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A bit about me

• Research Software Engineer at University of Oxford

• Using C++ extensively since 2014

• Cancer heart and soft tissue environment (Chaste), a set of C++

libraries for
• Cardiac electrophysiology
• Agent-based simulations of individual cells
• Lung physiology
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Context: C++ & software engineering in academia

• C++ is popular in academia

• 2018 survey in Oxford found C++ was 2nd after Python
• Python
• C++

• MATLAB
• R
• C

• But, training in software engineering is not common
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Context: C++ & software engineering in academia

• Lots of people use C++

• Very few are experts - it’s just a tool to get the job done

• Recent changes in C++ have been absolutely fantastic. They make it:
• Easier to do the right thing
• Harder to do the wrong thing
• Safer by default
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This talk

• There are other talks about the headline features

• This talk is about a few of my favourite little features we’re getting in
C++20

• Most importantly, I hope to convey why they’re useful from my
perspective as someone in academia
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This talk

• New utilities that illustrate the progress of C++:
• std::midpoint, std::lerp

• Better container semantics
• contains, erase & erase_if, ssize
• starts_with & ends_with

• New headers
• <source_location> & <numbers>
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Midpoint and linear interpolation



Midpoint and linear interpolation

• Two mathematically related functions

• std::midpoint in header <numeric>

a + b
2

• std::lerp (linear interpolation) in header <cmath>

a + t(b − a)

12



Midpoint

const int a = 2'000'000'000;
const int b = 1'000'000'000;

std::cout << "midpoint: " << (a + b) / 2 << '\n';

>> midpoint: ???
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Midpoint

const int a = 2'000'000'000;
const int b = 1'000'000'000;

std::cout << "midpoint: " << (a + b) / 2 << '\n';

>> midpoint: -647483648
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Midpoint

• a + b might be too large to represent as an int
• So, (a + b) / 2 won’t do

• Ok, how about a/2 + b/2?
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Midpoint

const int a = 25;
const int b = 35;

std::cout << "midpoint: " << a / 2 + b / 2 << '\n';

>> midpoint: ???
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Midpoint

const int a = 25;
const int b = 35;

std::cout << "midpoint: " << a / 2 + b / 2 << '\n';

>> midpoint: 29
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Midpoint

a and b might both round down

• So, a/2 + b/2 won’t do

Ok, how about a + (b-a)/2?
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Midpoint

const int a = -1'000'000'000;
const int b = 2'000'000'000;

std::cout << "midpoint: " << a + (b - a) / 2 << '\n';

>> midpoint: ???
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Midpoint

const int a = -1'000'000'000;
const int b = 2'000'000'000;

std::cout << "midpoint: " << a + (b - a) / 2 << '\n';

>> midpoint: -1647483648
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Midpoint

Back to where we started: possibility of overflow. So how can it safely be
done?

int midpoint(const int a, const int b) {
int direction = 1;
unsigned lo = a;
unsigned hi = b;
if (a > b) {

direction = -1;
lo = b;
hi = a;

}
return a + direction * int(unsigned(hi - lo) / 2);

}

(Implementation based on libstdc++ 9)
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Midpoint

And it’s different for floating point types:

float midpoint(const float a, const float b) {
float lo = std::numeric_limits<float>::min() * 2;
float hi = std::numeric_limits<float>::max() / 2;
float abs_a = std::fabs(a);
float abs_b = std::fabs(b);
if (abs_a <= hi && abs_b <= hi) [[likely]]

return (a + b) / 2;
if (abs_a < lo)

return a + b / 2;
if (abs_b < lo)

return a / 2 + b;
return a / 2 + b / 2;

}

(Implementation based on libstdc++ 9)
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Midpoint

• Uses, often as a building block:
• Anywhere you need the mean of two numbers: median?

float median(std::vector<float> &v) {

auto half_way = v.size() / 2;
std::nth_element(v.begin(), v.begin() + half_way,

v.end());

if (v.size() % 2 == 1) {
return v.at(half_way);

} else {
std::nth_element(v.begin(), v.begin() + half_way - 1,

v.begin() + half_way);
return std::midpoint(v.at(half_way),

v.at(half_way - 1));
}

}
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Linear interpolation

• For floating point a, b and t, return a + t(b − a)
• Interpolation if t ∈ [0, 1], extrapolation otherwise

• Desirable properties:
• lerp(a,b,0) == a
• lerp(a,b,1) == b
• monotonicity in t
• if a and b are finite and t ∈ [0, 1], then lerp(a,b,t) is finite
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Linear interpolation

