
Data Exchange: Computing Cores in Polynomial Time

Georg Gottlob∗

Oxford University

georg.gottlob@comlab.ox.ac.uk

Alan Nash†

University of California, San Diego

anash@cs.ucsd.edu

ABSTRACT
Data exchange deals with inserting data from one database into an-
other database having a different schema. We study and solve a
central computational problem of data exchange, namely, comput-
ing the core of a universal solution to a data exchange problem.
Fagin, Kolaitis, and Popa [9], have shown that among the univer-
sal solutions of a solvable data exchange problem, there exists a
most compact one (up to isomorphism), “the core” (of any univer-
sal solution), and have convincingly argued that this core should
be the solution of choice. They stated as an important open prob-
lem whether the core of a universal solution can be computed in
polynomial time in the general setting where the source-to-target
constraints are arbitrary tuple generating dependencies (TGDs) and
the target constraints consist of equation generating dependencies
(EGDs) and weakly-acyclic TGDs. In this paper we solve this prob-
lem by developing new efficient methods for computing the core of
a universal solution. This positive result shows that the core ap-
proach of Fagin, Kolaitis, and Popa is feasible and applicable in a
very general setting and thus provides a further momentum to the
use of cores in data exchange.

Categories and Subject Descriptors: H.2.5 [Heterogeneous
Databases]: Data Translation; H.2.4 [Systems]: Relational data-
bases, Rule-based databases Query Processing; D.2.12 [Interop-
erability]: Data mapping; F.2.2 [Nonnumerical Algorithms and
Problems]: Computations on discrete structures;

General Terms: Algorithms, Theory, Databases

Keywords: Chase, core, complexity, conjunctive queries, constraints,
data exchange, data integration, dependencies, query evaluation,
tractability, universal solutions

1. INTRODUCTION
Data exchange research. Data exchange research is an impor-

tant area of database theory that aims at understanding and develop-

∗Research supported by REWERSE - a research “Network of Ex-
cellence” EU project reference number 506779.
†Research partly supported by the Wolfgang Pauli Institute and a
Microsoft Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0006 . . . $5.00.

ing foundations, methods, and algorithms for transferring data be-
tween differently structured databases. While data integration usu-
ally deals with query translation and with query processing among
multiple databases, data exchange aims at materializing a target
database stemming from some source databases. Clearly, once
transferred to the target database, the data can be queried accord-
ing to the target schema. While data exchange has been recognized
as an important problem for several decades, systematic research
on foundational and algorithmic issues of this problem has started
only a few years ago with the fundamental work of Fagin, Kolaitis,
Miller, and Popa [8].

The basic data exchange problem. The basic and most fun-
damental data exchange problem for relational databases was for-
mally defined by Fagin et al. [8]. Given a source database schema
σ, a target database schema τ , a source database instance S, and a
set of constraints Σ, find a target database instance T such that S
and T satisfy all constraints in Σ, denoted by (S, T) |= Σ. As in [8,
9], we restrict our attention to the following types of constraints:

Tuple generating dependencies (TGDs) which are first order sen-
tences of the form ∀ū (φ(ū) → ∃v̄ ψ(ū, v̄), where φ and ψ
are conjunctions of atoms and ū and v̄ are lists of variables
and where the variables in ū all appear in φ. If v̄ is empty,
then we speak about a full TGD.

Equality generating dependencies (EGDs) which are first order
sentences of the form ∀ū (φ(ū) → v = w), where φ is a
conjunction of atoms, ū is a list of variables, and v and w are
single variables from the list ū.

We will usually omit the universal quantifiers when writing a TGD
or EGD.

Source-to-target constraints are those where the premise φ(ū)
contains atoms whose predicate symbols are relation names of the
source signature σ only and where the conclusion ψ(ū, v̄) is made
of atoms whose predicate symbols are relation names of the target
signature τ only. All atoms occurring in target constraints refer to
the target signature only.

We consider the case where the set Σ = Σst ∪ Σt of constraints
consists of source-to-target constraints Σst encoding conditions on
the mapping between source and target data, and the target con-
straints Σt which express data dependencies on the target database.

This setting allows us to formulate a very large class of con-
straints. For example, let a source database contains a relation

student(STUDNAME, BIRTHDATE,SSN,ZIPCODE)

and let the target database contains two relations

person(NAME, BORN,SSN,ZIPCODE, PHONE)

40

zc(ZIPCODE, STATE).

Then a typical source-to-target constraint would be

st1 : student(u1, u2, u3, u4) → ∃v person(u1, u2, u3, u4, v),

while the target constraints could be

t1 : person(u1, u2, u3, u4, u5) → ∃v zc(u5, v)
t2 : zc(u, v) ∧ zc(u, w) → v = w.

Here st1 and t1 are inclusion dependencies, and t2 is a functional
dependency. Note that t1 and t2 together express a foreign key
constraint. It is easy to see that, in addition to functional, inclusion
dependencies, and foreign key constraints, also multivalued depen-
dencies and even join dependencies can be expressed by formulas
in our setting. Thus, this setting is very general and encompasses
all major dependencies used in database design and for database
maintenance.

The problem is to check whether a target instance T exists, and
if so, to compute one. We allow labeled null values in form of
variables to appear in target instances. Intuitively, they can be used
as placeholders for unknown values. For example, a tuple

〈Doe, 19880203, 1234567, 94305〉
of the student source relation could be translated into a tuple

〈Doe, 19880203, 1234567, 94305, x1〉
of the person relation, where x1 is a variable representing a null
value. For further, more detailed examples, see [8, 10].

Homomorphisms, Universal solutions and Cores. A universal
solution of a data exchange problem is a target instance T which
is more general than other solutions, i.e., such that for each other
solution T ′ there exists a homomorphism T → T ′. Fagin, Ko-
laitis, Miller, and Popa [8] have shown that universal solutions of
data exchange problems can be obtained via the well known chase
procedure [3, 2, 15]. One first chases the set S with the source-to-
target TGDs Σst and obtains in polynomial time an initial target in-
stance T = SΣst . Then one chases T with the target constraints Σt

to obtain a universal solution TΣt whenever this chase terminates.
In order to guarantee termination, Fagin et al [8, 9] restrict them-
selves to target TGDs which are weakly acyclic. Weak acyclicity
is a syntactic condition on TGDs ensuring that there are no cyclic
dependencies among argument positions involving existential con-
straints (see Section 4 for a precise definition). Weak acyclicity [5,
8] has been so far the most general known sufficient condition for
termination of the chase. Fagin and his colleagues [8] have shown
that universal solutions are very useful for query answering. In
particular, any universal solution can be used to obtain the certain
answers tuples to a conjunctive query over the target schema, i.e.,
those answer tuples that are contained in all solutions of the data
exchange problem.

There can be several universal solutions to a data exchange prob-
lem and these solutions can noticeably differ in size. However, as
observed in [9], there is – up to isomorphism – one particular uni-
versal solution, called the core (of any universal solution), which
is the most compact one. More specifically, the core of a universal
solution U is (up to isomorphism) the smallest subset V of U such
that V is homomorphically equivalent to U . Fagin, Kolaitis, and
Popa [9] argue that the core of a data exchange problem should be
the solution of choice.

Main research question tackled. Computing the core of an ar-
bitrary instance is, however, NP-hard, as this is equivalent to com-
puting the core of a graph [13, 9], computing the smallest equiva-
lent subquery contained in a conjunctive query [4], or computing

the condensation of a clause [11]. Therefore, Fagin et al. [9] won-
dered, whether the core of a universal solution of a data exchange
problem whose target TGDs are weakly acyclic can be efficiently
computed.

Problem [9]: Given a data exchange problem whose
source-to-target constraints are TGDs and whose tar-
get constraints consist of weakly-acyclic TGDs and ar-
bitrary EGDs, can the core of a universal solution be
computed in polynomial time?

