereas, in the Voronoi case, little or no ‘burn-in’

appears necessary. This is the case in spite of cell proliferation, which rapidly alters

local cell–neighbour connectivity. In studies with no proliferation, it is common to

start from a hexagonal packing of cells and run a simulation with either noise or

proliferation added until it reaches some intermediate steady state before starting the

‘real’ simulation. An example of this approach is a VM of cell sorting [118]. Having

the ability to generate realistic initial conditions for simulations obviates this need.

Indeed, this functionality is used to reduce burn-in time during simulations of VM

cell sorting in Section 4.3.1. During these simulations, burn-in was reduced from 10

time units to 1, with the simulation lasting 100 time units, representing a reduction

in simulation time of approximately 8%.

64



d

θ

d

d

(a)

A

A'

B'

B C'

(b)

Figure 3.5: Aspects of IB Voronoi mesh generation. (a) To shrink the original
polygon (green lines) by a constant distance d, each angle must be bisected and the vertex
repositioned a distance d/ sin(θ) along the line of bisection. (b) If edges are short compared
to d, repositioning nodes could cause an inversion in the new polygon boundary. Here, A
and B on the original polygon boundary move to A′ and B′, respectively, causing the new
polygon to self-intersect at C ′. In this case, the two new vertices A′ and B′ are merged into
a single new vertex at C ′.

The paper by Sánchez-Gutiérrez and colleagues [142] demonstrates that two

important summary statistics, namely PCD and cell area distribution, are successfully

recapitulated for a number of biological scenarios, but further work is warranted to

fully investigate the suitability of this method to produce realistic initial conditions.

Nevertheless, this mesh generator is a good first step, and a marked improvement

over the existing standard of regular hexagonal tiling.

Extension to IB cell populations This vertex mesh generation algorithm forms

the basis of the IB equivalent. To turn a vertex mesh into an equivalent IB mesh

requires two conceptual steps: (i) shrink each polygon to leave a fixed gap between

elements; and (ii) discretise the boundary into a given number of evenly spaced

locations.

An important difference between a VM representation of a tissue and an equivalent

IB representation is that, in an IB representation, elements do not share edges: each

IB is distinct from its neighbours. Given a convex polygon representing a Voronoi

domain in a mesh generated as above, we must therefore shrink the polygon such

that each new edge is parallel to, and a fixed distance d away from, the corresponding

original edge.

How should each vertex move? To keep a vertex equidistant from two edges,

it is clear that it must move along the line bisecting the angle between the edges.

Furthermore, it should move a distance d/ sin(θ), where θ is the angle of bisection, as

65



seen in the schematic in Figure 3.5a.

Because, in general, the line of bisection through a vertex of a convex polygon

does not go through the polygon’s centroid, it is not guaranteed that the new shape

will be simple. Figure 3.5b shows a diagram of how a self-intersection may occur.

Given consecutive vertices A and B on the original polygon, if their distance is short

with respect to d, the new polygon may self-intersect. In this case, A′ and B′ must

be replaced by the point of self-intersection.

To avoid the complication of dealing with multiple intersections, we perform the

polygon reduction in a number of steps, such that in each step the reduction distance

d is no more than half the length of the shortest edge. The following algorithm details

the procedure, which adds precision to the conceptual overview presented above.

Input:

• A Chaste vertex mesh object, as generated above

• A target spacing, 2d, between cells

• A target spacing, st, between nodes in the discretisation

Output:

• A Chaste IB mesh object

Defined in:

• VoronoiImmersedBoundaryMeshGenerator

Algorithm:

1. for each polygon in vertex mesh:

• Calculate N = d 2ds e, where s is the shortest edge length in the polygon

• for i = 1...N

– for each vertex in polygon:

∗ Move vertex d/N sin(θ) inward, with θ the angle of bisection at this

vertex

– Resolve any self-intersections

• Calculate the number of nodes M = d p
st
e, where p is the perimeter of the reduced

polygon

• Evenly space M nodes around the new polygon

Again, some implementation details have been omitted for brevity, and the full

details can be found in the source code (Appendix A.2).

Together, these algorithms produce random realistic initial distributions of cell

66



shapes for use in modelling epithelial dynamics. They enable the use of these

initial conditions in two explicit modelling frameworks, but it is clear that the same

algorithm would easily extend to other modelling frameworks, such as the CPM, the

SEM and the MVM. These implementations are directly relevant to work in this

thesis, including work in Chapters 2, 4 and 5.

3.3.2 Fully periodic spatial decomposition algorithm

How can we keep track of which points in space are close to one another? To be more

precise, given a number of points x1, . . . ,xN ∈ Ω ⊂ Rn, how can we produce a list

of those points that are within a certain threshold distance, d, of other points? Our

task is to produce such a list,

L = {(xi,xj) ∈ Ω : D(xi,xj) ≤ d}, (3.2)

where D(·, ·) is a suitable distance function, assumed here to be simply the Euclidean

distance.

Before addressing the problem of efficiently calculating such a list, we first ask why

this is an important problem. The answer is that it is fundamental to the simulation

of almost all off-lattice models. In all cases in which reactions occur between objects

that are not connected by any other geometry such as a graph or lattice, the distance

between points must be used to determine proximity for interactions. This is certainly

the case for the IBM, in which cell–cell interactions are a key constituent component:

determining the set of nodes that are involved in, say, cell–cell adhesion, is required

at each time step. Because the IBM often involves a large number of discrete points

per cell, it is of great importance that L can be calculated efficiently.

Spatial decomposition (box collection). A näıve method of calculation is to

test every pairwise combination of points. This is a prohibitive O (N2) task, for a

potentially very large N and clearly we need a better way.

For a fixed maximum threshold distance d, a substantial improvement is to

decompose Ω into d-sized boxes (hence the Chaste nomenclature of ‘box collection’).

Thinking, now, specifically of a square domain in R2 decomposed into smaller d-sized

squares, given a point in a given square, interactions can only occur with points in

the 3 × 3 grid of neighbouring squares. Thus, it is sufficient to assign each point to

the box that contains it, and only check proximity to those points in neighbouring

boxes.

67



(a) (b)

Figure 3.6: Aspects of the spatial decomposition algorithm. (a) The dark orange
square (centre) represents an arbitrary box of size d × d in the box collection (dashed grey
lines). The lighter-orange rounded square surrounding it is the locus of all points within
distance d of anywhere in the central box. The black inverted L-shape are those neighbouring
boxes that must be checked to ensure all possible interactions are found. (b) The black square
represents a domain covered by 5× 5 boxes (dashed grey lines), where the box size does not
perfectly divide the domain size. The black × in the penultimate row and column of boxes
is within interaction distance of the orange shaded region which, due to the domain being
periodic, is four disjoint regions.

The algorithm can be further refined by noting that, if the node located at xi

interacts mechanically with the node located at xj, then the reverse is also true, and

the reaction need only be identified in one direction. With reference to Figure 3.6a,

this means that for each given box in the collection, only half the neighbours need be

considered. There are multiple options for which neighbours to select, and not every

selection of half of the neighbours is acceptable.

My specific contributions to the Chaste implementation have been to determine

systematically which half of the neighbouring boxes should be selected, and to extend

the algorithm to work with full periodicity. Both of these tasks are implemented in

one, two, and three dimensions.

Selecting the correct neighbouring boxes. Each box in the domain needs to

have a set of neighbouring boxes. When we iterate over all boxes in the domain, for

each box we will check for interactions in all boxes that neighbour it. Therefore, we

want the number of neighbouring boxes to be as small as possible with the proviso

68



that every interaction is identified. Interactions between two points within a single

box are always, of course, possible, and so a box is always considered to be its own

neighbour, but we are focussed now on selecting the appropriate other neighbours of

the box.

In one spatial dimension there are two non-trivial neighbours: one to the left and

one to the right. Let us label three consecutive boxes a, b and c. It is clear that, by

selecting the neighbour as just the box to the right, every interaction involving any

point within box b is caught: interactions between points in b and c will be caught

when the neighbour of box b (box c) is searched, and interactions between points in

a and b will be caught when the neighbour of box a (box b) is searched.

In two dimensions there are eight non-trivial neighbours, and in three dimensions

there are 26. It is much less clear than in one dimension how to identify the

appropriate neighbours for a given box, and I have developed a more systematic

approach. First, we note that selecting at least half of the neighbouring boxes is

necessary. Every adjacent box must be ‘covered’. If we have selected B neighbours

then every neighbouring box is certainly covered, and the box in question is a

neighbour of each of B other boxes. At most 2B adjacent boxes are therefore covered,

and so at least half the adjacent boxes must be neighbours. If there is no overlap

between those adjacent boxes that are neighbours, and those that have the box in

question as a neighbour, then the cover is exact and we have found a minimal and

sufficient set of neighbours. The final insight is that, if a neighbour is chosen, then

the box in question is a neighbour of the ‘opposite’ adjacent box: if the box to the

right of a is a neighbour, then a is a neighbour of the box to the left and, if the

box up-and-right is a neighbour of a, then a is a neighbour of the box down-and-

left. Tables 3.1 and 3.2 show how this information can be encoded in two and three

dimensions, respectively.

Four contact edges, in the following two pairs:
+x -x (1, 0)

+y -y (0, 1)

Four contact vertices, in the following two pairs:
+x+y -x-y (1, 1)

+x-y -x+y (1,-1)

Table 3.1: Box collection neighbour-pairs in two dimensions

Picking all adjacencies from the left-most column of Tables 3.1 and 3.2 as being

those adjacent boxes selected as neighbours guarantees that all possible interactions

69



Six contact faces, in the following three pairs:
+x -x (1, 0, 0)

+y -y (0, 1, 0)

+z -z (0, 0, 1)

12 contact edges, in the following six pairs:
+x+y -x-y (1, 1, 0)

+x+z -x-z (1, 0, 1)

+x-y -x+y (1,-1, 0)

+x-z -x+z (1, 0,-1)

+y+z -y-z (0, 1, 1)

+y-z -y+z (0, 1,-1)

Eight contact vertices, in the following four pairs:
+x+y+z -x-y-z (1, 1, 1)

+x+y-z -x-y+z (1, 1,-1)

+x-y+z -x+y-z (1,-1, 1)

+x-y-z -x+y+z (1,-1,-1)

Table 3.2: Box collection neighbour-pairs in three dimensions

will be identified, while ensuring that precisely half the adjacent boxes are chosen.

It is worth nothing that either of the adjacencies in each row could be selected,

and that we choose an x then y then z ordering. This choice agrees with our choice

in the one-dimensional case, and gives the inverted-L shape seen in Figure 3.6a for

the two-dimensional case. This inverted-L corresponds to the left-hand column of

Table 3.1 in that we have selected the four boxes to the right (+x), up (+y), right-up

(+x+y) and right-down (+x-y) as being the neighbours of each box.

Accounting for periodicity. In principle, accounting for periodicity is

straightforward. If the neighbour of a box on the edge of the domain is outside the

domain, simply consider that neighbour to wrap around to the start of the domain in

the appropriate dimension. In a perfect world, the size of a box would perfectly divide

the size of the domain, and this would be the end of the story. The size of the box

is simply the threshold distance for interactions, and so in practical terms it is never

the case that the box size will divide the domain size. There will always be a small

quantity of box ‘left over’ past the end of the domain, as illustrated in Figure 3.6b.

The problem occurs when a point is in the penultimate box in any dimension and,

specifically, when it is within one box-width of the edge of the domain. The × in

Figure 3.6b illustrates this scenario. The locus of points within interaction distance

70



of the × includes three additional distinct regions, in boxes that are not adjacent to

the box containing the point. Penultimate boxes in each dimension, therefore, need

additional neighbours. The required additional neighbours are precisely those that

are neighbours of the ultimate box in that dimension.

My work

on this implementation can be found in the class ObsoleteBoxCollection. This

class is named ‘Obsolete’ simply to distinguish it from the previously implemented

DistributedBoxCollection [64] which extended the existing functionality to enable

parallel computing. The ObsoleteBoxCollection is far from obsolete; it underpins

the entire IB implementation.

Other methods of efficiently calculating pairwise interactions. When a

pre-determined fixed interaction distance is known, and provided the points are

distributed reasonably uniformly in space, the spatial decomposition described here

is highly efficient. The approach described here is an example of a ‘fast neighbour

list’, variations on which have been used for decades [67]. Due to the requirement

of checking all neighbouring boxes, these methods are slightly conservative and

improvements are possible. One such example is the ‘Verlet list’ [167] which reduces

search time at the expense of an increased memory overhead.

In the case that no pre-determined interaction distance is known, methods for

efficiently calculating pairwise interactions typically involve tree searches. Examples

of such methods binary trees [67] and R-trees [61], and many advancements to

these approaches continue to be made [4]. Such tree searches may also outperform

neighbour list methods in the case of unevenly distributed points, even in the case

of a fixed interaction distance. Neighbour searches are not prohibitive in current

Chaste applications though, and therefore the relatively simple spatial decomposition

described in this section is certainly adequate.

3.4 Pipeline for running simulations and presenting output

In this section, we describe a pipeline that I have developed for passing parameters to a

simulation program (an ‘executable’) and processing the results from such simulations

in such a way as to make them easily navigable in as portable a way as possible.

This pipeline has been developed to efficiently utilise a Chaste executable to make

use of multi-core computers, and automatically package results in such a way as to

allow an experimental collaborator to interact with the output of parameter sweeps

71



output in 
appropriate 

format

(p₁,p₂,...)
(q₁,q₂,...)
(r₁,r₂,...)

executable

output

params

Figure 3.7: Schematic of executable–output pipeline. Parameters sets are fed into an
executable, which produces a certain output. This output is seldom in a convenient format,
and so this output needs to be transformed into a more appropriate format. The solid black
arrows represent stages in the pipeline that we have full control over.

without needing specialist software. The work for which this pipeline has developed

is presented in Chapter 5, but this approach is applicable in a wider sense and so is

presented here in a general form.

To understand the specific need, we consider a single bespoke executable, such as

a Chaste simulation, compiled from source code. This executable takes command line

arguments, performs some computation, and records results in output files saved to

disk. Considering cell-based simulations, these output files often contain some form of

geometric information necessary to visualise the simulation, together with whichever

statistics are required to summarise the results of the computation performed.

The diagram in Figure 3.7 shows a basic schematic of the pipeline, with a number

of sets of parameters on the left hand side being fed into a ‘black box’ executable in

which we have limited control over the output, followed by a post-execution step of

converting the output into a more useful form. The two specific problems that this

pipeline addresses are represented by the two black arrows in Figure 3.7, and are:

• how to efficiently allow the execution in parallel of many instantiations of a

single-thread executable;

• how to allow the output from such parameter sweeps to be viewed by others,

regardless of the operating system they are using, or the availability of any

specialist software.

These issues are addressed in the following sections.

72



3.4.1 Infrastructure for parallel execution

It is often necessary to run a large number of simulations at once. Two examples

where this is required are parameter sweeps, and to build up summary statistics from

a large number of stochastic simulations. Parameter sweeps entail the varying of

different parameters, and it is necessary to understand in what way each parameter

influences the simulation output. Doing so necessitates running the simulation with

many different sets of parameters, which simply means running the executable many

times with different inputs. In addition, it is common to include noise in simulations,

and it is often therefore necessary to run many instantiations of identical simulations

in order to generate an average summary statistic.

These two scenarios are both examples of ‘embarrassingly parallel’ applications,

a term coined by Moler [110] to refer to a workload where no cooperation is required

between different processors in order to carry out the parallel computation. To

accomplish the necessary infrastructure, we use the Boost.Program options4 library

for parsing command line arguments within Chaste C++ applications, along with

a custom Python wrapper using multiprocessing5 to allow the distribution of

simulations on multiple processors.

The Boost.Program options library simplifies the passing of (name, value) pairs

on the command line to the executable. This produces an executable expecting

parameters to be passed using the following syntax:

1 --VAR1 VAL1 --VAR2 VAL2 --VAR3 VAL3

A specific example of this can be found in the executable PipelineExample.cpp

(Appendix A.2) which expects parameters --ID, --FS, --RL and --TS representing

a unique simulation ID, the force strength, rest length, and number of time steps,

respectively, for a toy example of an ellipse relaxing towards a circle.

Within the corresponding Python script PipelineExample.py, a dictionary

defines the desired parameters:

1 command_line_args = {

2 'FS': {

3 'name': 'force_strength ',
4 'vals': [1e5 , 1e6 , 1e7]

5 },

6 'RL': {

7 'name': 'rest_length ',

4http://boost.org/libs/program_options
5https://docs.python.org/2/library/multiprocessing.html

73

http://boost.org/libs/program_options
https://docs.python.org/2/library/multiprocessing.html


8 'vals': [0.1, 0.2, 0.3]

9 },

10 'TS': {

11 'name': 'num_time_steps ',
12 'vals': [250]

13 },

14 }

with the Cartesian product of all ‘vals’ lists giving each combination of possible

commands. Thus by simply filling in the required values in the command line args

dictionary, the following set of commands are generated:

1 path/to/PipelineExample --ID 0 --RL 0.1 --FS 1000000.0 --TS 250

2 path/to/PipelineExample --ID 1 --RL 0.1 --FS 10000000.0 --TS 250

3 path/to/PipelineExample --ID 2 --RL 0.1 --FS 100000000.0 --TS 250

4 path/to/PipelineExample --ID 3 --RL 0.2 --FS 1000000.0 --TS 250

5 path/to/PipelineExample --ID 4 --RL 0.2 --FS 10000000.0 --TS 250

6 path/to/PipelineExample --ID 5 --RL 0.2 --FS 100000000.0 --TS 250

7 path/to/PipelineExample --ID 6 --RL 0.3 --FS 1000000.0 --TS 250

8 path/to/PipelineExample --ID 7 --RL 0.3 --FS 10000000.0 --TS 250

9 path/to/PipelineExample --ID 8 --RL 0.3 --FS 100000000.0 --TS 250

These commands are then distributed across multiple processes using the Python

multiprocessing module, allowing this infrastructure to scalably make best use of the

available computational resources, be it a laptop or a node on a supercomputer.

It is worth briefly mentioning two additional notes. First, the unique simulation

ID assigned to each simulation can be conveniently used if a differing seed for a

random number generator is required between simulations and, second, in order run

an identical simulation a number of times, ‘vals’ for any parameter can simply be

a list of the same number n times, thus generating a list of identical simulations with

differing IDs.

3.4.2 Presenting simulation output

A problem with bespoke software tools, such as Chaste, is that flexibility of the

output format is often limited. The C++ programming language has good support for

sending information to the console and to files, but there is (deliberately) no built-in

support for graphical output such as images or videos. While libraries do exist with

this kind of functionality, none could be considered canonical and, because usability

is so closely related to the number of external dependencies a project relies upon, it

is small wonder few scientific libraries use them.

74



Chaste has the default capability to output raw information to data tables which

can later be interpreted and, optionally, to output geometric information to a niche

file format produced by the software VTK6. This geometric information can be loaded

into a software called ParaView7 which, for an expert user, is an excellent tool for

interacting with the information.

This, however, presents the main problem. In an ideal world the output from a

simulation would be easily viewable by anyone with an interest in it. This can include,

for instance, experimental collaborators with very little computational modelling

expertise who are unlikely to have software such as ParaView installed, and who

may not have the time or inclination to learn how to use it effectively.

What would be the ideal format for presenting the output of simulations to a wide

audience? Is there a set of technologies that exist on all major operating systems,

that would be useful summarising the output of a set of simulations? The answer we

choose to build our solution around is the web browser.

Here, we present a pipeline for taking the output of a Chaste simulation and

generating an HTML file consisting of a sortable data table displaying the parameters

and summary statistics for each simulation, as well as hyperlinks to videos of the

simulations viewable within the browser. Using this solution, once a set of simulations

have been run, all that is necessary to share the output with anyone in the world is to

share a directory with them where only a single index.html file need be interacted

with.

An example of this solution can be seen in Figure 3.8. The left-most column

displays hyperlinks to video representation of the simulation. The next four columns

are the parameters passed to the executable, with non-varying parameters displayed

in a lighter grey as a visual aid. The right-most column is the chosen summary

statistic, here the ESF for the ellipse in the simulation.

The table is sortable, courtesy of the jQuery javascript library8 and the tablesorter

jQuery plugin9, both of which are copied directly into the data directory in order to

maximise compatibility by avoiding the need for an active internet connection to

interact with the data. Having the table sortable allows easy identification of the

parameter leading to most (or least) extreme summary statistics, and allowing easy

navigation to the video corresponding to that extrema.

6https://www.vtk.org/
7https://www.paraview.org/
8https://jquery.com/
9http://tablesorter.com/

75

https://www.vtk.org/
https://www.paraview.org/
https://jquery.com/
http://tablesorter.com/


mp4 Name Simulation Id Rest Length Force Strength Num Time Steps Esf

00.mp4 0 0.1 1000000.0 250 1.483337

01.mp4 1 0.1 10000000.0 250 1.359096

02.mp4 2 0.1 100000000.0 250 1.025988

03.mp4 3 0.2 1000000.0 250 1.485133

04.mp4 4 0.2 10000000.0 250 1.372507

05.mp4 5 0.2 100000000.0 250 1.035092

06.mp4 6 0.3 1000000.0 250 1.486935

07.mp4 7 0.3 10000000.0 250 1.386428

08.mp4 8 0.3 100000000.0 250 1.047715

Figure 3.8: Example HTML index page. An example HTML file generated by
the Python script PipelineExample.py, which invokes the executable compiled from
PipelineExample.cpp. The main display is a sortable table displaying hyperlinks to videos
of simulations, parameters, and summary statistics. Combining only HTML, javascript and
mp4 video files, it is ultra-portable and viewable on almost any modern computer without
need for any non-standard software.

Producing the simulation videos. As already described, C++ does not lend

itself well to the output of graphical information. First, we must identify the

required format. The HTML5 standard supports only three video formats: MP4,

WebM and Ogg. Of these, only MP4 is supported by all major web browsers [132].

Approximately 95% of all web browser use is accounted for by the top five most widely

used browsers [5], all of which support MP4 playback, and therefore to ensure wide

compatibility we must present videos in MP4 format.

How best to output data from a C++ executable and convert it to an MP4 video

with minimal dependencies as far as C++ is concerned? The pipeline developed

consists of the following steps, shown in Figure 3.9.

First, scalable vector graphic (SVG) files are written out from the C++ executable.

SVG is an XML dialect for describing two-dimensional vector graphics [169], and

constitutes a human-readable text-based markup language for drawing images.

Primitives such as rectangles and circles are defined as in the following snippet, which

76



SVG output from 
executable

PNG image 
sequence

MP4 video

wrap in HTML

Figure 3.9: Schematic of video generation pipeline. SVG files written out from the
C++ executable are converted to a sequence of PNG files. This image sequence is converted
to an MP4 video, and wrapped in HTML for inclusion in the index page.

defines a 1920×1080 rectangle, on top of which is a circle centred at (1120, 800) with

a radius of 6.9.

1 <rect class="bg_rect" width="1920" height="1080"/>

2 <circle class="node" cx="1120" cy="800" r="6.9"/>

The ‘class’ argument allows CSS styling, such as setting fill colours, in the following

manner:

1 <style type="text/css">

2 .bg_rect{fill:darkgray ;}

3 .node{fill: #990000;}

4 </style >

Due to the simplicity with which one can programmatically construct customizable

representations of simulation geometry in a universal format, the use of SVG output

has the potential to be useful in a number of application areas. Here, functionality

within Chaste is implemented in the class ImmersedBoundarySvgWriter, which writes

image output at a customizable time sampling frequency.

The remainder of the process is handled within the custom Python script. SVG

files are converted to a sequence of PNG files using the library CairoSVG10, and this

sequence is then stitched together into an MP4 video using FFmpeg11.

In summary, the pipeline described in detail in this section is an automation

built around a C++ executable. This automation efficiently utilises the available

computational resources to run a set of simulations given a list of parameters. It

results in a summary of the simulations presented in a cross-platform format viewable

10http://cairosvg.org/
11https://www.ffmpeg.org/

77

http://cairosvg.org/
https://www.ffmpeg.org/


by anyone with a web browser. Once fed with the desired range of parameter values,

the process is entirely automated.

