
C++20: All the small things

Fergus Cooper
C++ On Sea 2020

1

A bit about me

• Research Software Engineer at University of Oxford

• Using C++ extensively since 2014

• Cancer heart and soft tissue environment (Chaste), a set of C++

libraries for
• Cardiac electrophysiology
• Agent-based simulations of individual cells
• Lung physiology

2

Context: C++ & software engineering in academia

• C++ is popular in academia

• 2018 survey in Oxford found C++ was 2nd after Python
• Python
• C++

• MATLAB
• R
• C

• But, training in software engineering is not common

3

Context: C++ & software engineering in academia

4

Context: C++ & software engineering in academia

5

Context: C++ & software engineering in academia

6

Context: C++ & software engineering in academia

7

Context: C++ & software engineering in academia

8

Context: C++ & software engineering in academia

• Lots of people use C++

• Very few are experts - it’s just a tool to get the job done

• Recent changes in C++ have been absolutely fantastic. They make it:
• Easier to do the right thing
• Harder to do the wrong thing
• Safer by default

9

This talk

• There are other talks about the headline features

• This talk is about a few of my favourite little features we’re getting in
C++20

• Most importantly, I hope to convey why they’re useful from my
perspective as someone in academia

10

This talk

• New utilities that illustrate the progress of C++:
• std::midpoint, std::lerp

• Better container semantics
• contains, erase & erase_if, ssize
• starts_with & ends_with

• New headers
• <source_location> & <numbers>

11

Midpoint and linear interpolation

Midpoint and linear interpolation

• Two mathematically related functions

• std::midpoint in header <numeric>

a + b
2

• std::lerp (linear interpolation) in header <cmath>

a + t(b − a)

12

Midpoint

const int a = 2'000'000'000;
const int b = 1'000'000'000;

std::cout << "midpoint: " << (a + b) / 2 << '\n';

>> midpoint: ???

13

Midpoint

const int a = 2'000'000'000;
const int b = 1'000'000'000;

std::cout << "midpoint: " << (a + b) / 2 << '\n';

>> midpoint: -647483648

14

Midpoint

• a + b might be too large to represent as an int
• So, (a + b) / 2 won’t do

• Ok, how about a/2 + b/2?

15

Midpoint

const int a = 25;
const int b = 35;

std::cout << "midpoint: " << a / 2 + b / 2 << '\n';

>> midpoint: ???

16

Midpoint

const int a = 25;
const int b = 35;

std::cout << "midpoint: " << a / 2 + b / 2 << '\n';

>> midpoint: 29

17

Midpoint

a and b might both round down

• So, a/2 + b/2 won’t do

Ok, how about a + (b-a)/2?

18

Midpoint

const int a = -1'000'000'000;
const int b = 2'000'000'000;

std::cout << "midpoint: " << a + (b - a) / 2 << '\n';

>> midpoint: ???

19

Midpoint

const int a = -1'000'000'000;
const int b = 2'000'000'000;

std::cout << "midpoint: " << a + (b - a) / 2 << '\n';

>> midpoint: -1647483648

20

Midpoint

Back to where we started: possibility of overflow. So how can it safely be
done?

int midpoint(const int a, const int b) {
int direction = 1;
unsigned lo = a;
unsigned hi = b;
if (a > b) {

direction = -1;
lo = b;
hi = a;

}
return a + direction * int(unsigned(hi - lo) / 2);

}

(Implementation based on libstdc++ 9)

21

Midpoint

And it’s different for floating point types:

float midpoint(const float a, const float b) {
float lo = std::numeric_limits<float>::min() * 2;
float hi = std::numeric_limits<float>::max() / 2;
float abs_a = std::fabs(a);
float abs_b = std::fabs(b);
if (abs_a <= hi && abs_b <= hi) [[likely]]

return (a + b) / 2;
if (abs_a < lo)

return a + b / 2;
if (abs_b < lo)

return a / 2 + b;
return a / 2 + b / 2;

}

(Implementation based on libstdc++ 9)
22

Midpoint

• Uses, often as a building block:
• Anywhere you need the mean of two numbers: median?

float median(std::vector<float> &v) {

auto half_way = v.size() / 2;
std::nth_element(v.begin(), v.begin() + half_way,

v.end());

if (v.size() % 2 == 1) {
return v.at(half_way);

} else {
std::nth_element(v.begin(), v.begin() + half_way - 1,

v.begin() + half_way);
return std::midpoint(v.at(half_way),

v.at(half_way - 1));
}

}

23

Linear interpolation

• For floating point a, b and t, return a + t(b − a)
• Interpolation if t ∈ [0, 1], extrapolation otherwise

