
Efficient Algorithms for Processing
XPath Queries

GEORG GOTTLOB, CHRISTOPH KOCH, and REINHARD PICHLER
Technische Universität Wien

Our experimental analysis of several popular XPath processors reveals a striking fact: Query eval-
uation in each of the systems requires time exponential in the size of queries in the worst case. We
show that XPath can be processed much more efficiently, and propose main-memory algorithms
for this problem with polynomial-time combined query evaluation complexity. Moreover, we show
how the main ideas of our algorithm can be profitably integrated into existing XPath processors.
Finally, we present two fragments of XPath for which linear-time query processing algorithms exist
and another fragment with linear-space/quadratic-time query processing.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query lan-
guages; I.7.2 [Document and Text Processing]: Document Preparation—Markup languages

General Terms: Languages, Algorithms

Additional Key Words and Phrases: XML, XPath, Efficient Algorithms

1. INTRODUCTION

XPath has been proposed by the W3C [World Wide Web Consortium 1999] as
a practical language for selecting nodes from XML document trees. The impor-
tance of XPath is due to its potential application as an XML query language
per se and its role at the core of several other XML-related technologies, such
as XSLT, XPointer, and XQuery. Since XPath and related technologies will be
tested in ever-growing deployment scenarios, its implementations need to scale

This work was supported by the Austrian Science Fund (FWF) under project No. Z29-NO4.
This article is based on two conference papers: GOTTLOB, G., KOCH, C., AND PICHLER, R. 2002, Efficient
algorithms for processing XPath queries, In Proceedings of the 28th International Conference on Very
Large Data Bases (VLDB’02) (Hong Kong, China). 95–106, and GOTTLOB, G., KOCH, C., AND PICHLER,
R., 2003, XPath query evaluation: Improving time and space efficiency, In Proceedings of the 19th
IEEE International Conference on Data Engineering (ICDE’03) (Bangalore, India). 379–390.
All methods and algorithms presented here are covered by a pending patent. Further resources,
updates, and possible corrections will be made available at http://www.xmltaskforce.com.
Authors’ address: Database and Artificial Intelligence Group, Institut für Informationssysteme,
Technische Universität Wien, Favoritenstrasse 9–11, A-1040 Vienna, Austria; email: {gottlob,koch,
pichler}@dbai.tuwien.as.at.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0362-5915/05/0600-0444 $5.00

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005, Pages 444–491.

Efficient Algorithms for Processing XPath Queries • 445

well both with respect to the size of the XML data and the growing size and
intricacy of the queries (usually referred to as combined complexity).

Recently, there has been some work on the query evaluation problem for very
restrictive fragments of XPath (usually in the context of data stream process-
ing) [Altinel and Franklin 2000; Chan et al. 2002b; Green et al. 2003; Peng and
Chawathe 2003; Gupta and Suciu 2003; Bar-Yossef et al. 2004] and on related
problems such as structural joins and XML query pattern matching [Bruno
et al. 2002; Chan et al. 2002a; Al-Khalifa et al. 2002]. However, to the best of
our knowledge, no research results on processing full XPath or even moder-
ately large fragments of this language have been published which may serve
as yardsticks for new algorithms.

Contributions. In this article, we show that it is possible to noticeably im-
prove the efficiency of existing and future XPath engines. We claim that cur-
rent implementations of XPath processors do not live up to their potential.
The way XPath is defined in World Wide Web Consortium [1999] motivates
an implementation approach that leads to highly inefficient (exponential-time)
XPath processing, and many implementations seem to have naively followed
this intuition. Likewise, the semantics of a fragment of XPath defined in Wadler
[2000], which uses a fully functional formalism, motivates an exponential-time
algorithm.

To get a better understanding of the state-of-the-art of XPath implementa-
tions, we experiment with four existing XPath processors, namely XALAN, XT,
Saxon, and Microsoft Internet Explorer 6 (IE6). XALAN [Apache Foundation
2004] is a framework for processing XPath and XSLT which is freely available
from the Apache Foundation. XT [Clark 1999] is a freely available XSLT1 pro-
cessor written by James Clark. Saxon [Kay 2003] is a freely available XSLT
processor which was written by Michael Kay. Finally, IE6 [Microsoft Corpora-
tion 2001] is a commercial Web browser which supports the formatting of XML
documents using XSL. Our experiments show that the time consumption of all
four systems in general grows exponentially in the size of XPath queries. This
exponentiality is a very practical problem. Of course, queries tend to be short,
but we will argue that meaningful practical queries are not short enough to
allow the existing systems to handle them.

The main contributions of this article, apart from our experiments, are the
following:

—We define a formal bottom-up semantics of XPath (i.e., for the full language as
proposed in World Wide Web Consortium [1999]), which leads to a bottom-up
main-memory XPath processing algorithm that runs in low-degree polyno-
mial time in terms of the data and of the query size in the worst case. By a
bottom-up algorithm we mean a method of processing XPath while traversing
the parse tree of the query from its leaves up to its root.

—We discuss a general mechanism for translating our bottom-up algorithm
into a top-down one. (“Top-down” again relates to the parse tree of the query.)

1Of course, XSLT allows to embed and execute arbitrary XPath queries.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

446 • G. Gottlob et al.

Both have the same worst-case bound on running times but the latter may
compute fewer useless intermediate results than the bottom-up algorithm.

—The top-down algorithm is enhanced to a new algorithm MINCONTEXT, which
employs several heuristics. This new algorithm also slightly improves the
worst-case complexity bounds.

—We show how the main ideas of our algorithms can be integrated into exist-
ing XPath processors. Practical experiments with Xalan confirm that these
modifications indeed suffice to eliminate the source of exponential time com-
plexity from these systems.

—We present a linear-time algorithm (in both data and query size) for a practi-
cally useful fragment of XPath, which we will call Core XPath in the sequel.
In the experiments presented in this article, we show that evaluating such
queries in XALAN and XT already takes exponential time in the size of the
queries in the worst case. The processing time of IE6 for this fragment grows
polynomially in the size of queries, but requires quadratic time in the size of
the XML data (when the query is fixed).

—We discuss the now superseded language of XSLT Patterns of the XSLT draft
of December 16th, 1998 [World Wide Web Consortium 1998]. Since then,
full XPath has been adopted as the XSLT Pattern language. XSLT Patterns
remains interesting, as it shares many features with XPath and is a useful
practical query language. We extend this language with all of the XPath
axes and call it XPatterns to keep it short. Surprisingly, XPatterns queries
can be evaluated very efficiently, in linear time in the size of the data and the
query.

—We define the Extended Wadler Fragment, a very large fragment of XPath for
which we provide an evaluation algorithm that works in quadratic time and
linear space with respect to the size of the XML document. This fragment is
of great practical value, since the vast majority of useful queries falls into it.
Moreover, it pinpoints those features of XPath that are the most “expensive”,
even though their practical value is questionable.

—Finally, we present the algorithm OPTMINCONTEXT, which combines the above
results into one query processor with the following properties. (a) It sup-
ports all of XPath, with the runtime bounds obtained for the MINCONTEXT

algorithm. Moreover, (b) for (subexpressions of) queries that fall either into
the linear-time Core XPath Fragment or the quadratic-time, linear-space Ex-
tended Wadler Fragment, the OPTMINCONTEXT algorithm adheres to these
best known bounds.

An overview of the various query language fragments considered in this
article and data complexity bounds of the associated algorithms is given in
Figure 1. By L1 ← L2, we denote that language L1 subsumes language L2:
XPatterns fully subsumes the Core XPath language, and subsumes XSLT Pat-
terns’98 (except for a minor detail). XPatterns is a fragment of XPath. Likewise,
the Extended Wadler Fragment fully subsumes Core XPath. Moreover, the in-
tegration of XSLT Patterns’98 into the Extended Wadler Fragment does not
lead to a deterioration of the complexity bounds.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 447

Fig. 1. XPath fragments considered in this article.

Structure. The structure of this article is as follows: In Section 2, we pro-
vide experimental results for existing XPath processors. Section 3 introduces
axes for navigation in trees. Section 4 presents the data model of XPath and
auxiliary functions used throughout the article. Section 5 defines the semantics
of XPath in a concise way. Section 6 houses the bottom-up semantics definition
and algorithm for full XPath, and Section 7 comes up with the modifications
to obtain a top-down algorithm. In Section 8, we present several heuristics
which also improve the worst-case complexity of XPath evaluation. The im-
provement of other XPath processors by integrating our main ideas into them
is dealt with in Section 9. Section 10 presents linear-time fragments of XPath
(Core XPath and XPatterns). In Section 11, we show how to evaluate the Ex-
tended Wadler Fragment in linear space and quadratic time. We conclude with
Section 12.

2. STATE-OF-THE-ART OF XPATH SYSTEMS

In this section, we evaluate the efficiency of four XPath engines, namely
Apache XALAN (the Lotus/IBM XPath implementation which has been do-
nated to the Apache Foundation), James Clark’s XT, Michael Kay’s Saxon, and
Microsoft Internet Explorer 6 (IE6). The latter is a commercial product while
the others are, as we believe, the three most popular freely available XPath
engines.

We show by experiments that all four implementations require time expo-
nential in the size of the queries in the worst case. Furthermore, we show that
even the simplest queries, with which IE6 can deal efficiently in the size of the
queries, take quadratic time in the size of the data. Note that the goal of these
experiments is not to compare the systems against each other, but to test the
scalabilities of their XPath processing algorithms.

XT, Saxon, and IE6 are not literally XPath engines, but are able to process
XPath embedded in XSLT transformations. We used the xsl:for-each performa-
tive to obtain the set of all nodes an XPath query would evaluate to.

The version of XALAN used for the experiments was Xalan-j 2 2 D11 with
the Xerces XML parser. We used the current version of XT with release tag
19991105, as available on James Clark’s home page, in combination with his
XP parser through the SAX driver. Finally, we used Saxon version 6.5.2 for our
experiments. All of these three systems are Java implementations.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

448 • G. Gottlob et al.

Fig. 2. Query complexity of XT and XALAN (Experiment 1) and of Saxon (Experiment 2).

We ran XALAN and XT on a 360-MHz (dual processor) Ultra Sparc 60 with
512 MB of RAM running Solaris. Saxon was run on a Windows 2000 machine
with a 700-MHz Pentium III processor and 256 MB of RAM. Finally, IE6 was
evaluated on a Windows 2000 machine with a 1.2 GHz AMD K7 processor
and 1.5 GB of RAM. The timings reported on here for Saxon and IE6 have
the precision of ±1 second, since Windows 2000 does not allow for the same
accurate timing as Solaris.

For our experiments, we generated simple, flat XML documents. Each docu-
ment DOC(i) was of the form

〈a〉 〈b/〉 . . . 〈b/〉︸ ︷︷ ︸
i times

〈/a〉

and its tree thus contained i + 1 element nodes.
In this section, the reader is assumed familiar with XPath and standard

notions such as axes and location steps (cf. World Wide Web Consortium [1999]).
A formal definition of XPath follows in subsequent sections of this article.

Experiment 1: Exponential-Time Query Complexity of XALAN and XT. In
this experiment, we used the fixed document DOC(2) (i.e., 〈a〉〈b/〉〈b/〉〈/a〉).
Queries were constructed using a simple pattern. The first query was ‘//a/b’.
The (i + 1)th query was obtained by taking the ith query and appending ‘/
parent::a/b’. For instance, the third query was ‘//a/b/parent::a/b/parent::a/b’.

It is easy to see that the time measurements reported in Figure 2 (Experiment
1), which uses a log scale Y axis, grow exponentially with the size of the query.
The sharp bend in the curves is due to the near-constant runtime overhead of
the Java VM and of parsing the XML document.

Discussion. The runtime behavior observed can be explained with the fol-
lowing pseudocode fragment, which seems to appropriately describe the basic
query evaluation strategy of XT and XALAN.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 449

procedure process-location-step(n0, Q)
/* n0 is the context node; query Q is a list of location steps */
begin

node set S := apply Q .head to node n0;
if (Q .tail is not empty) then

for each node n ∈ S do process-location-step(n, Q .tail);
end

It is clear that each application of a location step to a context node may result in
a set of nodes of size linear in the size of the document (e.g., each node may have
a linear number of descendants or nodes appearing after it in the document).
If we now proceed by recursively applying the location steps of an XPath query
to individual nodes as shown in the pseudocode procedure above, we end up
consuming time exponential in the size of the query in the worst case, even for
very simple path queries. As a (simplified) recurrence, we have

Time(|Q |) :=
{ |D| ∗ Time(|Q | − 1) . . . |Q | > 0

1 . . . |Q | = 0

where |Q | is the length of the query and |D| is the document size, or equivalently

Time(|Q |) = |D||Q |.