While each individual step in the pipeline is conceptually straightforward, when

taken together this solution vastly improves the efficiency and usefulness with which

visualisations of simulations studies can be shared with collaborators and others.

This is achieved mainly by tackling two problems: removing the dependency on any

specialised software, and automating the process of converting simulation output to

a cross-platform format.

3.5 Discussion and outlook

We began this chapter by arguing for the need to ensure code is written well, is

available alongside published results, and is maintainable over a period of time.

A specific example, that of Reinhart and Rogoff [133], was presented to frame the

importance of ensuring high software quality within academia, and to highlight issues

surrounding the lack of formal software engineering training for academics.

Section 3.2 details a number of important contributions I have made to Chaste

infrastructure, which have increased the reliability and maintainability of the project,

and move it into a position from which it can continue to evolve towards modern C++

and software engineering best practices. Section 3.3 details a number of specific

contributions to Chaste that underpin other work in this thesis. These contributions

underpin work on the IBM, already introduced in Chapter 2, and the comparison work

and simulation studies presented in Chapters 4 and 5. Finally, Section 3.4 presents a

pipeline for running executables and presenting simulation summaries to colleagues

in a generic manner requiring no specific software to be installed.

This chapter has explored the rationale for the time and care needed when

implementing academic software, and had highlighted a number of important

contributions I have made to Chaste and its surrounding ecosystem. This work

builds naturally on the IBM implementation presented in Chapter 2, as it is the

infrastructure surrounding such software that lends it the credibility needed for the

results generated by it to be trusted. Now that we have an IBM implementation,

built on the solid foundation of Chaste, the next step is to gain better insight where

the IBM fits into our toolkit of available computational models.

78



Chapter 4

Comparing individual-based

models of cell surface mechanics

Our implementation of the IBM within Chaste (Chapter 2) enables the exploration

of biological questions including those involving geometrically detailed descriptions

of cell shapes. Subsequently (Chapter 3), we argued for the importance of research

software engineering and the necessity of frameworks such as Chaste that emphasise

the long-term sustainability and reliability of these implementations. However, we

cannot unleash the IBM on a biological problem without verifying its suitability and

assessing its relative merits compared to other common modelling approaches. The

next step therefore is to gain a more thorough understanding of where the IBM fits

into our toolkit of available cell-based models.

4.1 Introduction

We start by reviewing the literature on comparing cell-based models. Such models are

being used to an ever greater extent, and the number of models and implementations is

ever increasing (see [45] for an overview in the context of epithelial morphogenesis). As

the number and range of available models increases, so too does the number and range

of biological problems that can be sensibly addressed, provided we are able to select

our tools appropriately. Given such models’ complexity, it is typically not possible

to make general statements about their properties based on rigorous mathematical

analysis. Nevertheless, we can compare competing models within a consistent

computational framework as a first step towards identifying and understanding

artefacts associated with different models, different methods of numerical solution,

and different implementations of the same model.

79



Very little work has been done in this area except by Osborne and colleagues [118],

who exploited the range of models available in the Chaste library to simulate a

number of benchmark problems with each model. This work substantially aids in

understanding the applicability of each model, and guides potential future modelling

applications. For example, the authors identified qualitative differences in the ability

of each model to exhibit complete cell sorting (defined below). To date, no such

work carefully compares the IBM, or any similar geometrically detailed cell-based

modelling framework, to any competing framework. This chapter addresses this

problem, improving our understanding of the IBM and the biological scenarios under

which it can best be utilised. Our chosen strategy is to compare the IBM to a well

characterised competing model, the VM, by applying both to simulate cell sorting as

a benchmark model of tissue self-assembly.

4.1.1 Details of the VM

We first briefly summarise the VM, and fill in the remaining gaps in the description

presented in Section 1.2.1. In the VM, cells are represented by polygons comprising

a number of vertices. The motion of vertices is governed by a force law that assumes

overdamped dynamics (Equation (1.3)), and the motion is supposed to be driven by

the minimisation over time of a ‘free energy’ (Equation (1.4)).

As the vertices move, some cell edges inevitably shorten. Vertex models make

choices of how to resolve particularly short edges, and one systematic description of

possible vertex restructuring operations is presented by Fletcher and colleagues [46]

who comprehensively describe the rules governing junctional remodelling in the

Chaste VM implementation. The prototypical restructuring operation is the

neighbour exchange, or T1 swap (Figure 4.1). A T1 swap is initiated when an interior

edge reduces in size below a threshold, the ‘cell rearrangement threshold’ (dmin), in

which case the short edge is replaced with a new edge perpendicular to it. The new

edge is made longer by a factor of rcell, the cell rearrangement ratio. For further

discussion of the precise implementation of T1 swaps, and the stability of four-way

vertices, see [151].

Taken together, the equations of motion, the free energy formulation, the method

of numerical solution and the rules specifying the full range of restructuring operations

define a VM implementation. How does this compare to the IBM? Several key

differences are apparent. First, in the IBM, two neighbouring cells do not share

a common edge, whereas in the VM they do. This explicit representation of cell

boundaries in the IBM is key to its detailed representation of cell shapes, but no work

80



dmin

1

2

3 4

A

(a)

dmin·rcell

1

2

3 4

B

(b)

Figure 4.1: A T1 swap in the Chaste VM implementation. (a) A short edge between
cells 3 and 4 drops below the threshold dmin. (b) A new edge, of length dmin · rcell, replaces
the short edge and separates cells 3 and 4.

to date explores the impact that such an explicit representation has on simulations.

Of particular interest is cell–cell adhesion: this is naturally incorporated into the

IBM as a direct interaction between nodes in adjacent boundaries whereas, in the

VM, adhesion is subsumed into the line tension term of Equation (1.4). Second,

the rules of restructuring operations exist in the VM by necessity. To what extent

do the choices made in the implementation of such rules impact simulations, and

does the lack of such rules in the IBM constitute a relative advantage over the VM?

Third, cell size is emergent in the VM but explicit in the IBM. These differences may

well tailor the different models well to different biological scenarios. Given such a

range of differences between the models, a careful comparison of them is particularly

important in order to understand how key parameters might be related to biological

quantities.

4.2 Extensions to existing IBM and VM descriptions

We next define a benchmark problem for simulating with both frameworks. Our

chosen benchmark is a biologically inspired simulation of cell sorting, presented by

Osborne and colleagues [118] (full details of which are presented in Section 4.3), which

has been abstracted to remove extraneous details and allow us to focus on the essential

behaviours and differences between the models. Before we begin exploring cell sorting

as a model system to compare the two frameworks, we need the IBM to be capable of

simulating epithelial dynamics. There are several fundamental processes that require

implementation that are not part of the basic IBM as described in Chapter 2.

81



4.2.1 Cell neighbours in IBM simulations

In the VM it is unambiguous which cells are neighbours and which cells lie on any

boundary of a tissue, as cell–cell interfaces are defined explicitly. In the IBM, things

are not at all as clear, and knowing such properties is necessary when calculating

summary statistics and implementing certain update rules. Consider a short edge

about to undergo a T1 transition in the VM. Translating this geometry into an IBM

simulation, using the algorithm described in Section 2.5.3 for generating an IB mesh

from a vertex mesh will result in four IBs with gaps between them. A schematic of such

a situation is shown in Figure 4.2a: it is far from clear by glancing at the geometries

which pair of cells ought to be considered neighbours. How can we best convert the

geometry of the IB nodes into an unambiguous description of cell neighbours?

The first approach one might think of is to tune a threshold distance and record all

IBs within that distance as being neighbours. Inevitable fluctuations in the distance

between IBs will, however, precludes this approach, which would be far from robust in

the presence of short edges, and it certainly does not provide a unique characterisation

of neighbours. A threshold distance would probably both over- and under-estimate

the number of cell neighbours, for different cells and at different times in a single

simulation.

We therefore propose a more sophisticated method for determining cell neighbours,

inspired by the algorithm developed in Section 3.3.1 to generate an IB mesh from a

vertex mesh. This algorithm shrinks a vertex element by a specific distance in such a

manner as to generate a pre-defined constant gap between all generated IB elements.

The reverse operation is to find the locus of points around the IB element that are

closer to that element than any other element, i.e. the Voronoi domain of the IB

element. As the IB element is comprised of a large number of nodes, to a good

approximation the Voronoi domain of the entire element is the union of the Voronoi

domains of every node in the element, which we define as the element’s ‘Voronoi

superdomain’.

For a given geometry comprised of a number of IBs, Voronoi superdomains

completely partition the simulation domain, and the boundaries between these

Voronoi superdomains provide an unambiguous line defining cell neighbours. An

example of this method is shown in Figure 4.2b. Four orange IBs, representing

four nearby cells, are discretised by the blue nodes. Taking the union of the

Voronoi domains for each blue node in each IB divides the square into four Voronoi

superdomains, the boundaries of which are displayed as black lines. Using this

method, the upper left and lower right cells may be considered neighbours, a fact

82



(a) (b)

Figure 4.2: Voronoi superdomains disambiguate cell neighbours. Blue points
represent the discrete node locations on parts of four IBs (orange lines), representing four
nearby cells. (a) It is not clear which pair of cells ought to be considered neighbours in
this scenario. (b) Voronoi superdomains (black lines) superimposed over the schematic
unambiguously categorise the upper-left and lower-right cells as neighbours.

that is not clear at all in Figure 4.2a.

Given this unambiguous method for determining cell neighbours we can calculate

the distribution of cell neighbour numbers (the PCD), a common measure of epithelial

cell packing [42] and, indeed, it becomes straightforward given this total information

about cell neighbours to determine the occurrences of T1 transitions in the IBM.

This approach also permits robust identification of which cells lie on the edge of an

IB cell population. This is an important characterisation in a variety of circumstances:

in the VM, nodes on the boundary must necessarily behave differently, for instance

when involved in neighbour exchange events, and in both the VM and IBM, summary

statistics such as the PCD must omit cells on the edge of the population. In the VM,

nodes are unambiguously on the edge of the population, or not, and those cells on

the edge of the population are exactly those containing edge-nodes. In the IBM,

because cells do not share edges, no node is unambiguously on the ‘edge’ of the cell

population.

The problem, in fact, reduces to that of identifying which of a set of randomly

placed points in the plane are on the ‘edge’. This can be explained well by the concept

of an ‘alpha-shape’ [39]; consider rolling a ball of radius α around the edge of such

a random set of points. Defining the points on the outside as those that the rolling

ball touches, the number of points determined as being on the boundary will vary

83



(a) (b)

Figure 4.3: Determining cells on the edge of an IB population. (a) Cells marked
in orange have infinite Voronoi superdomains, and are certain to be on the edge of the
population. (b) We iteratively include other cells whose Voronoi superdomain perimeters
far exceed their actual perimeters.

depending on α. Since this number varies with the radius of the ball, there is no

unambiguous method for choosing which IB nodes lie on the ‘edge’ of a set of IBs.

We can, however, unambiguously determine a subset of elements on the boundary.

Using the Voronoi diagram generated from every node, as described above, every

infinite Voronoi domain will be on the convex hull of the set of points and so every

infinite Voronoi superdomain is certain to correspond to a boundary element in the

population (Figure 4.3a). Working iteratively from this subset, any neighbouring

boundary elements will contain some length of ‘free’ edge and thus will have Voronoi

superdomain perimeters much larger than their actual perimeter, and this can be used

to determine which other cells are on the edge of the cell population (Figure 4.3b).

4.2.2 Allowing IB cells to modulate their size

In the VM, cells can change their surface area. Each cell has a target surface area,

which feeds into Equation (1.4), allowing the cell area distribution to be an emergent

property of the simulation. By contrast, the volume of fluid contained in an IB

element is conserved, unless there are sources or sinks present within the IB.

To more faithfully compare the IBM with the VM we need to allow the surface

area of IB elements to vary over time, with feedback from the geometry. In the

VM, a cell under normal circumstances will be driven to increase its surface area up

towards a defined target area, and this desire to expand is inhibited by the perimeter

84



contractility and line tension along cell edges. For a cell to shrink in surface area,

it must be energetically favourable for its vertices to come closer together. This

happens, in the VM, when line tension and perimeter contractility dominate the

target area term in Equation (1.4), i.e., when the cell is squeezed, or crowded-out, by

its neighbours.

To allow cells to modulate their size in the IBM, we seek to emulate this behaviour.

There are numerous ways this could be achieved but, guided by parsimony, we choose

the following ad hoc algorithm inspired by the VM case (see Section 4.4 for a discussion

of this choice). As a measure for how crowded a cell is, we take the ratio of two

perimeters: the length of the boundary itself (PB) and the perimeter of the Voronoi

superdomain corresponding to the boundary (PV ).

The closer PV /PB is to unity, the less freedom the cell has to expand, and we

therefore assume it experiences a contractile pressure (down to a threshold minimum

cell surface area). The larger PV /PB is, the freer the cell is, and we therefore assume

it will inflate to fill the available space (up to a threshold maximum cell surface area).

To implement this concept in the IBM, for each timestep of a simulation the ratio

PV /PB is calculated for each cell. This generates a distribution of this ratio, which

has a mean and standard deviation. The size of the deviation away from the mean

crowding maps directly to the strength of the fluid source used to modulate the cell’s

surface area in the IBM, so that a cell experiencing exactly the mean crowding will

not change in size, whereas the further from the mean crowding a cell is, the greater

the magnitude of its associated fluid source. Full details of the implementation for

this update rule can be found in the class ImmersedBoundaryTargetAreaModifier.

4.2.3 Adding noise to simulations

Biological processes are noisy. Sources of this noise include temperature and active

biological processes such as growth. This noise is often intrinsic to the biological

system; indeed, some processes such as neighbour exchange events seem to be driven

by stochastic noise [30]. Because it is often impossible to identify the precise nature

of all noise in any biological system, it is necessary to abstract this away and lump

all noise into a random motion imposed on simulations.

In the case of VMs, the addition of such noise has previously been described by

simple addition of Gaussian noise in the following manner: a random force Frandom

given by

85



Frandom
i =

√
2ξ

∆t
ηi, (4.1)

is added to each node i in the simulation, at each timestep, where ξ controls the

magnitude of the random perturbation, ∆t is the length of each timestep in the

simulation and
(
ηix, η

i
y

)
=: ηi are independent normally distributed random variates

with zero mean and unit variance [46].

The time-dependence in this noise model formulation is introduced as a simple

mechanism to temporally correlate noise independent of the size of the timestep, and

is inspired by the motion of a particle undergoing diffusion. Under the dynamics

described in Equation (1.3) (with η taken as 1), the ith vertex with position ri at time

t under the sole action of Frandom
i , will move such that

ri(t+ ∆t) = ri(t) + ∆tFrandom
i = ri(t) +

√
2ξ∆tηi, (4.2)

which is the same expression as for the position of a random walker undergoing

diffusion with diffusion constant ξ. The factor of (∆t)−
1
2 is included in the formulation

of the force so as to ensure that the diffusive dynamics are independent of the choice

of numerical timestep, and the force is constructed so as to incorporate a purely

diffusive motion of each vertex.

This is the simplest implementation of ‘noise’ one could incorporate, but it is not

at all clear that this choice is appropriate: why, for instance, should the random

motion of two nearby vertices necessarily be independent of one another, particularly

if those vertices represent junctions on the same cell? Before expanding on this point,

let us consider adding a random force in the same manner to an IBM simulation.

Consider an IB represented by N nodes with some node spacing h. The maximum

motion a node could undergo without locally inverting the boundary is h/2 as, if

the random perturbation strength on two adjacent nodes were perfectly opposite in

direction, the motion would cross the nodes over, which is not permitted in the IBM.

Any random perturbation, of strength ξ, capable of generating movements of length

larger than h/2, therefore, cannot be permitted.

Consider the same IB this time represented by 2N nodes, with a node spacing

of h/2. A perturbation of strength ξ/2 is now capable of locally inverting the

boundary, so the maximum permissible strength of the perturbation is halved. This

is undesirable: the magnitude of noise ought to be independent of the resolution at

which we have chosen to represent the IBs. After all, the IB is simply a discretisation

of a continuous membrane, and we ought to be able to add random perturbations of

86



a given magnitude to such a membrane in a manner that converges with h.

The previous method of simply adding independently sampled noise from a normal

distribution to each node in the simulation is, therefore, inappropriate in the case

of the IBM. This limitation also applies, though, to the VM. Consider a polygon

with a short edge, which occurs frequently in motifs such as T1 transitions. The

random forces added to the two nearby nodes could act in opposite directions, causing

edge inversion and model degeneracy. Furthermore, two nearby nodes represent the

locations of two material points that are also close together, and two nearby points

on, for instance, the same cell membrane, clearly do not move independently of one

another.

These factors point to the missing ingredient in the appropriate addition of random

noise being a lengthscale over which it is correlated. We therefore seek a method to

draw random noise from a normal distribution in such a way as to have spatial

correlations on a given lengthscale: given M points, x1,x2, . . . ,xM ∈ R2, we wish to

draw an M -dimensional sample from a multivariate Gaussian distribution N(µ, C),

where µ ∈ RM is a mean vector (usually, for this purpose, 0), and C ∈ RM×M

is a covariance matrix representing how the random numbers should correlate with

respect to each other.

Gaussian random fields. One such method is to generate instances of a discrete

Gaussian random field (GRF). We first present formal mathematical definitions,

before describing their usage and efficient computational implementation.

Consider a domain D ⊂ Rd and a probability space (Ω,F ,P). A random field Z is

a set of random variables Z(x, ω) := {Z(x) : x ∈ D}, with the property that for each

x ∈ D, Z(x, ·) : Ω → R is a random variable. For a fixed ω ∈ Ω, the deterministic

function f : D → R given by f(x) := Z(x, ω) is an instance of the random field Z.

Given a continuous random field Z and points x1,x2, . . . ,xM ∈ D, we define a

discrete random field Z := [Z(x1, ω), Z(x2, ω), . . . , Z(xM , ω)]T with mean µ = E[Z] ∈
RM and covariance C = E

[
(Z− µ)(Z− µ)T

]
∈ RM×M .

We call such a discrete random field Gaussian if Z ∼ N(µ, C), and an instance

of it is simply a sample from the corresponding multivariate Gaussian distribution.

How instances of such a field are generated depends, in general, on the form of the

covariance matrix.

Choosing an appropriate covariance function. The covariance matrix C

represents the extent to which the noise is correlated between points in the discrete

87



GRF and can be calculated by some covariance function C such that cij = C(xi,xj).

We prescribe a length scale l > 0 to control the distance over which noise will be

correlated, and want this correlation to be some function of the distance between the

points, implying that C(xi,xj) = C(xj,xi). One suitable function is the Gaussian

covariance function with unit variance, which takes the form

C(xi,xj) = exp

(
−||xi − xj||2

l2

)
, (4.3)

where || · ||2 is the vector 2-norm. Using this Gaussian covariance function C is real

and symmetric; a fact that we shall use later.

Sampling from a GRF. There are several standard methods for sampling from

GRFs and here we present a method based on spectral decomposition. Given points

x1,x2, . . . ,xM , we now have a known covariance matrix C. Let us now choose

a mean µ = 0. How do we sample from N(0, C)? First, draw M independent

random numbers ξi ∼ N(0, 1), which can easily be done using many readily available

computational tools. Then, ξ := [ξ1, ξ2, . . . , ξM ]T ∼ N(0, I), where I is the M ×M
identity matrix.

Next, consider C. Because C is real and symmetric, by the spectral decomposition

theorem, C can be factorised as C = QΛQT , where Λ is a diagonal matrix whose

elements are the ordered eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0 of C, and Q is an

orthonormal matrix whose columns are the associated eigenvectors.

Finally, consider Z = QΛ1/2ξ. Then,

E [Z] = E
[
QΛ

1
2ξ
]

= QΛ
1
2E [ξ] = 0, (4.4)

and

E
[
ZZT

]
= E

[
QΛ

1
2ξξTΛ

1
2QT

]
= QΛ

1
2E
[
ξξT

]
Λ

1
2QT = QΛ

1
2 IΛ

1
2QT = C, (4.5)

from which we conclude that Z = QΛ1/2ξ ∼ N(0, C). Sampling the correlated noise

we want, then, is a simple matter of applying the following algorithm:

Input:

• M points x1,x2, . . . ,xM at which we want to generate correlated noise

• A lengthscale l governing the distance over which the noise will be correlated

Output:

88



• RM 3 Z ∼ N(0, C), a field of random noise with given covariance

Algorithm:

1. Calculate the covariance matrix C using Equation (4.3)

2. Factorise C as QΛQT

3. Draw M random numbers ξi from a unit Gaussian distribution to form ξ ∼ N(0, I)

4. Calculate Z = QΛ1/2ξ

Examples of GRF instances are shown in Figure 4.4. Each field was generated

with the same 800 points xi in the domain [0, 20]× [0, 20] ⊂ R2. The points represent

one instance of a randomly generated doubly periodic vertex mesh. Each row shows

three instances of the GRF for a given lengthscale l where, here, l is the proportion

of the domain width. As required, the undulations on the field occur on a lengthscale

governed by the parameter l.

Efficiency. For the aforementioned algorithm for generating discrete GRFs,

calculating the eigenvalues is an O (M3) operation, thus scaling poorly with problem

size. This all but ensures that GRFs cannot be calculated at every timestep of off-

lattice simulations, as the calculation of random noise will dominate total simulation

time. We therefore exploit the following additional factors that make this process fast

enough to be applicable.

Regular grids. While the cost of calculating the eigenvalues of C is O (M3),

if C does not change between timesteps then this calculation is only required once.

C does not change if and only if the points x1,x2, . . . ,xM , and the lengthscale l, do

not change. Treating l as a constant, per simulation, seems reasonable, and we can

ensure each point xi remains the same by fixing their locations, for instance by using

a uniform grid.

For a constant C, the eigenvectors can simply be calculated once and reused as

required. This turns the process from O (M3) to O (M2), which is still required every

timestep in order to calculate the linear combination of eigenvectors. This approach

can be applied in general to any off-lattice simulation framework, including the VM,

by generating a suitably large uniform grid and performing an interpolation step

between the off-lattice locations and the uniform grid on which the GRF is calculated.

For the IBM, a uniform grid already exists for solving the fluid problem, and adding

random noise to this grid removes the need for an interpolation step altogether.

89



l
=

0.
01

0 1 2
l

=
0.

1
l

=
0.

5

−2

−1

0

1

2

Figure 4.4: Instantiation of GRFs. Nine GRF instantiations are shown for a doubly
periodic square domain consisting of 800 randomly placed points. The field is interpolated
away from these points for the purpose of visualisation. The lengthscales, l, are in
proportion to the width of the domain, and three instantiations are shown for each value of
l.

Using uniform grids is the single largest saving in terms of computational cost,

but does have one drawback. Creating a uniform grid of fine-enough resolution to

allow suitable interpolation necessitates using many more points xi than the original

number of points in the off-lattice simulation. Thus, the M in the new O (M2)

problem is much larger than in the old O (M3) problem, a drawback that we now

tackle.

Partial eigenvalue decomposition. The concept of a partial eigenvalue

decomposition for the approximate sampling of GRFs is existing work. To my

knowledge, however, the work presented in this section is the first to quantify the

relationship between the trace proportion and the closeness of the approximation,

and the first to quantify the number of eigenvalues necessary given a specific

lengthscale. Conceptually, the algorithm described above starts with a single sample

90



with covariance I, and reshapes this covariance to match C. This reshaping process

is a linear transformation of the original vector of individual samples: the eigenvector

transformations are rotations adding correlation to the points, and the eigenvalues

apply the necessary scaling, weighting the eigenvector contributions by importance.

The resultant discrete GRF can equivalently be written as

Z = QΛ1/2ξ =
M∑
i=1

√
λiQiξi, (4.6)

where Qi is the ith column of Q, and this is just a linear combination of the

eigenvectors.