• Desirable properties:
• lerp(a,b,0) == a
• lerp(a,b,1) == b
• monotonicity in t
• if a and b are finite and t ∈ [0, 1], then lerp(a,b,t) is finite

24

Linear interpolation

• The problem, again, is obvious implementations aren’t quite right:

• a + t(b − a)
• could overflow
• when t==1, not guaranteed to return b

• (1− t)a + tb
• not guaranteed to be monotonic (unless ab ≤ 0)

25

Linear interpolation

float lerp(float a, float b, float t) {
if (a <= 0 && b >= 0 || a >= 0 && b <= 0)

return t * b + (1 - t) * a;
if (t == 1)

return b;
const float x = a + t * (b - a);
return t > 1 == b > a ? std::max(b, x) : std::min(b, x);

}

(Implementation based on libstdc++ 9)

26

Linear interpolation

Uses:

• computer graphics

• colour maps

• evenly-spacing points around a polygon

• building block for other algorithms
• bilinear interpolation

27

Linear interpolation

Bilinear interpolation can be implemented with three lerps:

float bilinear(
float x, float y,
float x1y1, float x1y2, float x2y1, float x2y2) {

float interp1 = std::lerp(x1y1, x2y1, x);
float interp2 = std::lerp(x1y2, x2y2, x);

return std::lerp(interp1, interp2, y);
}

28

Linear interpolation

29

Midpoint and linear interpolation: remarks

• Two excellent examples of simple functions that are non-trivial to
implement correctly

• Speculation: a tiny proportion of C++ users have a CS degree

• Common building blocks like midpoint and lerp are excellent
additions to the standard library:

• No time wasted re-inventing standard tools
• No chance of accidentally getting it wrong
• Common enough(?) to justify inclusion

30

Short pause for questions

Better container semantics

Associative containers contain

A new member function for map, multimap, set, multiset (& unordered
versions)

Checking if an element exists is very unintuitive for beginners:

std::set<char> s = {'a', 'b', 'c', 'd'};
if(s.find('c') != s.end()) {/* */ }

From C++20 this is simplified with a small quality-of-life improvement:

std::set<char> s = {'a', 'b', 'c', 'd'};
if(s.contains('c')) {/* */ }

Reduces consistency with other (non-associative) containers?

31

Consistent container erasure

• Speaking of idioms that beginners find difficult: erasing elements
from containers

• Take std::vector<>::erase:
• it takes one (or two) iterators and erases one (or a range of) elements:

so you first have to find the elements you’re looking for
• there’s an algorithm for finding things! remove (or remove_if)
• so we’ve found things we want to erase with remove, which removes

everything else to the front of the vector, then we erase the removed
elements

• simple?

std::vector<char> v = {'a', 'b', 'c', 'd', 'e'};
v.erase(std::remove(v.begin(), v.end(), 'c'), v.end());

• C++20 adds free functions erase and erase_if that “do what you
expect”. Let’s see them in action: 32

Consistent container erasure

auto pred = [](char cmp){return cmp > 'c';};

std::set<char> set = {'a', 'b', 'c', 'd', 'e'};
std::cout << set.size() << '\n'; // 5
std::cout << std::erase_if(set, pred) << '\n'; // 2
std::cout << set.size() << '\n'; // 3

std::vector<char> vec = {'a', 'b', 'c', 'd', 'e'};
std::cout << std::erase_if(vec, pred) << '\n';

std::string str = "abcde";
std::cout << std::erase_if(str, pred) << '\n';

33

(Nearly) consistent container erasure

• This is great. . . ish

• It doesn’t seem quite “consistent”

We have gained std::erase overloads for:

• basic_string, deque, vector, forward_list, list

And std::erase_if overloads for the above, plus:

• map, multimap, set, multiset (and their unordered counterparts)

We have to now remember which containers only have the member erase.
Hmm.

34

Signed size

Containers can be queried for their size, which is unsigned:

std::vector<int> v = {1, 2, 3, 4, 5, 6};

for (int i = 0; i < v.size(); ++i) {
/* */

}

Comparison between signed and unsigned.

35

Signed size

This isn’t necessarily a problem by itself, but other patterns are more
dangerous:

bool has_repeated_values(std::vector<int> &container) {
for (int i = 0; i < container.size() - 1; ++i) {

if (container[i] == container[i + 1]) {
return true;

}
}
return false;

}

(Example adapted from P1227 by Jorg Brown)

My IDE did not warn me about potential problems with this code, but. . .

36

Signed size

The following will cause problems:

std::vector<int> empty_vec = {};
has_repeated_values(empty_vec); // ???

A member ssize() method returning a signed integer would solve this
class of problems (if used).