The class of queries used puts an emphasis on simplicity and reproducibility
(using the very simple document 〈a〉〈b/〉〈b/〉〈/a〉). Interestingly, each ‘parent::a/b’
sequence quite exactly doubles the times both systems take to evaluate a query,
as we first jump (back) to the tree root labeled “a” and then experience the
“branching factor” of two due to the two child nodes labeled “b”.

Experiment 2: Exponential-Time Query Complexity of Saxon. In our second
experiment, we executed queries that nest two important features of XPath,
namely paths and relational operators, using Saxon. To this end, we slightly
modified our XML-documents DOC(i) to DOC ′(i) in that the b-elements are no
longer empty. Instead they now all contain a simple text node with contents “c”.
Hence, DOC ′(i) is of the form

〈a〉 〈b〉c〈/b〉 . . . 〈b〉c〈/b〉︸ ︷︷ ︸
i times

〈/a〉

The first three queries that we ran on the XML-documents DOC′(i) for i ∈
{2, 3, 10, 200} were

//*[parent::a/child::* = ‘c’]
//*[parent::a/child::*[parent::a/child::* = ‘c’] = ‘c’]
//*[parent::a/child::*[parent::a/child::*[parent::a/child::* = ‘c’] = ‘c’] = ‘c’]

and it is clear how to continue this sequence.
The timings summarized in Figure 2 (Experiment 2) clearly show that Saxon

requires time exponential in the size of the query.

Experiment 3: Exponential-Time Query Complexity of Internet Explorer 6.
In our third experiment, we executed queries that again nest two important

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

450 • G. Gottlob et al.

Fig. 3. Exponential-time query complexity of IE6 (Experiment 3) and Quadratic-time data com-
plexity of IE6 (Experiment 4).

features of XPath, namely paths and arithmetics, using IE6. The first three
queries were

//a/b[count(parent::a/b) > 1]
//a/b[count(parent::a/b[count(parent::a/b) > 1]) > 1]
//a/b[count(parent::a/b[count(parent::a/b[count(parent::a/b) > 1]) > 1]) > 1]

Again it is clear how to continue this sequence.
Also this experiment was carried out for four document sizes (2, 3, 10, and

200). Figure 3 (Experiment 3) shows that also IE6 requires time exponential in
the size of the query.

Experiment 4: Quadratic-Time Data Complexity for Simple Path Queries
(IE6). For our fourth experiment, we took a fixed query and benchmarked
the time taken by IE6 for various document sizes. The query was ‘//a’ + q(20) +
‘//b’ with

q(i) :=
{

‘//b[ancestor::a’ + q(i − 1) + ‘//b]/ancestor::a’ . . . i > 0
‘’ . . . i = 0

(Note: The size of queries q(i) is of course O(i).)
For instance, the query of size two, that is, ‘//a’ + q(2) + ‘//b’, according to this

scheme is //a//b[ancestor::a//b[ancestor::a//b]/ancestor::a//b]/ancestor::a//b.
The granularity of measurements (in terms of document size) was 5000

nodes. Figure 3 (Experiment 4) shows that IE6 takes quadratic time with re-
spect to the size of the data already for this simple class of path queries. Note
that f ′ and f ′′ in Figure 3 are the first and second derivatives, respectively, of
our graph of timings f .

The query complexity of IE6 for such queries is polynomial as well. Due to
space limitations, we do not provide a graph for this experiment.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 451

Queries that Cause Exponential Runtime. It is usually argued that real-
world queries are small, so query complexity is of minor relevance to practice.
However, realistic document sizes allow only for very short queries to be dealt
with by current XPath engines. We demonstrate this in Experiment 3 for IE6,
and verified it for the other systems as well. XPath query engines need to be
able to deal with increasingly sophisticated queries, along the current trend
to delegate larger and larger parts of data management problems to query
engines, where they can profit from their efficiency and can be made subject to
optimization. The intuition that XPath can be used to match a large class of
tree patterns [Shasha et al. 2002; Kilpeläinen 1992; Bruno et al. 2002] in XML
documents also implies to a certain degree that queries may be of some size.

The queries used in the previous experiments employ antagonist axes (such
as “child” and “parent”) to jump back and forth within the input documents. Our
queries may seem contrived, but our goal was to exhibit queries that use only
few XPath language constructs but still cause current XPath engines to take ex-
ponential time. Queries using antagonist axes such as “following” and “preced-
ing” instead of “child” and “parent” do have practical applications, such as when
we want to put restrictions on the relative positions of nodes in a document.

Moreover, if we make the realistic assumption that the documents are always
much larger than the queries (|Q | � |D|), it is not even necessary to jump back
and forth with antagonist axes. We can use queries such as

//following::*/following::*/· · · /following::*

to observe exponential behavior. We illustrate this by two further experiments.
In both, we used Xalan-Java2 (release 2.6.0) with Xerces 2.6.2 on a PC with
128 MB of main memory running FreeBSD 4.10.

Experiment 5: Exponential-Time Complexity with Forward Axes Only. In
the first experiment, each query of size k was of the form

count(//b /following::b/following::b/· · · /following::b︸ ︷︷ ︸
k − 1 times

).

The graph of Figure 4(a) reports on the query complexity of this family of
queries for documents DOC(i) with i ∈ {20, 25, 30, 40, 50}. It turns out that the
complexity is exponential in the size of the query up to a size that depends
on the document, at which the cost of query evaluation in terms of query size
stabilizes.

The most frequently used XPath axes are “child” and “descendant”, so we
also present an analogous experiment for the latter axis. Figure 4(b) shows the
evaluation times of queries of the form

count(//b//b · · · //b︸ ︷︷ ︸
k times

)

(for size k.) The documents here were constructed in a different fashion; a
document of size i was

〈b〉 · · · 〈b〉︸ ︷︷ ︸
i times

〈/b〉 · · · 〈/b〉︸ ︷︷ ︸
i times

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

452 • G. Gottlob et al.

Fig. 4. Complexity of Xalan for queries that employ exclusively forward axes.

that is, a (nonbranching) path of i b-nodes. The experiments were run for paths
of 20, 25, 30, 40, and 50 b-nodes.

Consider document size 50. What happens here (assuming again the naive
algorithm sketched in the discussion of Experiment 1) is basically that the
first “descendant” location step evaluates to 50 nodes, for each of which
the second location step evaluates to between zero and 49 nodes (all nodes
below the current node), and so forth for a recursion k steps deep. XML
documents of depth 50 are not commonplace, but it is easy to see that the same
naive algorithm is also very costly on massive (wide) XML trees of moderate
depth.

Of course, simple path queries using only the downward axes (“child” “descen-
dant”, and “descendant-or-self”) can be evaluated more efficiently using special
purpose techniques such as structural joins (cf. Al-Khalifa et al. [2002] and
follow-up work) and methods developed for evaluating simple XPath queries
on data streams (see, e.g., Altinel and Franklin [2000]). These techniques work
only for very small fragments of XPath. We observed that if we remove the en-
closing “count” from the queries of Experiment 5, Xalan evaluates them much
more efficiently. However, queries that use advanced language features such as
“count” are evaluated naively.

Question. The following question naturally arises from our experiments:
Is there an algorithm for processing XPath with guaranteed polynomial-time
behavior (combined complexity), or even one that requires only linear time for
simple queries? In Section 6, we are able to provide a positive answer to this.

3. XPATH AXES

In this section, we formally define XPath axes, that is, the interpreted binary
relations that XPath provides for navigating in XML document trees. We also
present techniques for evaluating XPath axes; these take linear time and are
thus worst-case optimal. Special algorithms for evaluating axes that work more

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 453

Table I. Axis Definitions in Terms of “Primitive” Tree Relations “firstchild”,
“nextsibling”, and Their Inverses

child := firstchild.nextsibling∗

parent := (nextsibling−1)∗.firstchild−1

descendant := firstchild.(firstchild ∪ nextsibling)∗

ancestor := (firstchild−1 ∪ nextsibling−1)∗.firstchild−1

descendant-or-self := descendant ∪ self
ancestor-or-self := ancestor ∪ self
following := ancestor-or-self.nextsibling.nextsibling∗

.descendant-or-self
preceding := ancestor-or-self.nextsibling−1

.(nextsibling−1)∗.descendant-or-self
following-sibling := nextsibling.nextsibling∗

preceding-sibling := (nextsibling−1)∗.nextsibling−1

efficiently in practice have been proposed in the context of structural joins (see,
e.g., Al-Khalifa et al. [2002] and Bruno et al. [2002]) and XML-frontends for
relational database management systems [Grust et al. 2004], so the main role
of this section is to provide a foundation for the formal semantics of XPath that
we will give later on. The actual techniques for evaluating axes in our efficient
XPath processing algorithms will be interchangeable.

In XPath, an XML document is viewed as an unranked (i.e., nodes may have
a variable number of children), ordered, and labeled tree. Before we make the
data model used by XPath precise (which distinguishes between several types of
tree nodes) in Section 4, we introduce the main mode of navigation in document
trees employed by XPath—axes—in the abstract, ignoring node types. We will
point out how to deal with different node types in Section 4.

All of the artifacts of this and the next section are defined in the context of
a given XML document. Given a document tree, let dom be the set of its nodes,
and let us use the two functions

firstchild, nextsibling : dom → dom,

to represent its structure.2 “firstchild” returns the first child of a node (if there
are any children, that is, the node is not a leaf), and otherwise “null”. Let
n1, . . . , nk be the children of some node in document order. Then, nextsibling
(ni) = ni+1, that is, “nextsibling” returns the neighboring node to the right, if
it exists, and “null” otherwise (if i = k). We define the functions firstchild−1

and nextsibling−1 as the inverses of the former two functions, where “null” is
returned if no inverse exists for a given node. Where appropriate, we will use
binary relations of the same name instead of the functions. ({〈x, f (x)〉 | x ∈
dom, f (x) �= null} is the binary relation for function f .)

The axes self , child, parent, descendant, ancestor, descendant-or-self ,
ancestor-or-self , following, preceding, following-sibling, and preceding-sibling
are binary relations χ ⊆ dom × dom. Let self := {〈x, x〉 | x ∈ dom}. The other
axes are defined in terms of our “primitive” relations “firstchild” and “nextsi-
bling” as shown in Table I (cf. World Wide Web Consortium [1999]). R1.R2,
R1 ∪ R2, and R∗

1 denote the concatenation, union, and reflexive and transitive
closure, respectively, of binary relations R1 and R2. Let E(χ) denote the regular

2Actually, “firstchild” and “nextsibling” are part of the XML Document Object Model (DOM).

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

454 • G. Gottlob et al.

expression defining χ in Table I. It is important to observe that some axes are
defined in terms of other axes, but that these definitions are acyclic.

Definition 3.1 (Axis Function). Let χ denote an XPath axis relation. We
define the function χ : 2dom → 2dom as χ (X 0) = {x | ∃x0 ∈ X 0 : x0χx} (and thus
overload the relation name χ), where X 0 ⊆ dom is a set of nodes.

Algorithm 3.2 (Axis Evaluation)
Input: A set of nodes S and an axis χ
Output: χ (S)
Method: evalχ (S)

function eval(R1∪···∪Rn)∗ (S) begin
S′ := S; /* S′ is represented as a list */
while there is a next element x in S′ do

append {Ri(x) | 1 ≤ i ≤ n, Ri(x) �= null, Ri(x) �∈ S′} to S′;
return S′;

end;
function evalχ (S) := evalE(χ)(S).
function evalself(S) := S.
function evale1 .e2 (S) := evale2 (evale1 (S)).
function evalR (S) := {R(x) | x ∈ S}.
function evalχ1∪χ2 (S) := evalχ1 (S) ∪ evalχ2 (S).

where S ⊆ dom is a set of nodes of an XML document, e1 and e2 are regular expressions,
R, R1, . . . , Rn are primitive relations or their inverses, χ1 and χ2 are axes, and χ is an
axis other than “self”.

Clearly, some of the axes could have been defined in a simpler way in Table I
(e.g., ancestor equals parent.parent∗). However, the definitions, which use a
limited form of regular expressions only, allow to compute χ (S) in a very simple
way, as evidenced by Algorithm 3.2.