One option for reducing the computational cost of instantiating this GRF is to

simply truncate this sum, ignoring some quantity of eigenvectors with the smallest

eigenvalues. We know that M = Tr(C) = Tr(QΛQT ) = Tr(Λ) =
∑

i(λi). We

also know that the eigenvalues tell us about the weight of each eigenvector when

reshaping the covariance matrix. What if we calculate eigenvalues until their sum

exceeds some fixed proportion of the trace of the matrix? To investigate this, we

can generate GRFs for different length scales and truncate the sum above once the

calculated eigenvalues exceed a given proportions of the trace. For each field, we can

generate many instances and, for each of the samples generated, plot a histogram to

see whether they are indeed normally distributed.

Figure 4.5 summarises this investigation. Each column shows the truncation at

different proportions of the trace. Looking at the first column, including eigenvalues

up to just 50% of the trace produces very poorly distributed samples compared to the

unit Gaussian distribution, for a wide range of different lengthscales l. Increasing the

trace proportion to 80% vastly improves the distribution, but across all length scales

the distribution is still slightly taller and narrower than the unit Gaussian distribution.

By 95% of the trace proportion, the samples fit the unit Gaussian distribution very

well.

The performance impact of truncating the eigenvalue sum depends significantly

on the length scale. Figure 4.6 shows this dependence for nine distinct length scales

(1%, 5% and 9% highlighted), for trace proportions between 60% and 98%. As can

be seen, at l = 9% we need only calculate ∼ 20% of the eigenvalues to achieve the

95% trace proportion (corresponding to a roughly fivefold decrease in computation

time), whereas at l = 1% we require well over 80% of the eigenvalues, giving only a

modest (but still useful) 20% speed up.

91



l
=

 0
.0

1 
tr = 0.5 tr = 0.8

0.0

0.2

0.4

0.6

tr = 0.95
l
=

 0
.1

 

0.0

0.2

0.4

0.6

−2 0 2

l
=

0.
5

−2 0 2 −2 0 2
0.0

0.2

0.4

0.6

Figure 4.5: Effect on field distribution of varying trace proportion. Sampling
distributions are shown for a randomly generated doubly periodic vertex mesh containing 800
nodes. Each column shows a trace proportion, tr, and each row shows a correlation length,
l. Each histogram represents 500 instances sampled from the GRF (800 × 500 = 400000
individual random numbers in total), where the number of eigenvalues calculated is precisely
chosen to ensure their sum minimally exceeds the proportion t of the trace of the covariance
matrix. The dotted lines show the unit normal distribution, N(0, 1). As can be seen, using
too few eigenvalues from the covariance matrix results in a non-normal noise distribution.
The value tr ≈ 0.95 appears appropriate to faithfully reproduce normally distributed noise.

We now have a strategy for calculating appropriately correlated random noise for

simulations. We recall that this is vital for IBM simulations, for which uncorrelated

noise simply does not make sense, but that in finding a solution to this problem, we

see that the same problem is apparent in other off-lattice simulations as well, albeit

hidden by the fact that nodes are seldom spaced close enough together to cause model

degeneracy.

92



0.6 0.7 0.8 0.9 1.0

(a)

0.0

0.2

0.4

0.6

0.8

l = 0.01

0.6 0.7 0.8 0.9 1.0

(b)

l = 0.05

0.6 0.7 0.8 0.9 1.0

(c)

0.0

0.2

0.4

0.6

0.8

l = 0.09

Trace proportion Trace proportionTrace proportion

Ei
ge

nv
al

ue
 p

ro
po

rt
io

n

Ei
ge

nv
al

ue
 p

ro
po

rt
io

n

Figure 4.6: Effect of correlation length on the proportion of eigenvalues needed
to exceed a given trace proportion. As the correlation length proportion, l, reduces,
the proportion of eigenvalues that must be calculated in order to achieve a given trace
proportion, t, increases.

4.2.3.1 Computational implementation

Full details of how these algorithms are implemented can be found in the class

OffLatticeRandomFieldGenerator (details on how to obtain the source code can

be found in Appendix A.3).

Factorising the covariance matrix. The matrix representation of C is stored

using Eigen1, a C++ library for linear algebra computation. Factorising C is

performed by the Spectra C++ library2 which is built on Eigen and is capable of

sparse eigenvalue computation. These libraries exploit the sparseness of the covariance

matrix as well as highly optimised algorithms.

Constructing the linear combination of eigenvectors. The library Eigen is,

again, used here as it offers highly optimised linear algebra computation. This is of

most relevance when using GRFs on a regular grid, as the one-off O (M3) operation

no longer dominates the time taken to compose the GRF, but the size of M is large

and efficient linear combination of eigenvectors is key.

Taken together, the cell neighbour identification, the modulation of cell size and

the implementation of random noise develop the IBM to a point where it is capable

of performing the same types of computational experiment as the VM. The ability

1http://eigen.tuxfamily.org/
2https://spectralib.org/

93



to robustly identify cell neighbours allows direct comparison of processes such as T1

transitions and statistics such as neighbour edge lengths. A mechanism to alter the

size of cells in simulations is also important. Finally, finding an appropriate method

for adding noise to the IBM has led to a new and more general mechanism for adding

random noise to any off-lattice models, and having a robust method for adding noise

to the IBM is certainly a necessary step for adequately comparing the frameworks.

We are now in a position to directly compare the two methods on a particular

biological problem, with the aim of understanding better the strengths and weaknesses

of the IBM.

4.3 Cell sorting as a model system for comparison

Cell–cell motion is fundamental to a variety of developmental processes and includes

a wide range of cellular rearrangements and sorting. Embryonic tissues consisting

of cells of different histological types can mix, form checkerboard patterns and sort,

and there are wide variety of biological examples and hypotheses for such behaviour,

many of which are summarised in an review by Brodland [19].

Cell sorting describes the phenomenon of a cell population segregating into two

or more distinct regions, and observed behaviours include the rounding up and

merging of individual cell types, and the complete engulfment of one cell type by

another. Experimental work on such phenomena date back to the 1700s with work on

sponges, but systematic studies were undertaken in the 1960s [19]. Thereafter, two

leading theories were developed that explain cell sorting: the differential adhesion

hypothesis [154, 155] and the differential interfacial tension hypothesis [18] and its

precursors [63].

In the differential adhesion hypothesis, cell sorting is driven by differences in the

affinity of cells for adhering to one another. This hypothesis posits that a given cell

type has a higher adhesive affinity for cells of its own type than for cells of a different

type, and that therefore cell types will coalesce together, minimising their interaction

boundary with differing cell types, leading to sorted cell regions. Experimental

work by Steinberg [154] demonstrated that heterogeneous populations of cells evolved

towards specific steady states regardless of the initial geometric configuration of cells,

and furthermore that engulfment of one cell type by another occurred hierarchically

in the presence of multiple cell types and in accordance with their relative affinities

for one another.

Simulation studies have been effective at elucidating the mechanisms of cell sorting

94



under the differential adhesion hypothesis, and one such example is by Zhang and

colleagues [174]. Brodland reviews other cell sorting simulation studies, many of which

have been successful in advancing the understanding of cell sorting Brodland [19].

Increasingly, there is growing recognition of the need to carefully compare

established modelling frameworks on benchmark problems in order to understand

artefacts associated with different models, different methods of numerical solution,

and different implementations of the same model. Given the biological relevance and

the existence of previous simulation studies, cell sorting due to differential adhesion

is an excellent candidate for one such benchmark, and this is a benchmark chosen by

Osborne and colleagues [118], one of the few studies to date that addresses the need

for such careful comparisons.

To date, no comparison has been made between the IBM and any competing

frameworks, and we address this by building on the work of Osborne and colleagues.

We first recapitulate their cell sorting results in the case of the VM. We then

add random noise in this context to demonstrate the impact of a GRF noise

implementation on the existing model. Finally, we simulate cell sorting in the IBM

and, by comparing these results to the VM case, learn more about the strengths and

limitations of the IBM as a tool for cell-based simulation.

Details of the previous simulation study. Osborne and colleagues simulated cell

sorting due to differential adhesion in a simplified abstraction that removes extraneous

details and focusses on the essential behaviours of the computational models being

compared. They simulate a population comprising two cell types A and B in a

monolayer that does not undergo any proliferation or respecification. The interaction

energy between two neighbouring cells is governed by a term γ, the interaction energy

between cells (corresponding to the line tension Λ defined in Section 1.2.1), such that

γ(A,A) = γ(B,B) < γ(A,B). This encodes a ‘preference’ for two cells of different

types to minimise their interaction length. In addition to this inequality, the authors

choose γ(A, void) < γ(B, void) so that cells of type A will preferentially exist on the

boundary of the simulated monolayer, resulting in the engulfment of cell type B by

cell type A.

In addition to the update rules for the VM described in the introduction to

this chapter, the ‘basic’ random force (see Section 4.2.3) is applied to each node

in the simulation: this random force facilitates a significant increase in the T1

transitions required for cell sorting. The diffusion strength, ξ, modulates the quantity

of perturbation added to the simulation.

95



A quantitative comparison between different models is made possible by

computing the evolution over time of the ‘fractional length’ (based on the ‘heterotypic

boundary length’ introduced by Zhang and colleagues [174]), defined as the total

length of the boundary between cells of different types, normalised by the length of

that boundary at time zero. Formally, the heterotypic boundary length at time t is

defined as

HBL(t) =
∑
b∈B(t)

l(b)(1− δAB), (4.7)

where B(t) is the collection of all cell-cell boundaries in the configuration of the cell

population at time t, l is the length of a given boundary, and A and B are the

identities of the two cells forming the boundary. The fractional length, then, is given

at time t by HBL(t)/HBL(0). This measure therefore takes the value 1 initially and

decreases as cells sort and reduce the total length of heterotypic cell–cell interfaces.

4.3.1 Recapitulating cell sorting in the VM

To facilitate comparison between the VM and the IBM, we make one significant

change over the previous work by Osborne and colleagues by simulating on a doubly

periodic domain. This prevents cells in the IBM from simply pushing apart during

simulations (which prevents cell sorting), and this is discussed in Section 4.4. The

simulation setup is as follows. We position 100 cells in a square, on a doubly periodic

domain, using the Voronoi mesh generation method described in Section 3.3.1. Before

randomly selecting cells to be labelled as cell type B, we run the simulation for a

number of timesteps to allow the tissue to achieve mechanical equilibrium. Due to

the random noise imposed on vertices in the simulation, there is no definitive notion of

a mechanical equilibrium, and so this is achieved in an ad hoc manner by simulating

the monolayer long enough for there to be little change over time. By utilising the

Voronoi mesh generation method, this burn-in time is negligible, and we choose 1%

of the overall simulation time rather than the 10% used by Osborne and colleagues.

Once close to mechanical equilibrium, we randomly label half of the cells as type

B, where heterotypic interactions have the property that γ(A,B) = 2γ(A,A). The

simulation then proceeds for a fixed simulation duration and the fractional length is

recorded over time. Figure 4.7 shows snapshots of a simulation with complete sorting

by t = 150. All parameters are as published in [118], with a diffusion strength equal

to 0.5, and full details are available in the source code (Appendix A.3). There are two

observations in these snapshots that are worth highlighting. First, in all four images

there are examples of non-convex cells. This is due to the imposition of a random

96



(a) (b)

(c) (d)

Figure 4.7: Snapshot of VM cell sorting on periodic domain. Snapshots of a
simulated monolayer on a periodic domain are shown at four selected time points. Two
cell types A and B are shown in green and orange, respectively. Over time the two cell
types fully segregate until cells of type A are engulfed by cells of type B. (a) Snapshot at
t = 0. (b) Snapshot at t = 50. (c) Snapshot at t = 100. (d) Snapshot at t = 150.

force on each vertex, allowing vertices to move in a volatile manner, and so the normal

convexity observed during VM simulations is not present in these simulations. Second,

there are black triangles visible in the interior of the tissue, particularly in the first

of the four snapshots. In order to achieve a high measure of cell sorting, the value

of the cell rearrangement threshold chosen by Osborne and colleagues was tenfold

higher than the typical default value for VM implementations (and the default value

in Chaste). For this reason, where there are several short edges in close vicinity and

one is involved in a rearrangement such as a T1 transition, the VM implementation

is unable to fully cope and a partial inversion of the polygon occurs. While the VM

implementation is robust to this, it is worth highlighting that a substantially higher

threshold than the default was used by Osborne and colleagues. In the next section,

the choice of this threshold is explored further.

97



4.3.2 Extending the understanding of VM cell sorting

In order to understand cell sorting in the VM in more detail, we vary the

aforementioned parameters to determine the relative effects of a change in the

diffusion strength and in the cell rearrangement threshold. We begin by performing

the following computational experiment. For two values of the cell rearrangement

threshold (0.1, used by Osborne and colleagues, and 0.01), we run a number of

simulations at differing values of the diffusion strength. The diffusion strength

is varied from 0.1 to 0.9 in steps of 0.2, and for each value we average the

summary statistics over 20 simulation runs. Figure 4.8 summarises the results of

this experiment.

First, focussing on the results for the higher rearrangement threshold

(Figure 4.8a), the green highlighted line (a diffusion strength of 0.9) compared to the

orange highlighted line (a diffusion strength of 0.1) demonstrates that the diffusion

strength plays a role in cell sorting in this VM regime. Broadly speaking, the

larger the diffusion strength, the lower the resulting fractional length. This is to

be expected, as allowing the vertices in the VM to move a greater distance through

random perturbation allows rearrangements that are, in the absence of strong random

fluctuation, very energetically unfavourable. The higher the level of random noise,

the greater the likelihood of a vertex breaking out of a local energy minimum and

causing a swap that ends up in a lower-energy global state.

The picture is not the same, however, for the default cell rearrangement threshold

(Figure 4.8b). In this case we see immediately that the quantity of cell sorting is

significantly reduced, and that there is no eventual difference in the quantity of cell

sorting over the entire range of diffusion strengths. Indeed, the eventual trajectory

of all diffusion strength values is near identical. The reason for this is more subtle.

Cell sorting in the VM relies upon random motion driving vertices to within the

cell rearrangement threshold. If an edge is similar in length to the rearrangement

threshold, it is clear that random perturbation of vertices is easily capable of triggering

a rearrangement, and indeed that the likelihood of triggering such a rearrangement

will be proportional to the strength of the random perturbation. If, however, the edge

is long in comparison to the rearrangement threshold, it is unlikely that the random

perturbations will bring the two vertices together. Moreover, if the diffusion strength

is large enough to make such an occurrence likely, the ‘rearrangement zone’ would

be very small in comparison to the absolute vertex motion, and overshoot or large

unpredictable position jumps would result in a high probability of the VM becoming

degenerate. For this reason, there is little difference based on the diffusion strength

98



0 20 40 60 80 100

Simulation time

0.4

0.6

0.8

1.0
F

ra
ct

io
n
a
l

le
n
g
th

ξ = 0.1

ξ = 0.9

(a)

0 20 40 60 80 100

Simulation time

0.4

0.6

0.8

1.0

F
ra

ct
io

n
a
l

le
n
g
th

ξ = 0.1

ξ = 0.9

(b)

Figure 4.8: Effect of cell rearrangement threshold and diffusion strength on
VM cell sorting. (a) Fractional length over time for multiple simulations with a cell
rearrangement threshold of 0.1, the value used by Osborne and colleagues. The lines
represent the average of 20 runs with different values of ξ, the diffusion strength, with
the orange highlighted line ξ = 0.1 and the green highlighted line ξ = 0.9. Grey lines are
intermediate values between the two highlighted extremes. Green and orange highlighted
regions denote a standard deviation either side of the mean for the two highlighted values.
(b) Fractional length over time for multiple simulation with a cell rearrangement threshold of
0.01, the default value used for VM simulations in Chaste. The lines represent the average
of 20 runs with different values of ξ, the diffusion strength, with the orange highlighted line
ξ = 0.1 and the green highlighted line ξ = 0.9. Grey lines are intermediate values between
the two highlighted extremes. Green and orange highlighted regions denote a standard
deviation either side of the mean for the two highlighted values.

and, indeed, running simulations with significantly larger diffusion strengths does lead

to model breakdown.

In summary, in order to obtain robust cell sorting in the VM, the cell

rearrangement threshold must be large enough so as to allow random perturbation to

frequently trigger cell rearrangement events. In the absence of random perturbations,

or in the absence of a sufficiently large rearrangement threshold, there is an insufficient

quantity of rearrangement events for the VM to adequately escape the local minima

of its energy function. This introduces a fundamental limitation on the VM for

investigating differential adhesion. Not only is a random force required, but the

choice of model-specific parameters must also be made carefully. Because the cell

rearrangement threshold does not have any direct biological correlate (it is simply

a computational necessity as, due to the discrete timestepping, edge lengths do not

smoothly approach zero), any choice for this parameter is ad hoc. As a future avenue

for further investigation, varying this parameter, together with the diffusion strength,

may allow a more appropriate calibration of these parameters with biological data.

That is, however, beyond the scope of this work, which is primarily focussed with

99



understanding cell sorting in the VM as a point of comparison with which to better

understand the utility of the IBM.

4.3.3 Adding correlated noise to VM simulations

A further avenue for exploration is the addition of length-correlated noise to VM

simulations. As detailed in Section 4.2.3, the impossibility of applying random

perturbations to IBM simulations in the same manner as had previously been applied

to VM simulations led to the development of a GRF technique for adding spatially

correlated noise to arbitrary domains. Given that, in VM simulations, it is expected

that vertices come within very small distances of one another (for instance, during a

T1 transition) it is unclear that adding uncorrelated random noise is valid. Spatial

correlation is therefore appropriate to consider in the VM case as well as in IBM

simulations, and in this section we explore the extent to which adding spatially

correlated noise to VM simulations affects summary statistics.

We make use of the uniform grid and interpolation method for adding random

noise, so must ensure the lattice spacing is small in comparison to the average distance

between vertices in the simulation. In this simulation study we use a conservative

lattice spacing in order to reduce the likelihood of lattice spacing being a material

concern in the interpretation of results. Given a square domain with approximately

200 evenly spaced vertices, one would expect approximately
√

200×
√

200 ≈ 14× 14

vertices in each dimension, so choosing 64 × 64 lattice sites ought to give ample

resolution. As an aside, operating on a doubly periodic domain in this instance is

also a benefit as the underlying lattice will always perfectly fit the simulation domain.

To understand the impact on VM cell sorting simulations of altering the length

scale over which random noise is correlated, we perform the following computational

experiment. For fixed diffusion strength (1.0) and fixed cell rearrangement threshold

(0.05), we perform five simulations runs for each of a variety of correlation length

scales. The target surface area for cells in this experiment is 1.0, and the average

surface area of elements is 0.5
√

3 ≈ 0.9, so 1.0 is a rough ‘lengthscale’ of an individual

cell. In order to encompass a useful range of lengthscales for the GRF force, we

choose a range from 0.0 to 2.0 in steps of 0.4 and for each of these lengthscales we

average the simulation results over five runs. Here, l = 0 means that the previous

random perturbation method (with no spatial correlation) was used, and any non-zero

lengthscale means the new GRF method was used.

Figure 4.9 shows the results of this computational experiment. The results match

intuition well. We would expect the l = 0 (‘most’ random) case to result in the

100



0 20 40 60 80 100

Simulation time

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
a
l

le
n
g
th

l = 0.0

l = 2.0

Figure 4.9: Effect of noise correlation lengthscale on VM cell sorting. The lines
represent the average of 5 runs with different values of l, the random noise lengthscale,
with the orange highlighted line l = 0.0 and the green highlighted line l = 2.0. Grey lines
are intermediate values between the two highlighted extremes. Green and orange highlighted
regions denote a standard deviation either side of the mean for the two highlighted values.

greatest probability of triggering cell rearrangement events. In the limit l →∞, the

noise would be perfectly correlated over the entire domain, and for each timestep

would simply result in an identical displacement being added to each vertex in the

simulation, giving a simulation identical to having no random perturbation at all.

As expected, l = 0 produces the greatest amount of cell sorting, and sorting gets

progressively less good as the lengthscale increases.

This result highlights that, when including noise in vertex movement, correlation

lengthscale ought to be carefully considered. In fact, the impact of lengthscale on

summary statistics appears more pronounced and has a much tighter variance than

the strength of the noise added, which has previously been modulated in published

simulation studies [118].

4.3.4 Cell sorting in the IBM

This section details the attempts to recapitulate with the IBM the results for the VM

above. The general setup is similar to the VM case. We start with a population of

cells on a doubly periodic domain, allow them to relax for a short time, and then

select half the cells to be labelled as ‘type B’. The simulation then proceeds, with the

addition of noise, for a fixed duration, and the fractional length is recorded over time.

Like the cell rearrangement threshold in the VM, there are also elements of model

choice in the IBM that must be carefully considered for there to be any chance of cells

sorting. Principle among these is the distance between cells. Due to velocity of the

101



fluid underlying the IBM being the mechanism for updating the IB node locations, for

two specific nodes in the IB representation to move relative to one another, the nearby

fluid must also have a relative motion. This enforces that for two boundaries to move

relative to one another (to exhibit shear) they must be separated by a sufficiently

large number of fluid grid spacings. As interpolation is based on a 4 × 4 subgrid,

four fluid-grid-spacings seems a reasonable default minimum spacing between cells

for there to be any chance of shear. This implies the need for a fine fluid grid which,

in turn, implies the need for a large number of nodes per IB in order to satisfy a

suitable spacing ratio (Section 2.6.1). This has the undesirable implication of a high

computational cost. As a result, for this unit of work we reduce the number of cells in

each simulation in order to keep simulation runtimes feasible on a desktop computer.

We therefore simulate 36 cells on a square doubly periodic domain with 128 × 128

fluid grid points. We choose a gap of size 0.03 ≈ 4/128, and this geometry results in

≈ 5000 IB nodes in total.

While we initially specify a gap between cells, this is certainly not sufficient to

prevent adjacent cells getting too close to each other to shear. We use an adhesion

force containing a Morse-style potential as described in Section 2.8.3. Setting the

interaction rest length to the distance between cells, two IB nodes at this distance

experience no additional adhesive force. Two IB nodes below this distance experience

a strong (and exponentially increasing) repulsion, preventing any cells coming too

close together to prevent shear. Two IB nodes further apart than this rest length

experience an attractive force that peaks before tailing off to zero at long distance.

Implementing differential adhesion in this context is straightforward: the strength

of the heterogeneous interaction force is simply reduced compared to the homogeneous

interactions by a factor µhet where, in the following computational experiments, we

choose a default value of µhet = 0.25. Osborne and colleagues choose µhet = 0.1 in

the case of the overlapping spheres and Voronoi tessellation cell-centre models. To

make the repulsion strength (interactions below the rest length) independent of the

heterogeneous nature of the interactions, a separate value for the repulsive well depth,

µrep, is used, which remains constant regardless of the interaction, giving the following

functional form for the cell–cell force

F(r) =
2aµ

r
e−a(r−gdef) (1− e−a(r−gdef)) , (4.8)

where r is the distance between two IB nodes, a is the well width and µ is either µrep

(if r < gdef), µdef (for homotypic interactions) or µhet for heterotypic interactions.

In the following computational experiments, we use the default parameter values

102



given in Table 4.1, with multiples of those values being used as described for each

specific experiment. Full details on the exact specification for each simulation can be

found in the file TestIbSortingWithNoiseLengthscales.hpp which defines all IB

cell sorting simulations presented in this section.

Parameter Description Value

µdef default cell–cell well depth 1.2× 105

µhet heterogeneous cell–cell well depth 0.25 µdef

µrep repulsive cell–cell well depth 10 µdef

gdef default cell–cell gap 0.03 = 3.84 h
ξdef default diffusion strength 5× 108

Table 4.1: Default parameters for IB cell sorting simulations.

Figure 4.10 shows snapshots from a single IBM simulation with differential

adhesion. The first and most obvious difference in comparison to the VM case

(Figure 4.7) is that total cell sorting is not achieved. While the different cell types

do aggregate over the duration of the simulation, and cell rearrangements do occur,

the frequency of these events remains low. Further simulation studies in this section

quantify the cell sorting extent, but what is clear is that the timescale over which cell

sorting does occur is much longer than that of the VM case where, here, the timescale

on which the noise acts is constant between IBM and VM simulations. Elaboration

on the reasons for infrequent cell rearrangements is presented in Section 4.4 but, while

cell sorting is incomplete it is far from non-existent, and is certainly instructive for

our understanding of the IBM.