This is precisely the problem we tackle in this paper. While there
has been some progress and partial answers, the problem remained
open for about three years. It was also mentioned as an important
open Problem in Kolaitis’ invited PODS’05 talk and paper Schema
Mappings, Data Exchange, and Metadata Management [14]. The
main result of the present paper is the following positive answer to
this question.

Theorem 10. The core of a universal solution of a data
exchange problem whose source-to-target constraints
are TGDs and whose target constraints consist of weakly-
acyclic TGDs and arbitrary EGDs can be computed in
polynomial time.

The proposed solution to the problem is technically rather in-
volved. It led us to several insights and results that may be of more
general interest, even outside the context of data exchange.

Before giving an informal outline of our new methods in Sec-
tion 3, we first report in Section 2 on pertinent previous work that
solved some relevant parts of the problem. Our exposition in these
two sections is necessarily informal and approximate. These sec-
tions are followed by more technical material. Section 4 contains
technical preliminaries and precise definitions. In Section 5, we
derive some properties of retractions. In Section 6 we solve the
core computation problem for weakly-acyclic TGDs as target con-
straints, and in Section 7 we show how to also handle EGDs.

2. PREVIOUS RESULTS
Fagin, Kolaitis, and Popa [9] proved that the core of a univer-

sal solution can be computed in polynomial time in two restricted
settings:

• When the set Σt of target constraints is empty.
• When the set Σt of target constraints contains EGDs only.

They provided two different methods to obtain these results, of
which one is directly relevant to our present work, namely, the
blocks method. This method is based on the observation that the
Gaifman graph of the variables of the result T of applying the
source-to-target TGDs to a ground source instance S consists of
connected components whose size is bounded by a constant b. Such
instances T have a nice property: checking whether there is a ho-
momorphism from any T ∈ K where K is any set of instances
with such bound b into any arbitrary other instance T ′ is feasible in
polynomial time. In fact, this test essentially boils down to check
whether each of these blocks has a homomorphism to T′. The core
of T can then be obtained by checking whether T admits an en-
domorphism1 h : T −→ T such that |h(T)| < |T | and if so,
replacing T by h(T). This process is repeated until T cannot be
further shrunk via endomorphisms. The result the core.

Fagin et al. then extended this method to the case where Σt con-
sists of EGDs. The difficulty here is that EGDs, when applied, can
1i.e., a homomorphism from T into itself.

41

merge blocks by equating variables from different blocks. Thus,
after chasing EGDs over T , the result TΣt has, in general, lost the
bounded block-size property. However Fagin et al., by an insight-
ful Rigidity Lemma [9] show that after equating a sequence of vari-
ables while enforcing EGDs, the final remaining variable is rigid,
i.e., can be mapped only to itself in every endomorphism. The re-
sulting instance TΣt has thus the bounded block-size property if
we treat such variables as constants.

In [10] Gottlob has shown that computing cores is tractable if the
target dependencies Σt consist of full TGDs, i.e., TGDs without
existentially quantified variables, and arbitrary EGDs. Note that a
set of full TGDs is weakly acyclic.

For full TGDs the situation is rather complex. While T = SΣst

has bounded block size, TΣt has in general neither bounded block
size nor rigid variables. In fact, while TΣt contains no additional
variables, different blocks of T can be merged through the creation
of new atoms. A full TGD of the form r(x, y) ∧ r(z, t) → r(y, t)
may obviously merge blocks. This situation is depicted in figure 1,
where the original blocks of T are depicted as ovals, and where
some new atoms created via full TGDs are depicted as black boxed.
These atoms may connect previously separate blocks and as a re-
sult, very large blocks may arise. However, it was shown in [9] that

x1 x2

x3 x4

x5 x6

x7 x8

x9 x10

T

TΣt no additional variables

Figure 1: Structure of the target instance T Σt in case Σt con-
sists of full TGDs only

for checking whether a universal solution B ⊆ TΣt is is not yet
the core, it suffices to look for a non-injective mapping h from the
domain of T to the domain of B such that h(T) ⊂ B is a homo-
morphism T −→ B. 2 If such a mapping exists, it can be found
in polynomial time by exploiting the bounded block-size of T . We
further showed that this mapping h : T −→ B is actually a non-
injective endomorphism TΣt −→ B (recall that T and TΣt have
the same domains). Moreover, h can be transformed in polynomial
time into a non-injective retraction of of TΣt . A retraction is an
idempotent endomorphism. We needed to consider retractions and
not arbitrary endomorphisms, because for a retraction r it holds that
r(TΣt) |= Σt, while this is not always true for endomorphisms in
general (as will be made clear through Example 1 in Section 5).
Starting from B = TΣt , by successively replacing B with B′ as
described, we eventually reach the core.

This tractability result was then extended in [10] to the setting
where Σt contains EGDs in addition to full TGDs. This was achie-
ved by a simulation of EGDs through full TGDs. Note that with
2In[9], such mappings were called “useful” endomorphisms.

full TGDs and EGDs we can express functional, join, and multival-
ued dependencies, but not inclusion dependencies or foreign key
constraints.

Another relevant class of data exchange problems arises when
the set Σt of target constraints is restricted to contain weakly acyclic
simple TGDs and arbitrary EGDs. A simple TGD is one whose left
side consists of a single atom with no repeated variables. In [10]
it was shown that for this class of problems, the core can be com-
puted in polynomial time, too. The proof is based on the obser-
vation that chasing with simple TGDs does not change hypertree
width [12]. This class is practically relevant, because it covers as
target constraints the important class of functional dependencies
and acyclic inclusion dependencies, and thus also foreign key con-
straints (as long as they do not destroy weak acyclicity). However
it does not include multivalued or join dependencies. Fagin [7] has
shown tractability for a slightly larger class by different means.

3. OUTLINE OF MAIN NEW IDEAS
In this section, we outline the main ideas underlying our solu-

tion of the core computation problem for the general case, when
the target constraints Σt may consist of weakly-acyclic TGDs and
arbitrary EGDs. Such constrains encompass all major types of data
dependencies. We will first deal with weakly-acyclic TGDs as tar-
get constraints and then show how EGDs can be added.

For weakly-acyclic TGDs the situation is yet more complicated
than for full TGDs. Again, let T denote a target instance ob-
tained by chasing the source instance S with the source-to-target
constraints Σst (for an arbitrary chase order). As before, T has
bounded block-size. However, while in the case of full TGDs, T
already contained all variables of TΣt , now there can be further
variables outside T and these variables can appear in large (un-
bounded) blocks of TΣt , see Figure 2. We cannot proceed, as in

y1

y2

y3

y4

TΣt

x1 x2

x3 x4

x5 x6

x7 x8

x9 x10

y5 y6

y7

y8

y9

y10 y11

y12 y13

y14

T

Figure 2: Structure of the target instance T Σt in case Σt con-
sists of weakly acyclic TGDs

the case of full TGDs, by trying to find a non-injective homomor-
phism h from T to some intermediate instance B ⊂ TΣt and hope
that h extends automatically to a non-injective endomorphism of
TΣt → B. In fact, there may not exist any non-injective homo-
morphism T → B, while there may well exist a non-injective
endomorphism h of TΣt → B such that h(TΣt) ⊂ B, where
h(x) = h(y) for two distinct values x and y that are not both in
T . But variables outside T may appear in large blocks and it is
thus not at all obvious how homomorphisms involving them can be
found in polynomial time.

42

Our solution of this problem is based on the following ideas.

Idea 1. For technical reasons, we compute non-injective retrac-
tions TΣt → B rather than arbitrary (i.e., not necessarily idem-
potent) non-injective endomorphisms. The reason is that if h is a
retraction, then h(TΣt) |= Σt (Theorem 4). Note that this is not
true for arbitrary endomorphisms (see Example 1). In order to find
a non-injective retraction, we can always find a non-injective en-
domorphism of TΣt first and then transform it in polynomial time
into a suitable retraction (Theorem 5).