Consider the directed graph G = (V , E) with V = dom and E = R1 ∪· · ·∪ Rn.
The function eval(R1∪···∪Rn)∗ (S) computes the set of nodes reachable from any of
the nodes in S in zero or more steps. (This is easier than computing the reflexive
and transitive closure of G as a binary relation.) It can be implemented to run in
linear time in terms of the size of the data (corresponding to the edge relation E
of the graph3) in a straightforward manner; (non)membership in S′ is checked
in constant time using a direct-access version of S′ maintained in parallel to its
list representation. Naively, this could be an array of bits, one for each member
of dom, telling which nodes are in S′.4

LEMMA 3.3. Let S ⊆ dom be a set of nodes of an XML document and χ be
an axis. Then,

(1) χ (S) = evalχ (S) and
(2) Algorithm 3.2 runs in time O(|dom|).

PROOF (O(|DOM|) RUNNING TIME). The time bound is due to the fact that each of
the eval functions can be implemented so as to visit each node at most once and

3Note that |E| ≈ 2 · |T |, where |T | is the size of the edge relation of the document tree.
4A remotely similar idea is used in the TPQSimulation algorithm of Ramanan [2002].

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 455

the number of calls to eval functions and relations joined by union is constant
(see Table I).

4. DATA MODEL

Let dom be the set of nodes in the document tree as introduced in the previous
section. Each node is of one of seven types, namely root, element, text, comment,
attribute, namespace, and processing instruction. As in DOM [World Wide Web
Consortium 2004a], the root node of the document is the only one of type “root”,
and is the parent of the document element node of the XML document. The main
type of nonterminal node is “element”, the other node types are self-explaining
(cf. World Wide Web Consortium [1999]). Nodes of all types besides “text” and
“comment” have a name associated with them.

A node test is an expression of the form τ () (where τ is a node type or the
wildcard “node”, matching any type) or τ (n) (where n is a node name and τ is
a type whose nodes have a name). τ (∗) is equivalent to τ (). We define a func-
tion T which maps each node test to the subset of dom that satisfies it. For
instance, T (node()) = dom and T (attribute(href)) returns all attribute nodes la-
beled “href”.

Example 4.1. Consider DOC(4) of Section 2. It consists of six nodes—
the document element node a labeled “a”, its four children b1, . . . , b4 (labeled
“b”), and a root node r which is the parent of a. We have T (root()) = {r},
T (element()) = {a, b1, . . . , b4}, T (element(a)) = {a} and, finally, T (element(b)) =
{b1, . . . , b4}.

Now, XPath axes differ from the abstract, untyped axes of Section 3 (which
we refer to using a subscript 0 below) in that there are special child axes “at-
tribute” and “namespace” which filter out all resulting nodes that are not of
type attribute or namespace, respectively. In turn, all other XPath axis func-
tions remove nodes of these two types from their results. We can express this
formally, simulating XPath axes using abstract axes, as

attribute(S) := child0(S) ∩ T (attribute())
namespace(S) := child0(S) ∩ T (namespace())

and for all other XPath axes χ ,

χ (S) := χ0(S) − (T (attribute()) ∪ T (namespace())).

Node tests that occur explicitly in XPath queries must not use the types “root”,
“attribute”, or “namespace”.5 In XPath, axis applications χ and node tests t
always come in location step expressions of the form χ ::t. The node test t (where
t is a node name or the wildcard *) is a shortcut for τ (t), where τ is the principal
node type of χ . For the axis attribute, the principal node type is attribute, for
namespace it is namespace, and for all other axes, it is element. For example,
child::a is short for child::element(a) and child::* is short for child::element(*).

Note that for a set of nodes S and a typed axis χ , χ (S) can be computed in
linear time—just as for the untyped axes of Section 3.

5These node tests are also redundant with ‘/’ and the “attribute” and “namespace” axes.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

456 • G. Gottlob et al.

Let <doc be the binary document order relation, such that x <doc y (for two
nodes x, y ∈ dom) iff the opening tag of x precedes the opening tag of y in the
(well-formed) document. The function first<doc returns the first node in a set
with respect to document order. We define the relation <doc,χ relative to the
axis χ as follows. For χ ∈ {self, child, descendant, descendant-or-self, following-
sibling, following}, <doc,χ is the standard document order relation <doc. For the
remaining axes, it is the reverse document order >doc. Moreover, given a node
x and a set of nodes S with x ∈ S, let idxχ (x, S) be the index of x in S with
respect to <doc,χ (where 1 is the smallest index).

Given an XML Document Type Definition (DTD) [World Wide Web Consor-
tium 2000] that uses the ID/IDREF feature, some element nodes of the docu-
ment may be identified by a unique id. The function deref ids : string → 2dom

interprets its input string as a whitespace-separated list of keys and returns
the set of nodes whose ids are contained in that list.

The function strval : dom → string returns the string value of a node, for
the precise definition of which we refer to World Wide Web Consortium [1999].
Notably, the string value of an element or root node x is the concatenation
of the string values of the nodes in descendant({x}) ∩ T (text()) visited in docu-
ment order. The functions to string and to number convert a number to a string
resp. a string to a number according to the rules specified in World Wide Web
Consortium [1999].

This concludes our discussion of the XPath data model, which is complete
except for some details related to namespaces. This topic is mostly orthogonal
to our discussion, and extending our framework to also handle namespaces
(without a penalty with respect to efficiency bounds) is an easy exercise.6

5. SEMANTICS OF XPATH

In this section, we present a concise definition of the semantics of XPath [World
Wide Web Consortium 1999]. We assume the syntax of this language known,
and cohere with its so-called unabbreviated form. This means that

—In all occurrences of the child or descendant axis in the XPath expression,
the axis names have to be stated explicitly; for example, we write /descen-
dant::a/child::b rather than //a/b.

—Bracketed condition expressions [e], where e is an expression that produces a
number (see below), correspond to [position() = e] in unabbreviated syntax.
For example, the abbreviated XPath expression //a[5], which refers to the fifth
node (with respect to document order) occurring in the document which is la-
beled “a”, is written as /descendant::a[position() = 5] in unabbreviated syntax.

—All type conversions have to be made explicit (using the conversion functions
string, number, and Boolean, which we will define below). For example, we
write /descendant::a[boolean(child::b)] rather than /descendant::a[child::b].

6To be consistent, we also will not discuss the “local-name”, “namespace-uri”, and “name” core
library functions [World Wide Web Consortium 1999].

Note that names used in node tests may be of the form NCName:*, which matches all names
from a given namespace named NCNAME.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 457

Fig. 5. Standard semantics of location paths.

Moreover, as XPath expressions may use variables for which a given binding has
to be supplied with the expression, each variable is replaced by the (constant)
value of the input variable binding.

These assumptions do not cause any loss of generality, but reduce the number
of cases we have to distinguish in the semantics definition below.

The main syntactic constructs of XPath are expressions, which return a value
of one of four types, namely node set, number, string, or Boolean. Each expres-
sion evaluates relative to a context �c = 〈x, k, n〉 consisting of a context node x,
a context position k, and a context size n [World Wide Web Consortium 1999].
By the domain of contexts, we mean the set

C = dom × {〈k, n〉 | 1 ≤ k ≤ n ≤ |dom|}.
Let

ArithOp ∈ {+, −, ∗, div, mod}, EqOp ∈ {=, �=},
RelOp ∈ {=, �=, ≤, <, ≥, >}, GtOp ∈ {≤, <, ≥, >}.

By slight abuse of notation, we identify these arithmetic and relational op-
erations with their symbols in the remainder of this article. However, it should
be clear whether we refer to the operation or its symbol at any point. By
π, π1, π2, . . . we denote location paths.

Definition 5.1 (Semantics of XPath). Each XPath expression returns a
value of one of the following four types: number, node set, string, and Boolean
(abbreviated num, nset, str, and bool, respectively). Let T be an expression
type and the semantics [[e]] : C → T of XPath expression e be defined as
follows:

[[π]](〈x, k, n〉) := P [[π]](x) [[position()]](〈x, k, n〉) := k
[[string()]](〈x, k, n〉) := strval(x) [[last()]](〈x, k, n〉) := n

[[number()]](〈x, k, n〉) := to number(strval)(x)

For all other kinds of expressions e = Op(e1, . . . , em) mapping a context �c to a
value of type T ,

[[Op(e1, . . . , em)]](�c) := F[[Op]]([[e1]](�c), . . . , [[em]](�c)),

where F[[Op]] : T1 × · · · × Tm → T is called the effective semantics function of
Op. The function P is defined in Figure 5 and the effective semantics function
F is defined in Table II.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

458 • G. Gottlob et al.

Table II. XPath Effective Semantics Functions

Expr. E : Operator Signature ⇒ Semantics F[[E]]

F[[constant number v : → num]]() := v
F[[ArithOp : num × num → num]](v1, v2) := v1 ArithOp v2

F[[count : nset → num]](S) := |S|
F[[sum : nset → num]](S) := �n∈S to number(strval(n))
F[[id : nset → nset]](S) := ⋃

n∈S F[[id]](strval(n))

F[[id : str → nset]](s) := deref ids(s)
F[[constant string s : → str]]() := s

F[[and : bool × bool → bool]](b1, b2) := b1 ∧ b2
F[[or : bool × bool → bool]](b1, b2) := b1 ∨ b2
F[[not : bool → bool]](b) := ¬b
F[[true() : → bool]]() := true
F[[false() : → bool]]() := false

F[[RelOp : nset × nset → bool]](S1, S2) :=
∃n1 ∈ S1, n2 ∈ S2 : strval(n1) RelOp strval(n2)

F[[RelOp : nset × num → bool]](S, v) := ∃n ∈ S : to number(strval(n)) RelOp v
F[[RelOp : nset × str → bool]](S, s) := ∃n ∈ S : strval(n) RelOp s
F[[RelOp : nset × bool → bool]](S, b) := F[[boolean]](S) RelOp b
F[[EqOp : bool × (str ∪ num ∪ bool) → bool]](b, x) := b EqOp F[[boolean]](x)
F[[EqOp : num × (str ∪ num) → bool]](v, x) := v EqOp F[[number]](x)
F[[EqOp : str × str → bool]](s1, s2) := s1 EqOp s2
F[[GtOp : (str ∪ num ∪ bool) × (str ∪ num ∪ bool) → bool]](x1, x2) :=

F[[number]](x1) GtOp F[[number]](x2)

F[[string : num → str]](v) := to string(v)
F[[string : nset → str]](S) := if S = ∅ then “” else strval(first<doc (S))
F[[string : bool → str]](b) := if b=true then “true” else “false”

F[[boolean : str → bool]](s) := if s �= “” then true else false
F[[boolean : num → bool]](v) := if v �= ±0 and v �= NaN then true else false
F[[boolean : nset → bool]](S) := if S �= ∅ then true else false

F[[number : str → num]](s) := to number(s)
F[[number : bool → num]](b) := if b=true then 1 else 0
F[[number : nset → num]](S) := F[[number]](F[[string]](S))

To save space, we at times re-use function definitions in Table II to define oth-
ers. However, our definitions are not circular and the indirections can be elim-
inated by a constant number of unfolding steps. Moreover, we define neither
the number operations floor, ceiling, and round nor the string operations con-
cat, starts-with, contains, substring (two versions), substring-before, substring-
after, string-length, normalize-space, translate, and lang in Table II, but it is
very easy to obtain these definitions from the XPath Recommendation [World
Wide Web Consortium 1999].

The compatibility of our semantics definition (modulo the assumptions made
in this article to simplify the data model) with World Wide Web Consortium
[1999] can easily be verified by inspection of the latter document.

It is instructive to compare the definition of P [[π1/π2]] in Figure 5 with
the procedure process-location-step of Section 2 and the claim regarding
exponential-time query evaluation made there. In fact, if the semantics defini-
tion of World Wide Web Consortium [1999] (or of this section, for that matter)

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 459

Table III. Expression Types and Associated Relations

Expression Type Associated Relation R
num R ⊆ C × R

bool R ⊆ C × {true, false}
nset R ⊆ C × 2dom

str R ⊆ C × char∗

Table IV. Expression Relations for Location Paths, position(), last(), string(), and
number()

Expr. E : Signature Semantics E↑[[E]]

location step χ ::t : → nset {〈x0, k0, n0, {x | x0χx, x ∈ T (t)}〉 |
〈x0, k0, n0〉 ∈ C}

location step E[e] over axis χ : {〈x0, k0, n0, {x ∈ S | 〈x, idxχ (x, S), |S|, true〉
nset × bool → nset ∈ E↑[[e]]}〉 | 〈x0, k0, n0, S〉 ∈ E↑[[E]]}

location path /π : nset → nset C × {S | ∃k, n : 〈root, k, n, S〉 ∈ E↑[[π]]}
location path π1/π2 : {〈x, k, n,

⋃{Z | 〈 y , k2, n2, Z 〉 ∈ E↑[[π2]], y ∈ Y }〉
nset × nset → nset | 1 ≤ k ≤ n ≤ |dom|, 〈x, k1, n1, Y 〉 ∈ E↑[[π1]]}

location path π1 | π2 : {〈x, k, n, S1 ∪ S2〉 | 〈x, k, n, S1〉 ∈ E↑[[π1]],
nset × nset → nset 〈x, k, n, S2〉 ∈ E↑[[π2]]}

position() : → num {〈x, k, n, k〉 | 〈x, k, n〉 ∈ C}
last() : → num {〈x, k, n, n〉 | 〈x, k, n〉 ∈ C}
string() : → str {〈x, k, n, strval(x)〉 | 〈x, k, n〉 ∈ C}
number() : → num {〈x, k, n, to number(strval(x))〉 | 〈x, k, n〉 ∈ C}

is followed rigorously to obtain an analogous functional implementation, query
evaluation using this implementation requires time exponential in the size of
the queries.