4.3.5 IB sorting and diffusion strength

The differential adhesion experiment performed by Osborne and colleagues assessed

the impact of the random perturbation strength on the rate of cell sorting. Figure 4.11

shows the corresponding numerical experiment for the IBM. The diffusion strength is

varied over an order of magnitude, with little difference in the quantity of cell sorting.

While, in the complete absence of noise, no relative cell motion (and hence no cell

sorting) occurs, Figure 4.11 demonstrates a significant parameter space in which cell

sorting occurs, but occurs in a manner independent of the strength of the noise driving

it. This result is strikingly similar to the corresponding VM simulations presented

in Figure 4.8b, in which the quantity of cell sorting was independent of the strength

of noise added to the system. In this case, altering the cell rearrangement threshold

proved necessary to find a parameter regime where the diffusion strength did correlate

103



(a) (b)

(c) (d)

Figure 4.10: Snapshot of IB cell sorting simulation. Snapshots of a simulated
monolayer are shown at four selected time points. Two cell types A and B are shown in
green and orange, respectively. Over time the length of the heterotypic boundary decreases
but unlike in the VM case, total cell sorting is not achieved. Parameter values for this
simulation are all as in Table 4.1. (a) Snapshot at t = 0. (b) Snapshot at t = 330. (c)
Snapshot at t = 660. (d) Snapshot at t = 990.

with the quantity of cell sorting. This begs the question of whether a similar model

parameter has such an impact on the IBM, and this is explored in Section 4.3.7.

4.3.6 The impact of correlated noise on IB cell sorting

Section 4.3.2 extended the existing model of cell sorting using the VM, and

investigated the impact of modulating the lengthscale l over which the random

perturbations are correlated. The results closely followed intuition: the shorter the

lengthscale of correlation, the more ‘locally’ random the perturbations become, and

this increases the probability of triggering the cell rearrangement events that drive

cell sorting. Figure 4.9 shows the characteristic reduction in cell sorting as l increases.

Is the same true for the IBM? Intuition, again, agrees that as l→∞, the random

perturbations are perfectly correlated and simply act to translate the cells. We

therefore expect cell sorting to decrease in the presence of a large value for l. In

104



0 50 100 150 200 250

Simulation time

0.85

0.90

0.95

1.00

F
ra

ct
io

n
a
l

le
n
g
th

ξ = 0.1 ξdef

ξ = 0.9 ξdef

Figure 4.11: Effect of noise strength on IB cell sorting. Lines represent an average
of 3 runs with different values of ξ, the diffusion strength, with the orange highlighted
line ξ = 0.1 ξdef and the green highlighted line ξ = 0.9 ξdef . Grey lines are intermediate
values between the two highlighted extremes. Green and orange highlighted regions denote
a standard deviation either side of the mean for the two highlighted values.

the case of a small lengthscale, the situation is more interesting. Unlike in the VM

case, we cannot take the lengthscale to zero. This was the original motivation for

developing a method of adding correlation: as the IB nodes can be arbitrarily closely

spaced, a non-zero lengthscale is required for the addition of random noise to make

any sense. Provided, though, that l is large enough compared to the distance between

individual IB nodes for the simulations to be non-degenerate, what would we expect

to observe? The more relevant size on which to consider this is that of the gap between

cells which, as previously discussed, must be large compared to the fluid grid spacing:

if l is small compared to this gap, we would expect little consistent relative motion

between cells and, instead, simply a ‘rippling’ of the IBs themselves. As l increases,

we would expect to see the noise contributing more substantially to relative motion

between cells, and so would predict a sweet spot of correlation length that maximises

quantity of cell sorting.

To test this hypothesis, we perform cell sorting simulations with varying values

of l and record how the fractional length varies over time. Figure 4.12 shows the

results. The orange highlighted value of l = 0.1 gdef , and the green highlighted

value of l = 2.33̇ gdef are the two most extreme simulated values of l, and both

perform significantly less well than the three intermediate values (grey lines). This

demonstrates the expected behaviour, and confirms that the correlation lengthscale

is an important consideration in such simulations. The implications of this, and the

difficulty of relating this fact to any biological correlate, is discussed at greater length

105



0 50 100 150 200 250

Simulation time

0.75

0.80

0.85

0.90

0.95

1.00

F
ra

ct
io

n
a
l

le
n
g
th

l = 0.1 gdef

l = 2.33̇ gdef

Figure 4.12: Effect of noise correlation lengthscale on IB cell sorting. The lines
represent the average of 40 runs with different values of l, the random noise lengthscale,
with the orange highlighted line l = 0.1 gdef and the green highlighted line l = 2.33̇ gdef .
Grey lines are intermediate values between the two highlighted extremes. Green and
orange highlighted regions denote a standard deviation either side of the mean for the two
highlighted values.

in Section 4.4.

4.3.7 The impact of cell gap on IB cell sorting

Finally, we return to the question posed in Section 4.3.5 of whether, in the IBM, a

model parameter such as the cell rearrangement threshold substantially influences the

quantity of cell sorting. While not directly related, a candidate for such a parameter

is the size of the gap between cells. The reason for investigating this parameter is

grounded in the IBM itself: location of boundaries are updated by the flow induced

in the underlying fluid. Two IBs, therefore, that are close together will be carried

along by similar fluid velocities, prohibiting the relative motion of boundaries that is

necessary for cell sorting to occur. It is reasonable to assume that, if the gap between

boundaries is small, cell sorting will not occur.

To test this hypothesis, we perform cell sorting simulations with varying values

of the cell–cell gap, gdef = 3.84 h, and record how the fractional length varies over

time. Figure 4.13 shows the results of this investigation. Reducing the cell gap, g, by

a factor of three from its default value of gdef = 3.84 h to g = 1.28 h is sufficient to

completely prevent cell sorting. Enlarging the cell gap too far, by contrast, removes

all semblance of cell shape, and gdef has been chosen for this study in an ad hoc

manner so as to retain cell shape while enabling cell shear.

106



0 50 100 150 200 250

Simulation time

0.85

0.90

0.95

1.00

F
ra

ct
io

n
a
l

le
n
g
th

g = 1.28 h

g = 3.84 h

Figure 4.13: Effect of differing cell gap on IB cell sorting. The lines represent
the average of 4 runs with two different values of g, the cell gap, with the orange line
g = 1.28 h and the green line g = 3.84 h. Green and orange highlighted regions denote a
standard deviation either side of the mean for the two highlighted values.

4.4 Discussion and outlook

In this chapter we have undertaken a careful comparison of the VM and IBM by using

them both to simulate a benchmark problem of cell sorting by differential adhesion.

Doing this has required the development of a number of fundamentals that enable the

IBM to simulate epithelial dynamics in a manner similar to the VM. The development

of these fundamentals included the need to add noise to the IBM, and the subsequent

implementation generalises previous attempts and applies equally well to other cell-

based frameworks. This synergy has ultimately led to a more in-depth understanding

of the VM, in addition to elucidating the strengths and limitations of the IBM for

cell-based modelling.

We now briefly discuss several of the implementation choices made during this

work. In order to incorporate changes in cell surface area in the IBM in a manner

similar to that of the VM, we implemented a fairly ad hoc feedback between crowding

and cell size (Section 4.2.2). It remains unclear the precise extent to which our

implementation influences simulations of epithelial dynamics and, while out of the

scope of this work, an avenue for further investigation would be to tune the algorithm

to produce biologically realistic cell area distributions. Second, we chose to deviate

from the study undertaken by Osborne and colleagues [118] by simulating cell sorting

on a doubly-periodic domain. This choice was the only sensible way to enable any

cell sorting: without some mechanism to keep IB cells constrained, the population

simply rounds up and spreads apart. This is due to the membrane elasticity strength

107



dominating the cell–cell interaction strength in order to keep IBs coherent, and further

work should seek to address this weakness in the model. For the present study,

however, simulating on a doubly periodic domain is sufficient to constrain the cell

locations, and has allowed simulations of cell sorting that enable useful comparison

between the IBM and VM frameworks.

Turning our attention to the comparison itself, the investigation has revealed a

number of points for discussion. First is the difficulty with which parameters can

be related like-for-like between the frameworks. In the VM, differential adhesion is

implemented by modulating the line tension parameter, and this has a non-trivial

feedback with the motion of vertices. By comparison, the IBM has a more natural

representation of differential adhesion, as explicit forces between cell boundaries are

represented. There is no clear way to directly relate line tension to an explicit

representation of forces and, therefore, models such as the IBM that incorporate

such explicit representations may be better suited to modelling situations where a

mechanistic understanding of the forces is known.

Furthermore, the difficulty with which the IBM was capable of recapitulating cell

sorting sheds light on several of its important characteristics. The IBM struggles to

display shear of cells past one another. Careful attention must therefore be paid to

the gap between cells, and to the granularity of the underlying fluid grid, particularly

when shear is expected. Finally, both the VM and IBM demonstrate a dependence

of cell sorting on l, the correlation length for the random perturbations. This is an

interesting and novel computational result, and raises the question of how values for

this parameter should be chosen. Future work in this area might infer a value for l

from biological observations.

In conclusion, in this chapter we have developed fundamentals of the IBM and

advanced a method of adding noise in general to off-lattice cell populations. Through

the application of both the VM and the IBM to simulations of cell sorting, we have

undertaken the first study that compares one of the class of more geometrically

detailed cell-based models to an existing framework. Through this study, we

now better understand the capabilities and limitations of the IBM for studying

cell populations, and are now in a position to utilise it on a suitable problem in

developmental biology.

108



Chapter 5

A computational model of early

placode morphogenesis

In this chapter, we apply the IBM to explore biophysical mechanisms of epithelial

bending with application to early placode morphogenesis of the developing molar and

the developing salivary gland. This work has been undertaken in collaboration with

Professor Jeremy Green (King’s College London).

5.1 Background and motivation

Epithelial bending and folding are ubiquitous morphogenetic deformations that play

key roles in numerous developmental processes. During gastrulation, the first major

morphogenetic transformation during development in most animals [77], a single-

layered epithelium (blastula) is reorganised by coordinated bending and folding into

a layered structure (gastrula). Neurulation, a critical stage in the development of

the brain and spinal cord, also requires carefully controlled tissue folding. In such

processes, coordinated cell shape changes and cell neighbour exchanges drive bending

and folding. Because mechanical forces underlie these deformations, elucidating

the mechanics of epithelial bending is necessary if we are to understand embryonic

development and associated pathologies. To date, a number of bending mechanisms

have been characterised:

Apical constriction. Apical constriction is responsible for, among many other

processes, ventral furrow formation and dorsal closure in Drosophila, early stage

neurulation in vertebrates [31], and gastrulation in Xenopus [77] and C. elegans [145].

It is characterised by a ‘purse string’ of apically localised actin circumferential in each

109



cell which, upon constriction, reduces the apical surface area of the cell. Coordinated

constriction by a group of neighbouring cells generates a local invagination in the

epithelium [152]. Progressive apical constriction in coordination with other cell shape

changes can lead to complete folding [32].

Basal wedging. Basal wedging is geometrically similar to apical constriction in

that the apical surface of cells becomes significantly smaller than the basal surface,

but it occurs via a distinct mechanism. This phenomenon is observed in several

pseudostratified epithelia including the chick neural plate [148]. In a pseudostratified

epithelium, cells are narrow enough that they bulge around the location of their

nucleus. The nucleus moves during the cell cycle in a process known as interkinetic

nuclear migration, and is located basally during S (DNA synthesis) phase. During

basal wedging, S phase is longer for cells forming the hinge about which bending

occurs [149], thus a high proportion of the cell nuclei remain basal, ensuring the basal

surface is significantly larger than the apical surface. This results in a bend in the

epithelium.

Differential proliferation. The differential proliferation hypothesis posits that a

stratified epithelium may bend by increased cell proliferation in a certain region of

the tissue. During such bending, undulations are generated by increased proliferation

perpendicular to the epithelium generating a ‘down growth’ responsible for shape

change. An example of this is epithelial dysplasia, a pathology of abnormal growth

and differentiation [7]. Such a bend is dependent on a number of factors including the

stiffness of the underlying mesenchyme and the coordination of cell spindle orientation

during division [122].

A new method of epithelial bending. The tooth and salivary placodes, similar

in their early stages of development, have recently been shown to exhibit a bending

mechanism that is quite different from those summarised above, and which remains

poorly understood. The motivation for the work presented in this chapter is to create

a computational model able to probe the mechanics of bending in these tissues.

5.1.1 Computational modelling of out-of-plane deformations

Before developing a suitable computational framework within which to investigate the

mechanics of epithelial bending, we first review previous work in this area. Possibly

the earliest example, by Odell and colleagues [116], is described in Section 1.2.2, with

110



basal surface

apical surface

active subcortical 
filament bundle 

(a) (b)

Figure 5.1: Viscoelastic model of embryonic cross-section. (a) The mechanical
elements comprising a single cell in the model by Odell and colleagues [116]. Linear springs
join the corners, and an apical active element contracts in response to extension. (b) A
circle of identical cells evolves to the pictured configuration during a simulation of ventral
furrow formation in Drosophila. Images are reproduced from [45] (Figures 1a and 1b) with
permission from the authors.

further details in Figure 5.1. Using this model, the authors successfully recapitulated

gross phenotypic observations of normal development (Figure 5.1b). A more recent

study by Polyakov and colleagues [128] investigates Drosophila gastrulation in a

similar manner using a cross-sectional vertex model, with a more detailed examination

of the role of apical constriction based on current knowledge of its biological

underpinning.

An alternative paradigm for modelling out-of-plane deformations in two

dimensions is to model the apical surface, rather than a cross-section, of the tissue. An

example is provided by Spahn and Reuter [150] who investigate Drosophila ventral

furrow formation using an ‘en face’ VM. A strength of this work is the ease with

which summary statistics can be compared to experimental observations which, in

this system, are typically viewed using live confocal imaging of the apical surface.

Figure 5.2 shows three snapshots from Spahn and Reuter’s simulations of ventral

furrow formation in which the invaginating (red) cells reduce in apical surface area.

A final example is a computational model of tooth placode morphogenesis at a late

stage of development. Marin-Riera and colleagues [97] use the software EmbryoMaker

(described in Section 1.3) to simulate the development of the tooth germ in three

dimensions, representing mesenchymal and suprabasal cells as spheres and epithelial

111



Figure 5.2: Vertex model of Drosophila ventral furrow formation. Three snapshots
of a simulated epithelium demonstrate Spahn and Reuter’s model [150] recapitulating ventral
furrow formation using a two-dimensional representation of cells’ apical surfaces with red
shading proportional to the size of the apical surface area of cells. Reproduced from [150]
(Figure 2e) under the Creative Commons Attribution License.

Figure 5.3: Three-dimensional model of molar development. Initial conditions for
a simulation by Marin-Riera and colleagues [97]. Blue and red represent the epithelial cells,
yellow the supbrabasal cells, and purple the mesenchyme. Green cells and the topmost layer
of yellow cells are fixed in space. Reproduced from [97] (Figures 2a and 2b) under the
Creative Commons Attribution License.

cells as cylinders defined by two end points. This model explores cell division and

adhesion as drivers for significant morphogenetic deformation, finding that differential

tissue growth and differential adhesion are sufficient to build the three-dimensional

structure of the tooth germ. Figure 5.3 shows the initial geometry for a single tooth

simulation, where each sphere or cylinder represents a single cell.

These examples showcase a variety of geometrical approaches for modelling out-

of-plane deformation: cross section, top-down, and fully three-dimensional. While

each is useful in specific circumstances, none consider detailed, emergent cell shape

dynamics. This, as we will see, is an important component of the system that we are

investigating, and requires a novel modelling approach.

112



i

ii

iii

(a) (b)

Figure 5.4: Simplified schematic, and microscopy slide, of the tooth placode.
The tooth formation system, as a cross section through the developing jaw, orientated with
buccal–lingual (cheek–tongue) axis from left to right. (a) i Initially flat epithelial monolayer
anchored to the basal lamina. ii Initial bending during early stages of invagination,
characterised by cells beginning to form hooks directed towards the centre of invagination,
followed by cells (blue) beginning to detach from the basal lamina (delaminating). iii After
delamination, cell migration and intercalation results in arcs of elongated cells above the
invagination, thought to be under high tension. (b) Image of jaw explant showing suprabasal
arcs, showing E-cadherin (green) and F-actin (magenta). Images courtesy of Professor
Jeremy Green.

5.1.2 Characterisation of the model system

Professor Green’s lab study placode morphogenesis using the mouse as a model

system. Figure 5.4 shows a schematic of one particular stage of the system in question.

The images represent thin (roughly 10µm) slices of tissue taken from the jaw of a

developing mouse embryo. Remarkably, while ex vivo these explants continue to

undergo normal morphogenesis for a time, allowing for detailed microscopy studies

of the early stages of morphogenesis. Figure 5.4b shows a cross section through the

tissue, with the epithelium comprising a monolayer of cells initially arranged in a

‘palisade’ above a basal lamina, under which is a mass of mesenchymal cells.

The process, characterised by Panousopoulou and Green [120], proceeds as follows.

An initially flat epithelium invaginates to form a furrow (out of the plane of the

images), in which teeth will later form. Several distinct stages are identifiable in this

process. In the first stage (i to ii in Figure 5.4), cells take on a ‘hook’ shape oriented

towards the centre of the invagination. This allows some cells to, seemingly, drag

themselves away from the basal lamina and begin migrating towards the centre of

the invagination (ii to iii in Figure 5.4). Intercalation (in which cells move past one

another) then occurs in these suprabasal arcs, rapidly drawing together the shoulders

of the invagination to crease the tooth furrow.

Of particular interest in this study is the very earliest stage, during which the

113



flat epithelium invaginates. This is characterised by (vertical) relative motion of

cells past one another, and by hook-shaped cells pointing towards the centre of the

invagination. Much detail concerning the mechanical interactions involved in these

processes remains unclear. What is clear, however, is that the well-characterised

processes of apical constriction and basal wedging are certainly not driving bending

in this system. This has been conclusively demonstrated by Panousopoulou and

Green [120]: cells with basal nuclei are not observed to be more abundant in the

explants (ruling out basal wedging), and no apical enrichment of actin is observed

(ruling out apical constriction). In this case, the biology is inconsistent with any

previously reported methods of generating out-of-plate epithelial deformations.

The following specific observations succinctly characterise the main biological

observations that have given rise to the mechanical hypothesis explored in this study.

Adhesive protein localisation. Fluorescent tagging has revealed that an adhesive

transmembrane protein, E-cadherin, is abundant in the apical domain of cells in the

early placode [120] (Figure 5.5a). The absence of this protein in lateral domains

indicates that adhesion is probably a contributing factor in the observed deformation.

‘Penguin’ cell shapes. Ex vivo, a high proportion of cells in the placode take on a

hook-shaped geometry, similar to the beak of a penguin, with the hooks consistently

oriented towards the centre of the invagination. This has been characterised by Li and

Green [56], with 75% of cells in the invaginating salivary gland displaying centrally

directed protrusions in their apical domains. Examples of such cell shapes can be seen

in Figure 5.5b. A working hypothesis is that these structures function in a similar way

to lamellipodia, providing an anchor ahead of the cell against which to pull forward.

Lamellipodia are protrusions of cytoskeletal actin, formed by epithelial cells, and are

implicated in cell motility [1]. These shapes are also observed, but in fewer number

and with a more slight beak, in fixed specimens, indicating the transient nature of

the hooks and supporting a lamellipodial-like function.

Outward lean of cells. The cells in the placode are shown to remain largely

vertical as the invagination deepens. This is characterised by an acute angle between

the long axis of individual cells and the basal lamina, and is referred to here as the

‘outward lean’ (Figure 5.5c).

114



(a) (b)

(c)

Figure 5.5: Elements of the model system. (a) E-cadherin (green) production is
shown to be upregulated in the apical domain of cells in the early placode. Reproduced
from [120] (Figure 4d) under the Creative Commons Attribution License. (b) Snapshot
of a three-dimensional reconstruction of two individual cells displaying the ‘penguin’-like
hooked geometry. (c) Characterisation of cells forming an acute angle with the basal lamina,
referred to as an ‘outward lean’. Images (b) and (c) courtesy of Professor Jeremy Green.

Vertical telescoping. As cells begin to hook towards the centre of what will

later be the invagination, the epithelium bends into a shallow valley-shape, with

central cells lower than the outer flanking epithelium. The region of bending,

approximately 10-20 cells from shoulder to shoulder, is flanked by flat epithelium.

This process appears to be characterised by a small relative motion between each

pair of neighbouring cells, which cumulatively generates the observed bend over the

width of the epithelium. This relative motion has been characterised by looking at

imaging data from the tissue explants, and has been termed ‘vertical telescoping’ by

Professor Green. This concept is best explained with reference to Figure 5.6. An

analogy of this kind of motion is the steps of a rising escalator, with each cell moving

vertically relative to its neighbour. When extended to a concentric arrangement about

the centre of an invagination, this is akin to the sliding sections of a telescope. Cells

115



Figure 5.6: Schematic of vertical telescoping. Cells appear to move with respect to their
neighbours in such a way as to effect a bending of the epithelium. The motion appears to
be relative, and there is some evidence [56] that cells ‘lean’ in the sense that their long axes
remain upright with respect to the flanking epithelium, rather than remaining perpendicular
to the bending basal lamina.

remain upright as the epithelium bends, from the frame of reference of the basal

lamina, and this outward lean has been quantified from experimental data. This

process has been observed and quantified by Green and colleagues in the tooth germ

epithelium, but this quantification is yet to be published.

5.2 Computational modelling of this system

Which mechanical interactions between neighbouring cells can suffice to give rise to

the above observations, in particular (i) hook-shaped cells, (ii) invagination (bending

of the basal lamina), and (iii) outward lean during vertical telescoping? To address

this question, we will develop a novel computational framework within which we can

probe the role of mechanics in generating this form of epithelial bending.

Figure 5.4b shows a huge variety of cell sizes, shapes and protein expression

levels. The integrated impact of multiple biological factors almost certainly implies

unintuitive outcomes of experimental perturbations, and the value of a computational

model comes from the ability to quantitatively observe these consequences.

5.3 Methods

5.3.1 An IB model of early placode development

We first identify the key biological elements that must be accessible in a computational

model of epithelial bending, in order to select an appropriate modelling approach.

We wish to capture complex and dynamic cell shapes and relative movements.

In addition, observed heterogeneities in cadherin expression levels around cell

116



membranes indicate that adhesion probably plays an important role in the process.

For this reason, a framework giving us explicit control over the location and strength

of cellc-cell interaction forces is required. The biological observations are from thin

tissue explants, roughly a cell diameter thick. For this reason, a two-dimensional

model is appropriate as the system itself, and observations thereof, are also essentially

two-dimensional.

Several of the models outlined in Section 1.2.3 may be suitable for this study,

including the many-vertex type model, the SEM, and the IBM. Of these, the high

resolution representation of cell geometries, the ease with which explicit mechanics

can be investigated, and the availability of a high quality implementation makes the

IBM an appropriate framework to begin modelling the system.

The essential information that informs our computational design is summarised

as follows:

• there exists a central region of cells that do not exhibit apical protrusions;

• cells to the left and right of the central region develop ‘hook’ shapes, hooking

in the direction of the central region;

• while this is happening, the epithelium bends;

• experimental work demonstrates the presence of differing levels of

transmembrane proteins, in particular an increase in E-cadherin in the apical

domain.

Distilling these essential elements, we aim to assess to what extent the following

three success criteria can be met by investigating mechanical hypotheses in an IB

computational model:

1. quantifiable bend of the epithelium;

2. quantifiable ‘hooking’ shape;

3. quantifiable ‘outward lean’ of cells.

The basic framework. We simulate an epithelium made up of a small number of

cells, initially in a regular columnar palisade. The early stages of epithelial bending

in this system typically involves approximately 15 cells, so we choose to simulate this

number. Each cell’s membrane is represented by a single IB.