If x is a variable of TΣt that was introduced at some chase step
via an existential TGD ξ from Σt, then the parents of x are all
values occurring in the atoms that made ξ fire and the siblings are
all other new variables introduced at the same chase step. The an-
cestors of a variable are defined in the usual way via the transitive
closure of the parent relation.

Idea 2. We observe that each variable of TΣ has a bounded set of
ancestors and a bounded set of siblings of ancestors. Our idea is to
exploit this fact.

The next idea deals with how to exploit the bounded set of an-
cestors.

Idea 3. Assume that we have already constructed a retraction h :
TΣt → B ⊆ TΣt and we want to see whether B can be further
shrunk. This means that we need to see whether two distinct values
x, y of B can be further “lumped together” by a homomorphism h′

such that h′(x) = h′(y). To this aim, we define, for all pairs of dis-
tinct values x, y of B, the sub-instance Txy ⊂ TΣt which contains
all atoms over the set of values of T , x y, and their siblings, and
all ancestors of x and y and the siblings of these ancestors. Given
that T has bounded block-size and that the number of ancestors and
siblings of each variable is bounded by a constant, these sets Txy

all have bounded block-size. We can then check for each Txy in
polynomial time whether there is a homomorphism Txy → B such
that x and y are mapped to the same element z, see Figure 3.

y

x

h(Txy)

Txy

B

z

TΣt

Figure 3: Improvement of a homomorphism

If this is possible for some Txy, then this homomorphism h can
be extended in polynomial time to an non-injective endomorphism
h : TΣt → B such that h(TΣt) ⊂ B. Then, as explained before,
from such a h we can compute in polynomial time a retraction h′ of
TΣt such that h′(TΣt) ⊂ h(B) ⊂ B and thus B can be replaced
by a smaller instance h(B) which also satisfies Σt. Otherwise B
is already the core.

In order to establish that each homomorphism Txy → B ⊆ TΣt

mapping x and y to the same element can be extended in polyno-
mial time to to an endomorphism TΣt → B such that h(B) ⊂ B,

we show a slightly stronger result:

Idea 4. We show that whenever a subset A of TΣt contains T and
is closed under ancestors and siblings, and whenever B satisfies
Σt, then any homomorphism h : A → B can be extended in poly-
nomial time to an homomorphism from TΣt → B. (Theorem 7)

These are the four main new ideas we used in order to show that
the core can be computed in polynomial time in case Σt consists of
TGDs only. To cover, in addition EGDs, we need two further ideas

Idea 5. We simulate EGDs by full TGDs by introducing an ad-
ditional binary relation E which stands for ‘equal’ and by adding
some consistency rules which say that values which are marked as
equal in the E relation are indistinguishable by the other relations
of the target database.

This simulation introduces a big new problem. Adding the new
full TGDs may create new cycles and will in general yield a set of
TGDs which is not weakly acyclic. Therefore, there is a risk that
the chase will not terminate. Here comes our final idea that solves
this problem, too.

Idea 6. We observe that for a particular chase order which can be
statically determined, TGDs with existentially quantified variables
will never fire on premises containing variables whose ancestor-tree
exceeds a certain depth. Thus the chase terminates in polynomial
time, and the crucial bounded-ancestors property is still guaranteed.

This concludes the rather superficial presentation of our main
ideas. In the rest of this paper we will make these ideas more con-
crete and provide the glue for putting them together.

4. TECHNICAL PRELIMINARIES
Basics. A schema σ is a list of relation symbols and their arities.

An instance A over σ has one relation for every relation symbol in
σ, of the same arity. We write arity(R) for the arity of a relation
R.

We define the domain dom(A) of an instance A as the set of
values which appear in A. In this paper, we consider only fi-
nite instances with two types of values: constants and variables.
The latter are also known as labeled nulls. We write var(A) for
the variables in A and const(A) for the constants in A; therefore
dom(A) = var(A)∪const(A). If A contains no variables, we say
it is ground.

We write ā for a tuple (a1, . . . , ar) where the arity r is usually
clear from context. We write a ∈ ā whenever a = ai for some
i satisfying 1 ≤ i ≤ r. In some cases, we overload the nota-
tion ā to denote just a list of variables a1, . . . , ar; which use is
intended should be clear from context. In particular, sometimes we
write ā ∈ X to denote a1, . . . , ar ∈ X which is equivalent to
(a1, . . . , ar) ∈ Xr . This is a useful convention since it is cum-
bersome to write instead ā ∈ Xr when the arity r of ā has not
been explicitly introduced. Similarly, we write ā
∈ X to denote
a1, . . . , ar
∈ X, which is different from (a1, . . . , ar)
∈ Xr.

The Gaifman graph G(T) of instance T is the undirected graph
G with vertex set V G := dom(T) where there is an edge be-
tween x, y ∈ dom(T) iff x and y appear together in some tuple
of some relation of T . The Gaifman graph of variables GV (T)
of instance T is G(T) restricted to the variables in T . A block
of T is a connected component of GV (T). We write blocks(T)
for the set of all blocks of T . If v ∈ var(T) then block(v, T)
denotes the block of T containing v. Let V ⊆ var(T), then
blocks(V, T) =

S
v∈V {block(v, T)}, i.e., blocks(V, T) is the set

of all blocks of T that contain at least one variable from V . The
block size of an instance T , denoted by blocksize(T) is the maxi-

43

mum number of variables appearing in a block of T . We say that a
set of instances K has bounded block size if there is a bound b such
that the block size of every T ∈ K is ≤ b.

We adopt the RAM model for our complexity bounds.
Homomorphisms. A function f : dom(A) → dom(B) is a

homomorphism if whenever R(ā) holds in A, R(h(ā)) holds in B
and if h(c) = c for every constant in A. We write A → B in
case there is a homomorphism between A and B. If A → B and
B → A, we say that A and B are homomorphically equivalent,
which we write A ↔ B. If K is a set of instances, we say that T
is universal for K if for all A ∈ K, T → A.

An injective homomorphism whose inverse is also a homomor-
phism.is an isomorphism. A homomorphism h : A → A is an en-
domorphism of A. Since we only consider finite instances, notice
that an endomorphism is surjective iff it is injective. An endomor-
phism r on A is a retraction if r is the identity on its range. That
is, if r is idempotent (r ◦ r = r). If also r(A) = B ⊆ A, we say
that B is a retract of A and we write A ↪→ B. If A ↪→ B, then
A ↔ B; that is, A and B are homomorphically equivalent since r
is a homomorphism A → B and the identity is a homomorphism
B → A. A retraction is proper if it is not surjective (which in the
case of finite instances is the same as not injective). An instance is
a core if it has no proper retractions. A core C of an instance A is
a retract of A which is a core. That is, C is a minimal retract of A.
Cores of an instance A are unique up to isomorphism and therefore
we can talk about the core of A, which we denote core(A). It fol-
lows that A and B are homomorphically equivalent iff their cores
are isomorphic. In symbols: A ↔ B iff core(A) ≈ core(B).

Constraints. In this paper, we only consider constraints ξ of the
form

φ(ū) → ∃v̄ ψ(ū, v̄)

where φ and ψ are conjunctions of atoms, which may include equa-
tions. We adopt the standard convention that all variables which are
not otherwise quantified are universally quantified and we require
that all variables ū appear in φ. Such constraints are known as em-
bedded (implicational) dependencies [6]. We call φ the premise
and ψ the conclusion. If v̄ is empty, then ξ is a full dependency. If
ψ consists only of equations, then ξ is an equality-generating de-
pendency (EGD). If ψ consists only of relational atoms, then ξ is
a tuple-generating dependency (TGD). Every set Σ of embedded
dependencies is equivalent to a set of TGDs and EGDs. We write
A |= Σ if the instance A satisfies all the constraints in Σ. In this
paper we only consider finite sets of constraints and to simplify the
presentation we do not say this explicitly in the statement of every
result.