6. BOTTOM-UP EVALUATION OF XPATH

In this section, we present a semantics and an algorithm for evaluating XPath
queries in polynomial time which both use a “bottom-up” intuition. We discuss
the intuitions which lead to polynomial time evaluation (which we call the
“context-value table principle”), and establish the correctness and complexity
results.

Definition 6.1 (Semantics). We represent the four XPath expression types
nset, num, str, and bool using relations as shown in Table III. The bottom-up
semantics of expressions is defined via a semantics function

E↑ : Expression → 2C×(nset ∪ num ∪ str ∪ bool)

given in Table IV and as

E↑[[Op(e1, . . . , em)]] :=
{〈�c, F[[Op]](v1, . . . , vm)〉 | �c ∈ C, 〈�c, v1〉 ∈ E↑[[e1]] , . . . , 〈�c, vm〉 ∈ E↑[[em]]}

for the remaining kinds of XPath expressions.

Now, for each expression e and each 〈x, k, n〉 ∈ C, there is exactly one v such
that 〈x, k, n, v〉 ∈ E↑[[e]], and which happens to be the value [[e]](〈x, k, n〉) of e on
〈x, k, n〉 (see Definition 5.1).

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

460 • G. Gottlob et al.

THEOREM 6.2. Let e be an arbitrary XPath expression, 〈x, k, n〉 ∈ C a context,
and v = [[e]](〈x, k, n〉) the value of e. Then, v is the unique value such that
〈x, k, n, v〉 ∈ E↑[[e]].

The main principle that we propose at this point to obtain an XPath evalua-
tion algorithm with polynomial-time complexity is the notion of a context-value
table (i.e., a relation for each expression, as discussed above).

Context-Value Table Principle. Given an expression e that occurs in the
input query, the context-value table of e specifies all valid combinations of con-
texts �c and values v, such that e evaluates to v in context �c. Such a table for
expression e is obtained by first computing the context-value tables of the direct
subexpressions of e and subsequently combining them into the context-value
table for e. Given that the size of each of the context-value tables has a poly-
nomial bound and each of the combination steps can be effected in polynomial
time (all of which we can assure in the following), query evaluation in total
under our principle also has a polynomial time bound.7

Query Evaluation. The idea of Algorithm 6.3 below is so closely based on our
semantics definition that its correctness follows directly from the correctness
result of Theorem 6.2.

Algorithm 6.3 (Bottom-up Algorithm for XPath)
Input: An XPath query Q ;
Output: E↑[[Q]].
Method:

let Tree(Q) be the parse tree of query Q ;
R := ∅; (* a set of context-value tables *)
for each atomic expression l ∈ leaves(Tree(Q)) do

compute table E↑[[l]] and add it to R;
while E↑[[root(Tree(Q))]] �∈ R do
begin

take an Op(l1, . . . , ln) ∈ nodes(Tree(Q)) such that E↑[[l1]], . . . , E↑[[ln]] ∈ R;
compute E↑[[Op(l1, . . . , ln)]] using E↑[[l1]], . . . , E↑[[ln]];
add E↑[[Op(l1, . . . , ln)]] to R;

end;
return E↑[[root(Tree(Q))]].

Example 6.4. Consider document DOC(4) of Section 2. Let dom = {r, a,
b1, . . . , b4}, where r denotes the root node, a the document element node (the
child of r, labeled a) and b1, . . . , b4 denote the children of a in document order
(labeled b). We want to evaluate the XPath query Q , which reads as

descendant::b/following-sibling::*[position() != last()]

over the input context 〈a, 1, 1〉. We illustrate how this evaluation can be done
using Algorithm 6.3: First of all, we have to set up the parse tree

7The number of expressions to be considered is fixed with the parse tree of a given query.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 461

Fig. 6. Context-value tables of Example 6.4.

of Q with its six proper subexpressions E1, . . . , E6. Then we compute the
context-value tables of the leaf nodes E1, E3, E5 and E6 in the parse tree,
and from the latter two the table for E4. By combining E3 and E4, we obtain
E2, which is in turn needed for computing Q . The tables8 for E1, E2, E3 and Q
are shown in Figure 6. Moreover,

E↑[[E5]] = {〈x, k, n, k〉 | 〈x, k, n〉 ∈ C}
E↑[[E6]] = {〈x, k, n, n〉 | 〈x, k, n〉 ∈ C}
E↑[[E4]] = {〈x, k, n, k �= n〉 | 〈x, k, n〉 ∈ C}.

The most interesting step is the computation of E↑[[E2]] from the tables for E3
and E4. For instance, consider 〈b1, k, n, {b2, b3, b4}〉 ∈ E↑[[E3]]. b2 is the first, b3
the second, and b4 the third of the three siblings following b1. Thus, only for
b2 and b3 is the condition E2 (requiring that the position in set {b2, b3, b4} is
different from the size of the set, three) satisfied. Thus, we obtain the tuple
〈b1, k, n, {b2, b3}〉 which we add to E↑[[E2]].

We can read out the final result {b2, b3} from the context-value table of Q .

Remark 6.5. An intuition for the Context-value Table Principle and Algo-
rithm 6.3 can also be gained from the nice fact that every acyclic conjunctive
query can be evaluated in polynomial time [Yannakakis 1981]. Now, if we as-
sume that we have each of the operations readily pre-computed as a relation,
each XPath query can be viewed as an acyclic conjunctive query over these re-
lations, and Algorithm 6.3 is a reformulation of Yannakakis’ Algorithm on such
queries (where context-value tables are intermediate join results). However,
this intuition fails in general because computed XPath values (even numbers)
take space polynomial in the size of the input, and the relations of arithmetical

8The k and n columns have been omitted. Full tables are obtained by computing the Cartesian
product of each table with {〈k, n〉 | 1 ≤ k ≤ n ≤ |dom|}. This kind of restriction to the “relevant
context” will be put on a formal basis in Section 8.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

462 • G. Gottlob et al.

operators or certain string functions would be of exponential size. Thus, this
intuition only works for certain fragments of XPath.

THEOREM 6.6. XPath can be evaluated bottom-up in polynomial time (com-
bined complexity). More precisely, for an XML document D and an XPath
query Q, the bottom-up algorithm 6.3 works in time O(|D|5 · |Q |2) and space
O(|D|4 · |Q |2).

PROOF. Let |Q | be the size of the query and |D| be the size of the data.
During the bottom-up computation of a query Q using Algorithm 6.3, O(|Q |)
relations (“context-value tables”) are created. All relations have a functional
dependency from the context (columns one to three) to the value (column four).
The size of each relation is O(|D|3) times the maximum size of such values. The
size of bool relations is bounded by O(|D|3) and the size of nset relations by
O(|D|4).

Numbers and strings computable in XPath are of size O(|D|·|Q |): “concat” on
strings and arithmetic multiplication on numbers are the most costly operations
(with respect to size increase of values) on strings and numbers.9 Here, the
lengths of the argument values add up such that we get to sizes O(|D| · |Q |) at
worst, even in the relation representing the “top” expression Q itself.

The overall space bound of O(|D|4 · |Q |2) follows. Note that no significant
additional amount of space is required for intermediate computations.

Let each context-value table be stored as a three-dimensional array, such
that we can find the value for a given context 〈x, k, n〉 in constant time. Given m
context-value tables representing expressions e1, . . . , em and a context 〈x, k, n〉,
any m-ary XPath operation Op(e1, . . . , em) on context 〈x, k, n〉 can be evaluated
in time O(|D|·I); again, I is the size of the input values and thus O(|D|·|Q |). This
is not difficult to verify; it only takes very standard techniques to implement
the XPath operations according to the definitions of Table II (sometimes using
auxiliary data structures created in a preprocessing step). The most costly op-
erator is RelOp : nset×nset → bool, and this one also takes the most ingenuity.
We assume a pre-computed table

{〈n1, n2〉 | n1, n2 ∈ dom, strval(n1) RelOp strval(n2)}
that can be used to carry out the operation in time O(|D2|) given two node sets.

Each of the expression relations can be computed in time O(|D|3 · |D|2 · |Q |)
at worst when the expression semantics tables of the direct subexpressions
are given. (The |Q | factor is due to the size bound on strings and numbers
generated during the computation.) Moreover, O(|Q |) such computations are
needed in total to evaluate Q . The O(|D|5 · |Q |2) time bound follows.

Remark 6.7. Note that contexts can also be represented in terms of pairs of
a current and a “previous” context node (rather than triples of a node, a position,
and a size), which are defined relative to an axis and a node test (which, however,

9For the conversion from a node set to a string or number, only the first node in the set is chosen.
Of the string functions, only “concat” may produce a string longer than the input strings. The
“translate” function of the World Wide Web Consortium [1999], for instance, does not allow for
arbitrary but just single-character replacement, for example, for case-conversion purposes.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 463

are fixed with the query). For instance, the corresponding ternary context for
�c = 〈x0, x〉 with respect to axis χ and node test t is 〈x, idxχ (x, Y), |Y |〉, where
Y = { y | x0χ y , y ∈ T (t)}. Thus, position and size values can be recovered on
demand.

Through this change, it is possible to push down the maximum number of
rows in each context-value table from O(|D|3) to O(|D|2). We thus obtain an
improved worst-case space bound of O(|D|3 · |Q |2) and time bound of O(|D|4 ·
|Q |2) for XPath query evaluation by a bottom-up algorithm. Actually, such a
restriction to those context triples that can possibly be generated by the pairs
of previous/current context node (with respect to some axis χ and node test t) is
implicit in the top-down algorithm to be presented in Section 7. In particular,
the improved complexity bounds that we have just mentioned are exactly the
ones that we will get in Theorem 7.5.

7. TOP-DOWN EVALUATION OF XPATH

In the previous section, we obtained a bottom-up semantics definition which
led to a polynomial-time query evaluation algorithm for XPath. Despite this
favorable complexity bound, this algorithm is still not practical, as usually many
irrelevant intermediate results are computed to fill the context-value tables
which are not used later on. Next, building on the context-value table principle
of Section 6, we develop a top-down algorithm based on vector computation for
which the favorable (worst-case) complexity bound carries over but in which
the computation of a large number of irrelevant results is avoided.

Given an m-ary operation Op : Dm → D, its vectorized version Op〈〉 :
(Dk)m → Dk is defined as

Op〈〉(〈x1,1, . . . , x1,k〉, . . . , 〈xm,1, . . . , xm,k〉)
:= 〈Op(x1,1, . . . , xm,1), . . . , Op(x1,k , . . . , xm,k)〉.

For instance, 〈X 1, . . . , X k〉 ∪〈〉 〈Y1, . . . , Yk〉 := 〈X 1 ∪ Y1, . . . , X k ∪ Yk〉. Let

S↓ : LocationPath → List(2dom) → List(2dom).

be the auxiliary semantics function for location paths defined in Figure 7.
We basically distinguish the same cases (related to location paths) as for the
bottom-up semantics E↑[[π]]. Given a location path π and a list 〈X 1, . . . , X k〉 of
node sets, S↓ determines a list 〈Y1, . . . , Yk〉 of node sets, such that for every
i ∈ {1, . . . , k}, the nodes reachable from the context nodes in X i via the location
path π are precisely the nodes in Yi. S↓[[π]] can be obtained from the relations
E↑[[π]] as follows. A node y is in Yi iff there is an x ∈ X i and some p, s such that
〈x, p, s, y〉 ∈ E↑[[π]].

Definition 7.1. The semantics function E↓ for arbitrary XPath expressions
is of the following type:

E↓ : XPathExpression → List(C) → List(XPathType)

Given an XPath expression e and a list (�c1, . . . , �cl) of contexts, E↓ determines a
list 〈r1, . . . , rl 〉 of results of one of the XPath types number, string, Boolean, or
node set. E↓ is defined as

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

464 • G. Gottlob et al.

Fig. 7. Top-down evaluation of location paths.