117



There are mesenchymal cells situated basal to these columnar cells that do not

appear to be mechanically active during invagination. Instead of treating these

cells explicitly, for simplicity we represent only the boundary between the columnar

epithelium and the underlying mesenchyme (Figure 5.4b). This takes the form of

a single IB which, due to the periodic boundary conditions, forms a closed loop

partitioning the domain in two. We refer to this IB as the ‘basal lamina’ (white

dotted line in Figure 5.7b).

Three regions of cells. Based on the data presented above, we assume that

the tissue comprises a ‘passive’ central region with ‘active’ regions on either side.

Again, with reference to the biology, a sensible choice appears to be three cells in the

central region and six either side (Figure 5.7b). We suppose that the mechanisms

driving bending in this system are symmetric about the centre, so label the regions A

(left), B (centre), and A′ (right), such that any mechanical heterogeneities in region

A are mirrored in region A′.

Six regions per cell. For each cell in the active regions, we introduce

mechanical inhomogeneities to drive relative motion of cells. First, we represent

epithelial apical–basal polarity via distinct apical and basal regions of each cell

boundary. The remainder of each boundary, between the apical and basal domains, is

denoted lateral. Finally, we label nodes as being either ‘inner’ or ‘outer’ by dividing

them left and right along the long axis of the cell, through its centroid, with the

‘inner’ half being those closer to the centre.

We thus have six regions, each possibly having different mechanical properties: left

and right apical, lateral, and basal (Figure 5.7a). Figure 5.7b brings this geometric

information together: the three regions of cells, each with their six regions and, in

addition, the basal lamina.

Summary statistics. Defining suitable summary statistics is essential to extract

meaningful information from a simulation and to be able to quantitatively assess

how different hypotheses impact simulation output. In the case of tooth placode

morphogenesis, some measure of shape or curvature of the combined group of cells is

needed. In addition we are interested in just how ‘hooked’ individual cells are.

Bending quantification. There are myriad possible ways to quantify the

amount of epithelial bending, in particular the bend of the interface between the

118



L R

Lateral

Apical

Basal

(a)

A B A'

(b)

Figure 5.7: Cell and tissue geometry in IBM simulations of epithelial bending. (a)
Each cell is comprised of six regions: apical, lateral, and basal, each of which is either ‘inner’
(closer to the centre of the invagination), or ‘outer’, marked here as L (left) and R (right)
in the absence of a center about which to orient. (b) Individual cells are represented by the
15 IBs. The white IB represents the basal lamina, the interface between the mesenchyme
and epithelium. Three regions of cells are present: here, visualised with red ellipses (A: left
region), blue ellipses (B: central region), and green ellipses (A′: right region). Each ellipse
is centred at its corresponding cell’s centroid; its aspect ratio and orientation are the aspect
ratio and long axis of the cell, respectively (this is for visualisation only, and serves no
mechanical or modelling purpose). Within each cell, six regions are present. These regions
are (from top to bottom) apical (red points), lateral (teal points), and basal (blue points),
with those to the left of the cell’s long axis visualised with a darker colour.

mesenchyme and the epithelial monolayer. In this framework, that boundary is

modelled explicitly by the basal lamina: a single IB comprised of a number of discrete

points in space.

A simple measure of bending is therefore the maximal height difference between

any two locations in the lamina. More precisely, if the basal lamina is comprised of

N nodes with locations Γn =
(
Γnx,Γ

n
y

)
for n = 1, . . . N , we define

bend = maxn{Γny} −minn{Γny}. (5.1)

This bend can be converted to an angle by noting that this height difference

occurs over half the domain of (nondimensional) unit width, leading to the following

119



definition

lamina angle = arctan

(
bend

0.5

)
. (5.2)

This metric does not distinguish between a bend ‘upward’ or ‘downward’. However,

visual inspection suffices to determine whether the lamina is behaving similar to the

ex vivo system. A significant benefit of this measure is its simplicity and ease of

implementation.

Asymmetry skewness quantification. We also wish to quantify cell shapes

in simulations in order to assess apical ‘hooking’ as observed in and ex vivo. There

are several commonly used summary statistics for a planar body’s shape in two

dimensions [48]. Perhaps the most common is aspect ratio, the ratio of the largest

diameter to the smallest perpendicular diameter. A related but more robust measure

is the ESF, described in detail in Section 2.6. These both attempt to capture the

deviation from regularity. Other shape factors such as circularity (a function of surface

area and perimeter) and waviness (a function of perimeter) attempt to capture the

smoothness of the shape’s outline. None of these measures can distinguish between

a cell with a protrusion to the left or right. We therefore instead propose a measure

based on Pearson’s moment coefficient of skewness which, for a random variable X,

is defined as

Skew (X) = E

[(
X − µ
σ

)3
]
, (5.3)

where µ and σ denote the mean and standard deviation of X.

Here, we consider the skewness of the mass distribution of each cell along the

x axis. In this way, a cell hooking left has a negative skew whereas a cell hooking

right has a positive skew. The following algorithm is used to compute the skewness

measure, key steps of which can be seen in Figure 5.8:

Defined in:

• ImmersedBoundaryMesh::GetSkewnessOfElementMassDistributionAboutAxis()

Input:

• Discrete number of points representing a closed polygon

• An arbitrary axis about which the polygon’s mass distribution is calculated

Output:

120



Figure 5.8: Skewness measure of planar-body asymmetry. Planar-body asymmetry
measures for understanding the shape of hook-like cells. Diagram showing key steps in the
skewness calculation. Left: for each point in the discretisation of the polygon, calculate the
length of the intersection of the vertical line through that point with the polygon. Right:
those points form a mass distribution along the axis, which can be integrated directly to
calculate the distribution’s skew.

• S ∈ R, the skew of the polygon’s mass distribution about the axis

Algorithm:

1. Reorient geometry

• Calculate centroid of polygon and translate to the origin

• Rotate polygon so the axis is vertical

• The positive x-axis is now the direction along which the mass distribution is

calculated

2. Calculate mass distribution of the polygon

• Sort points representing the polygon from left to right

• For each point, calculate the number of intersections between the polygon and

a vertical line through that point:

– Record all y-locations of intersection points: this should be even, unless

two x-locations are perfectly coincident and one is an inflection point in

the shape

• Calculate the length of the intersection for each x-location: the linear

interpolation between these lengths is the piecewise linear mass distribution of

the polygon

3. Calculate the skew

• Calculate the moments of the mass distribution by direct integration

• Calculate the skew using the moments

Further details on the implementation of this algorithm can be found in Appendix B.1.

121



Figure 5.9: Determining outward lean of cells. The middle third of each lateral domain
in regions A and A′ is displayed as an orange line. The average angle of these lines to the
vertical is a measure of how upright a cell is, while the lamina angle defines how horizontal
the placode is.

With the ability to determine the skewness of a simulated cell about a given axis,

this gives us ready access to the skewness distribution for, say, all cells in active

regions. The mean and standard deviation of the absolute skewness of all cells in

regions A and A′ give insight into the degree of hooking observed in a given simulation.

Outward lean. To assess whether cells are exhibiting any outward lean we need

a measure of how upright cells are in comparison to how horizontal the basal lamina

is locally. For the former, a simple metric is to determine the average angle of the two

lateral domains in each cell in regions A and A′. To reduce the influence of bending

at the apical and basal ends of each lateral domain, we measure the angle that the

middle third of the lateral domain makes with the vertical. Two lateral domains per

cell, for 12 cells in regions A and A′ gives 24 angles, the average of which we take as a

measure of how ‘upright’ cells are in the active regions. Figure 5.9 shows a schematic

of the 24 angles used in this calculation.

For the basal lamina, we take the lamina angle as a summary statistic of lamina bend.

A new summary ratio, the ‘lean ratio’, of average-lean to lamina-angle is a statistic

where 0 indicates that cells in the active region are on average perfectly vertical,

regardless of the lamina angle, while 1 indicates that cells in the active region are on

average perfectly perpendicular to the basal lamina.

5.3.2 IB region tagging

We next describe the algorithms used to assign nodes to their correct region (of the six

regions defined in Figure 5.7). Region tagging must work robustly, as the dynamics of

the simulations rely on implementing different mechanical rules in different regions. A

näıve approach would be to set the node regions correctly at the start of a simulation

and allow their locations to evolve over time. This produces an acceptable initial

122



configuration, but the relative motion of cells ensures that, after some duration of

simulation, the regions no longer line up at all well between adjacent cells. Instead,

we turn to the biology for inspiration: the basal domain of a cell is that which is

anchored by integrins to the basal lamina, while the apical domain includes any free

surface above the epithelial monolayer. Based on this, our algorithm for assigning

nodes to regions is defined as follows:

Defined in:

• ContactRegionTaggingModifier

Input:

• An IB discretised by N nodes

• For each of the N nodes, a list of all nodes in other IBs within a specified interaction

distance

Output:

• For each of the N nodes, the region (of six) that it belongs to

Algorithm:

1. Identify axes of cell

• The short axis s = (sx, sy) of the cell is calculated as the dominant eigenvector

of the shape’s inertia matrix around its centroid [50]

• Orient the short axis such that sx > 0, i.e. if sx < 0 then s := −s

• If the ESF of the cell is within some tolerance of 1, the axis is unreliable: in this

case, take s = (1, 0)

2. Identify all basal nodes by determining which nodes are in contact with the basal

lamina

• For each Γn in the IB, identify all neighbours (all nodes within an interaction

distance)

• If any neighbour node is in the basal lamina, mark as basal and left or right

depending on the sign of Γn · s

3. Identify all apical nodes by identifying the ‘free surface’ at the apical domain of the

cell

• Proceed anticlockwise from the right-most basal-tagged node, and then clockwise

from the left-most basal-tagged node, find the first node to not participate in

any neighbour interactions

• The ‘free surface’ is deemed to be all nodes contiguously between the two nodes

identified above

123



• Tag these nodes Γn as apical and left or right depending on the sign of Γn · s

4. Identify lateral nodes

Further details on the implementation of this algorithm can be found in Appendix B.2.

5.3.3 IB remeshing

In contrast to the examples of (Chapter 4) where forces are relatively homogeneous, in

this setting the nodes representing the IBs can often be dragged around or bunched up

in a manner that cannot be overcome by the cortical membrane force, which usually

acts to keep the boundary nodes evenly spaced. Over many time steps, this can cause

complete model degeneracy: if nodes do become crossed over, or move too far from

their neighbours, the model can produce uncontrolled node movements, generating

unphysical cell shapes. A second cause of ‘node bunching’ is the deliberate addition of

mechanical inhomogeneity into the model (see Section 5.4.2). Over many time steps,

this causes the nodes to take on an uneven equilibrium spacing, explored in greater

detail in Appendix B.3. Nodes ought not bunch up at all, even in the presence of

imposed mechanical inhomogeneity.

These two problems have one thing in common: nodes becoming unevenly spaced

around the IB. It is worth remembering at this point that the nodes themselves are

simply a discretisation of the boundary and do not represent, say, material points

on the cell’s cortex. We therefore propose the notion of ‘remeshing’ which, at given

points in time, redistributes nodes around the IB in such a way as to restore equal

node spacing. A simple algorithm for remeshing an IB is to linearly interpolate a

closed path through every node in the IB, and reposition nodes to be evenly spaced

along this linear parametric representation of the continuous shape:

Defined in:

• ImmersedBoundaryMesh::ReMeshElement

• MeshUtilityFunctions.hpp (EvenlySpaceAlongPath())

Input:

• The locations of N nodes forming a closed polygon

Output:

• For locations of N nodes, evenly spaced around the polygon

Algorithm:

1. Choose a random starting point

124



2. Undo any wrap-around due to the periodic domain

• Replace each location with the location of the previous node plus the vector

between them

3. Evenly space nodes around the polygon

• Calculate a unit vector for each edge, and the partial perimeter sums

• Calculate the desired node spacing, s, as total perimeter divided by number of

nodes

• Place the ith node distance si along the linear perimeter of the polygon

4. Conform each location back to the periodic domain

Taken together, the summary statistics, region tagging and remeshing algorithms

are enhancements on top of the basic IB functionality that enable the exploration of

the mechanical hypotheses described in this chapter.

5.3.4 The IB framework for this study

Before applying the model to elucidate the mechanics of early placode development,

we first recap the essential elements of the IB computational framework.

As in Chapters 2 and 4, we work with nondimensional parameters in a

nondimensional doubly periodic unit domain Ω = [0, 1]× [0, 1]. This domain consists

of a grid with 192×192 points on which the underlying fluid problem is solved, along

with a number of off-lattice nodes, making up the IBs, between which specific forces

act.

Those forces are categorised as being inter- or intracellular forces which define,

respectively, the cell–cell adhesive and membrane-elastic interactions between nearby

nodes. Intercellular forces act between all pairs of nodes, within a threshold distance,

that are in different IBs. Intracellular forces act between adjacent nodes within a

specific IB. Figure 2.1 shows a schematic summarising the geometric setup of the

basic IBM.

In this study, forces are modelled as springs using the Morse-type potential

introduced in Section 2.8.3. For two nodes that interact with each other, this gives

rise to the following functional form for the intercellular forces,

Fe(r) =
2aeκeΦe

r
e−ae(r−le)

(
1− e−ae(r−le)

)
, (5.4)

and for the intracellular forces,

125



Fi(r) =
2aiκiΦi

r
e−ai(r−li)

(
1− e−ai(r−li)

)
, (5.5)

where subscript e refers to external (intercellular) and subscript i refers to internal

(intracellular) parameters, κ and a denote the depth and width, respectively, of the

potential well, r is the distance between the interacting nodes, and l is the equilibrium

distance of the bond. Φ is a function that we allow to vary arbitrarily as necessary

to test specific hypotheses in the simulations to come.

In addition to the prescribed inter- and intracellular forces between nodes, we

apply a GRF force as described in Section 4.2.3.1. This force is added to each

simulation with the purpose of perturbing the dynamics away from any extreme

realisations, and gauging the uncertainty in specific summary statistics for given

parameter sets.

5.4 Results

In this section, we detail the biological hypotheses that were incorporated into the

computational model, and the extent to which the success criteria were met. Table 5.1

contains reference values for parameters that vary during simulations undertaken

in this study. For each set of simulations, the values stated in their respective

descriptions are the multiple by which they differ from the values in this table. Due

to the computational implementation of the IBM within Chaste, all parameter values

are nondimensional.

5.4.1 Increased apical adhesion

The increased apical adhesion hypothesis is based on the experimentally demonstrated

upregulation of E-cadherin. The hypothesis posits that bending can be generated

simply by means of altered adhesion strength in certain portions of the cell

membranes. The basic outline is that cells would, in response to some as-yet

unidentified spatial cue, know the relative location of the centre of the invagination

and up-regulate the production of certain adhesion proteins in particular domains.

This up-regulation would result in the ‘inner’ (towards the eventual invagination)

apical domain of the cells having a greater adhesive affinity to their neighbours, which

would cause the cortex of the cell to crawl over its neighbour, generating motion in a

manner akin to a caterpillar track. One could imagine this hypothesis recapitulating

the observed ‘hook’ shapes of cells, as well as the relative cell–cell motion describing

the observed vertical telescoping.

126



Parameter description Symbol Ref value Simulations

Intracellular spring constant κi 2.5× 108 Figures 5.10 to 5.17
Intercellular spring constant κe 0.8× 107 Figures 5.10 to 5.17
Apical adhesion multiplier aam 1.0 Figures 5.10 to 5.17
Inner-apical stiffness multiplier ias 1.0 Figures 5.11 to 5.17
Support spring strength sss 0.006 Figures 5.12 to 5.17
Diagonal spring strength dss 0.5 Figures 5.16 and 5.17
Cyclic frequency f 0.125 Figures 5.14 to 5.17
Cyclic on-proportion cop 1.0 Figures 5.14 to 5.17

Table 5.1: Reference parameter values for placode morphogenesis simulations.
Unless explicitly stated, the parameter values for simulations in Section 5.4 are those
in this table, or the stated multiples thereof. Apical adhesion multiplier is the factor
by which apical adhesion is modified, for simulations incorporating the increased apical
adhesion hypothesis. Inner-apical stiffness multiplier is the factor by which inner apical
domain stiffness is reduced, for simulations incorporating the active cytoskeletal remodelling
hypothesis. Support spring strength is the strength of additional tensile elements present in
some simulations to represent explicit epithelial polarity, and is expressed as a multiple
of the cell–cell spring constant. Additional diagonal spring strength is the strength of
an additional diagonal tensile element applied corner-to-corner in the final simulations,
and is expressed as a multiple of the support spring strength. Cyclic frequency is the
frequency at which the inner apical domain is modified in simulations incorporating
oscillatory behaviour, and the cyclic on-proportion is the fraction of a cycle during which
this modification occurs. Details of all other simulation parameters not varied in this study
can be found in the source code.

We test this hypothesis using our model by increasing the strength of cell–

cell interactions involving nodes in the inner apical region. Specifically, any right

apical node in region A and any left apical node in region A′ involved in any

neighbour interaction is given an increased interaction strength compared to the

baseline interaction strength of a node in the apical domain of region B. Specifically,

the intercellular force is modified so that Φe = aam whenever a node involved in an

intercellular interaction is tagged as ‘inner apical’, and Φe = 1, otherwise. The value

aam varies between simulations.

Figure 5.10a shows a representative example of such a simulation, with inner apical

adhesion increased five-fold. We observe slight bulging (with no directionality) in the

apical domains of several cells but no protrusions. In addition, no bend is observed

in the basal lamina. These findings are preserved across a large range of values for

the increased apical adhesion (Figure 5.10b): virtually no bend is observed. The

explanation for this is clear: there is perfect symmetry in adhesive interactions. We

simply have not yet introduced any mechanical heterogeneity to the system. Because

no success criteria are met, we reject the hypothesis that increased apical adhesion

alone is the mechanical basis driving epithelial bending in this context.

127



(a)

1 2 3 4 5

Apical adhesion multiplier

0.0000

0.0025

0.0050

0.0075

B
en

d

(b)

Figure 5.10: Increased apical adhesion. (a) Snapshot of representative simulation with
parameters as in Table 5.1, with aam = 5.0. No directed protrusions or bend are observed.
(b) Quantification of bend with variable apical adhesion multiplier. Blue region is one
standard deviation either side of the mean (blue line) of five individual simulation runs per
parameter value, with random noise added to perturb away from any local extremes.

5.4.2 Active cytoskeletal remodelling

Biological observations show clear and polarised hook-shaped protrusions of the cell

cytoskeletons oriented towards the centre of invagination. The biology underlying

these protrusions may involve lamellipodia-like structures acting as tractors to pull

the leading edge of cells in the direction of the centre of invagination. Lamellipodia

are thin sheet-like protrusions of cytoskeletal actin formed by epithelial cells, and

they enable cell motility by providing an anchor ahead of the cell against which to

pull forwards [1]. While these protrusions do not look like classic lamellipodia seen

in cells migrating on a substrate, they are observed to collapse when treated with an

inhibitor of actin branching [56], so it is likely that they play a similar role.

As an aside, the cause of the polarisation is currently unknown: we do not know

the mechanism by which cells on the left of the invagination hook right, and those

on the right hook left. For this study, we simply assume the existence of a left–right

polarisation defining, for each cell, an ‘inner’ and an ‘outer’ face, with the inner face

being the side of the cell closer to the centre of the invagination.

128



How can we best incorporate such active remodelling into the IB framework? It

is tempting to come up with an elaborate algorithm that explicitly extrudes the cell

membrane in the inner-apical corner towards the invagination; however, grounding

this hypothesis in plausible biology seems difficult. We instead implement remodelling

as a simple local reduction in the stiffness of each cell’s representative IB, in the inner

apical corner. We imagine that this active cytoskeletal remodelling is an increase

in the willingness of part of a boundary to deform in response to adhesion with

a neighbouring boundary. Specifically, the intracellular force is modified so that

Φi = ias whenever a node involved in an intracellular interaction is tagged as ‘inner

apical’, and Φi = 1, otherwise. The value ias varies between simulations.

The idea is that this will allow turgor-related force to dominate in the weaker

boundary regions, which is the effect of remodelling whose essence we hope to capture.

Areas with a reduced stiffness will then react in a more extreme manner to any shape

changes resulting from conservation of volume. In addition, in the absence of other

factors, it increases the relative importance of the cell–cell interaction forces in that

particular region, allowing the zipping together of nodes in a manner relatable to the

biological zipping together of adhesive membranes.

Figure 5.11a shows a representative example of such a simulation. Some slight

hook shapes are apparent, particularly in the inner-most cells of regions A and A′.

These, however, are far from convincing, and the main observation is a clear bend

in the basal lamina. The extent of this bend is characterised in Figure 5.11b in the

presence of a fixed apical adhesion multiplier and variable inner-apical stiffness, and

in Figure 5.11c in the presence of a fixed inner-apical stiffness and variable apical

adhesion multiplier. It is clear that the reduced inner apical stiffness is the main

driver of bend in the lamina during these simulations, with a clear relationship and

low variability between identical simulations (up to random noise). Varying the apical

adhesion has a less profound and highly variable impact on the quantity of bend.

The bend, in these simulations, is driven by a buckling about two cells: the outer-

most cells of the central region. This is a major drawback of this regime as such

behaviour is not observed in the live imaging experiments (see Figure 5.4), where

cells maintain a very clear polarity along the apical–basal axis. This leads us to add

explicit representation of this polarity within our modelling framework.

A method is required to stiffen certain cells to prevent their buckling. The simplest

mechanism to add the necessary polarity to the cells is to identify the ‘corner’ nodes

and add additional springs between them in order to stiffen the four sides of the

rectangle. The biological justification for treating these corners as specific entities

129



(a)

0.5 0.6 0.7 0.8 0.9 1.0

Inner-apical stiffness multiplier

0.0

0.1

0.2

0.3

B
en

d

(b)

1.0 1.5 2.0 2.5 3.0

Apical adhesion multiplier

0.00

0.05

0.10
B

en
d

(c)

Figure 5.11: Reduced inner apical stiffness. (a) Snapshot of representative simulation
with parameters as in Table 5.1, with aam = 3.0 and ias = 0.8. Some small apical
protrusions appear, directed into the centre, with a clear bend caused by buckling about
central cells. (b)-(c) Blue regions are one standard deviation either side of the mean (blue
lines) of five individual simulation runs per parameter value, with random noise added to
perturb away from any local extremes. (b) Quantification of bend, with parameters as above,
and variable inner-apical stiffness multiplier. (c) Quantification of bend, with parameters
as above, and variable apical adhesion multiplier.

in the model is that these epithelial cells are known to be highly apically-basally

polarised, and that these corner nodes therefore allow us to represent the underlying

biology (regardless of the mechanisms that generate such polarity). The obvious

choice for ‘corners’ are the left- and right-most apical and basal nodes. An additional

spring can then be added between the two apical corners, between the two basal

corners, and between each of the two left and right corners, creating a rectangle of

additional springs on top of the forces already calculated for the membrane stiffness

of each cell. A schematic of this addition can be seen in Figure 5.12b.

This support-force between each pair of corner nodes is modelled as a Hookean

spring,

Fs(r) = sss κi(r − ls), (5.6)

130



where r is the distance between the two corners, ls is the rest length, κi is as in

Equation (5.5), and sss is the variable multiplier modulating the quantity of support.

What is an appropriate rest length? Because the number of nodes tagged in each

region may change between any two timesteps, choosing an absolute distance is not an

option. Instead of a fixed value, there are two obvious distance measurements between

two corner nodes: the straight-line distance between the two points in space, and the

piecewise-linear distance along the IB between each corner. Setting the rest length

to the straight-line distance would result in zero force as the spring would always be

(by construction) under no tension. Setting the rest length to the piecewise-linear

distance would bias the boundary toward being completely straight. Thus, taking a

value for the rest length between these two distances gives a variable scale between no

stiffening and complete co-linearity of nodes. This happens in a manner independent

of the precise number of nodes tagged in the specific regions.