We define the width of ξ to be the arity of ū and the height of ξ
to be the arity of v̄. For a set Σ of constraints, the width of Σ is the
maximum width of a constraint in Σ and the height of a Σ is the
maximum height of a constraint in Σ.

Chase: Basics. The chase is a well-known algorithm which pro-
ceeds step by step as follows. Assume Σ is a set of TGDs and
EGDs. We set AΣ

0 = A. To obtain AΣ
s+1 from AΣ

s we proceed as
follows. If there is some constraint ξ ∈ Σ of the form

φ(ū) → ∃v̄ ψ(ū, v̄)

such that AΣ
s
|= ξ, we say that ξ applies to AΣ

s . In this case,
there must be some ā such that AΣ

s |= φ(ā), but no b̄ such that
AΣ

s |= ψ(ā, b̄). For every such ā, we say that ξ applies to AΣ on
ā. There may be several constraints in Σ that apply to AΣ

s and for
each of them, several tuples they apply on. Of these a constraint
ξ and a tuple ā are chosen by some total order on the pairs (ξ, ā).
Then AΣ

s+1 is obtained from AΣ
s as follows. If ξ is a TGD, then

we add to dom(AΣ
s) new variables b̄ and to the relations in AΣ

s the
tuples that make up the conclusion ψ(ā, b̄) to get AΣ

s+1 |= ψ(ā, b̄).
If ξ is an EGDs, we may assume that ψ consists of a single equality
ui = uj . If ai and aj are two distinct constants, the chase fails.
Otherwise, AΣ

s+1 := h(AΣ
s) where h satisfies h(ai) = h(aj) = ai

and is the identity on all other values. Either way, AΣ
s+1 |= ξ(ā)

and AΣ
s → AΣ

s+1.
Chase: Parents, ancestors and siblings. Assume, the variables

b̄ are new variables introduced in a chase step that corresponds to
a firing of a rule whose precondition is φ(ā) and which makes
ψ(ā, b̄) true, as above. If b ∈ b̄, we call every value in ā a par-
ent of b and any other variable in b̄ a sibling of b. If Σ has width w
and height e, then every x ∈ dom(AΣ) has at most e − 1 siblings
and at most w parents. We take the ancestor relation to be the tran-
sitive closure of the parent relation. We define the depth depth(x)
of a value x to be one more than the depth of its deepest parent
and the depth of the values in dom(A) to be zero. Notice that con-
stants have no ancestors, no siblings, and depth zero. Also notice
that a variable may have few ancestors yet may not be introduced
by any short chase sequence, for example, because it may not be
introduced until many full TGDs fire.

Chase: Order, termination, and universality. If for some AΣ
s

no constraint applies, we say that the chase terminates and we set
AΣ := AΣ

s . If there is no such step, AΣ is undefined. AΣ is
also undefined when the chase fails. In general, AΣ depends on
the order of the chase, but to keep the notation simple we will not
explicitly indicate this order. If AΣ is defined, then AΣ |= Σ,
A → AΣ, and AΣ is universal for {B : A → B, B |= Σ} [15, 2,
6, 3, 1]. We write AΣ,Σ′

for (AΣ)Σ
′
.

Since the chase does not always terminate, it is natural to ask
for sufficient conditions for its termination. The following wide,
sufficient condition on Σ for the termination of the chase on any
instance, weak acyclicity was introduced in [5] and [8].

DEFINITION 1. [8, 5] A position is a pair (R, i)
(which we write Ri) where R is a relation symbol of arity r and
i satisfies 1 ≤ i ≤ r. We say that x occurs in Ri in φ if there is
an atom of the form R(. . . , x, . . .) in φ where x appears in the ith
position. The dependency graph of a set Σ of TGDs is a directed
graph where the vertices are the positions of the relation symbols
in Σ and, for every TGD ξ of the form

φ(ū) → ∃v̄ ψ(ū, v̄)

there is

1. an edge between Ri and Sj whenever some u ∈ ū occurs in
Ri in φ and in Sj in ψ and

2. an edge between Ri and Sj whenever some u ∈ ū appears
in Ri in φ and some v ∈ v̄ occurs in Sj in ψ. Furthermore,
these latter edges are labeled with ∃ and we call them exis-
tential edges.

Σ is weakly acyclic if its dependency graph has no cycles with an
existential edge. We say that a set Σ of TGDs and EGDs is weakly
acyclic if the set of TGDs in Σ is weakly acyclic.

DEFINITION 2. If Σ is a weakly-acyclic set of TGDs, then the
depth depth(Ri) of a position Ri of a relation symbol R in Σ is the
maximal number of existential edges in a path in the dependency
graph for Σ ending at that position. The depth of Σ is the maximal
depth of a position of a relation symbol in Σ. Notice that chasing a
ground instance A with weakly-acyclic TGDs Σ of depth d, results
in an instance AΣ where the depth of every value is at most d.

44

THEOREM 1 ([8, 5]). For every weakly-acyclic set Σ of TGDs
and EGDs, there are b and c such that, for any A, regardless of the
order of the chase and except for the case where the chase fails due
to EGDs,

1. AΣ is defined, and
2. AΣ can be computed in O(|A|b) steps and in time O(|A|c).

Data Exchange We consider the setting where we have two
schemas σ and τ which do not share any relation symbols. Given
an instance S over σ and instance T over τ , the instance (S, T)
over σ ∪ τ is the instance which has all the relations in S and all
those in T . Given a set of constraints Σ over σ ∪ τ , we say that T
is a solution for S under Σ if (S, T) |= Σ. When Σ is clear from
context, we simply say that T is a solution for S. We say that U is a
universal solution for S if it is a solution for S and if it is universal
for the set of all solutions for S. As in [8], we assume that source
instances of a data exchange problem are ground.

A constraint ξ over (σ, τ) is source-to-target if the premise of
ξ is over σ and the conclusion of ξ is over τ . Notice that any set
of source-to-target TGDs is weakly acyclic. We will consider the
special case of settings where Σ = Σst ∪ Σt with Σst a set of
source-to-target TGDs and Σt a set of TGDs and EGDs. With these
restrictions, (σ, τ, Σst, Σt) is known in the literature [8] as a data
exchange setting.

THEOREM 2 ([8]). If Σ := Σst ∪ Σt where

• Σst is a set of source-to-target embedded dependencies and
• Σt is a weakly-acyclic set of TGDs,

and (S, ∅)Σ is defined and is equal to (S, U) for some U , then U is
a universal solution for S under Σ.

The following result was given in somewhat different form in
[9].

THEOREM 3 ([9]).

1. If Σ is a set of source-to-target constraints of height e, S is
ground, and (S, T) = (S, ∅)Σ, then blocksize(T) ≤ e.

2. If blocksize(A) ≤ c, then we can check whether A → B
holds in time O(|B|c).

5. RETRACTIONS AND CORES
A homomorphism r : A → B ⊆ A is a retraction if r is the

identity on dom(B). That is, r is an idempotent endomorphism.
In this case we say that B is a retract of A and we write A ↪→ B.
Clearly, if A ↪→ B, then A ↔ B; that is, A and B are homo-
morphically equivalent. A retraction is proper if it is not surjective
(which in the case of finite instances is the same not injective). An
instance is a core if it has no proper retractions. A core C of an
instance A is a retract of A which is a core. That is, C is a minimal
retract of A. Cores of an instance A are unique up to isomorphism
and therefore we can talk about the core of A. It follows that A and
B are homomorphically equivalent iff their cores are isomorphic.

THEOREM 4. If Σ is a set of embedded dependencies, then Σ
is closed under retractions. That is: if A |= Σ and A ↪→ B, then
B |= Σ.