E↓[[π]](〈x1, k1, n1〉, . . . , 〈xl , kl , nl 〉) := S↓[[π]]({x1}, . . . , {xl })
E↓[[position()]](〈x1, k1, n1〉, . . . , 〈xl , kl , nl 〉) := 〈k1, . . . , kl 〉
E↓[[last()]](〈x1, k1, n1〉, . . . , 〈xl , kl , nl 〉) := 〈n1, . . . , nl 〉
E↓[[string()]](〈x1, k1, n1〉, . . . , 〈xl , kl , nl 〉) := 〈strval(x1), . . . , strval(xl)〉
E↓[[number()]](〈x1, k1, n1〉, . . . , 〈xl , kl , nl 〉)

:= 〈to number(strval(x1)), . . . , to number(strval(xl))〉
and

E↓[[Op(e1, . . . , em)]](�c1, . . . , �cl)
:= F[[Op]]〈〉(E↓[[e1]](�c1, . . . , �cl), . . . , E↓[[em]](�c1, . . . , �cl))

for the remaining kinds of expressions.

Example 7.2. Consider the XPath query

/descendant::a[count(descendant::b/child::c) + position() < last()]/child::d.

Let L = 〈〈 y1, 1, l 〉, . . . , 〈 yl , l , l 〉〉, where the yi are those nodes reachable from
the root node through the descendant axis and which are labeled “a”. The query
is evaluated top-down as

S↓[[child::d]](S↓[[descendant::a[e]]]({root})),
where e is defined as e := count(descendant::b/child::c) + position() < last().

Moreover, E↓[[e]](L) is computed as

F[[count]]〈〉(X) +〈〉 E↓[[position()]](L) <〈〉 E↓[[last()]](L)

and

X = S↓[[child::c]](S↓[[descendant::b]]({ y1}, . . . , { yl })).
ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 465

Note that the arity of the tuples used to compute the outermost location path
is one, while it is l for e.

Example 7.3. Given the query Q , document DOC(4), and context 〈a, 1, 1〉
of Example 6.4, we evaluate Q as E↓[[Q]](〈a, 1, 1〉) = S↓[[E2]](S↓[[descendant::b]]
({a})). Again, E2 is the subexpression

following-sibling::*[position() != last()].

First, we obtain S↓[[descendant::b]]({a}) = 〈{b1, b2, b3, b4}〉. For the computa-
tion of the location step S↓[[E2]](〈{b1, b2, b3, b4}〉, we proceed as described in the
algorithm of Figure 7. We initially obtain the set

S = {〈b1, b2〉, 〈b1, b3〉, 〈b1, b4〉, 〈b2, b3〉, 〈b2, b4〉, 〈b3, b4〉}
and the contexts �t = 〈〈b2, 1, 3〉, 〈b3, 2, 3〉, 〈b4, 3, 3〉, 〈b3, 1, 2〉, 〈b4, 2, 2〉, 〈b4, 1, 1〉〉.

The check of condition E4 returns the filter

�r = 〈true, true, false, true, false, false〉.
which is applied to S to obtain S = {〈b1, b2〉, 〈b1, b3〉, 〈b2, b3〉}. Thus, the query
returns 〈{b2, b3}〉.

The correctness of the top-down semantics follows immediately from the
corresponding result in the bottom-up case and from the definition of S↓ and
E↓.

THEOREM 7.4 (CORRECTNESS OF E↓). Let e be an arbitrary XPath expression.
Then 〈v1, . . . , vl 〉 = E↓[[e]](�c1, . . . , �cl) iff 〈�c1, v1〉, . . . , 〈�cl , vl 〉 ∈ E↑[[e]].

S↓ and E↓ can be immediately transformed into function definitions in a top-
down algorithm. We thus have to define one evaluation function for each case
of the definition of S↓ and E↓, respectively. The functions corresponding to the
various cases of S↓ have a location path and a list of node sets of variable length
(X 1, . . . , X k) as input parameter and return a list (R1, . . . , Rk) of node sets of
the same length as result. Likewise, the functions corresponding to E↓ take an
arbitrary XPath expression and a list of contexts as input and return a list
of XPath values (which can be of type num, str, bool or nset). Moreover, the
recursions in the definition of S↓ and E↓ correspond to recursive function calls
of the respective evaluation functions. Analogously to Theorem 6.6, we get

THEOREM 7.5. The immediate functional implementation of E↓ evaluates
XPath queries in polynomial time (combined complexity). More precisely, for
an XML document D and an XPath query Q, the top-down algorithm based on
E↓ as described above works in time O(|D|4 · |Q |2) and space O(|D|3 · |Q |2).

Finally, note that using arguments relating the top-down method of this
section with (join) optimization techniques in relational databases, one may
argue that the context-value table principle is also the basis of the polynomial-
time bound of Theorem 7.5.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

466 • G. Gottlob et al.

Fig. 8. Sample XML document.

8. THE ALGORITHM MINCONTEXT

8.1 Preliminaries

We shall illustrate our new algorithm MINCONTEXT by means of the following
running example:

Example 8.1. Let D be the XML document in Figure 8. Note that every
element of this document is uniquely determined by the attribute “id”. Hence,
in the context of this example, we use the notation xi to refer to the element
whose attribute “id” has the value i. We thus have dom = {r, x10, x11, x12,
x13, x14, x21, x22, x23, x24}, where r is the root node (i.e., the parent of x10).

Now suppose that we want to evaluate the XPath query Q ≡
/descendant::*/descendant::*[position() > last()*0.5 or self::* = 100] over the
XML document D for the context 〈x10, 1, 1〉.

The parse tree T of Q is depicted in Figure 10. Note that we have replaced
“self::* = 100” at E7 by “string(self::*) = 100” in order to make the type conver-
sion (from node set to string) explicit. The context-value table of each subexpres-
sion of Q is depicted in Figure 9. By “x”, “p”, and “s”, we denote context-node,
context-position, and context-size. In the last column of each table, we have the
result “val”. In the context-value tables of the subexpressions Q , E1, E2, E3,
and E4, we have omitted the columns for the context-position and the context-
size. Analogously to Example 6.4, this is justified by the fact that “p” and “s”
are irrelevant for these path expressions. We shall come back to this point in
Section 8.2.

In all of the tables in Figure 9, we have omitted some rows, which have no
influence on the overall result. Recall that we are evaluating Q for the context
〈x10, 1, 1〉. Hence, in the table of Q , we only consider the context-node x10. In the
tables corresponding to E1 and E2, we only consider the root node r, since this is
the only interesting context-node when we move up from E1 to / E1. On the other
hand, in the tables corresponding to E3 and E4, the root node r is omitted, since
it cannot be reached by the preceding location step “/descendant::*”. Likewise,
for the expressions E5, . . . , E14, we set up the context-value tables only for

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 467

Fig. 9. Context-value tables of Example 8.1.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

468 • G. Gottlob et al.

those context triples 〈x, p, s〉 which can be reached by the preceding location
steps “/descendant::*/descendant::*”. All of these restrictions of the context-
value tables are due to the considerations on the top-down evaluation according
to the semantics function E↓ from Definition 7.1. In particular, this top-down
evaluation guarantees that no context-value table contains more than |dom|2
entries, corresponding to all possible pairs of a previous and a current context
node with respect to the axis in the last location step. Without this improvement,
we would have to consider up to |dom|3 possible triples 〈x, p, s〉 in each context-
value table.

The final result of evaluating Q over D for the context 〈x10, 1, 1〉 is
{x13, x14, x21, x22, x23, x24}. It can be read out from the context-value table
corresponding to the input XPath expression Q .

In the context of our running example, by slight abuse of notation, we are
writing Ei both to denote subexpressions of the input XPath query Q and nodes
in the parse tree T . However, if the distinction between a node N in the parse
tree and a subexpression E of the input XPath query does matter, then we
shall write expr(N) to denote the XPath expression corresponding to the node
N . Conversely, for an expression E, we write node(E) to denote the node in
the parse tree corresponding to E. Given a node N in the parse tree, we shall
write table(N) to denote the context-value table at the node N . Finally, it is
convenient to write “≡” for syntactic equality.

8.2 The Main Ideas

The primary goal of our new algorithm MINCONTEXT is to keep the context
information that has to be considered at each stage as small as possible. This
is achieved by combining several ideas:

Restriction to the Relevant Context. Suppose that we want to evaluate an
XPath expression Q via the context-value table principle. Then we have to
compute a table of up to |dom|2 entries for each node in the parse tree of Q .
Recall that this is already an improved bound due to the top-down evaluation
via the semantics function E↓. However, in many cases, the result of a subexpres-
sion depends solely on parts of the context information. Hence, we can restrict
the context-value table at every node N in the parse tree to the “relevant con-
text” Relev(N) ⊆ {‘cn’, ‘cp’, ‘cs’}, which can be computed by a single bottom-up
traversal of the parse tree as follows:

—Base cases. If N is a leaf node of the parse tree, then we have to distinguish
all possible cases concerning the form of the subexpression expr(N) corre-
sponding to N , namely: If expr(N) is a constant or an expression of the form
“true()” or “false()”, then we set Relev(N) := ∅. In case of expr(N) ≡ position()
or expr(N) ≡ last(), we set Relev(N) := {‘cp’} or Relev(N) := {‘cs’}, respec-
tively. Finally, if expr(N) is a location step or a parameterless XPath core
library function that refers to the context-node (like string(), number(), etc.),
then we set Relev(N) := {‘cn’}.

—Compound expressions. If an inner node N of the parse tree corresponds to
a location step within a location path, then we set Relev(N) := {‘cn’}. In all

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 469

Fig. 10. Parse tree T of Q in Example 8.1.

other cases, let {N1, . . . , Nk} denote the set of child nodes of N . Then we set
Relev(N) := ⋃k

i=1 Relev(Ni).

Relev(N) depends on the XPath query Q only (but not on the XML-document).
Obviously, the computation of all these sets Relev(N) can be done in time O(|Q |).

Example 8.2. By a bottom-up traversal of the parse tree T in Figure 10,
we get the following sets of relevant contexts:

Relev(E2) = {‘cn’} Relev(E4) = {‘cn’} Relev(E8) = {‘cp’}
Relev(E12) = {‘cs’} Relev(E13) = { } Relev(E14) = {‘cn’}
Relev(E11) = { } Relev(E9) = Relev(E12) ∪ Relev(E13) = {‘cs’}
Relev(E6) = Relev(E8) ∪ Relev(E9) = {‘cp’, ‘cs’}
Relev(E10) = Relev(E14) = {‘cn’}
Relev(E7) = Relev(E10) ∪ Relev(E11) = {‘cn’}
Relev(E5) = Relev(E6) ∪ Relev(E7) = {‘cn’, ‘cp’, ‘cs’}
Relev(E3) = {‘cn’} Relev(E1) = {‘cn’} Relev(Q) = {‘cn’}

Note that Q , E1, and E3 correspond to location steps. That is, why the child
nodes of these nodes in the parse tree play no role in computing Relev(Q),
Relev(E1), and Relev(E3).

For the nodes Q , E1 . . . E4, the context-value tables in Figure 9 have already
been reduced to the relevant context. For E5, no reduction is possible, since we
have Relev(E5) = {‘cn’, ‘cp’, ‘cs’}. For the remaining nodes, the reduced context-
value tables are displayed in Figure 11.

Special Treatment of Location Paths on the Outermost Level. (i.e., location
paths that do not occur inside another XPath expression). Note that the context-
value table algorithm computes a table of size O(|dom|2) for all location steps of
an input location path (according to the semantics function S↓ in Figure 7). This
is due to the fact that we compute for every possible context-node x the resulting
node set. However, at no stage in the computation, we are really interested in
the whole information as to which next node x j ∈ dom can be reached from

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

470 • G. Gottlob et al.

Fig. 11. Restriction to the relevant context.

which previous node xi ∈ dom. Instead, it suffices to know the set of all nodes
x j ∈ dom that can be reached from any of the previous nodes xi ∈ dom. Hence,
the results of location steps on the outermost level should be treated as a subset
⊆ dom rather than as a relation ⊆ dom×2dom. Of course, the final result now has
to be read out from the context-value table corresponding to the last location
step (rather than from the context-value table of the root node of the parse
tree).