In total, this additional support adds an additional mechanical inhomogeneity into

the system that, for a single cell in isolation, results in a non-round equilibrium shape

and, in the palisade monolayer, protects the columnar polarity observed in epithelia.

Figure 5.12c characterises the resistance to buckling introduced by the additional

tensile elements. To determine whether buckling is present in a given simulation, we

take the average ESF of the two outer boundaries in region B as a measure of their

aspect ratio. The greater the buckling, the closer this ESF will be to 1 (perfectly

round), whereas the starting ESF of all cells in the palisade is roughly 2 (rectangular;

twice as tall as wide). As can be seen, with no additional support the ESF remains

well below 2, but quickly recovers as sss increases away from 0. Based on this result,

we choose the value 0.06 as the default value of sss, ensuring cells remain well away

from the buckling regime in further simulations.

Figure 5.12a shows a representative simulation, with apical adhesion multiplier

equal to 3.0, and inner apical stiffness equal to 0.2. There is a clear bend in the basal

lamina, and examples of hooked cells directed towards the centre of the invagination.

Importantly, no buckling is observed. The extent to which stiffness reduction and

increased adhesion influence the bend and skew is characterised in Figures 5.13a

to 5.13d.

131



(a)

(b)

0.000 0.002 0.004 0.006

Support spring strength

1.0

1.5

2.0

E
S

F

(c)

Figure 5.12: Explicit cell polarity resists epithelial buckling. (a) Snapshot of
representative simulation with parameter values given in Table 5.1, with aam = 3.0 and
ias = 0.2. Protrusions exist, directed into the centre, with an observed bend no longer
hinged about two cells. (b) Schematic of the four tensile elements added to represent explicit
cell polarity. (c) Quantification of buckling with parameters as above, and a variable sss.
Blue region is one standard deviation either side of the mean (blue line) of five individual
simulation runs per parameter value, with random noise added to perturb away from any
local extremes.

132



0.2 0.4 0.6 0.8 1.0

Inner-apical stiffness multiplier

0.00

0.02

0.04

0.06

0.08

B
en

d

(a)

0.2 0.4 0.6 0.8 1.0

Inner-apical stiffness multiplier

0.00

0.01

0.02

0.03

S
k
ew

(b)

1.0 1.5 2.0 2.5 3.0

Apical-adhesion multiplier

0.00

0.02

0.04

0.06

0.08

B
en

d

(c)

1.0 1.5 2.0 2.5 3.0

Apical-adhesion multiplier

0.00

0.01

0.02

0.03

S
k
ew

(d)

Figure 5.13: Reduced inner apical stiffness with explicit polarity. (a)-(d) Blue
regions are one standard deviation either side of the mean (blue lines) of five individual
simulation runs per parameter value, with random noise added to perturb away from any
local extremes. A fixed support spring strength of sss = 0.006 is added to each simulation.
(a)-(b) Parameters as in Table 5.1 with aam = 3.0 and variable ias. (a) Quantification
of bend with ias. (b) Quantification of skew with ias. (c)-(d) Parameters as in Table 5.1
with ias = 0.2 and variable aam. (c) Quantification of bend with aam. (d) Quantification
of skew with aam.

133



Figures 5.13a and 5.13b demonstrate that reducing the inner apical corner stiffness

has a direct impact on the bend and skew of simulations in exactly the manner we

predict. The greater the reduction in stiffness, the greater both the bend and skew.

In biological terms, this implies that active cytoskeletal remodelling, in conjunction

with increased apical adhesion, probably plays a role in both invagination and apical

protrusions.

Conversely, for a fixed reduction in inner apical stiffness, increased apical adhesion

has a less intuitive impact. Figures 5.13c and 5.13d characterise this relationship:

epithelial bending is observed in the absence of increased apical adhesion. While an

interesting and novel mechanism of bending a palisade of cells, it is worth noting

that these simulations do not result in any ‘hook’ shapes. While, in the absence of

increased adhesion, there is still a high measure of skew, this is an artefact of very

slightly wedge-shaped cells which exhibit a skew without a hook shape. This is a

limitation of the measure that we have adopted for describing hook-shaped cells but,

as previously described, a simple visual observation can tell us whether hook shapes

exist, and in simulations with hook shapes the skewness measure acceptably quantifies

the protrusions for us. For high enough values of aam, both bend and skew measures

increase.

In summary, for a fixed value of apical adhesion, reducing the inner apical stiffness

increases both the quantity of epithelial bend and the size of apical protrusions. For a

fixed value of reduced apical stiffness, increasing the apical adhesion increases the size

of apical protrusions; however, increased apical adhesion is not required for simply

recapitulating bend in the epithelium.

There are still two drawbacks to these simulations. The main drawback is a lack of

any observed outward lean. As a key success criterion, this lack of recapitulation is a

problem, one that we return to later. The other drawback is that, under this regime,

the apical domains of hook-shaped cells can elongate excessively, and an example of

a large elongation can be seen in Figure 5.14. This is at odds with the observed

shape of hooked cells, examples of which can be seen in Figure 5.5b. In this case, the

combination of reduced inner apical stiffness and increased apical adhesion allows the

apical domains to elongate uncontrollably.

5.4.3 Cyclic cytoskeletal remodelling

To be more specific about the trend highlighted with the example in Figure 5.14,

some cells protrude a narrow hook which increases the apical–apical area of contact,

allowing further protrusion in a zip-like fashion. This can manifest as a small number

134



Figure 5.14: Overextended apical protrusions. Example of a simulation where one
specific apical protrusion has narrowly elongated. All parameters are as in Table 5.1.

of cells quickly developing substantial and narrow hooks while neighbouring cells

display no protrusive behaviour. To mitigate this deficiency in the model, we again

turn to existing biology for cues. A number of biological systems generally, and

epithelial morphogenesis in particular, are observed to exhibit oscillatory behaviour.

Several morphogenetic processes in Drosophila are dependent on actomyosin pulses

driven by a biochemical oscillator [12, 54]. A specific example of this is found

in Drosophila axis elongation, in which the action of actomyosin oscillations are

a key component driving cell intercalations [44]. Actomyosin pulses have been

incorporated into computational models that have been used to understand the roles

of T1 transitions and multicellular rosette formation and resolution on the rate of

convergent extension [89, 85]. A further instance of oscillation being demonstrated to

be important is mesoderm invagination, which can be rescued in mutants by applying

periodic localized mechanical forces generated via magnetic nanoparticles [108]. An

oscillatory ratchet has also been identified in the context of mesoderm invagination,

driven by the protein Rab35 [74]. This illustrates the necessity of oscillatory

contractions for some instances of the morphogenetic deformation.

Such oscillatory behaviour, we hypothesise, could be at play in this system, aiding

the stability of the observed protrusive hooks. To investigate this, we introduce a

cyclic component to the stiffness reduction. Formally, we suppose that each cell has

an internal clock ticking with some frequency f which is fixed across the population.

135



0.5 0.6 0.7 0.8 0.9 1.0

Cyclic on-proportion

0.030

0.035

0.040

S
k
ew

a
t

1
0
o

la
m

in
a

a
n
g
le

(a)

0.5 0.6 0.7 0.8 0.9 1.0

Cyclic on-proportion

20

30

40

T
im

e
to

1
0
o

la
m

in
a

a
n
g
le

(b)

−3 −2 −1 0 1 2

log2(f)

0.029

0.030

0.031

0.032

0.033

S
k
ew

a
t

1
0
o

la
m

in
a

a
n
g
le

(c)

−3 −2 −1 0 1 2

log2(f)

26

27

28

29

T
im

e
to

1
0
o

la
m

in
a

a
n
g
le

(d)

Figure 5.15: Cyclic stiffness reduction. (a)-(d) Blue regions are one standard deviation
either side of the mean (blue lines) of five individual simulation runs per parameter value,
with random noise added to perturb away from any local extremes. Parameters as in
Table 5.1 with aam = 3.0 and ias = 0.02. (a)-(b) cop varies as indicated, with f = 0.125.
(a) Quantification of skew at 10o lamina angle with cop. (b) Quantification of the time
to 10o lamina angle with cop. (c)-(d) f , varies as indicated, with cop = 0.75. (c)
Quantification of skew at 10o lamina angle with f . (d) Quantification of the time to 10o

lamina angle with f .

We do not suppose any phase coupling between neighbouring cells, so we assign each

cell a random phase φ in [0, 2π). The quantity of stiffness reduction in the inner

apical corner, at time t, is then given by

s = F (φ+ 2πft), (5.7)

such that Φi(t) = s when the node is tagged as inner apical, and Φi(t) = 1, otherwise,

where F is a periodic function with maximum value 1 and minimum value ias.

In order to allow variation in the proportion of each period for which the stiffness

reduction is on, we choose a simple square waveform for F , and the stiffness reduction

is active for some fixed proportion of each cycle (the ‘cyclic on-proportion’).

136



A meaningful summary of the original deficiency is simply the average skew; if a

larger quantity of cells develop protrusions, the average skew will be high, whereas

where a small number of protrusions elongate excessively, the average skew will remain

low. Thus, we test the efficacy of inducing cyclic stiffness reduction by running

simulations until a fixed lamina angle is achieved and recording the average skew

summary as in previous simulations. We pick an arbitrary, but readily achievable,

lamina angle of 10o and proceed with a sensitivity analysis summarised in Figure 5.15.

Figures 5.15a and 5.15b show how the proportion of time for which the stiffness

reduction is applied affects the skew and simulation time, respectively. Figure 5.15a

shows clearly that the lower the proportion of time for which the stiffness reduction

is applied, the higher the average skew of elements. When the stiffness reduction

is turned off for a specific simulated cell, any especially large protrusion will relax,

allowing the cell to round up while other cells have the ability to protrude further.

As expected, the lower the proportion of time the stiffness reduction is applied for,

the longer simulations take to achieve the specified 10o lamina angle. Figures 5.15c

and 5.15d show a similar analysis while varying f , the cyclic frequency. No trend is

evident over a wide range of values, indicating that the specific frequency of oscillation

does not readily impact our summary statistics.

This cyclic stiffness reduction has two interesting consequences. First, it gives

us a mechanism to directly influence the quantity of skew observed in the apical

protrusions, while preventing the small numbers of runaway protrusions extant in

previous simulations. Second, it provides a direct tie between the timescales of apical

protrusions and basal-lamina bend. While no such data are yet available, this cyclic

stiffness reduction provides the theoretical possibility of matching the timescales to

experimentally accessible numbers. We now return to the lack of any outward lean.

5.4.4 Additional diagonal tensile element

Having built a computational framework capable of exploring the key hypotheses

based on biological observations, we still have not met the success criterion of outward

lean. This leads us to hypothesise an as-yet unidentified mechanism that must

play a part in recapitulating the key biological observations. Taking inspiration

from the mechanism by which filopodia pull, tension is generated in the cortex of

cells [13]. Pulling filopodia have been integrated into cell-based models of convergent

extension [9], where the authors impose a point-to-point force caused by the supposed

coordinated action of actin filaments. Such filaments have been observed in other

contexts, such as in locomoting heart fibroblasts [28] in which filaments mechanically

137



link the front of the migrating cell to the back; this indicates the possibility that

cell-length mechanical connections could play a role in cell shape change.

This leads to the hypothesis that actin filaments may exist from the outer basal

region of the cell cortex, around the cell cortex, to the hook-shaped protrusion in the

inner apical domain. Should such filaments exist they would provide a clear basis for

outward lean, as one would imagine that a diagonal tensile element (Figure 5.16a), in

addition to the four existing supports representing explicit epithelial polarity, causing

simulated cells to parallelogram rather than lean. The biological basis for such a

tensile element is that, when the apical protrusion grows, any existing corner-to-corner

actin filaments would naturally experience greater tension. We therefore formulate

the following computational hypothesis: a tensile element is added from the outer

basal corner to a new ‘corner’ node in the inner apical region. The chosen node is

that which is furthest centrally along the short axis of the element. In other words, it

is the point on the cell cortex at the tip of the ‘hook’ shape. Formally, for each vector

v joining each two adjacent nodes in the IB, the selected node is that which minimises

|s · v|, where s is the short axis of the element. A schematic of this process is shown

in Figure 5.16b. We choose the rest length for this tensile element to be the ‘regular’

corner-to-corner distance so that, in the absence of an apical hook, the additional

element is at mechanical equilibrium. A full schematic of the additional support is

shown in Figure 5.16c, which shows the four existing tensile elements representing

epithelial polarity, as well as the new element from the outer basal corner to the

newly defined corner within the inner apical domain.

Figure 5.17a shows a representative simulation that demonstrates all three success

criteria: a bend in the epithelium; hook-shaped cells protruding towards the centre;

and clear outward lean of cells. Most importantly, Figure 5.17d demonstrates a

dependence of the lean ratio on the additional diagonal spring strength. A clear trend

indicates that the lean ratio approaches zero (perfect outward lean), from near unity

(no outward lean), as the additional diagonal spring strength is increased. Also of

importance is that this relationship has little effect on the quantity of bend observed;

Figure 5.17b demonstrates little dependence on bend with additional diagonal spring

strength, indicating that our hypothesised mechanism for generating outward lean

does not substantially impede the quantity of invagination. On the other hand, the

skew is significantly reduced, as seen in Figure 5.17c. This is perhaps not surprising,

as the additional diagonal tensile element, while allowing the cells to parallelogram,

does directly inhibit the growth of apical protrusions. It is for this reason that an

extreme value of the inner-apical stiffness multiplier (0.02) was required to rescue

138



(a)

s

v

inner apical nodes

(b) (c)

Figure 5.16: Adding a diagonal support. (a) Diagram of diagonal support applied
directly between the outer basal corner and the inner apical corner nodes. (b) Definition
of the ‘beak corner’ node. (c) Diagram of diagonal support applied between the outer basal
corner and the beak corner.

significant protrusions in this context, and that therefore significant skew is observed

in simulations with reduced diagonal spring strength.

5.5 Discussion and outlook

In this chapter we have developed an IB model of a bending epithelium

with application to placode morphogenesis. Analysing this model, we have

successfully recapitulated three key biological observations made by our experimental

collaborators and, in doing so, have generated two testable hypotheses: the presence

of cyclic behaviour in the formation of apical protrusions, and the presence of a

diagonal tensile element generating additional rigidity in the cell cortex to prevent

inward lean.

5.5.1 Summary of model progression

The first hypothesis tested was pure differential adhesion. This failed because

the hypothesis did not introduce heterogeneity, and ultimately recapitulated none

of the required features. Adding stiffness reduction in the inner apical domain

was the first attempt to add heterogeneity, and had partial success. These

simulations demonstrated a bend in the lamina, but in all cases this was attributed

139



(a)

0.0 0.1 0.2 0.3 0.4 0.5

Diagonal spring fraction

0.000

0.025

0.050

0.075

0.100

B
en

d

(b)

0.0 0.1 0.2 0.3 0.4 0.5

Diagonal spring fraction

0.00

0.02

0.04

S
k
ew

(c)

0.0 0.1 0.2 0.3 0.4 0.5

Diagonal spring fraction

0.00

0.25

0.50

0.75

1.00

L
ea

n
ra

ti
o

(d)

Figure 5.17: Additional diagonal tensile element. (a) Snapshot of representative
simulation. Protrusions exist, directed into the centre, with an observed bend, and an
outward lean. (b)-(d) Blue regions are one standard deviation either side of the mean (blue
lines) of five individual simulation runs per parameter value, with random noise added
to perturb away from any local extremes. Parameters differ from those in Table 5.1 as
follow: ias = 0.02, aam = 3.0, cop = 0.8, and variable diagonal spring fraction d. (b)
Quantification of bend with d. (c) Quantification of skew with d. (d) Quantification of lean
ratio with d.

overwhelmingly to a buckling of the left- and right-most cells in the central region.

In addition to the bend, hook shapes were observed in a number of cells.

140



Element Description of simulations when element is removed

Diagonal spring

Support springs

Reduces or removes apical protrusions

Loss of vertical telescoping, but can still recapitulate apical protrusions 
and lamina bend

Loss of cell ‘polarity’; in particular, a tendency for any bend to ‘hinge’ 
about two cells in the central region which round up completely

Cyclic nature of reduced 
inner apical stiffness

Protrusions are no longer stable; they grow uncontrollably on a 
timescale incompatible with any observed bend

Reduced inner apical 
stiffness

Protrusions become smaller and, when occur, are symmetric left/right, 
not oriented towards a ‘centre’

Increased apical domain 
adhesion

Table 5.2: Summary of model elements. The left-hand column lists the main model
elements that have been found necessary to recapitulate vertical telescoping. The right-
hand column briefly summarises model predictions with successive removal of individual
elements.

These simulations demonstrate that buckling is a limitation of the model, as

buckling (with basal bulging) is not observed biologically. To combat the buckling,

we added an explicit representation of apical–basal cell polarity: stiffening springs

along the lateral, basal and apical domains (between each of four ‘corners’ calculated

during node region-tagging). This reinforcement prevented the buckling and allowed

simulations to display substantial bend in the basal lamina along with hook-shaped

cells. Some of the hook shapes, however, become unstable and quickly extrude too far,

leading to model break-down. In order to stabilise the protrusions, we hypothesise a

mechanism of cyclic stiffness reduction: part of the time the membrane has reduced

stiffness during which the protrusions are drawn out and locked by apical–apical

adhesion, and for a period thereafter the stiffness reduction is turned off, allowing the

cell to regain shape and hoist itself up over its neighbour. This allows protrusions

to grow more uniformly and allows them to stabilise, increasing the average skew

of simulated cells. Finally, we make a second specific hypothesis: a diagonal tensile

element, linked to the apical protrusions, that allows cells to lean outwards rather than

remaining perpendicular to the basal lamina. Table 5.2 summarises the key findings

of this simulation study. These hypotheses were formulated based on our simulation

study. A natural next step is to test them experimentally, and Professor Green aims

to use ultra-resolution microscopy to look for telltale signs of actin filaments running

diagonally around the ‘penguin’ cells.

141



5.5.2 Limitations

While we have made progress in addressing the unanswered mechanical questions in

this biological system, we have also learned about, and wish to elaborate upon, the

limitations of using the IB framework in this context. While we did not attempt to

use other potentially suitable frameworks (such as the SEM or many-vertex model),

we believe these limitations to be inherent to all such models that rely on the same

fundamental concepts.

The largest problem is that of representing extreme cell shapes. In this context,

we are referring in particular to the hook-like protrusions inherent in this biological

system, but in general any shapes that are highly non-convex. Fundamentally, any

modelling framework that considers cells as being unions of points in space interacting

by means of some potential function or force relation will prefer ‘uniform’ shapes such

as convex balls. Single cells in isolation will, in all discussed modelling frameworks,

take on a circular shape (in two dimensions) or a spherical shape (in three dimensions),

unless acted upon by some specific extrinsic driver designed to disrupt this minimal

energy geometry. There is no mystery in this, but it is not at all clear how best

(in general) to address this difficulty. To some extent this issue was addressed in

Section 5.4.2 by the addition of the stiffening springs which, for an IB in isolation,

elongated its resting configuration. This, however, is a far cry from allowing cells

to robustly attain complex non-convex shapes, which has been a key challenge when

modelling the placode system, and this difficulty is a compelling hypothesis for the

lack of similar simulation studies in the literature.

In conclusion, this simulation study has pushed the boundaries of out-of-plane

modelling of biological processes exhibiting substantial out-of-equilibrium cell shapes.

We have made significant progress towards understanding the mechanical basis for

invagination in early placode morphogenesis, and we have made two specific biological

hypotheses about hitherto unobserved processes that we predict are likely to be acting

on the system.

142



Chapter 6

Discussion and outlook

Developmental biology seeks to understand the processes governing the remarkable

transition from the single cell to the fully functioning organism. These processes

are complex and highly interconnected, making their analysis difficult. Pursuing a

better understanding of such fundamental processes constitutes a meaningful step

towards understanding how and why development goes wrong, and how we can

potentially intervene with treatments and therapies. Computational modelling has

become indispensable in our pursuit of this understanding.

As our ability to probe the biology of developing organisms continues to

improve, ever more detailed descriptions of developmental systems at the cellular and

subcellular resolutions are becoming available. In tandem, the increase in computing

power now available enables the use of ever more detailed biophysical models of cell

populations, able to probe unanswered questions in development in ever greater detail.

A gap in the field. This thesis set out to address a specific gap in the field. While

several modelling frameworks that incorporate geometrically detailed descriptions of

cellular morphodynamics have previously been described (Section 1.2.3), several facts

are apparent.

• To date, other than that presented in this thesis, no open source computational

implementations exist of any such geometrically detailed cell-based modelling

frameworks that adhere to basic best practices of software engineering, a

minimal threshold that must be met to have confidence in any results generated

by them.

• To date, very few studies have used such geometrically detailed frameworks for

anything other than toy problems, with only two notable examples: those of

143



Tamulonis and colleagues [162], and Sandersius and Newman [143].

• While many large software packages exist in general for cell-based modelling

(Section 1.3), only Chaste emphasises software quality, testing and

sustainability as a main aim.

• Of the software packages implementing cell-based models, only Chaste

implements multiple paradigms in a unified framework; this is key to ensuring

that the appropriate, rather than simply the available, tool is used for

computational modelling.

Implementation of the IBM. The first step towards filling this gap was to

implement and carefully analyse one such geometrically detailed cell-based modelling

framework, the IBM. This undertaking has provided a comprehensive account of the

model, a method of solution, the computational implementation and an analysis of

parameter scaling, giving the firm grounding necessary to utilise it and to accurately

compare it to other models. This implementation is detailed in the SIAM Journal on

Scientific Computing [27] ensuring that, for the first time, this comprehensive account

of the model, together with a careful and tested reference implementation, has been

made available to the community.

While this implementation represents a useful contribution to the field, the

following future work will add further utility. First, the implementation of the IBM

in Chaste relies on the library fftw1 and, due to licensing restrictions, the current

implementation cannot be integrated into the ‘master’ branch of Chaste. Work to

rectify this is ongoing and, when complete, will ensure that the IB implementation is

maintained and sustained as long as Chaste itself is, ensuing the utility of the code well

into the future. Second, several limitations exist in the current IB implementation,

and future releases of the code would benefit from enhancements, including these

specific changes:

• allowing arbitrarily shaped domains (currently all domains are square, for

reasons of convenience with the fluid solver);

• allowing parameters to have dimensionality;

• allowing non-zero net forces (currently the sum of forces over the domain must

be zero);

1http://www.fftw.org/

144

http://www.fftw.org/


• implementing the IBM in three dimensions (a longer-term goal, well outside the

scope of this thesis).

Careful regard to software best practices. As argued strongly, and backed

by empirical research (Chapter 3), the quality and availability of software tools

used for academic research is generally low. This leads to low confidence in the

results generated by software tools, but also in wasted time reinventing the wheel

and checking the work of others. The academic publishing industry, in the past,

has not often peer-reviewed software tools, and as a result these have avoided the

levels of scrutiny that are applied, for instance, to experimental protocols. The now

near-ubiquity of software tools in research is necessitating a change in approach, and

journals such as the Journal of Open Source Software2 and SoftwareX 3 offer an avenue

for academic software tools to be formally assessed for quality and usability.

I have developed and refined these qualities in Chaste, a tool that takes software

quality and best practises seriously with an aim of long-term sustainability. A

number of contributions I have made to Chaste are detailed in Chapter 3, and

these contributions underpin a forthcoming submission to the Journal of Open Source

Software, on which I will be the first author. There is no shortage of future work in

this area as maintaining and improving Chaste, as well as promoting software best

practises in academia, are continuous undertakings.

Understanding where the IBM fits in to our toolkit of computational

models. Chaste allows many computational modelling paradigms to coexist in a

consistent framework. It is for this reason that Osborne and colleagues [118] were

able to compare a number of different frameworks on a set of benchmark problems,

elucidating the strengths and weaknesses of the different frameworks. These kinds

of comparison studies are vital as they inform the selection of appropriate tools

for probing specific questions. The study by Osborne and colleagues opens the

door for other implementations of modelling frameworks (Section 1.3) to benchmark

themselves on certain model problems. Testing multiple frameworks against a set of

model problems further aids in ensuring implementations are robust and correct, and

that results can be relied upon.