PROOF. Assume ξ is an embedded dependency of the form

φ(ū) → ∃v̄ ψ(ū, v̄)

with v̄ possibly empty, A |= ξ, and h : A ↪→ B. Then if B |= φ(̄b)
for b̄ ∈ dom(B), then also A |= φ(b̄). Therefore, since A |=

ξ, there are ā ∈ dom(A) such that A |= ψ(b̄, ā). This implies
B |= ψ(h(b̄), h(ā)) and, since h is a retraction and b̄ ∈ dom(B),
h(b̄) = b̄, so B |= ψ(b̄, c̄) for c̄ = h(ā). That is, B |= ξ.

On the other hand even full dependencies are not closed un-
der endomorphisms, as the following example, adapted from [10],
shows.

EXAMPLE 1. Assume A is an instance with a single binary re-
lation R containing the tuples {(x, z), (x, a), (z, y), (a, z), (a, a)}
where x, y, z are variables and a is a constant, Σ consists of the
single constraint

R(u,w), R(w, w), R(w, v) → R(u, v),

and h(x) = x, h(y) = z, h(z) = a, h(a) = a. Then A |= Σ and
h is an endomorphism of A, but h(A), which consists of R with
tuples {(x, a), (a, z), (a, a)} does not satisfy Σ since R does not
contain (x, z).

In general, one can obtain the core of an instance A by succes-
sively applying non-surjective endomorphisms. However, if an in-
stance A satisfies some constraints Σ, then even though its core C
satisfies Σ by Theorem 4, the image h(A) of A under an endomor-
phism h may not satisfy Σ as Example 1 shows. In Theorem 9 we
will compute the core of an instance U which satisfies some con-
straints Σ by computing a chain U = U0 ⊃ U1 ⊃ U2 ⊃ . . . ⊃ Un,
but we will need each Ui to satisfy Σ. Therefore, we will ensure
that for each i, Ui ↪→ Ui+1 and in order to do this, we use the
following result, which was essentially proved in [10].

THEOREM 5 ([10]). Given an endomorphism h : A → A
such that h(x) = h(y) for some x, y ∈ dom(A), there is a proper
retraction r on A such that r(x) = r(y). Moreover, such retraction
can be found in time O(|dom(A)|2).

6. WEAKLY-ACYCLIC TGDS
In this section we prove the following result.

THEOREM 6. For every Σ := Σst ∪ Σt where

• Σst is a set of source-to-target embedded dependencies and
• Σt is a weakly-acyclic set of TGDs

and every ground instance S, a core of a universal solution U for S
under Σ can be computed in time O(|dom(S)|b) for some b which
depends only on Σ.

In order to prove Theorem 6, we need several intermediate re-
sults. In the proof we chase (S, ∅) with Σst to obtain (S, T),
then chase T with Σt to obtain U . Then (idea 1) we compute
the core of U by successively applying proper retractions (Theo-
rem 9) instead of non-surjective endomorphisms. In order to find
such proper retractions efficiently, we (idea 3) identify a set of frag-
ments Txy of U : one such fragment Txy only slightly larger (idea
2) than T satisfying T ⊆ Txy ⊆ U for every pair of distinct values
x, y ∈ dom(U) (Lemma 1). Finding a homomorphism from Txy

to any instance B is easy, since it is easy for T . Furthermore (idea
4), such a homomorphism Txy → B can be extended to a homo-
morphism U → B when B |= Σ (Theorem 7). This is enough
to show that we can check efficiently whether any U′ ⊆ U satis-
fying U ′ |= Σ has a proper retraction (Theorem 8) since U′ has a
proper retraction iff there are distinct values x, y ∈ dom(U′) such
that there is a homomorphism Txy → U ′. Notice that we need
U ′ |= Σ and therefore we compute the core by successively ap-
plying proper retractions (cf. Theorem 4) instead of non-surjective

45

endomorphisms (cf. Example 1). At the end of this section, we
present an algorithm that performs all these steps.

The following lemma corresponds to idea 2 in Section 3.

LEMMA 1. For every weakly-acyclic set Σ of TGDs of depth d,
width w, and height e, instance T , and x, y ∈ dom(TΣ), there is
Txy satisfying

1. x, y ∈ dom(Txy),
2. |dom(Txy)| ≤ |dom(T)| + 2edwd,
3. T ⊆ Txy ⊆ TΣ,
4. dom(Txy) is closed under parents and siblings, and
5. Txy can be computed in time O(|dom(T)|c) for some c which

depends only on Σ.

PROOF. Assume Σ, x, y, and T satisfy the hypotheses. Then
every value in TΣ has depth at most d. If x has nonzero depth, then
it was introduced into relations in TΣ by some step of the chase,
which must have fired on some set of tuples of TΣ.

For any x, set Ax to be x and all its ancestors and Ex to be Ax

and all siblings of elements in Ax. That is, Ex is the smallest set
containing x which is closed under parents and siblings. An easy
induction on depth shows that |Ax| ≤ dwd and |Ex| ≤ edwd.
We can compute Ax and Ex in time O(|dom(T)|d) where d de-
pends only on Σ. Similarly, compute Ay and Ey. Set Txy :=
T ∪ (TΣ|(Ex ∪ Ey)). Clearly, Txy can be computed in time
O(|dom(T)|c) for some c that depends only on Σ and it satisfies
requirements 1 through 4.

The following theorem corresponds to idea 4 in Section 3.

THEOREM 7. If Σ is a set of weakly-acyclic TGDs, and B, T ,
and W are instances satisfying

1. B |= Σ,
2. T ⊆ W ⊆ TΣ, and
3. dom(W) is closed under ancestors and siblings,

then any homomorphism h : W → B can be extended in time
O(|dom(T)|b) to a homomorphism h′ : TΣ → B where b depends
only on Σ.

PROOF. Assume 1, 2, and 3 hold and there is a homomorphism
h : W → B. Then h can be extended to the desired h′ in time
O(|dom(T)|b) where b depends only on Σ as follows. Assume
that the chase of T with Σ terminates in t steps. That is, TΣ = TΣ

t .
We will compute a sequence of homomorphisms h0 := h ⊆ h1 ⊆
. . . ⊆ ht such that hs : Ts → B where Ts := TΣ

s ∪ W . Since
TΣ

0 = T ⊆ W , the homomorphism h0 = h is a homomorphism
T0 = W → B. Since W ⊆ T Σ we have TΣ = TΣ

t = Tt and
therefore h′ := ht is the desired extension.

To obtain the homomorphism hs+1 from the homomorphism hs

we proceed as follows. Assume that TΣ
s+1 is obtained from TΣ

s by
firing a constraint ξ of the form

φ(ū) → ∃v̄ ψ(ū, v̄)

on ā ∈ dom(TΣ
s) where in the case of full TGDs v̄ is empty. That

is TΣ
s |= φ(ā) and TΣ

s+1 |= ψ(ā, b̄) for some b̄ ∈ dom(TΣ
s+1) −

dom(TΣ
s). Since hs is a homomorphism Ts → B and φ is mono-

tonic, B |= φ(hs(ā)). The only tuples introduced into relations
in TΣ

s+1 are those in ψ(ā, b̄). Therefore it is sufficient to define
hs+1 ⊇ hs so that B |= ψ(hs+1(ā), hs+1(b̄)).

If ξ is a full TGD, we set hs+1 := hs. Since B |= Σ, we have
B |= ψ(hs(ā)). Otherwise, since Ts is closed under siblings, there
are only two cases to consider:

1. b̄ ∈ dom(Ts) and
2. b̄
∈ dom(Ts).

In case (1) we set hs+1 := hs. Since b̄ ∈ dom(Ts)−dom(TΣ
s)

and Ts = TΣ
s ∪W , we must have b̄ ∈ dom(W). Since W is closed

under parents, ā ∈ dom(W) and therefore W |= ψ(ā, b̄). Since
h0 : T0 = W → B is a homomorphism, B |= ψ(h0(ā), h0(b̄))
and therefore, since hs+1 ⊇ h0, B |= ψ(hs+1(ā), hs+1(b̄)).