37

Signed size

Unfortunately, we only got a compromise std::ssize() free function:

std::vector<int> v = {1, 2, 3, 4, 5, 6};
for (int i = 0; i < std::ssize(v); ++i) {/**/ }

Better still to use range-for or stl algorithms where possible:

bool has_repeated_values(std::vector<int> &v) {
return std::adjacent_find(v.begin(), v.end()) != v.end();

}

38

Signed size

• But when not possible, std::ssize() makes it easier to “do the
right thing”

• A missed opportunity not having member functions?
• most C++ programmers don’t know their standard library inside out
• likely to pick from the list of member functions that their IDE gives

them

• We now have size member and free functions, but only ssize free
functions: consistency?

• Better tooling to suggest using std::ssize() when std::size() or
.size() are used and would compare types of different signedness?

39

String utilities

starts_with and ends_with: indispensable member functions!
Pre-C++20 checking whether a string ends with another string is not
beginner friendly:

bool ends_with(std::string &orig, std::string &ending) {
if (orig.length() >= ending.length()) {

return (orig.compare(orig.length() - ending.length(),
ending.length(), ending) == 0);

} else {
return false;

}
}

• Need to know how compare works
• Need to get remember the length-check

40

String utilities

We now get two new member functions: starts_with and ends_with,
which makes this kind of code possible:

std::vector<fs::path> data_files;
for (auto &p :

fs::recursive_directory_iterator("data_dir")) {
if (p.path().string().ends_with(".dat")) {

data_files.emplace_back(p.path());
}

}

• Intuitive, easy to find, common to want

41

Better container semantics: remarks

• Many small improvements to containers that make life:
• safer for non-experts
• easier for all
• a little less frustrating

• Removes several idioms that must be taught

• Reduces stack overflow’s carbon footprint?

• Seem(?) to have stopped just short of consistency and simplicity
• Is there a good reason not have have erase for set?
• Is there a good reason not have have member ssize() methods?

42

Short pause for questions

New headers

<source_location>

Access the caller’s file name, line number and column, without macros.

void log(std::string_view message,
std::source_location location =

std::source_location::current()) {
std::cout << location.file_name() << ':'

<< location.line() << ':'
<< location.column() << ' '
<< message << '\n';

}

int main() {
log("message!"); // path/to/main.cpp:12:0 message!

}

Not yet implemented, except in GCC’s std::experimental.

43

<source_location>

A real-world example from Chaste:

#define MARK std::cout << __FILE__\
<< " at line " << __LINE__ << std::endl;
}

void mark(std::source_location location =
std::source_location::current()) {

std::cout << location.file_name() << " at line "
<< location.line() << std::endl;

}

One more macro that can be removed! (One day.)

44

<source_location>

Unfortunately we still can’t do anything about the following kind of macro:

#define PRINT_VARIABLE(var) std::cout << #var\
" = " << var << std::endl;

We will have to wait for reflection. . .

45

Mathematical constants: <numbers>

The C++ standard has a lot of maths in it:

• exp, log, pow, sqrt, . . .
• lerp
• comp_ellint_2, cyl_bessel_k, sph_neumann, . . .

But until C++20 there was no definition of mathematical constants such as
π and e.

• <math.h> tends to define macros
• Microsoft defines macros if you #define _USE_MATH_DEFINES

before you #include <cmath>

define M_PI 3.14159265358979323846
define M_E 2.7182818284590452354

define M_PIl 3.141592653589793238462643383279502884L
46

Mathematical constants: <numbers>

But we don’t like macros, so how can we replace these?

We could expose constants:
constexpr double pi = 3.14159265358979323846;
constexpr double e = 2.7182818284590452354;

But then we’re still stuck with the problem of not having float or long
double versions. . .

47

Mathematical constants: <numbers>

C++14 introduced ‘variable templates’ which lets us define templated
constants:

template<typename FloatingType>
constexpr FloatingType pi =

static_cast<FloatingType>(3.1415926535897932385L);

const float pi_f = pi<float>;
const double pi_d = pi<double>;
const long double pi_l = pi<long double>;

48

Mathematical constants: <numbers>

In the end, we got both:

const auto pi_f = std::numbers::pi_v<float>;
const auto pi_d = std::numbers::pi_v<double>;
const auto pi_l = std::numbers::pi_v<long double>;

const double pi = std::numbers::pi;

e log2(e) log10(e) loge(2) loge(10)

π
1
π

1√
π

√
2

√
3 1√

3
γ φ

49

Mathematical constants: <numbers>

And finally, unlike the Indiana General Assembly, the C++ standard does
not attempt to legislate the value of any of these constants.

Instead:

50

Thanks for listening. Any
questions?

	Midpoint and linear interpolation
	Short pause for questions
	Better container semantics
	Short pause for questions
	New headers
	Thanks for listening. Any questions?