No such work, prior to this thesis, had been undertaken for any of the more

geometrically detailed cell-based modelling frameworks. This lack of comparison

2https://joss.theoj.org/
3https://www.journals.elsevier.com/softwarex

145

https://joss.theoj.org/
https://www.journals.elsevier.com/softwarex


makes it difficult to be certain of the scenarios under which, say, the IBM is an

appropriate computational tool. Chapter 4 takes a stride towards remedying this.

By carefully comparing the IBM to the VM, and testing the frameworks side-by-side

on the model problem of cell sorting, two avenues have been advanced.

First, fundamental concepts including the determination of cell neighbours and

the addition of random noise, had to be implemented in the IB framework. In

particular, while implementing a suitable framework for adding random noise to

IBM simulations, it became apparent that the solution had implications for every

other off-lattice cell-based modelling framework. This synergy is not just pleasing

but constitutes a tangible improvement to cell-based models in a wider sense than

just the IBM for which it was originally designed. Second, our understanding of the

behaviour of the IBM is significantly enhanced, and the outcomes of the cell sorting

study shed light on the scenarios under which the IBM is a suitable computational

framework for cell-based modelling.

While a substantial and useful start, further work could add additional value

to that presented in Chapter 4. Applying the IBM to additional model problems

presented by Osborne and colleagues, while out of the scope of this thesis, would lead

to further insight into its behaviour and suitability for particular circumstances. In

addition, further investigation into the GRF force is warranted. While the current

work introduces the necessary spatial correlations, and previous work matches the

temporal dynamics to those of a purely diffusive process, a more complete method of

adding random noise to simulations ought to include temporal evolution of the GRFs

on specified timescales. In addition, finding a more computationally efficient manner

in which to calculate or approximate such fields would greatly increase their utility,

perhaps allowing their use directly on off-lattice cell populations rather than relying

on interpolation on uniform grids.

Gaining insight into a novel question in developmental biology. Finally,

while implementing and carefully analysing a computational framework is useful, if

the framework cannot make a meaningful contribution to our understanding of biology

it will have been a fairly dry exercise. The simulation studies presented in Chapter 5

demonstrate the utility of the IBM in answering a real and relevant question in

developmental biology that hinges on out-of-equilibrium cell morphodynamics. No

existing computational implementations of cell-based modelling frameworks would

have been suitable for this study.

That it has been used successfully to aid our understanding of a novel

146



morphogenetic process, in direct collaboration with the experimental biologists

working on the problem, demonstrates the IBM and our implementation as a useful

tool for the scientific enquiry into epithelial dynamics. It is clear that the IBM

has the capability to tackle a whole class of problems that less geometrically detailed

frameworks cannot, and has the potential to elucidate many more biological processes

in the future.

Future research directions. To conclude this thesis, I will outline key areas for

future work.

1. Implement reference software tools for additional cell-based modelling

frameworks that incorporate increased geometric detail, including the MVM

and the SEM. This will further expand the range of tools that can be utilised for

cell-based modelling, enabling even wider applicability to biological problems.

2. Conduct more extensive and thorough comparisons between these more

geometrically detailed cell-based models and existing models, by applying each

to the benchmark problems proposed by Osborne and colleagues. This will

aid in model selection, ensuring the most appropriate tool for given biological

scenarios can be chosen.

3. Further investigation into the tissue viscoelasticity properties of the IBM and

related models should be undertaken. Having a better understanding of the

parameter regimes in which certain viscoelasticity properties emerge would add

much-needed specificity to model choice given particular biological scenarios to

model.

4. The GRF force should be refined to include appropriate temporal correlation,

and further work on reducing the runtime cost associated with it would

substantially increase its applicability and mainstream utility in the field.

5. Methods to initialise realistic geometries from microscopy data and the ability to

add quantitative mechanical information based on biological information should

be developed. Such methods would, for instance, replace the Voronoi mesh

generation technique in favour of even more realistic initial conditions, and

allow mechanical parameters to be selected based on actual protein quantities.

6. Methods should be developed to perform inference and model calibration

against quantitative datasets and experiments. Incorporating inference

147



techniques such as approximate Bayesian computation to infer parameter values

from simulations based on experimental data would be a substantial asset when

undertaking quantitative computational simulation.

148



Appendix A

Obtaining the source code

A.1 Chapter 2

The IBM branch of Chaste is available from the publicly available Git repository. To

get the latest version, run:

1 git clone https :// chaste.cs.ox.ac.uk/git/chaste.git Chaste

2 git checkout fcooper/immersed_boundary

Simulations associated with Chapter 2 take the form of a ‘user project’ associated

with the IBM branch of the Chaste project, entitled IbNumericsPaper. From the

Chaste source directory, run:

1 cd projects

2 git clone https :// github.com/fcooper8472/IbNumericsPaper.git

The project can be compiled by following the guide available here:

https://chaste.cs.ox.ac.uk/trac/wiki/ChasteGuides/CmakeBuildGuide

A.2 Chapter 3

Work in this chapter related to Chaste can be found in the IBM branch of Chaste;

see Appendix A.1. Other simulations can be found in the VertexIbComp user project;

see Appendix A.3.

A.3 Chapter 4

Advancements to the IBM and VM models associated with Chapter 4 are available in

the IBM branch of the Chaste project. Simulations associated with Chapter 4 take

the form of a ‘user project’ associated with the IBM branch of the Chaste project,

entitled VertexIbComp. From the Chaste source directory, run:

149

https://chaste.cs.ox.ac.uk/trac/wiki/ChasteGuides/CmakeBuildGuide


1 cd projects

2 git clone https :// github.com/fcooper8472/VertexIbComp.git

The project can be compiled by following the guide available here:

https://chaste.cs.ox.ac.uk/trac/wiki/ChasteGuides/CmakeBuildGuide

A.4 Chapter 5

Advancements to the IBM associated with Chapter 5 are available in the IBM

branch of the Chaste project. Simulations associated with Chapter 5 take the form

of a ‘user project’ associated with the IBM branch of the Chaste project, entitled

ToothFormation. From the Chaste source directory, run:

1 cd projects

2 git clone https :// github.com/fcooper8472/ToothFormation.git

The project can be compiled by following the guide available here:

https://chaste.cs.ox.ac.uk/trac/wiki/ChasteGuides/CmakeBuildGuide

150

https://chaste.cs.ox.ac.uk/trac/wiki/ChasteGuides/CmakeBuildGuide
https://chaste.cs.ox.ac.uk/trac/wiki/ChasteGuides/CmakeBuildGuide


Appendix B

Technical details

B.1 Implementation details of skewness algorithm (Section 5.3.1)

The difficulty implementing the skewness algorithm for a general polygon centres

around efficiently calculating the length of the intersection between a line and a planar

shape. By rotating and repositioning the shape, we consider the mass distribution

along the axis x̂ and we consider the intersection of vertical lines with the polygon.

For a given point Γi we can determine other intersections between the vertical line

through Γi and the polygon by looking at the change in sign of (Γj−Γi) ·x, for j 6= i

as, if two consecutive points in the discretisation of the polygon lie either side of the

vertical line, the cosine of the angle between the rays will also change sign.

Determining the number of intersections is carried out as above, and intersection

points can be determined precisely by a linear interpolation between two neighbouring

points with the aforementioned sign-changing property. Careful accounting, however,

is still necessary to determine the length of the intersection, as the sign pattern

becomes complicated if any of the dot products are zero (up to tolerance).

The computational expense of the algorithm described here is dominated by a

comparison, for each point in the polygon, with every other point in the polygon, and

is therefore of O (N2) for a polygon discretised by N points.

B.2 Implementation details of IB region tagging (Section 5.3.2)

There are two particularly tricky aspects to this algorithm. One is efficiently

determining which nodes are within a given interaction distance, and the other is

adequately determining the free surface. The first problem is solved, as described

in Section 2.5.3, by use of the spatial decomposition algorithm. The interaction

151



distance, however, for cell–cell interactions turns out to often be smaller than the

distance required to reliably identify the ‘free surface’ in the apical domain. Several

nodes that are clearly in the lateral domain (as judged by eye) may be too far apart

from other boundaries to participate in a neighbour interaction, and this would cause

the algorithm above to identify the apical lamina as being far too extensive. For this

reason an additional ‘box collection’ (computational implementation of the spatial

decomposition algorithm defined in, for various reasons, the inopportunely named

class ObsoleteBoxCollection) is employed, with an interaction distance independent

of that used to calculate neighbour interactions.

B.3 Mathematical details of IB remeshing (Section 5.3.3)

To provide a more quantitative understanding of why remeshing is necessary for

allowing mechanical inhomogeneity, consider N bearings arranged as vertices of a

regular N -gon, each connected to its two neighbours by identical linear springs.

Further suppose these bearings are constrained to remain in a fixed circular groove

(analogous to the volume-conservation property of the IBM). Given a fixed rest length

r, the total potential energy E stored in this configuration of springs is given by

E =
∑
N

1

2
κ(l − r)2 =

N

2
κ(l − r)2, (B.1)

where κ is the spring constant and l is the length of each side of the regular N -gon.

It is clear to see that this is the configuration that minimises E.

Next, consider that a number, R, of the springs in the system change in stiffness

by a factor α, having new spring constant ακ, and the system is allowed to evolve to

equilibrium. The new configuration holds the following potential energy

Enew =
N −R

2
κ(l1 − r)2 +

R

2
ακ(l2 − r)2, (B.2)

where l1 and l2 are now the lengths of springs in the N − R original, and R altered,

springs, respectively, such that

(N −R)l1 +Rl2 = Nl. (B.3)

To find the preferred values of l1 and l2, we can find the minima of Enew with respect

to l1 which, after some algebra, yields the relationship

l1 − r = α(l2 − r). (B.4)

152



We thus see that if α < 1, the extension in the unaltered springs is smaller than

the extension in the altered springs by precisely the factor with which we altered the

spring constant, and thus that the altered springs are longer (assuming all springs

are under tension), corresponding to an increase in the distance between the bearings

connected by the altered springs. This is undesirable, as the IB functions best in the

presence of evenly spaced nodes.

The purpose of remeshing is to evenly redistribute nodes around the boundary.

This keeps the boundary out of mechanical equilibrium but with the important

property that any node connected to springs with reduced spring constant will be

a commensurate amount easier to move, thus providing the required reduction in

stiffness for the given region. Put more rigorously, to move a single node in the

reduced stiffness region by a particular displacement requires the input of precisely

α-times as much energy as if the stiffness were not reduced. This matches what we

would intuitively desire from a region of reduced stiffness.

It is worth noting at this point the possibility of avoiding remeshing by simply

selecting an appropriately altered rest length between nodes so as to keep the bearings

evenly spaced. At equilibrium this would imply a force balance either side of a bearing

on the boundary of the region with altered mechanical properties. The consequence

of this is that the springs with altered spring constant ακ would require an altered

rest length r′ of

r′ =
l(α− 1) + r

α
, (B.5)

where l is the length of each spring and r is the unaltered rest length. This has several

problematic implications:

• r′ has an explicit dependence on l and thus is no longer independent of the

resolution at which we represent the IBs;

• for small enough values of α, the altered rest length is negative; an unphysical

(if mathematically sound) proposition;

• while the spring constant has been altered by a known factor, as the rest length

has also changed there is a non-obvious total change in the ease with which

a node can be moved. More formally, moving a node in the reduced stiffness

region by a particular displacement no longer requires the input of precisely

α-times as much energy, leading to a much less intuitive reduction in stiffness

for that region.

153



The only reasonable solution is therefore to keep the rest length fixed and

to implement remeshing. While the linear interpolation algorithm presented in

Section 5.3.3 is straightforward to implement, care has been taken to ensure the

method EvenlySpaceAlongPath() works in full generality with both open and closed

paths, which is required when remeshing the basal lamina (an open path with periodic

boundary conditions), rather than an IB representing a cell (a closed path).

A more robust method could employ the Kochanek–Bartels interpolating

spline [79], which is cubic Hermite spline with parameters tension, bias and continuity

altering the resulting shape, which would give greater precision over a simple linear

interpolation. The Kochanek–Bartels spline is implemented in VTK, a dependency

of Chaste, and could fairly easily be integrated; however, the linear interpolation has

proved sufficient for the current work.

154



References

[1] Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, & Walter P. Molecular biology
of the cell. Garland Science, 6th edition, 2015. ISBN 0815344643.

[2] Almet A A, Hughes B D, Landman K A, Näthke I S, & Osborne J M. A multicellular model
of intestinal crypt buckling and fission. Bull. Math. Biol., 80(2):335–359, 2018.

[3] Atwell K, Qin Z, Gavaghan D, Kugler H, Hubbard E J A, & Osborne J M. Mechano-logical
model of C. elegans germ line suggests feedback on the cell cycle. Development, 142(22):3902–
11, 2015.

[4] Awile O, Büyükkeçeci F, Reboux S, & Sbalzarini I F. Fast neighbor lists for adaptive-resolution
particle simulations. Comput. Phys. Commun., 183(5):1073–1081, 2012.

[5] Awio Web Services. W3Counter: global web stats (https://www.w3counter.com/
globalstats.php).

[6] Bagchi P. Mesoscale simulation of blood flow in small vessels. Biophys. J., 92(6):1858–1877,
2007.

[7] Basan M, Joanny J F, Prost J, & Risler T. Undulation instability of epithelial tissues. Phys.
Rev. Lett., 106(15):158101, 2011.

[8] Belmonte J M, Clendenon S G, Oliveira G M, Swat M H, Greene E V, Jeyaraman S, Glazier
J A, & Bacallao R L. Virtual-tissue computer simulations define the roles of cell adhesion and
proliferation in the onset of kidney cystic disease. Mol. Biol. Cell, 27(22):3673–3685, 2016.

[9] Belmonte J M, Swat M H, & Glazier J A. Filopodial-tension model of convergent-extension
of tissues. PLOS Comput. Biol., 12(6):e1004952, 2016.

[10] Bertet C, Sulak L, & Lecuit T. Myosin-dependent junction remodelling controls planar cell
intercalation and axis elongation. Nature, 429:667–671, 2004.

[11] Biggs L C & Mikkola M L. Early inductive events in ectodermal appendage morphogenesis.
Semin. Cell Dev. Biol., 25-26:11–21, 2014.

[12] Blanchard G B, Étienne J, & Gorfinkiel N. From pulsatile apicomedial contractility to effective
epithelial mechanics. Curr. Opin. Genet. Dev., 51:78–87, 2018.

[13] Bornschlögl T. How filopodia pull: What we know about the mechanics and dynamics of
filopodia. Cytoskeleton, 70(10):590–603, 2013.

[14] Bottino D. Modeling viscoelastic networks and cell deformation in the context of the immersed
boundary method. J. Comput. Phys., 147(1):86–113, 1998.

[15] Brady S M, Orlando D A, Lee J Y, Wang J Y, Koch J, Dinneny J R, Mace D, Ohler U,
Benfey P N, Helariutta Y, Nijsse B, Boekschoten M V, Hooiveld G, Beeckman T, Wagner D,
Ljung K, Fleck C, & Weijers D. A high-resolution root spatiotemporal map reveals dominant
expression patterns. Science, 318(5851):801–806, 2007.

[16] Brett A, Croucher M, Haines R, Hettrick S, Hetherington J, Stillwell M, & Wyatt C. Research
Software Engineers: State of the Nation Report 2017. Technical report, 2017.

155

https://www.w3counter.com/globalstats.php
https://www.w3counter.com/globalstats.php


[17] Bringley T T. Analysis of the immersed boundary method for Stokes flow. PhD thesis, New
York University, 2008.

[18] Brodland G W. The differential interfacial tension hypothesis (DITH): a comprehensive theory
for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng., 124(2):188, 2002.

[19] Brodland G W. Computational modeling of cell sorting, tissue engulfment, and related
phenomena: a review. Appl. Mech. Rev., 57(1):47, 2004.

[20] Butler L C, Blanchard G B, Kabla A J, Lawrence N J, Welchman D P, Mahadevan L, Adams
R J, & Sanson B. Cell shape changes indicate a role for extrinsic tensile forces in Drosophila
germ-band extension. Nat. Cell Biol., 11(7):859–64, 2009.

[21] Chorin A J. Numerical solution of the Navier-Stokes equations. Math. Comput., 22(104):745—
-762, 1968.

[22] Chorin A J. On the convergence of discrete approximations to the Navier-Stokes equations.
Math. Comput., 23(106):341—-353, 1969.

[23] Chu Y S, Dufour S, Thiery J P, Perez E, & Pincet F. Johnson-Kendall-Roberts theory applied
to living cells. Phys. Rev. Lett., 94(2):028102, 2005.

[24] Chwang A T & Wu T Y T. Hydromechanics of low-Reynolds-number flow. Part 2. Singularity
method for Stokes flows. J. Fluid Mech., 67(04):787, 1975.

[25] Cooke J & Zeeman E. A clock and wavefront model for control of the number of repeated
structures during animal morphogenesis. J. Theor. Biol., 58(2):455–476, 1976.

[26] Cooper F, Robinson M, Hettrick S, Gilchrist A, & Gavaghan D. Oxford research software
engineering: survey results (http://www.cs.ox.ac.uk/projects/RSE/rse_post/survey_
results/), 2018.

[27] Cooper F R, Baker R E, & Fletcher A G. Numerical analysis of the immersed boundary
method for cell-based simulation. SIAM J. Sci. Comput., 39(5):B943–B967, 2017.

[28] Cramer L P, Siebert M, & Mitchison T J. Identification of novel graded polarity actin filament
bundles in locomoting heart fibroblasts: implications for the generation of motile force. J. Cell
Biol., 136(6):1287–305, 1997.

[29] Crampin E J, Gaffney E A, & Maini P K. Reaction and diffusion on growing domains:
scenarios for robust pattern formation. Bull. Math. Biol., 61(6):1093–1120, 1999.

[30] Curran S, Strandkvist C, Bathmann J, de Gennes M, Kabla A, Salbreux G, & Baum B. Myosin
II controls junction fluctuations to guide epithelial tissue ordering. Dev. Cell, 43(4):480–492.e6,
2017.

[31] Davidson L A. Epithelial machines that shape the embryo. Trends Cell Biol., 22(2):82–87,
2012.

[32] Davidson L A. No strings attached: new insights into epithelial morphogenesis. BMC Biol.,
10(1):105, 2012.

[33] Dias A S, de Almeida I, Belmonte J M, Glazier J A, & Stern C D. Somites without a clock.
Science, 343(6172):791–795, 2014.

[34] Dillon R & Othmer H G. A mathematical model for outgrowth and spatial patterning of the
vertebrate limb bud. J. Theor. Biol., 197(3):295–330, 1999.

[35] Dillon R, Owen M, & Painter K. A single-cell-based model of multicellular growth using the
immersed boundary method. AMS Contemp Math, 466:1–15, 2008.

[36] Draelants D, Avitabile D, & Vanroose W. Localized auxin peaks in concentration-based
transport models of the shoot apical meristem. J. R. Soc. Interface, 12(106):20141407, 2015.

156

http://www.cs.ox.ac.uk/projects/RSE/rse_post/survey_results/
http://www.cs.ox.ac.uk/projects/RSE/rse_post/survey_results/


[37] Drasdo D, Hoehme S, & Hengstler J G. How predictive quantitative modelling of tissue
organisation can inform liver disease pathogenesis. J. Hepatol., 61(4):951–956, 2014.

[38] Dunn S J, Näthke I S, & Osborne J M. Computational models reveal a passive mechanism
for cell migration in the crypt. PLoS ONE, 8(11):e80516, 2013.

[39] Edelsbrunner H, Kirkpatrick D, & Seidel R. On the shape of a set of points in the plane.
IEEE Trans. Inf. Theory, 29(4):551–559, 1983.

[40] EPSRC. Software as an infrastructure. Technical report, 2012.

[41] Exner H E & Hougardy H P. Quantitative image analysis of microstructures: a practical guide
to techniques, instrumentation and assessment of materials. DGM Informationsgesellschaft,
1988.

[42] Farhadifar R, Röper J C, Aigouy B, Eaton S, & Jülicher F. The influence of cell mechanics,
cell-cell interactions, and proliferation on epithelial packing. Curr. Biol., 17(24):2095–104,
2007.

[43] Fedosov D A, Caswell B, & Karniadakis G E. A multiscale red blood cell model with accurate
mechanics, rheology, and dynamics. Biophys. J., 98(10):2215–2225, 2010.

[44] Fernandez-Gonzalez R & Zallen J A. Oscillatory behaviors and hierarchical assembly of
contractile structures in intercalating cells. Phys. Biol., 8(4):045005, 2011.

[45] Fletcher A G, Cooper F R, & Baker R E. Mechanocellular models of epithelial morphogenesis.
Philos. Trans. R. Soc. B, 372(1720), 2017.

[46] Fletcher A G, Osborne J M, Maini P K, & Gavaghan D J. Implementing vertex dynamics
models of cell populations in biology within a consistent computational framework. Prog.
Biophys. Mol. Biol., 113(2):299–326, 2013.

[47] Fletcher A G, Osterfield M, Baker R E, & Shvartsman S Y. Vertex models of epithelial
morphogenesis. Biophys. J., 106(11):2291–2304, 2014.

[48] Friel J J, Grande J C, & Hetzner D. Practical guide to image analysis. ASM International,
Materials Park, Ohio, 2000. ISBN 9780871706881.

[49] Gao X, Arpin C, Marvel J, Prokopiou S A, Gandrillon O, & Crauste F. IL-2 sensitivity
and exogenous IL-2 concentration gradient tune the productive contact duration of CD8+ T
cell-APC: a multiscale modeling study. BMC Syst. Biol., 10(1):77, 2016.

[50] Gere J M. Mechanics of materials. PWS-Kent Pub. Co, 1 edition, 1990. ISBN 0534921744.

[51] Ghaffarizadeh A, Heiland R, Friedman S H, Mumenthaler S M, & Macklin P. PhysiCell: An
open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput. Biol.,
14(2):e1005991, 2018.

[52] Gibson M C, Patel A B, Nagpal R, & Perrimon N. The emergence of geometric order in
proliferating metazoan epithelia. Nature, 442(7106):1038–1041, 2006.

[53] Givelberg E & Bunn J. A comprehensive three-dimensional model of the cochlea. J. Comput.
Phys., 191(2):377–391, 2003.

[54] Gorfinkiel N. From actomyosin oscillations to tissue-level deformations. Dev. Dyn., 245(3):268–
275, 2016.

[55] Graner F & Glazier J A. Simulation of biological cell sorting using a two-dimensional extended
Potts model. Phys. Rev. Lett., 69(13):2013–2016, 1992.

[56] Green J. Personal communication.

[57] Griffith B E. Immersed boundary model of aortic heart valve dynamics with physiological
driving and loading conditions. Int. J. Numer. Method Biomed. Eng., 28(3):317—-345, 2011.

157



[58] Griffith B E. On the volume conservation of the immersed boundary method. Commun.
Comput. Phys., 12(02):401–432, 2012.

[59] Griffith B E & Luo X. Hybrid finite difference/finite element immersed boundary method.
arXiv:1612.05916v2, pages 1–32, 2017.

[60] Grogan J A, Connor A J, Markelc B, Muschel R J, Maini P K, Byrne H M, & Pitt-Francis
J M. Microvessel Chaste: an open library for spatial modeling of vascularized tissues. Biophys.
J., 112(9):1767–1772, 2017.

[61] Guttman A. R-trees: a dynamic index structure for spatial searching. ACM, 1984.

[62] Harding M J, McGraw H F, & Nechiporuk A. The roles and regulation of multicellular rosette
structures during morphogenesis. Development, 141(13):2549–2558, 2014.

[63] Harris A K. Is cell sorting caused by differences in the work of intercellular adhesion? A
critique of the Steinberg hypothesis. J. Theor. Biol., 61(2):267–285, 1976.

[64] Harvey D G, Fletcher A G, Osborne J M, & Pitt-Francis J. A parallel implementation of
an off-lattice individual-based model of multicellular populations. Comput. Phys. Commun.,
192:130–137, 2015.