Example 8.3. The XPath query Q from Example 8.1 has in fact a location
path on the outermost level. Hence, the 2-dimensional context-value tables of
the location paths “/descendant::*/descendant::*[. . .]” (at node(Q) in the parse
tree), “descendant::*/descendant::*[. . .]” (at node(E1)), and “descendant::*[. . .]
(at node(E3)) can be replaced by the following node sets (or, equivalently, the
1-dimensional tables): X = {r} at node(Q) (i.e., the only node selected by “/”
is the root node r), moreover, Y = {x10, x11, x12, x13, x14, x21, x22, x23, x24} at
node(E1) (i.e., the nodes selected by “descendant::*” when starting from r),
and, finally, Z = {x13, x14, x21, x22, x23, x24} at node(E3) (i.e., the nodes selected
by “descendant::[E5]” when starting from any node in Y). Then the final result
of Q is the node set Z corresponding to the node E3 in the parse tree.

Treating Position and Size in a Loop. The central idea of the context-value
table principle is the simultaneous evaluation of each subexpression for all pos-
sible contexts in a single table. However, a close inspection of the various kinds
of expressions that have to be evaluated (cf. Tables II and IV) reveals that such
a simultaneous evaluation for all possible contexts is only necessary (in order
to avoid exponential time complexity) for the context-node x. In contrast, for the
context-position and/or context-size, a loop over all possible values 〈p, s〉 leads
to a significant improvement of the space complexity without any deterioration
of the time complexity. Hence, the evaluation of any predicate p should be done
as follows: First, the subtree in the parse tree corresponding to the predicate
p is traversed so as to evaluate all subexpressions of p that do not depend on
the (current) context-position and/or context-size. Then, the evaluation of the

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 471

predicate p for the complete context (possibly involving position and/or size) is
done in a loop over all possible values 〈x, p, s〉.

Example 8.4. Recall the query Q from Section 8.1. After the loca-
tion steps “/descendant::*/descendant::*”, we are left with the set X =
{x11, x12, x13, x14, x21, x22, x23, x24} of candidates that may possibly be selected
by Q ≡ /descendant::*/ descendant::*[E5]. Now X has to be restricted in the
following way to the set X ′ of those nodes for which E5 evaluates to “true”.

(1) First, we traverse the subtree of the parse tree rooted at E5 top-down
and evaluate those parts which are independent of the value of p and s
at node(E5). We thus set up the context-value tables of E7, E10, E11, E13,
and E14 as in Figure 11.

(2) Then, in a loop over all O(|dom|2) pairs of previous/current context-nodes
(with respect to the “descendant”-axis), we compute the set of those nodes
X ′ ⊆ X , for which the predicate E5 is true, that is, X ′ := {x ∈ X | (∃p)(∃s)
such that E5 evaluates to “true” for the context 〈x, p, s〉}. Of course, this
comes down to checking all the rows of the context-table of E5 (and also of
E6, E8, E9, and E12). However, in contrast to Figure 9, we do not set up the
entire tables at once. Instead, we treat these contexts 〈x, p, s〉 in a loop, for
example, for 〈x, p, s〉 = 〈x23, 7, 8〉 we compute the rows of E5, E6, E8, E9,
and E12 for p = 7 and s = 8 only. Moreover, we look up the row of E7 for the
context-node x23. We thus get the overall value “true” of E5 for this single
context 〈x23, 7, 8〉. Hence, x23 is added to X ′.

8.3 Procedures of the Algorithm MINCONTEXT

The MINCONTEXT algorithm consists of three principal procedures, namely
eval outermost locpath, eval by cnode only, and eval single context. They are
briefly explained below. In Appendix A, pseudocode presentations will be
provided.

—The procedure eval outermost locpath evaluates an input expression e in case
that e is a location path. It takes a node N in the parse tree and a node set
X ⊆ dom as input and returns the set Y of nodes that can be reached via the
path e from any context-node x ∈ X .

—The procedure eval by cnode only takes a node N in the parse tree and a set
X of possible context-nodes as input. It does not return a result value as such.
However, for every node M in the subtree rooted at N , it computes table(M),
provided that expr(M) does not depend on the (current) context-position/size.

—The procedure eval single context evaluates arbitrary XPath expressions for
a single context 〈x, p, s〉. It takes a node N in the parse tree and a context
〈x, p, s〉 as input and returns the result value of expr(N) for this context. The
procedure eval single context may only be called after eval by cnode only has
been called for the node N .

In Appendix A, we shall also give the pseudocode of the auxiliary procedure
eval inner locpath, which is called inside eval by cnode only in case of a location
path inside a predicate. Note that in all of these procedures, the parse tree of

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

472 • G. Gottlob et al.

an input query and the context value tables (i.e., table(N) for nodes N in the
parse tree) are treated as global variables in order to increase the readability.

On the top-level, our XPath evaluation method works as follows:

Algorithm 8.5 (MinContext)
Input: XPath query Q , XML document D, context 〈x, p, s〉;
Output: Result value of Q over D for the context 〈x, p, s〉;
Method:

Let T be the parse tree of Q ;
Let R be the root node of T ;
if Q is a location path then return eval outermost locpath(R, {x});
else
begin

eval by cnode only(R, {x});
return eval single context(R, 〈x, p, s〉);

end;

The MINCONTEXT algorithm will be put to work in a detailed example in
Section 11. Below, we show that the heuristics introduced here help to reduce
the worst-case complexity:

THEOREM 8.6. The MINCONTEXT algorithm evaluates arbitrary XPath queries
in time O(|D|4 ∗ |Q |2) and space O(|D|2 ∗ |Q |2), where |D| is the size of the XML-
document and |Q | is the size of the XPath query.

PROOF. As far as the space complexity is concerned, note that we only set
up context-value tables where the number of possible contexts is bounded by
|dom| < |D| (namely for nodes N in the parse tree with Relev(N) ⊆ {‘cn’}).
Of course, there are at most |Q | context-value tables required. Moreover, as
was shown in the proof of Theorem 6.6, the size of the result value of any
subexpression e of Q for any context �c is restricted by O(|D| ∗ |Q |). We thus get
the desired bound on the space complexity.

As for the time complexity, we evaluate each subexpression e of the input
query Q for at most |dom|2 different contexts (be it in a single context-value
table or in a loop over all possible values 〈x, p, s〉 corresponding to previ-
ous/current context-node). In other words, we consider at most |D|2 ∗ |Q | pairs
(e, �c) consisting of a subexpression e of Q and a context �c. Moreover, it was
shown in the proof of Theorem 6.6, that the time required for computing each
result value is bounded by O(|D|2 ∗ |Q |). Hence, we indeed end up with the
upper bound O(|D|4 ∗ |Q |2) on the time complexity.

9. IMPROVEMENT OF EXISTING XPATH PROCESSORS

9.1 Integrating the CVT-principle

During the evaluation process of some input XPath query Q , the existing XPath
processors (in particular, Saxon, Xalan, XT, see Clark [1999], Kay [2003], and
Apache Foundation [2004]) repeatedly evaluate subexpressions e of Q for con-
texts �c ∈ C, where �c is of the form �c = 〈x, p, s〉 for some context-node x, context-
position p, and context-size s. As was pointed out in Section 2, these systems,
in general, do the evaluation of the same subexpression e of Q for the same

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 473

context �c ∈ C more than once. This is the very reason why their time com-
plexity is, in general, exponential. By incorporating data structures analogous
to the context-value tables described in Section 6, multiple evaluations of the
same subexpression e of Q for the same context �c ∈ C can be avoided, thus
reducing the time complexity to polynomial time. The data structures used for
this purpose will be referred to as “data pool.” It contains triples of the form
〈e, �c, v〉, where e is a subexpression of the input XPath query Q , �c ∈ C is a
context, and v is the result value obtained when evaluating e for the context
�c. In other terms, (�c, v) can be considered as a row in the context-value table
corresponding to e. Initially, the data pool is empty, that is, it contains no such
triples.

In order to guarantee that no evaluation of the same subexpression e for the
same context �c is done more than once, we have to add two further components to
the existing systems, namely a “storage procedure” and a “retrieval procedure”.
Prior to the evaluation of any subexpression e for any context �c, the retrieval
procedure is called, which checks whether a triple 〈e′, �c ′, v〉 with e = e′ and
�c = �c ′ already exists in the data pool. If this is the case, then the result value
v of e for the context �c is returned without further computation. On the other
hand, after the evaluation of any subexpression e for any context �c yielding the
result value v, the storage procedure stores the triple 〈e, �c, v〉 in the data pool.

Let the basic evaluation step of an existing system be referred to as “atomic-
evaluation,” which takes an XPath expression e and a context �c as an input and
returns the corresponding result value v. Then, this “atomic-evaluation” simply
has to be replaced by the following procedure based on the context-value table
principle:

Algorithm 9.1 (Improved Basic Evaluation Step)
Input: XPath expression e, context 〈x, p, s〉;
Output: Result value of e for the context 〈x, p, s〉;
Method:

function atomic-evaluation-CVT (e, �c)
begin

if there exists a v, s.t. 〈e, �c, v〉 is in the data pool then
return v; /* retrieval procedure */

else
begin

v := atomic-evaluation (e, �c); /* basic evaluation step */
store 〈e, �c, v〉 in the data pool; /* storage procedure */
return v;

end;
end;

9.2 A Polynomial-Time Recursive XPath Processor

Recall from Definition 5.1 the formal semantics [[e]] and P [[π]] of arbitrary XPath
expressions e and of location paths π , respectively. It is straightforward to trans-
form this semantics definition into a recursive XPath evaluation processor. In
fact, we just have to define one evaluation function for each case of the definition
of [[·]] and P [[·]], respectively. The functions corresponding to the various cases
of [[·]] take an arbitrary XPath expression e and a context �c as input and return

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

474 • G. Gottlob et al.

an XPath value (which can be of type num, str, bool or nset). Analogously, the
functions corresponding to P [[·]] have a location path π and a node x ∈ dom
as input parameter and return a node set. Moreover, the recursions in the def-
inition of [[·]] and P [[·]] correspond precisely to recursive function calls of the
respective evaluation functions.

As was pointed out in Section 2, such a recursive algorithm provides a real-
istic model of the evaluation methods of existing XPath processors like Saxon,
Xalan, and XT. Moreover, it also follows from our analysis in Section 2, that
the resulting XPath evaluation method requires exponential time in the worst
case. However, the situation changes completely, if we modify all these function
definitions in the sense of Algorithm 9.1, that is, before any evaluation function
corresponding to [[·]] is called recursively with some input (e, �c), we first check
whether a triple 〈e′, �c ′, v〉 with e = e′ and �c = �c ′ already exists in the data pool.
If this is the case, then the result value v of e for the context �c is returned
without further computation. Likewise, before an evaluation function corre-
sponding to P [[·]] is called with some input (π, x), we first check whether some
triple 〈e′, �c ′, v〉 with π = e′ and �c ′ = 〈x, cp, cs〉 for arbitrary context-position cp
and context-size cs already exists in the data pool.

On the other hand, after the evaluation of an expression e for a context �c
yielding the result value v, we store the triple 〈e, �c, v〉 in the data pool. Likewise,
for a location path π and context-node x yielding the result value v, we may
store all possible triples 〈π, �c, v〉 with �c = 〈x, cp, cs〉 in the data pool.

This modification of the evaluation procedure leads to the following favorable
complexity result:

THEOREM 9.2. The functional implementation of [[·]] and P [[·]] using a data
pool, a storage function, and a retrieval function in the way described above
evaluates XPath queries in polynomial time (combined complexity).

PROOF. Let Q denote the input XPath expression and D the XML document
over which Q has to be evaluated. Of course, our evaluation procedure only eval-
uates subexpressions e of Q and there exist at most O(|Q |) of them. Moreover,
the number of contexts to be considered for every subexpression is bounded by
O(|D|3). By construction, our XPath evaluation algorithm never calls an eval-
uation procedure twice for evaluating a given subexpression e of Q for a given
context �c. Hence, the total number of (recursive) function calls is bounded by
the maximum number of distinct tuples 〈e, �c, v〉, that is, O(|D|3 · |Q |). It thus
only remains to show that the work to be carried out inside every such function
(not considering recursive function calls) is polynomially bounded. But this can
be easily checked by inspecting all the different cases of the definition of [[·]]
and P [[·]], respectively.

9.3 Experimental Results

We evaluated the approach proposed in this section by partially integrating
a data pool into Xalan. It turned out that even minor changes can lead to a
dramatical improvement of the runtime behavior. Specifically, the data pool was
only integrated for the evaluation of XPath functions (but not for location paths,

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 475

Fig. 12. Repetition of Experiment 3 from Section 2 with Xalan.