• The problem, again, is obvious implementations aren’t quite right:

• a + t(b − a)
• could overflow
• when t==1, not guaranteed to return b

• (1− t)a + tb
• not guaranteed to be monotonic (unless ab ≤ 0)
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Linear interpolation

float lerp(float a, float b, float t) {
if (a <= 0 && b >= 0 || a >= 0 && b <= 0)

return t * b + (1 - t) * a;
if (t == 1)

return b;
const float x = a + t * (b - a);
return t > 1 == b > a ? std::max(b, x) : std::min(b, x);

}

(Implementation based on libstdc++ 9)
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Linear interpolation

Uses:

• computer graphics

• colour maps

• evenly-spacing points around a polygon

• building block for other algorithms
• bilinear interpolation
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Linear interpolation

Bilinear interpolation can be implemented with three lerps:

float bilinear(
float x, float y,
float x1y1, float x1y2, float x2y1, float x2y2) {

float interp1 = std::lerp(x1y1, x2y1, x);
float interp2 = std::lerp(x1y2, x2y2, x);

return std::lerp(interp1, interp2, y);
}
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Linear interpolation
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Midpoint and linear interpolation: remarks

• Two excellent examples of simple functions that are non-trivial to
implement correctly

• Speculation: a tiny proportion of C++ users have a CS degree

• Common building blocks like midpoint and lerp are excellent
additions to the standard library:

• No time wasted re-inventing standard tools
• No chance of accidentally getting it wrong
• Common enough(?) to justify inclusion
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Short pause for questions



Better container semantics



Associative containers contain

A new member function for map, multimap, set, multiset (& unordered
versions)

Checking if an element exists is very unintuitive for beginners:

std::set<char> s = {'a', 'b', 'c', 'd'};
if(s.find('c') != s.end()) {/* */ }

From C++20 this is simplified with a small quality-of-life improvement:

std::set<char> s = {'a', 'b', 'c', 'd'};
if(s.contains('c')) {/* */ }

Reduces consistency with other (non-associative) containers?
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Consistent container erasure

• Speaking of idioms that beginners find difficult: erasing elements
from containers

• Take std::vector<>::erase:
• it takes one (or two) iterators and erases one (or a range of) elements:

so you first have to find the elements you’re looking for
• there’s an algorithm for finding things! remove (or remove_if)
• so we’ve found things we want to erase with remove, which removes

everything else to the front of the vector, then we erase the removed
elements

• simple?

std::vector<char> v = {'a', 'b', 'c', 'd', 'e'};
v.erase(std::remove(v.begin(), v.end(), 'c'), v.end());

• C++20 adds free functions erase and erase_if that “do what you
expect”. Let’s see them in action: 32



Consistent container erasure

auto pred = [](char cmp){return cmp > 'c';};

std::set<char> set = {'a', 'b', 'c', 'd', 'e'};
std::cout << set.size() << '\n'; // 5
std::cout << std::erase_if(set, pred) << '\n'; // 2
std::cout << set.size() << '\n'; // 3

std::vector<char> vec = {'a', 'b', 'c', 'd', 'e'};
std::cout << std::erase_if(vec, pred) << '\n';

std::string str = "abcde";
std::cout << std::erase_if(str, pred) << '\n';
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(Nearly) consistent container erasure

• This is great. . . ish

• It doesn’t seem quite “consistent”

We have gained std::erase overloads for:

• basic_string, deque, vector, forward_list, list

And std::erase_if overloads for the above, plus:

• map, multimap, set, multiset (and their unordered counterparts)

We have to now remember which containers only have the member erase.
Hmm.
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Signed size

Containers can be queried for their size, which is unsigned:

std::vector<int> v = {1, 2, 3, 4, 5, 6};

for (int i = 0; i < v.size(); ++i) {
/* */

}

Comparison between signed and unsigned.
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Signed size

This isn’t necessarily a problem by itself, but other patterns are more
dangerous:

bool has_repeated_values(std::vector<int> &container) {
for (int i = 0; i < container.size() - 1; ++i) {

if (container[i] == container[i + 1]) {
return true;

}
}
return false;

}

(Example adapted from P1227 by Jorg Brown)

My IDE did not warn me about potential problems with this code, but. . .
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Signed size

The following will cause problems:

std::vector<int> empty_vec = {};
has_repeated_values(empty_vec); // ???

A member ssize() method returning a signed integer would solve this
class of problems (if used).