[65] Herndon T, Ash M, & Pollin R. Does high public debt consistently stifle economic growth?
A critique of Reinhart and Rogoff. Cambridge J. Econ., 38(2):257–279, 2014.

[66] Hirashima T, Iwasa Y, & Morishita Y. Dynamic modeling of branching morphogenesis of
ureteric bud in early kidney development. J. Theor. Biol., 259(1):58–66, 2009.

[67] Hockney R & Eastwood J. Computer simulation using particles. crc Press, 1988.

[68] Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M, Puppe V, Gebhardt
R, Zellmer S, Schwarz M, Bockamp E, Timmel T, Hengstler J G, & Drasdo D. Prediction and
validation of cell alignment along microvessels as order principle to restore tissue architecture
in liver regeneration. Proc. Natl. Acad. Sci. U. S. A., 107(23):10371–6, 2010.

[69] Hoehme S & Drasdo D. A cell-based simulation software for multi-cellular systems.
Bioinformatics, 26(20):2641–2, 2010.

[70] Höhme S, Hengstler J G, Brulport M, Schäfer M, Bauer A, Gebhardt R, & Drasdo D.
Mathematical modelling of liver regeneration after intoxication with CCl4. Chem. Biol.
Interact., 168(1):74–93, 2007.

[71] Hoover A P, Griffith B E, & Miller L A. Quantifying performance in the medusan
mechanospace with an actively swimming three-dimensional jellyfish model. J. Fluid Mech.,
813:1112–1155, 2017.

[72] Ishimoto Y & Morishita Y. Bubbly vertex dynamics: a dynamical and geometrical model for
epithelial tissues with curved cell shapes. Phys. Rev. E, 90(5):1–23, 2014.

[73] Jadhav S, Eggleton C D, & Konstantopoulos K. A 3-D computational model predicts that
cell deformation affects selectin-mediated leukocyte rolling. Biophys. J., 88(1):96–104, 2005.

[74] Jewett C E, Vanderleest T E, Miao H, Xie Y, Madhu R, Loerke D, & Blankenship J T. Planar
polarized Rab35 functions as an oscillatory ratchet during cell intercalation in the Drosophila
epithelium. Nat. Commun., 8(1):476, 2017.

[75] Kang S, Kahan S, McDermott J, Flann N, & Shmulevich I. Biocellion: accelerating computer
simulation of multicellular biological system models. Bioinformatics, 30(21):3101–3108, 2014.

[76] Kang S, Kahan S, & Momeni B. Simulating microbial community patterning using Biocellion.
pages 233–253. Humana Press, New York, NY, 2014.

[77] Keller R, Davidson L A, & Shook D R. How we are shaped: the biomechanics of gastrulation.
Differentiation, 71:171–205, 2003.

158



[78] Kiehart D P, Galbraith C G, Edwards K A, Rickoll W L, & Montague R A. Multiple
forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol.,
149(2):471–490, 2000.

[79] Kochanek D H U, Bartels R H, Kochanek D H U, & Bartels R H. Interpolating splines with
local tension, continuity, and bias control. In Proc. 11th Annu. Conf. Comput. Graph. Interact.
Tech. - SIGGRAPH ’84, volume 18, pages 33–41. ACM Press, New York, New York, USA,
1984. ISBN 0897911385.

[80] Köhn-Luque A, de Back W, Yamaguchi Y, Yoshimura K, Herrero M A, & Miura T. Dynamics
of VEGF matrix-retention in vascular network patterning. Phys. Biol., 10(6):066007, 2013.

[81] Köppen M, Fernández B G, Carvalho L, Jacinto A, & Heisenberg C P. Coordinated cell-shape
changes control epithelial movement in zebrafish and Drosophila. Development, 133:2671–2681,
2006.

[82] Krüger T, Varnik F, & Raabe D. Efficient and accurate simulations of deformable particles
immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element
method. Comput. Math. with Appl., 61(12):3485–3505, 2011.

[83] Kursawe J, Baker R E, & Fletcher A G. Impact of implementation choices on quantitative
predictions of cell-based computational models. J. Comput. Phys., 345:752–767, 2017.

[84] Kursawe J, Brodskiy P A, Zartman J J, Baker R E, & Fletcher A G. Capabilities and
limitations of tissue size control through passive mechanical forces. PLOS Comput. Biol.,
11(12):e1004679, 2015.

[85] Lan H, Wang Q, Fernandez-Gonzalez R, & Feng J J. A biomechanical model for
cell polarization and intercalation during Drosophila germband extension. Phys. Biol.,
12(5):056011, 2015.

[86] Le D V, White J, Peraire J, Lim K, & Khoo B. An implicit immersed boundary method for
three-dimensional fluid-membrane interactions. J. Comput. Phys., 228(22):8427—-8445, 2009.

[87] Lecuit T & Lenne P F. Cell surface mechanics and the control of cell shape, tissue patterns
and morphogenesis. Nat. Rev. Mol. Cell Biol., 8(8):633–44, 2007.

[88] LeVeque R J & Li Z. Immersed interface methods for Stokes flow with elastic boundaries or
surface tension. SIAM J. Sci. Comput., 18(3):709–735, 1997.

[89] Lim S, Fernandez-Gonzalez R, & Feng J J. Modeling cell intercalation during Drosophila
germband extension. Phys. Biol., 2018.

[90] Liu Z & Keller P. Emerging imaging and genomic tools for developmental systems biology.
Dev. Cell, 36(6):597–610, 2016.

[91] Lloyd S. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2):129–137, 1982.

[92] Lubarsky B & Krasnow M A. Tube morphogenesis: making and shaping biological tubes.
Cell, 112(1):19–28, 2003.

[93] Magno R, Grieneisen V A, & Marée A F. The biophysical nature of cells: potential cell
behaviours revealed by analytical and computational studies of cell surface mechanics. BMC
Biophys., 8(1):8, 2015.

[94] Mao Y, Tournier A L, Bates P A, Gale J E, Tapon N, & Thompson B J. Planar polarization
of the atypical myosin Dachs orients cell divisions in Drosophila. Genes Dev., 25(2):131–136,
2011.

[95] Mao Y, Tournier A L, Hoppe A, Kester L, Thompson B J, & Tapon N. Differential
proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO
J., 32(21):2790–2803, 2013.

159



[96] Marin-Riera M, Brun-Usan M, Zimm R, Välikangas T, & Salazar-Ciudad I. Computational
modeling of development by epithelia, mesenchyme and their interactions: a unified model.
Bioinformatics, 32(2), 2015.

[97] Marin-Riera M, Moustakas-Verho J, Savriama Y, Jernvall J, & Salazar-Ciudad I. Differential
tissue growth and cell adhesion alone drive early tooth morphogenesis: An ex vivo and in
silico study. PLOS Comput. Biol., 14(2):e1005981, 2018.

[98] Martin A C, Kaschube M, & Wieschaus E F. Pulsed contractions of an actin-myosin network
drive apical constriction. Nature, 457(7228):495–9, 2009.

[99] Matthews D. Papers in economics ‘not reproducible’ (https://www.timeshighereducation.
com/news/papers-in-economics-not-reproducible). Times High. Educ., 2015.

[100] Mellor N, Adibi M, El-Showk S, De Rybel B, King J, Mähönen A P, Weijers D, & Bishopp
A. Theoretical approaches to understanding root vascular patterning: a consensus between
recent models. J. Exp. Bot., 68(1):5–16, 2017.

[101] Merali Z. Computational science: error, why scientific programming does not compite. Nature,
467:775–777, 2010.

[102] Merks R M & Glazier J A. A cell-centered approach to developmental biology. Physica A,
352(1):113–130, 2005.

[103] Merks R M H, Guravage M, Inzé D, & Beemster G T S. VirtualLeaf: an open-source framework
for cell-based modeling of plant tissue growth and development. Plant Physiol., 155(2):656–66,
2011.

[104] Meyer K, Ostrenko O, Bourantas G, Morales-Navarrete H, Porat-Shliom N, Segovia-Miranda
F, Nonaka H, Ghaemi A, Verbavatz J M, Brusch L, Sbalzarini I, Kalaidzidis Y, Weigert R, &
Zerial M. A predictive 3D multi-scale model of biliary fluid dynamics in the liver lobule. Cell
Syst., 4(3):277–290.e9, 2017.

[105] Meyers S. Effective modern C++ : 42 specific ways to improve your use of C++11 and C++14.
O’Reilly Media, 2014. ISBN 1491908432.

[106] Miller G. Scientific publishing. A scientist’s nightmare: software problem leads to five
retractions. Science (80-. )., 314(5807):1856–7, 2006.

[107] Mirams G R, Arthurs C J, Bernabeu M O, Bordas R, Cooper J, Corrias A, Davit Y, Dunn
S J, Fletcher A G, Harvey D G, Marsh M E, Osborne J M, Pathmanathan P, Pitt-Francis
J, Southern J, Zemzemi N, & Gavaghan D J. Chaste: an open source C++ library for
computational physiology and biology. PLoS Comput. Biol., 9(3):e1002970, 2013.

[108] Mitrossilis D, Röper J C, Le Roy D, Driquez B, Michel A, Ménager C, Shaw G, Le Denmat
S, Ranno L, Dumas-Bouchiat F, Dempsey N M, & Farge E. Mechanotransductive cascade
of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation. Nat.
Commun., 8:13883, 2017.

[109] Mittal R & Iaccarino G. Immersed boundary methods. Annu. Rev. Fluid Mech., 37(1):239–
261, 2005.

[110] Moler C. Matrix computation on distributed memory multiprocessors. Hypercube
Multiprocessors, 86:181–195, 1986.

[111] Morse P M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys.
Rev., 34(1):57–64, 1929.

[112] Nagai T & Honda H. A dynamic cell model for the formation of epithelial tissues. Philos.
Mag. Part B, 81(7):699–719, 2001.

[113] Newman T J. Modeling multicellular systems using subcellular elements. Math. Biosci. Eng.,
2(3):613–624, 2005.

160

https://www.timeshighereducation.com/news/papers-in-economics-not-reproducible
https://www.timeshighereducation.com/news/papers-in-economics-not-reproducible


[114] Nguyen H & Fauci L. Hydrodynamics of diatom chains and semiflexible fibres. J. R. Soc.
Interface, 11(96), 2014.

[115] Odell G, Oster G, Burnside B, & Alberch P. A mechanical model for epithelial morphogenesis.
J. Math. Biol., 9(3):291–295, 1980.

[116] Odell G M, Oster G, Alberch P, & Burnside B. The mechanical basis of morphogenesis. Dev.
Biol., 85(2):446–462, 1981.

[117] Osborne G. Mais Lecture - A New Economic Model (https://conservative-speeches.
sayit.mysociety.org/speech/601526), 2010.

[118] Osborne J M, Fletcher A G, Pitt-Francis J M, Maini P K, & Gavaghan D J. Comparing
individual-based approaches to modelling the self-organization of multicellular tissues. PLOS
Comput. Biol., 13(2):e1005387, 2017.

[119] Ozik J, Collier N, Wozniak J, Macal C, Cockrell C, Friedman S, Ghaffarizadeh A, Heiland R,
An G, & Macklin P. High-throughput cancer hypothesis testing with an integrated PhysiCell-
EMEWS workflow. bioRxiv, page 196709, 2018.

[120] Panousopoulou E & Green J B A. Invagination of ectodermal placodes is driven by
cell intercalation-mediated contraction of the suprabasal tissue canopy. PLOS Biol.,
14(3):e1002405, 2016.

[121] Pathmanathan P, Cooper J, Fletcher A, Mirams G, Murray P, Osborne J, Pitt-Francis J,
Walter A, & Chapman S J. A computational study of discrete mechanical tissue models.
Phys. Biol., 6(3):036001, 2009.

[122] Pearl E J, Li J, & Green J B A. Cellular systems for epithelial invagination. Philos. Trans.
R. Soc. Lond. B. Biol. Sci., 372(1720):20150526, 2017.

[123] Peskin C S. Flow patterns around heart valves: A numerical method. J. Comput. Phys.,
10(2):252–271, 1972.

[124] Peskin C S. The immersed boundary method. Acta Numer., 11:479–517, 2002.

[125] Peskin C S & McQueen D M. A general method for the computer simulation of biological
systems interacting with fluids. In Symp. Soc. Exp. Biol., volume 49, pages 265–276. 1995.

[126] Peskin C S & Printz B F. Improved volume conservation in the computation of flows with
immersed elastic boundaries. J. Comput. Phys., 105(1):33–46, 1993.

[127] Pitt-Francis J, Pathmanathan P, Bernabeu M O, Bordas R, Cooper J, Fletcher A G, Mirams
G R, Murray P, Osborne J M, Walter A, Chapman S J, Garny A, van Leeuwen I M M, Maini
P K, Rodŕıguez B, Waters S L, Whiteley J P, Byrne H M, & Gavaghan D J. Chaste: A test-
driven approach to software development for biological modelling. Comput. Phys. Commun.,
180(12):2452–2471, 2009.

[128] Polyakov O, He B, Swan M, Shaevitz J W, Kaschube M, & Wieschaus E. Passive mechanical
forces control cell-shape change during Drosophila ventral furrow formation. Biophys. J.,
107(4):998–1010, 2014.

[129] Purcell E M E. Life at low Reynolds number. Am. J. Phys., 45(1):3, 1977.

[130] Rauzi M, Hočevar Brezavšček A, Ziherl P, & Leptin M. Physical models of mesoderm
invagination in Drosophila embryo. Biophys. J., 105(1):3–10, 2013.

[131] Rauzi M, Lenne P F, & Lecuit T. Planar polarized actomyosin contractile flows control
epithelial junction remodelling. Nature, 468(7327):1110–1114, 2010.

[132] Refsnes Data. HTML5 video (https://www.w3schools.com/html/html5_video.asp).

[133] Reinhart C M & Rogoff K S. Growth in a time of debt. Am. Econ. Rev., 100(2):573–578,
2010.

161

https://conservative-speeches.sayit.mysociety.org/speech/601526
https://conservative-speeches.sayit.mysociety.org/speech/601526
https://www.w3schools.com/html/html5_video.asp


[134] Reinhart C M & Rogoff K S. Reinhart and Rogoff: responding to our critics. New York Times,
2013.

[135] Rejniak K & Dillon R. A single cell-based model of the ductal tumour microarchitecture.
Comput. Math. Methods Med., 8(1):51–69, 2007.

[136] Rejniak K A. An immersed boundary model of the formation and growth of solid tumors.
Technical Report 19, The Ohio State University, 2004.

[137] Rejniak K A. A single-cell approach in modeling the dynamics of tumor microregions. Math.
Biosci. Eng., 2(3):643–655, 2005.

[138] Rejniak K A. An immersed boundary framework for modelling the growth of individual cells:
an application to the early tumour development. J. Theor. Biol., 247(1):186–204, 2007.

[139] Rejniak K A, Kliman H J, & Fauci L J. A computational model of the mechanics of growth
of the villous trophoblast bilayer. Bull. Math. Biol., 66(2):199–232, 2004.

[140] Ryan P. The path to prosperity: a blueprint for American renewal. Fiscal year 2013 budget
resolution. Technical report, 2013.

[141] Safferling K, Sütterlin T, Westphal K, Ernst C, Breuhahn K, James M, Jäger D, Halama N, &
Grabe N. Wound healing revised: a novel reepithelialization mechanism revealed by in vitro
and in silico models. J. Cell Biol., 203(4):691–709, 2013.

[142] Sánchez-Gutiérrez D, Tozluoglu M, Barry J D, Pascual A, Mao Y, & Escudero L M.
Fundamental physical cellular constraints drive self-organization of tissues. EMBO J., 35:77–
88, 2016.

[143] Sandersius S a & Newman T J. Modeling cell rheology with the subcellular element model.
Phys. Biol., 5(1):015002, 2008.

[144] Sandersius S A, Weijer C J, & Newman T J. Emergent cell and tissue dynamics from
subcellular modeling of active biomechanical processes. Phys. Biol., 8(4):45007, 2011.

[145] Sawyer J M, Harrell J R, Shemer G, Sullivan-Brown J, Roh-Johnson M, & Goldstein B. Apical
constriction: a cell shape change that can drive morphogenesis. Dev. Biol., 341(1):5–19, 2010.

[146] Schliess F, Hoehme S, Henkel S G, Ghallab A, Driesch D, Böttger J, Guthke R, Pfaff M,
Hengstler J G, Gebhardt R, Häussinger D, Drasdo D, & Zellmer S. Integrated metabolic
spatial-temporal model for the prediction of ammonia detoxification during liver damage and
regeneration. Hepatology, 60(6):2040–2051, 2014.

[147] Sharpe J. Computer modeling in developmental biology: growing today, essential tomorrow.
Development, 144(23):4214–4225, 2017.

[148] Smith J L & Schoenwolf G C. Cell cycle and neuroepithelial cell shape during bending of the
chick neural plate. Anat. Rec., 218(2):196–206, 1987.

[149] Smith J L & Schoenwolf G C. Role of cell-cycle in regulating neuroepithelial cell shape during
bending of the chick neural plate. Cell Tissue Res., 252(3):491–500, 1988.

[150] Spahn P & Reuter R. A vertex model of Drosophila ventral furrow formation. PLoS ONE,
8(9):e75051, 2013.

[151] Spencer M A, Jabeen Z, & Lubensky D K. Vertex stability and topological transitions in
vertex models of foams and epithelia. Eur. Phys. J. E, 40(1):2, 2017.

[152] St Johnston D & Sanson B. Epithelial polarity and morphogenesis. Curr. Opin. Cell Biol.,
23:540–546, 2011.

[153] Starruß J, de Back W, Brusch L, & Deutsch A. Morpheus: a user-friendly modeling
environment for multiscale and multicellular systems biology. Bioinformatics, 30(9):1331–
1332, 2014.

162



[154] Steinberg M S. Does differential adhesion govern self-assembly processes in histogenesis?
Equilibrium configurations and the emergence of a hierarchy among populations of embryonic
cells. J. Exp. Zool., 173(4):395–433, 1970.

[155] Steinberg M S. Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet.
Dev., 17(4):281–286, 2007.

[156] Stroustrup B. A Tour of C++. Addison-Wesley Professional, 2nd edition, 2018.

[157] Stroustrup B & Sutter H. C++ Core Guidelines (http://isocpp.github.io/
CppCoreGuidelines/CppCoreGuidelines), 2018.

[158] Sugimura K, Graner F, & Lenne P F. Measuring forces and stresses in situ in living tissues.
Development, 143:186–196, 2016.

[159] Sutterlin T, Kolb C, Dickhaus H, Jager D, & Grabe N. Bridging the scales: semantic
integration of quantitative SBML in graphical multi-cellular models and simulations with
EPISIM and COPASI. Bioinformatics, 29(2):223–229, 2013.

[160] Sütterlin T, Tsingos E, Bensaci J, Stamatas G N, & Grabe N. A 3D self-organizing
multicellular epidermis model of barrier formation and hydration with realistic cell morphology
based on EPISIM. Sci. Rep., 7(1):43472, 2017.

[161] Swat M H, Thomas G L, Belmonte J M, Shirinifard A, Hmeljak D, & Glazier J A. Multi-scale
modeling of tissues using CompuCell3D. Methods Cell Biol., 110:325–366, 2012.

[162] Tamulonis C, Postma M, Marlow H Q, Magie C R, de Jong J, & Kaandorp J. A cell-based
model of Nematostella vectensis gastrulation including bottle cell formation, invagination and
zippering. Dev. Biol., 351(1):217–228, 2011.

[163] Tanaka S. Simulation frameworks for morphogenetic problems. Computation, 3(2):197–221,
2015.

[164] Tanaka S, Sichau D, & Iber D. LBIBCell: A cell-based simulation environment for
morphogenetic problems. Bioinformatics, 31(14):2340–2347, 2015.

[165] Teran J M & Peskin C S. Tether force constraints in Stokes flow by the immersed boundary
method on a periodic domain. SIAM J. Sci. Comput., 31(5):3404–3416, 2009.

[166] Turing A M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B, 237(641):37–72,
1952.

[167] Verlet L. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-
Jones molecules. Phys. Rev., 159(1):98–103, 1967.

[168] Vogel V & Sheetz M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol.
Cell Biol., 7(4):265–275, 2006.

[169] W3C. Scalable vector graphics (SVG) 1.1 (second edition). Technical report, 2011.

[170] Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinöhl V, Merks R M H, Govaerts
W, & Friml J. Emergence of tissue polarization from synergy of intracellular and extracellular
auxin signaling. Mol. Syst. Biol., 6(1):447, 2010.

[171] Williams M, Yen W, Lu X, & Sutherland A. Distinct apical and basolateral mechanisms drive
planar cell polarity-dependent convergent extension of the mouse neural plate. Dev. Cell,
29(1):34–46, 2014.

[172] Wilson G V. Where’s the real bottleneck in scientific computing? Am. Sci., 94:5–6, 2006.

[173] Wolpert L. Positional information and the spatial pattern of cellular differentiation. J. Theor.
Biol., 25(1):1–47, 1969.

[174] Zhang Y, Thomas G L, Swat M, Shirinifard A, & Glazier J A. Computer simulations of cell
sorting due to differential adhesion. PLoS ONE, 6(10):e24999, 2011.

163

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

	Introduction
	Background
	Mathematical models of morphogenesis
	Cell-based models
	Incorporating mechanical complexity
	Incorporating additional geometric complexity

	Software tools
	Thesis structure

	Numerical analysis of the IBM for cell-based simulation
	Introduction
	IBM formalism
	Non-dimensionalization
	Discretization
	Discrete Dirac delta function
	Discretization of IBs
	Discrete force relations
	Discretization of the Navier–Stokes equations
	Discretization of force relation
	Discretization of position-updating relation
	Discretization of fluid sources
	Numerical solution

	Computational implementation
	Chaste
	Implementation of cellular processes
	Computational efficiency and profiling

	Numerical results
	Node spacing ratio and volume change
	Scaling of individual cell properties
	Convergence analysis

	Potential applications to epithelial morphogenesis
	Discussion
	Stokes or Navier–Stokes
	Discrete delta function
	Intercellular interaction terms
	Balancing sources
	Constant viscosity

	Conclusion

	Efficient implementation and exploration of cell-based models within an open source framework
	Introduction
	Reinhart and Rogoff: a cautionary tale

	General contributions to the Chaste libraries
	Using modern C[4]++
	Static analysis
	Monitoring test performance over time

	Specific contributions to the Chaste libraries
	Voronoi vertex mesh generator
	Fully periodic spatial decomposition algorithm

	Pipeline for running simulations and presenting output
	Infrastructure for parallel execution
	Presenting simulation output

	Discussion and outlook

	Comparing individual-based models of cell surface mechanics
	Introduction
	Details of the VM

	Extensions to existing IBM and VM descriptions
	Cell neighbours in IBM simulations
	Allowing IB cells to modulate their size
	Adding noise to simulations

	Cell sorting as a model system for comparison
	Recapitulating cell sorting in the VM
	Extending the understanding of VM cell sorting
	Adding correlated noise to VM simulations
	Cell sorting in the IBM
	IB sorting and diffusion strength
	The impact of correlated noise on IB cell sorting
	The impact of cell gap on IB cell sorting

	Discussion and outlook

	A computational model of early placode morphogenesis
	Background and motivation
	Computational modelling of out-of-plane deformations
	Characterisation of the model system

	Computational modelling of this system
	Methods
	An IB model of early placode development
	IB region tagging
	IB remeshing
	The IB framework for this study

	Results
	Increased apical adhesion
	Active cytoskeletal remodelling
	Cyclic cytoskeletal remodelling
	Additional diagonal tensile element

	Discussion and outlook
	Summary of model progression
	Limitations


	Discussion and outlook
	Obtaining the source code
	ch:ibm
	ch:software
	ch:comp
	ch:tooth

	Technical details
	Implementation details of skewness algorithm (sec:tooth:comp:ibmodel)
	Implementation details of IB region tagging (sec:tooth:compmod:regiontagging)
	Mathematical details of IB remeshing (sec:tooth:compmod:remeshing)

	Bibliography