In case (2) we set hs+1(x) := hs(x) for any x ∈ dom(Ts) and
hs+1(b̄) := c̄ for some c̄ such that B |= ψ(hs(ā), c̄). Such c̄ exists
because B |= Σ. Then B |= ψ(hs+1(ā), hs+1(b̄)).

Since Σ is weakly-acyclic, by Theorem 1 t is O(|dom(T)|p) for
some p which depends only on Σ and this implies that the extension
h′ = ht can be obtained in time O(|dom(T)|b) where b depends
only on Σ.

THEOREM 8. For any weakly-acyclic set Σ of TGDs and in-
stance T , we can check whether any retract U′ of U = TΣ has a
proper retraction (i.e., whether U ′ is not a core) and find it in time
O(|dom(TΣ)|b) where b depends only on Σ and blocksize(T).

PROOF. For every x, y ∈ dom(U ′), compute Txy with the prop-
erties given in Lemma 1 and test whether there is a homomorphism
h : Txy → U ′ such that h(x) = h(y). Then U ′ has a proper
retraction iff there are such x, y, h by Claims 1 and 2 below.

Such Txy exist and can be computed in time O(|dom(T)|c) for
some c which depends only on Σ by Lemma 1. Therefore, since
there are at most |dom(U ′)|2 pairs (x, y), the result follows from
Claims 3 and 4 below.

Claim 1: r is a proper retraction on U′ iff there are x, y ∈
dom(U ′) such that r(x) = r(y). This is obvious.

The following claim corresponds to idea 3.
Claim 2: If x, y ∈ dom(U ′), then there is a homomorphism

h : Txy → U ′ such that h(x) = h(y) iff there is a retraction r on
U ′ such that r(x) = r(y).

Proof. Since U ′ is a retract of U and U |= Σ, we have U ′ |= Σ
by Theorem 4. Therefore, if there is a homomorphism h : Txy →
U ′ such that h(x) = h(y), then h can be extended to a homomor-
phism h′ : U → U ′ by Theorem 7 (remember we have U = TΣ

and we can set W := Txy and B := U ′ to satisfy the hypotheses
of the theorem). Then h′′ := h′|U ′ is an endomorphism of U′ with
h′′(x) = h′′(y). By Theorem 5, there is a retraction r of U ′ such
that r(x) = r(y).

Conversely, if there is a retraction r on U ′ such that r(x) = r(y),
then since U ′ is a retract of U , we know that there is a retraction
r′ : U ↪→ U ′. If there is also a retraction r on U ′ such that r(x) =
r(y), then r′′ = r ◦ r′ satisfies r′′(x) = r′′(y). Therefore h :=
r′′|Txy is a homomorphism Txy → U ′ satisfying h(x) = h(y).

Claim 3: Given x, y ∈ dom(U ′) and a homomorphism h :
Txy → U ′ such that h(x) = h(y), a retraction r on U′ such that
r(x) = r(y) can be found in time O(|dom(U)|c) for some c which
depends only on Σ.

Proof. This follows directly from the proof of Claim 2, since
Lemma 1, Theorem 7, and Theorem 5 guarantee that h′, h′′, and r

can all be found in time O(|dom(U)|c′) for some c′ which depends
only on Σ.

Claim 4: Checking whether, for any x, y ∈ dom(U′), there is a
homomorphism h : Txy → U ′ such that h(x) = h(y) (and if so,

finding it) can be done in time O(|dom(U)|c′′) for some c′′ which
depends only on Σ and blocksize(T).

Proof. Set s := blocksize(T). Since |dom(Txy)| ≤ |dom(T)|+
2edwd by Lemma 1, the set

{Txy : x, y ∈ dom(U ′), T ∈ K}
has block size bound s + 2edwd and therefore Theorem 3 implies
the claim except for the additional requirement that h(x) = h(y).
Handling this additional requirement is straightforward.

46

THEOREM 9. For every s and weakly-acyclic set Σ of TGDs,
there is b such that for any T with blocksize(T) ≤ s, the core of
TΣ can be computed in time O(|dom(T)|b).

PROOF. Set U := T Σ. By Theorem 1, U can be computed
in time O(|dom(T)|)d for some d that depends only on s and Σ.
To compute the core C of U efficiently we set U0 := U and we
compute a sequence U0, U1, . . . , Un such that

1. U0 ⊃ U1 ⊃ . . . ⊃ Un,
2. U0 ↪→ U1 ↪→ . . . ↪→ Un,
3. U0, U1, . . . , Un |= Σ, and
4. Un is a core.

Then Un is the core of U . Given Um satisfying 1 and 2 above,
we compute Um+1 as follows. We check whether Um has a proper
retraction r and find it. By Theorem 8, this can be done in time
O(|dom(U)|c) for some c which depends only on s and Σ. If so,
we set Um+1 := r(Um). Then Um+1 satisfies 1 and 2 above. Since
Σ is closed under retractions by Theorem 4, Um+1 also satisfies 3
above. If Um has no proper retraction, set n := m. By 1, we must
have n ≤ |dom(U)| and therefore we can compute Un, the core of
U , in time O(|dom(U)|c+1) from which the result follows.

PROOF. (Theorem 6) Assume Σ and S satisfy the hypotheses.
First compute (S, ∅)Σst , which is equal to (S, T) for some T . Next
compute U := TΣt . By Theorem 1, (S, ∅)Σst and TΣt are well
defined and can be computed in time O(|dom(S)|c) where c de-
pends only on Σ. We have

(S, ∅)Σ = (S, ∅)Σst,Σt = (S, T)Σt = (S, TΣt) = (S, U)

and therefore, by Theorem 2, U is a universal solution for S un-
der Σ. By Theorem 3 for any fixed Σ, the set of all T obtained
as above has bounded block size. Therefore, by Theorem 9 there
exists b such that for any S the core of U can be computed in time
O(|dom(T)|b). The result follows from Theorem 1.

The procedure FINDCORE computes the core of a universal so-
lution for a ground instance S under a set Σ as above in time
O(|dom(S)|b) for some b which depends only on Σ. The correct-
ness and efficiency of FINDCORE follow from Theorem 6 above.

Procedure FINDCORE

Input: Source ground instance S of a data exchange problem
Output: Core of a universal solution for S

1. Chase (S, ∅) with Σst to obtain (S, T) = (S, ∅)Σst .
2. Chase T with Σt to obtain U := TΣt .
3. For every x, y where x ∈ var(U), y ∈ dom(U), and x
= y
4. Compute Txy as in Lemma 1.
5. Look for a homomorphism h : Txy → U

such that h(x) = h(y).
6. If there is such h, then
7. Extend h to an endomorphism h′ on U .
8. From h′, compute a proper retraction r on U .
9. Set U := r(U).

10. Repeat from step 3.
11. Return U .

7. ADDING EGDS
In this section we prove the following result.

THEOREM 10. For every Σ := Σst ∪ Σt where

• Σst is a set of source-to-target embedded dependencies and
• Σt is a weakly-acyclic set of TGDs and EGDs.

and every ground source instance S, a core of a universal solution
U for S under Σ can be computed in time O(|dom(S)|b) where b
depends only on Σ.

In order to prove Theorem 10, we introduce a set Σ̄ of TGDs
which ‘simulates’ a set Σ of TGDs and EGDs (idea 5), in particular
in the sense that the core of a solution for S under Σ is the same as
the core of a solution for S under Σ̄ (Lemma 2). If Σ is a weakly-
acyclic set of TGDs and EGDs, Σ̄ is not necessarily weakly-acyclic
and Example 2 shows that the chase with Σ̄ does not terminate
on all orders. Nevertheless, we show that for a certain class of
chase orders which we call nice (idea 6) the chase is guaranteed
to terminate whenever Σ is weakly-acyclic (Theorem 11). This is
enough to complete the proof of Theorem 10.