Table V. Exponential Speed-Up of Xalan via a Data Pool for XPath
Functions (Document Sizes 10 and 200; Times in Seconds)

Xalan classic Xalan+data pool

|Q | 10 200 10 200
1 0.7 0.7 0.7 2.5
2 0.7 7.1 0.7 4.8
3 0.7 1343.0 0.7 7.1
4 0.8 — 0.7 9.3
5 1.8 — 0.7 11.6
6 12.0 — 0.7 14.0
7 116.0 — 0.7 16.2
8 1115.0 — 0.7 18.5

whose handling by Xalan is basically untraceable). Then the XPath queries from
Experiment 3 in Section 2 (with nested paths and calls of the count-function)
were evaluated with the “original” Xalan and with the slightly modified one,
respectively. Similarly as in Figure 3 (Experiment 3), the exponential time
behavior of Xalan is immediately clear in Figure 12.

In contrast, in Table V, we see that the time required to process the docu-
ments of size 10 and 200 when a data pool is used. Actually, in case of document
size 10, the effort for the XPath evaluation itself is so small compared with the
overhead (e.g., for the Java virtual machine) that we get an (almost) constant
time behavior. On the other hand, for document size 200, the last column of the
table shows that the computation time increases (almost) linearly with the size
of the query.

10. LINEAR-TIME FRAGMENTS OF XPATH

10.1 Core XPath

In this section, we define a fragment of XPath (called Core XPath) which con-
stitutes a clean logical core of XPath (cf. Gottlob and Koch [2002]). The only

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

476 • G. Gottlob et al.

objects that are manipulated in this language are sets of nodes (i.e., there
are no arithmetical or string operations). Besides from these restrictions, the
full power of location paths is supported, and so is the matching of such
paths in condition predicates (with an “exists” semantics), and the closure of
such condition expressions with respect to boolean operations “and,” “or,” and
“not.”

We define a mapping of each query in this language to a simple algebra over
the set operations ∩, ∪, ‘−’, χ (the axis functions from Definition 3.1), and an
operation dom

root (S) := {x ∈ dom | root ∈ S}, i.e., dom
root (S) is dom if root ∈ S and ∅

otherwise.
Note that each XPath axis has a natural inverse: self−1 = self, child−1 =

parent, descendant−1 = ancestor, descendant-or-self−1 = ancestor-or-self,
following−1 = preceding, and following-sibling−1 = preceding-sibling.

LEMMA 10.1. For each pair of nodes x, y ∈ dom and axis χ , xχ y iff yχ−1x.

(Proof by a very easy induction.)

Definition 10.2. Let the (abstract) syntax of the Core XPath language be
defined by the EBNF grammar

cxp: locationpath | ‘/ ’ locationpath
locationpath:locationstep (‘/ ’ locationstep)*
locationstep: χ ‘::’ t | χ ‘::’ t ‘[‘ pred ’]’
pred: pred ‘and’ pred | pred ‘or’ pred

| ‘not’ ‘(‘ pred ’)’ | cxp | ‘(‘ pred ’)’

“cxp” is the start production, χ stands for an axis (see above), and t for a
“node test” (either an XML tag or “*”, meaning “any label”). The semantics of
Core XPath queries is defined by a function S→

S→[[χ ::t]](N0) := χ (N0) ∩ T (t)
S→[[/χ ::t]](N0) := χ ({root}) ∩ T (t)

S→[[π/χ ::t]](N0) := χ (S→[[π]](N0)) ∩ T (t)
S→[[π [e]]](N0) := S→[[π]](N0) ∩ E1[[e]]

S←[[χ ::t]] := χ−1(T (t))
S←[[χ ::t[e]]] := χ−1(T (t) ∩ E1[[e]])
S←[[χ ::t/π]] := χ−1(S←[[π]] ∩ T (t))

S←[[χ ::t[e]/π]] := χ−1(S←[[π]] ∩ T (t) ∩ E1[[e]])

S←[[/π]] := dom
root

(S←[[π]])

E1[[e1 and e2]] := E1[[e1]] ∩ E1[[e2]]
E1[[e1 or e2]] := E1[[e1]] ∪ E1[[e2]]
E1[[not(e)]] := dom − E1[[e]]

E1[[π]] := S←[[π]]

where N0 is a set of context nodes and a query π evaluates as S→[[π]](N0).

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 477

Example 10.3. The Core XPath query

/descendant::a/child::b[child::c/child::d or not(following::*)]

is evaluated as specified by the query tree

dom

�

�����

�

�

�
��

�
��

�
��

�
��

�
��

�
��

�

�
��

�
��

�

�
��

�
��

�

∩

∩

parent

∪∩

∩

child −T (b)

T (a)descendant

{root}

T (c) parent

T (d)

dom preceding

����	

(There are alternative but equivalent query trees due to the associativity and
commutativity of some of our operators.)

The semantics of XPath and Core XPath (defined using S←, S→, and E1)
coincide in the following way:

THEOREM 10.4. Let π be a Core XPath query and N0 ⊆ dom be a set of context
nodes. Then,

S←[[π]] = {x | S↓[[π]]({x}) �= ∅}
E1[[e]] = {x | E↓[[e]]({〈x, 1, 1〉})}

〈S→[[π]](N0)〉 = S↓[[π]](〈N0〉).
This can be shown by easy induction proofs. Thus, Core XPath (evaluated

using S→) is a fragment of XPath, both syntactically and semantically.

THEOREM 10.5. Core XPath queries can be evaluated in time O(|D| ∗ |Q |),
where |D| is the size of the data and |Q | is the size of the query.

PROOF. Given a query Q , it can be rewritten into an algebraic expression E
over the operations χ , ∪, ∩, ‘−’, and dom

root using S→, S←, and E1 in time O(|Q |).
Each of the operations in our algebra can be carried out in time O(|D|). Since at
most O(|Q |) such operations need to be carried out to process E, the complexity
bound follows.

10.2 XPatterns

We extend our linear-time fragment Core XPath by the operation id: nset →
nset of Table II by defining “id” as an axis relation

id := {〈x0, x〉 | x0 ∈ dom, x ∈ deref ids(strval(x0))}
ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

478 • G. Gottlob et al.

Queries of the form π1/id(π2)/π3 are now treated as π1/π2/id/π3.

LEMMA 10.6. Let π1/id(π2)/π3 be an XPath query such that π1/π2/id/π3 is a
query in Core XPath with the “id” axis. Then, the semantics of the two queries
relative to a set of context nodes N0 ∈ dom coincide:

S↓[[π1/id(π2)/π3]](〈N0〉) = S→[[π1/π2/id/π3]](N0).

THEOREM 10.7. Queries in Core XPath with the “id” axis can be evaluated in
time O(|D| ∗ |Q |).

PROOF. The interesting part of this proof is to define a function id: 2dom →
2dom and its inverse consistent with the functions of Definition 3.1 which is
computable in linear time. We make use of a binary auxiliary relation “ref”
which contains a tuple of nodes 〈x, y〉 iff the text belonging to x in the XML
document, but which is directly inside it and not further down in any of its
descendants, contains a whitespace-separated string referencing the identifier
of node y .

For example, let id(i) = ni. Then, for the XML document 〈t id = 1〉 3 〈t id = 2〉
1 〈/t〉 〈t id = 3〉 1 2 〈/t〉 〈/t〉, we have ref := {〈n1, n3〉, 〈n2, n1〉, 〈n3, n1〉, 〈n3, n2〉}.

Relation “ref” can be efficiently computed in a preprocessing step. It does
not satisfy any functional dependencies, but it is guaranteed to be of linear size
with respect to the input data (however, not in the tree nodes). Now we can
encode id(S) as those nodes reachable from S and its descendants using “ref”.

id(S) := { y | x ∈ descendant-or-self(S), 〈x, y〉 ∈ ref}
id−1(S) := ancestor-or-self({x | 〈x, y〉 ∈ ref, y ∈ S})

This computation can be performed in linear time.

We may define XPatterns as the smallest language that subsumes Core
XPath and the XSLT Pattern language of World Wide Web Consortium [1998]
(see also Wadler [1999] for a good and formal overview of this language) and is
(syntactically) contained in XPath. Stated differently, it is obtained by extend-
ing the language of World Wide Web Consortium [1998] with the first-of-type
and last-of-type predicates (which do not exist in XPath) to support all of the
XPath axes. As pointed out in the introduction, XPatterns is an interesting
and practically useful query language. Surprisingly, XPatterns queries can be
evaluated in linear time.

THEOREM 10.8. Let D be an XML document and Q be an XPatterns query.
Then, Q can be evaluated on D in time O(|D| ∗ |Q |).

PROOF. XPatterns extends Core XPath by the “id” axis and a number of fea-
tures which are definable as unary predicates, of which we give an overview
in Table VI. It becomes clear by considering the semantics definition of Wadler
[1999] that after parsing the query, one knows of a fixed number of predicates to
populate, and this action takes time O(|D|) for each. Thus, since this computa-
tion precedes the query evaluation—which has a time bound of O(|D| ∗ |Q |)—
this does not pose a problem. “id(c)” (for some fixed string c) may only occur

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 479

Table VI. Some Unary Predicates of XLST Patterns

“@n”, “@*”, “text()”, “comment()”, “pi(n)”, and “pi()” (where n is a label) are simply sets provided
with the document (similar to those obtained through the node test function T).
“=s” (s is a string) can be encoded as a unary predicate whose extension can be computed
using string search in the document before the evaluation of our query starts. Clearly, this
can be done in linear time.

first-of-any := { y ∈ dom | � ∃x : nextsibling(x, y)}

last-of-any := {x ∈ dom | � ∃ y : nextsibling(x, y)}

“id(s)” is a unary predicate and can easily be computed (in linear time) before the query
evaluation.

at the beginning of a path, thus in a query of the form id(c)/π , π is evaluated
relative to the set id(c) just as, say, {root} is for query /π .

Let � be a finite set of all possible node names that a document may use
(e.g., given through a DTD). The unary first-of-type and last-of-type predicates
can be computed in time O(|D| ∗ |�|) when parsing the document, but are of
size O(|D|):

first-of-type() :=
⋃
l∈�

(T (l) − nextsibling+(T (l)))

last-of-type() :=
⋃
l∈�

(T (l) − (nextsibling−1)+(T (l)))

where R+ = R.R∗.

11. A LINEAR-SPACE FRAGMENT OF XPATH

11.1 The Extended Wadler Fragment

Wadler [2000] considers a useful fragment of XPath with predicates made up of
location paths on the one hand and arithmetic expressions with the functions
position() and last() on the other hand. This fragment is the key to a big frag-
ment of XPath, which can be processed in linear space and quadratic time with
respect to the size of the XML data. We shall identify some restrictions on XPath
that guarantee the linear space complexity. It will turn out that these restric-
tions also suffice to guarantee the quadratic time complexity. In fact, it is easy
to check that the fragment in Wadler [2000] fulfills these restrictions. Hence,
we shall refer to our XPath fragment as the “Extended Wadler Fragment”.

Suppose that we want to evaluate an XPath expression e. Actually, if the
result type of e is scalar (i.e., num, bool or str), then we can simply evaluate
e as in Section 8. We just have to make sure that the size of scalar values is
independent of the XML data. Hence, we require

Restriction 1. The XPath functions that select data from an XML document,
are not allowed, that is, local-name, namespace-uri, name, string, number,
string-length, and normalize-space.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

480 • G. Gottlob et al.

On the other hand, if the result of e is a (linearly big) node set, then e cannot
simply be evaluated simultaneously for all (linearly many) possible context-
nodes, since this would require quadratic space. Of course, we must not treat
the context-nodes in a loop since this has been identified in Section 2 as the very
reason why previous XPath evaluation algorithms require exponential time.
Instead, we need a different strategy. Recall from Section 5 that we assume
that all type conversions in an XPath expression are made explicit. Hence, (by
Restriction 1) expressions that evaluate to a node set can only occur in one of
the following five forms:

(1) boolean(nset) (2) nset RelOp scalar (3) nset RelOp nset

(4) count(nset) (5) sum(nset)

where RelOp ∈ {=, �=, ≤, <, ≥, >}, nset denotes an expression whose result is a
node set, and scalar denotes any other expression. Below, we shall present an
optimization for the first two cases. Unfortunately, this method does not work
in case of the latter three ones. We thus require

Restriction 2. Expressions of the form nset RelOp nset as well as calls of the
functions count and sum are not allowed. Moreover, for expressions of the form
nset RelOp scalar we require that scalar does not depend on any context.

As for the form that an nset-expression can have, we distinguish two principal
cases, namely location paths or expressions of the form id(e). Of course, the calls
of id can be arbitrarily nested. However, ultimately, we either have e ≡ id(id
(· · · (c) · · ·)) or e ≡ id(id(· · · (π) · · ·)), where c is a string-expression and π is
a location path. For the latter case, we rewrite id(id(· · · (π) · · ·)) to the form
π /id/id/· · · /id, that is, analogously to Section 10.2, we consider “id” as a new
axis. Hence, in this case, expressions of the form id(id(· · · (π) · · ·)) are treated
as location paths. For the former case, we impose

Restriction 3. In expressions of the form id(id(· · · (c)· · ·)), where c is a string-
expression, we require that c must not depend on any context.