37



Signed size

Unfortunately, we only got a compromise std::ssize() free function:

std::vector<int> v = {1, 2, 3, 4, 5, 6};
for (int i = 0; i < std::ssize(v); ++i) {/**/ }

Better still to use range-for or stl algorithms where possible:

bool has_repeated_values(std::vector<int> &v) {
return std::adjacent_find(v.begin(), v.end()) != v.end();

}
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Signed size

• But when not possible, std::ssize() makes it easier to “do the
right thing”

• A missed opportunity not having member functions?
• most C++ programmers don’t know their standard library inside out
• likely to pick from the list of member functions that their IDE gives

them

• We now have size member and free functions, but only ssize free
functions: consistency?

• Better tooling to suggest using std::ssize() when std::size() or
.size() are used and would compare types of different signedness?
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String utilities

starts_with and ends_with: indispensable member functions!
Pre-C++20 checking whether a string ends with another string is not
beginner friendly:

bool ends_with(std::string &orig, std::string &ending) {
if (orig.length() >= ending.length()) {

return (orig.compare(orig.length() - ending.length(),
ending.length(), ending) == 0);

} else {
return false;

}
}

• Need to know how compare works
• Need to get remember the length-check
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String utilities

We now get two new member functions: starts_with and ends_with,
which makes this kind of code possible:

std::vector<fs::path> data_files;
for (auto &p :

fs::recursive_directory_iterator("data_dir")) {
if (p.path().string().ends_with(".dat")) {

data_files.emplace_back(p.path());
}

}

• Intuitive, easy to find, common to want
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Better container semantics: remarks

• Many small improvements to containers that make life:
• safer for non-experts
• easier for all
• a little less frustrating

• Removes several idioms that must be taught

• Reduces stack overflow’s carbon footprint?

• Seem(?) to have stopped just short of consistency and simplicity
• Is there a good reason not have have erase for set?
• Is there a good reason not have have member ssize() methods?
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Short pause for questions



New headers



<source_location>

Access the caller’s file name, line number and column, without macros.

void log(std::string_view message,
std::source_location location =

std::source_location::current()) {
std::cout << location.file_name() << ':'

<< location.line() << ':'
<< location.column() << ' '
<< message << '\n';

}

int main() {
log("message!"); // path/to/main.cpp:12:0 message!

}

Not yet implemented, except in GCC’s std::experimental.
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<source_location>

A real-world example from Chaste:

#define MARK std::cout << __FILE__\
<< " at line " << __LINE__ << std::endl;
}

void mark(std::source_location location =
std::source_location::current()) {

std::cout << location.file_name() << " at line "
<< location.line() << std::endl;

}

One more macro that can be removed! (One day.)
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<source_location>

Unfortunately we still can’t do anything about the following kind of macro:

#define PRINT_VARIABLE(var) std::cout << #var\
" = " << var << std::endl;

We will have to wait for reflection. . .
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Mathematical constants: <numbers>

The C++ standard has a lot of maths in it:

• exp, log, pow, sqrt, . . .
• lerp
• comp_ellint_2, cyl_bessel_k, sph_neumann, . . .

But until C++20 there was no definition of mathematical constants such as
π and e.

• <math.h> tends to define macros
• Microsoft defines macros if you #define _USE_MATH_DEFINES

before you #include <cmath>

# define M_PI 3.14159265358979323846
# define M_E 2.7182818284590452354

# define M_PIl 3.141592653589793238462643383279502884L
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Mathematical constants: <numbers>

But we don’t like macros, so how can we replace these?

We could expose constants:
constexpr double pi = 3.14159265358979323846;
constexpr double e = 2.7182818284590452354;

But then we’re still stuck with the problem of not having float or long
double versions. . .
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Mathematical constants: <numbers>

C++14 introduced ‘variable templates’ which lets us define templated
constants:

template<typename FloatingType>
constexpr FloatingType pi =

static_cast<FloatingType>(3.1415926535897932385L);

const float pi_f = pi<float>;
const double pi_d = pi<double>;
const long double pi_l = pi<long double>;

48



Mathematical constants: <numbers>

In the end, we got both:

const auto pi_f = std::numbers::pi_v<float>;
const auto pi_d = std::numbers::pi_v<double>;
const auto pi_l = std::numbers::pi_v<long double>;

const double pi = std::numbers::pi;

e log2(e) log10(e) loge(2) loge(10)

π
1
π

1√
π

√
2

√
3 1√

3
γ φ
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Mathematical constants: <numbers>

And finally, unlike the Indiana General Assembly, the C++ standard does
not attempt to legislate the value of any of these constants.

Instead:
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Thanks for listening. Any
questions?
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