The procedure to compute the core of a universal solution for
S under a set Σ as in Theorem 6 is the same as FINDCORE (see
Section 6) except that it includes an initial step to compute Σ̄. After
that, it proceeds with Σ̄ instead of Σ.

Given a set of TGDs and EGDs Σ over some signature τ , we de-
fine Σ̄ over the signature τ ∪{E} where E is a new binary relation
symbol by the following replacements on Σ.

1. Replace all equations with E-atoms. That is, replace x = y
with E(x, y).

2. Add the equality constraints:

(a) E(x, y) → E(y, x)

(b) E(x, y), E(y, z) → E(x, z)

(c) R(x1, . . . xk) → E(xi, xi)
for every R ∈ τ and i ∈ {1, . . . , k} where k is the
arity of R

3. Add the consistency constraints

(d) R(x1, . . . xk), E(xi, y) → R(x1, . . . , y, . . . xk) for ev-
ery R ∈ τ and i ∈ {1, . . . , k} where k is the arity of R
and where y appears in the same position in R as xi.

In step 1, EGDs are replaced by full TGDs which simulate them.
For example, “R(x, y), R(x, z) → y = z” becomes
“R(x, y), R(x, z) → E(y, z).”

The auxiliary relation E is not essential; Σ̄ can be replaced with
the constraints obtained from Σ̄ by removing the equality constraint
(2b) and then using resolution through E on the remaining con-
straints. However, the presentation is easier with an explicit rela-
tion E.

Σ and Σ̄ are over different signatures, but to simplify the pre-
sentation we will pretend that a model A of Σ also contains the
relation E given by the identity relation on its domain. As a result
of this convention, A |= Σ implies A |= Σ̄. Conversely, if EA is
the identity on dom(A) and A |= Σ̄, then A |= Σ.

LEMMA 2. Under the hypotheses of Theorem 10, Σ̄ consists
only of source-to-target embedded dependencies and a set (not nec-
essarily weakly-acyclic) of target TGDs such that C is the core of
a universal solution for Σ iff C is the core of a universal solution
for Σ̄.

PROOF. If U is a universal solution for S under Σ, then U is
also a solution for S under Σ̄. Furthermore, U is universal for the
solutions for S under Σ̄ as follows. Assume that T is a solution
for S under Σ̄. Pick an element x̂ from every equivalence class [x]
under E and define e so that e(y) = x̂ whenever y ∈ [x]. It is easy
to check that e is a retraction. Then T ′ = e(T) is a solution for
S under Σ̄ and ET ′

is the identity on dom(T ′) and therefore T ′ is

47

also a solution for S under Σ. Therefore, there is a homomorphism
h : U → T ′ ⊆ T , so h is also a homomorphism U → T . This
shows that U is also a universal solution for S under Σ̄.

Conversely, assume U is a universal solution for S under Σ̄. De-
fine e as above for U instead of T . Then U′ = e(U) is a solution
for S under Σ. Furthermore, U ′ is universal for the solutions for
S under Σ as follows. Assume that T is a solution for S under
Σ. Then T is also a solution for S under Σ̄ and therefore there is
a homomorphism h : U → T . It follows that h′ := h|U ′ is a
homomorphism U ′ → T .

Then if C is the core of U , it must also be the core of U′ since
U ′ is a retract of U and therefore homomorphically equivalent to
U .

If Σ is a weakly-acyclic set of TGDs and EGDs, Σ̄ is not nec-
essarily weakly-acyclic. It is natural to wonder whether AΣ̄ is de-
fined for any A; that is, whether the chase with Σ̄ terminates for all
orders as it does for Σ (see Theorem 1). The following example
shows that this is not so.

EXAMPLE 2. Assume that Σ consists of the constraints:

R(x, y) → ∃z T (x, y, z)
S(x, z) → ∃y T (x, y, z)

T (x, y, z), T (x, u, v) → u = y
T (x, y, z), T (x, u, v) → v = z

Then Σ̄ consists of the constraints:

ξ1 R(x, y) → ∃z T (x, y, z)
ξ2 S(x, z) → ∃y T (x, y, z)
ξ3 T (x, y, z), T (x, u, v) → E(u, y)
ξ4 T (x, y, z), T (x, u, v) → E(v, z)
ξ5 E(x, y) → E(y, x)
ξ6 E(x, y), E(y, z) → E(x, z)

together with 7 equality constraints α1, . . . , α7 of the kind (c) and 7
consistency constraints β1, . . . , β7 corresponding to positions R1,
R2, S1, S2, T 1, T 2, and T 3.

It is easy to verify that Σ is a weakly-acyclic set of TGDs and
EGDs. Yet, Σ̄ is not weakly acyclic. For example, there is a cycle of
length 4 through the positions R1, T 3, and E2 where the edges are
given by constraints ξ1, ξ4, and β1 and the first edge is existential.

If the instance A contains only the tuples R(1, 2) and S(1, 3),
then the chase of A with Σ̄ does not terminate for the chase order
that applies ξ1, ξ2, ξ3, ξ4, β2, and β4 repeatedly in the pattern
shown in Figure 4. Each line in the table indicates a constraint
that fired on some tuple and the new tuple that was introduced as
a result. We consider variables in alphabetic order. For example
the third line below indicates that ξ3 fired under the assignment
(u, v, x, y, z) := (2, a, 1, b, 3) introducing the tuple (2, b) into the
relation E. This chase continues forever.

Fix some weakly-acyclic set Σ of TGDs and EGDs. Consider
the dependency graph associated with the TGDs in Σ. If R is a
relation, we say that a tuple ā is good for R if the depth of every
value in it is smaller than or equal to the depth of the corresponding
position in R. That is, depth(ai) ≤ depth(Ri). If φ(x̄) is a
conjunction of atoms with variables x̄, we say that a tuple ā of the
same arity as x̄ is good for φ if the depth of every value ai in it is
smaller than or equal to the the depth of every position in φ where
xi appears. When R or φ are clear from context, we simply say that
ā is good. When we consider Σ̄, we still use the dependency graph
associated with the TGDs in Σ and ignore the E relation. Notice
that if a TGD fires on a tuple that is good for its premise, then all
tuples introduced by its conclusion are good.

New tuple constraint fired on
T (1, 2, a) ξ1 (1, 2)
T (1, b, 3) ξ2 (1, 3)
E(2, b) ξ3 (2, a, 1, b, 3)
E(3, a) ξ4 (b, 3, 1, 2, a)
R(1, b) β2 (1, 2, b)
S(1, a) β4 (1, 3, a)
T (1, b, c) ξ1 (1, b)
T (1, d, a) ξ2 (1, a)
E(2, d) ξ3 (2, c, 1, d, 3)
E(3, c) ξ4 (d, 3, 1, 2, c)
R(1, d) β2 (1, 2, d)
S(1, c) β4 (1, 3, c)
. . .

Figure 4: Non-terminating chase

DEFINITION 3. We say that a chase order is nice if whenever
several constraints apply, a constraint of the kind which appears
earliest in the following list is fired:

1. an equality constraint,
2. a consistency constraint,
3. a constraint firing on a tuple which is good for its premise,
4. a constraint firing on a tuple which is bad for its premise.

EXAMPLE 3. If we chase A from Example 2 with the con-
straints Σ from that example in a nice order, we get the terminating
chase shown in Figure 5. After the steps shown, all constraints in
Σ̄ are satisfied.

New tuple constraint fired on
E(1, 1) α1 (1, 2)
E(2, 2) α2 (1, 2)
E(3, 3) α4 (1, 3)
T (1, 2, a) ξ1 (1, 2)
E(a, a) α7 (1, 2, a)
T (1, b, 3) ξ2 (1, 3)
E(b, b) α6 (1, b, 3)
E(2, b) ξ3 (2, a, 1, b, 3)
E(b, 2) ξ5 (2, b)
E(3, a) ξ4 (b, 3, 1, 2, a)
E(a, 3) ξ5 (3, a)
R(1, b) β2 (1, 2, b)
S(1, a) β4 (1, 3, a)
T (1, 2, 3) β7 (1, 2, a, 3)
T (1, b, a) β7 (1, b, 3, a)

Figure 5: Terminating Chase

It turns out that the only constraints which apply to a bad tuple
are consistency constraints (Lemma 4), so we never fire constraints
of the kind 4 in the definition of nice order. This implies that bad tu-
ples are only introduced by consistency constraints and Theorem 11
below, similar to Theorem 1, follows.

If A is a model of Σ̄, we write x ≡ y if E(x, y) holds in A.
We extend the equivalence relation E on elements of the universe
to tuples as follows: if ā and b̄ are two r-tuples, then ā ≡ b̄ iff
ai ≡ bi for 1 ≤ i ≤ r.

48

LEMMA 3. If φ is a conjunction of relational atoms, A satisfies
all equality and consistency constraints, A |= ā ≡ b̄ and A |=
φ(ā), then also A |= φ(b̄).

PROOF. Assume the hypotheses and furthermore that the vari-
ables of φ are x̄. Then for every atom of the form R(xi1 , . . . , xik)
in φ we have A |= R(ai1 , . . . , aik). To show that A |= φ(b̄) it is
enough to show that also A |= R(bi1 , . . . , bik). Since A satisfies
the equality and consistency constraints, ai1 ≡ bi1 , . . . , aik ≡ bik ,
and A |= R(ai1 , . . . , aik), we also have A |= R(bi1 , ai2 , . . . , aik),
A |= R(bi1 , bi2 , ai3 , . . . , aik), ... A |= R(bi1 , . . . , bik) by the
consistency constraints, as desired.

We write [a] for the equivalence class {b : b ≡ a} of a. We write
πiR for the ith projection {ci : R(c̄)} of relation R.

LEMMA 4. If Σ is a weakly-acyclic set of TGDs and EGDs,
then at every step AΣ̄

s of the chase of A with Σ̄ using a nice order
such that AΣ̄

s satisfies the equality and consistency constraints, the
following holds:

1. For every relation R, if a ∈ πiR, then [a] ⊆ πiR.
2. For every relation R, if a ∈ πiR, then there exists b ≡ a

such that depth(b) ≤ depth(Ri).
3. If φ(ā) holds where φ is a conjunction of relational atoms,

then φ(b̄) holds for a tuple b̄ good for φ such that ā ≡ b̄.
4. If ξ fires on ā, then ā is good for the premise of ξ.

PROOF. (1) follows directly from the fact that the consistency
constraints are satisfied.

We show 2, 3, and 4 by induction on s. Clearly they hold for
s = 0 since then all values are constants and have depth 0. Now
assume that 2, 3, and 4 hold for AΣ̄

r for all r < s.
(2) If all values in AΣ̄

s are constants, then 2 holds trivially. Oth-
erwise there must be a largest value r < s such that a constraint ξ

which is not an equality or consistency constraint fired in AΣ̄
r . As-

sume ξ fired on tuple ā. Since 4 holds and AΣ̄
r satisfies all equality

and consistency constraints because the chase order is nice, ā is
good. Therefore, every new tuple introduced by the conclusion of
ξ into a relation R is good for that relation R. This implies that 2
holds for AΣ̄

r+1 The equality and consistency constraints which fire
after ξ only add values equivalent to those already in R, so 2 also
holds for AΣ̄

t for every every t such that r < t ≤ s.
(3) For every i, pick bi to be a value of minimal depth in [ai].

Since 2 holds, b̄ is good for φ. Assume the variables (all free)
of φ are x̄. Then for every atom of the form R(xi1 , . . . , xik) in
φ we have AΣ̄

s |= R(ai1 , . . . , aik). Since 1 holds, we also have
AΣ̄

s |= R(bi1 , . . . , bik). It follows that AΣ̄
s |= φ(b̄).

(4) Assume ξ is of the form φ(x̄) → ∃ȳψ(x̄, ȳ). We must have
AΣ̄

s |= φ(ā). If ā is not good, we get a contradiction as follows. By
3 we must have AΣ̄

s |= φ(b̄) for a tuple b̄ good for φ such that ā ≡ b̄.
Since we are chasing with a nice order, we must have AΣ̄

s |= ξ(b̄)

and this implies that there must be c̄ such that AΣ̄
s |= ψ(b̄, c̄). By

Lemma 3, we have AΣ̄
s |= ψ(ā, c̄). That is, AΣ̄

s |= ξ(ā) so ξ can
not fire on ā.

LEMMA 5. If Σ is a weakly-acyclic set of TGDs and EGDs of
depth d, then for any s all values in AΣ̄

s obtained by using a nice
chase order have depth ≤ d.

PROOF. This follows from Lemma 4 part 4, since constraints
which fire on tuples which are good for their premise introduce
tuples which are good for the relations they are introduced into.

THEOREM 11. For every weakly-acyclic set Σ of TGDs and
EGDs, any instance A, and any nice chase order,

1. AΣ̄ is defined, and
2. AΣ̄ can be computed in O(|dom(A)|b) steps and in time

O(|dom(A)|c) where b and c depend only on Σ.

PROOF. Immediate from Lemma 5.

THEOREM 12. For every weakly-acyclic set Σ of TGDs and
EGDs, any instance T , and any retract U′ of U = TΣ, we can
check whether U ′ has a proper retraction (i.e., whether U′ is not a
core) and find it in time O(|dom(TΣ)|b) where b depends only on
Σ and the block size of T .

PROOF. Similar to that of Theorem 8, except using Theorem 11
instead of Theorem 1.

THEOREM 13. For every weakly-acyclic set Σ of TGDs and
EGDs and any instance T , the core of TΣ for a nice chase or-
der can be computed in time O(|dom(T)|b) where b depends only
on Σ and the block size of T .

PROOF. To compute such a core, we replace Σ with Σ̄ and pro-
ceed as in the proof of Theorem 9, except we use Theorem 12 in-
stead of Theorem 8. By Lemma 2, the core so computed using Σ̄ is
the desired core.

PROOF. (Theorem 10) Similar to that of Theorem 6, using The-
orem 13 instead of Theorem 9.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison

Wesley, 1995.
[2] Aho, Beeri, and Ullman. The theory of joins in relational databases. ACM

TODS, 4(3):297–314, 1979.
[3] Beeri and Vardi. A proof procedure for data dependencies. JACM, 1984.
[4] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive

queries in relational data bases. In ACM STOC, pages 77–90, 1977.
[5] A. Deutsch and V. Tannen. Reformulation of XML Queries and Constraints. In

ICDT, 2003.
[6] R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985,

1982.
[7] R. Fagin. Extending the core greedy algorithm to allow target tgds with

singleton left-hand sides. 2005. Unpubl. Manuscript, 2005.
[8] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics

and Query Answering. In ICDT, 2003. full version in: Theor. Comput. Sci.
336(1): 89-124 (2005).

[9] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange: Getting to the Core. In
ACM PODS, pages 90–101, 2003. ”Full version in ACM TODS,
30(1):147-210(2005)”.

[10] G. Gottlob. Computing cores for data exchange: New algoritms and practical
solutions. In PODS, 2005. Extended version of the present paper. Currently
available at: www.dbai.tuwien.ac.at/staff/gottlob/extcore.pdf.

[11] G. Gottlob and C. G. Fermüller. Removing redundancy from a clause. Artif.
Intell., 61(2):263–289, 1993.

[12] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. JCSS, 64(3):579–627, 2002.

[13] P. Hell and J. Nešetřil. The core of a graph. Discr. Math., 109(1-3):117–126,
1992.

[14] P. Kolaitis. Schema mappings, data exchange and metadata management. In
PODS, 2005.

[15] Maier, Mendelzon, and Sagiv. Testing implication of data dependencies. ACM
TODS, 1979.

49

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