Actually, nset-expressions of the form id(id(· · · (c) · · ·)), where c does not de-
pend on any context, can be simply evaluated by the algorithm from Section
8 in linear space. For any other nset-expressions (i.e., location paths, possi-
bly involving the id-“axis”), we observe that (because of Restriction 2) nset-
expressions are only allowed to occur as operands of expressions that yield
a Boolean result value. In particular, the context-value table for the whole
expression (of the form “nset RelOp scalar” or “boolean (nset)”), clearly re-
quires linear space only. We just have to avoid the explicit computation of
the context-value table for the location path nset. This can be achieved as
follows.

Bottom-Up Evaluation of Certain Location Paths. A location path π inside
an expression of the form boolean(π) or π RelOp c has an ∃-semantics, for
example, boolean(π) evaluates to “true” for a context-node x, iff there exists at
least one node in the node set resulting from the evaluation of π . Thus, the

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 481

set of nodes x, for which boolean(π) or π RelOp c evaluates to “true” can be
computed as follows:

—First, compute the “initial node set” Y . For an expression boolean(π), we
set Y := dom. An expression π RelOp c with c of type bool is treated like
the expression boolean(π) RelOp c. For any other type of c, we set Y := {x |
self::* RelOp c evaluates to “true” for the context-node x}.

—Compute X by propagating Y backwards via the inverse location steps of π .

As for the backward propagation of a node set via the inverse location steps,
we proceed as follows: If we have π = χ1 :: ∗/χ2 :: ∗/ · · · /χn :: ∗, then we
set X n := Y and X i−1 := χ−1

i (X i) (where χ−1
i denotes the inverse axis from

Section 10.1) for every i ∈ {1, . . . , n}. Hence, X := X 0 is the desired node set.
Note that if χi is the id-“axis”, then we have χ−1

i (X i) = id−1(X i). Recall from
Lemma 3.3 (for “ordinary” axes) and Theorem 10.7 (for the id-axis), that χ−1

i (X i)
can be computed in time O(|D|) for any node set X i ⊆ dom.

Now let π ≡ χ1 :: t1[e11] · · · [e1k1]/ · · · /χn :: tn[en1] · · · [enkn]. Then we have
to restrict each node set X i to the set X ′

i of those nodes for which the node
test ti holds and apply the inverse axis function χ−1

i to X ′
i. For the predicates

we proceed analogously to the MINCONTEXT algorithm, by calling the proce-
dures eval by cnode only and eval single context. In Appendix A, we give the
pseudocode of a procedure eval bottomup path (plus the auxiliary procedure
propagate path backwards) for expressions π RelOp c and boolean(π), respec-
tively. Note that in the procedure propagate path backwards we assume (with-
out loss of generality) that all occurrences of “|” have been removed. This can be
easily achieved by replacing “boolean(π1|π2| · · · |πk)” and “π1|π2| · · · |πk RelOp c”
by “boolean(π1) or · · · or boolean(πk)” and “(π1 RelOp c) or · · · or (πk RelOp c)”.

11.2 The Algorithm OPTMINCONTEXT

In order to incorporate the above ideas of a bottom-up evaluation of certain
location paths, our MINCONTEXT algorithm has to be modified to a new algorithm
OPTMINCONTEXT as follows:

Algorithm 11.1 (OptMinContext)
Input: XPath query Q , XML document D, context 〈x, p, s〉;
Output: Result value of Q over D for the context 〈x, p, s〉;
Method:

evaluate all “bottom-up location paths” inside Q
(starting with the innermost ones in case of nesting);

call MINCONTEXT

(Of course, subexpressions that have already been
evaluated bottom-up are not evaluated again);

We illustrate the algorithms OPTMINCONTEXT and MINCONTEXT by the follow-
ing example:

Example 11.2. Let the XPath query Q be defined as Q ≡ /child::
a/descendant :: *[boolean(following::d[(position() ! = last()) and (preceding-
sibling ::*/ preceding ::* = 100)]/following :: d)]. We want to evaluate Q over the
XML document D from Figure 8. We do not need an input context, since Q is
an absolute location path.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

482 • G. Gottlob et al.

Fig. 13. Parse tree T of Q in Example 11.2.

The parse tree T of Q is depicted in Figure 13. Q has two inner location
paths E5 and E14 that have to be evaluated bottom-up. Note that we have
omitted the explicit type conversion of E14 to string(E14), since this is not
needed in case of our bottom-up evaluation here. Analogously to the running
example in Section 8, we write Ei both to refer to subexpressions of Q and to
nodes in the parse tree T .

We start the bottom-up evaluation with the innermost location path, namely
E14: The initial node set is Y := {x14, x24}, which corresponds to all context-
nodes for which “self::* = 100” evaluates to “true”. To this node set, we first
apply following (= preceding−1), which yields the node set {x21, x22, x23, x24}.
By applying following-sibling (= preceding-sibling−1) to this, we get {x23, x24}.
Hence, the context-value table of the node E11 is the 2-dimensional table
⊆ dom × {true, false}, such that exactly the nodes in {x23, x24} have the value
“true” in the second column.

For the bottom-up evaluation of the path E5, we have to take the node tests
and the predicate E9 into account. We start the evaluation with Y := dom.
Now we have to apply the inverse step of following::d. Hence, we first restrict
Y to the set Y ′ of those nodes for which the node test “d” yields “true”,
that is, Y ′ = {x14, x23, x24}. By applying preceding (= following−1) to Y ′, we
get Y ′′ = {x11, x12, x13, x14, x22, x23}. Now we have to apply the location step
following::d[E9] backwards. To this end, we first restrict Y ′′ to the elements
with name d. We thus get Y ′′′ = {x14, x23}. Now we have to check for which nodes

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 483

in Y ′′′ (together with appropriate values for p and s) the predicate E9 evaluates
to “true”. To this end, we first call the procedure eval by cnode only to evaluate
those nodes in the parse tree rooted at E9 which do not depend on (the current
values of) p and s. Actually, in this case, only the subtree rooted at E11 has this
property. However, table(E11) has already been determined by the bottom-up
evaluation described above. Hence, the call of procedure eval by cnode only
has no effect here. Note that X = following−1(Y ′′′) = {x11, x12, x13, x14, x22}.
In order to evaluate the predicate E9 also for p and s via the procedure
eval single context, we have to consider all combinations of previous/current
context-node (in X × Y ′′′) with respect to the “following”-axis. Actually, both
nodes in Y ′′′ can be extended by appropriate values of p and s to a context
triple, such that E9 evaluates to “true” for this context, for example, 〈x14, 2, 6〉
and 〈x23, 5, 6〉 (which are both obtained via the previous context-node x12).
Hence, the predicate E9 does not lead to a restriction of Y ′′′. Therefore, the
desired context-value table ⊆ dom × {true, false} of the node E4 has the value
“true” in the second column exactly for the nodes in X .

Finally, we evaluate the location path at the outermost level of Q by calling
the procedure eval outermost locpath. The location step child::a yields the set
{x10} independent of any input context. Moreover, by the step descendant::*,
we get dom − {r, x10}. However, these nodes have to be intersected with the
set X computed above. Hence, the final result of evaluating the query Q is
{x11, x12, x13, x14, x22}.

Below, we show that Restrictions 1 through 3 lead to the desired improvement
of the efficiency.

THEOREM 11.3. The OPTMINCONTEXT algorithm evaluates XPath queries
from the Extended Wadler Fragment (i.e., the set of all XPath expressions ful-
filling the Restrictions 1 through 3 from Section 11.1) in space O(|D| ∗ |Q |2) and
time O(|D|2 ∗ |Q |2), where |D| is the size of the XML-document and |Q | is the
size of the XPath query.

PROOF. We first consider the space complexity: Of course, an input XPath
expression Q has at most |Q | subexpressions. Hence, it suffices to show that
the information that we have to store for each subexpression e of Q is bounded
by O(|D| ∗ |Q |):

For subexpressions e along an outermost location path, we have to propagate
node sets in dom, whose size is clearly bounded by |D|. For an inner location
path e, we may assume by Restriction 2 from Section 11.1 that e occurs in the
form boolean(e) or e RelOp c, where the relevant context of c is empty. Then the
backward evaluation of such a location path e again comes down to propagating
node sets in dom.

Now consider the case of the id-function, that is, by Restriction 3 from
Section 11.1, e is either of the form e ≡ id(id(· · · (π) · · ·)) for some location path
π or e ≡ id(id(· · · (c) · · ·)), where c has an empty relevant context. In the for-
mer case, e is treated like any other inner location path. In the latter case, the
context-value table corresponding to e consists of a single row whose size is of
course bounded by |dom| ≤ |D|.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

484 • G. Gottlob et al.

Finally, suppose that e is any other expression. Then, in particular, e eval-
uates to a number, a string, or a Boolean value. Recall from Section 8 that we
explicitly set up the context-value table for e only if the relevant context of e is a
subset of {‘cn’}. Hence, the context-value table has at most |D| rows. Moreover,
by Restriction 1 from Section 11.1, it is guaranteed that scalar values do not
depend on the input document. They are thus bounded by O(|Q |). Hence, in all
of the above cases of the subexpression e, the information that we have to store
is bounded by O(|D| ∗ |Q |).

For the time complexity, we have to show that the time required to deal
with each subexpression e of Q is bounded by O(|D|2 ∗ |Q |). To this end, we
distinguish the same cases as above:

The propagation of node sets can be done in time O(|D|)—be it in forward
direction for location paths on the outermost level or in backward direction for
inner location paths (see Lemma 3.3 for “ordinary” axes and Theorem 10.7 for
the id-function).

For any other expression e, the computation of the result value of e for a single
context �c takes at most O(|Q |) time, given that the subexpressions of e have
already been evaluated. This is due to Restriction 1 from Section 11.1. Moreover,
each subexpression e of Q has to be evaluated for at most |D|2 contexts. Hence,
the total time required by each subexpression e of Q is indeed bounded by
O(|D|2 ∗ |Q |).

In fact, even a slightly stronger property holds for our algorithm, namely:

COROLLARY 11.4. Let Q be an arbitrary XPath query to which our
OPTMINCONTEXT algorithm is applied. Moreover, let e be a subexpression in Q,
such that e is in the Extended Wadler Fragment. If e is a location path, then we
also require that either Q ≡ e or Q ≡ π ′/e for an arbitrary relative or absolute
location path π ′ or e occurs in the form boolean(e) or e RelOp c (where c is inde-
pendent of any context) in Q. Then e is evaluated in space O(|D| ∗ |e|2) and time
O(|D|2 ∗ |e|2). These upper bounds apply to the total space and time required by
the OPTMINCONTEXT algorithm to evaluate e for all relevant contexts.

PROOF. As far as the space complexity is concerned, we have to show that the
information to be stored for each subexpression e′ of e is bounded by O(|D|∗ |e|).

First, suppose that e′ evaluates to a node set. If e′ is a location path, then,
by the Restrictions 1 and 2 plus the additional restrictions imposed by Corol-
lary 11.4, the evaluation of e′ comes down to propagating node sets in dom—
either in forward direction (if Q itself is a location path and e′ is a subexpression
along this outermost location path) or in backward direction (if e′ occurs in the
form boolean(e′) or e′ RelOp c). This is also true for the case that e′ is of the
form e′ ≡ id(id(· · · (π)· · ·)) for some location path π . On the other hand, if e′ is
of the form e′ ≡ id(id(· · · (c)· · ·)), where c has an empty relevant context, then
the context-value table corresponding to e′ consists of a single row whose size
is clearly bounded by |dom| ≤ |D|.

The case that e′ evaluates to a number, a string, or a Boolean value is treated
exactly like in the proof of Theorem 11.3. Likewise, the upper bound on the
time complexity can be established by the same considerations as in the proof
of Theorem 11.3.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 485

An analogous result to Corollary 11.4 can also be shown for the Core XPath
Fragment introduced in Section 10.1.

COROLLARY 11.5. Let Q be an arbitrary XPath query to which our OPTMIN-
CONTEXT algorithm is applied. Moreover, suppose that π is a location path from
Core XPath, such that Q ≡ π or Q ≡ π ′/π for an arbitrary relative or absolute
location path π ′ or π occurs in Q in the form boolean(π) or π RelOp c (where c
is independent of any context).

Then π is evaluated in time O(|D| ∗ |π |). This upper bound applies to the total
time required by the OPTMINCONTEXT algorithm to evaluate π for all relevant
contexts.

PROOF. Core XPath expressions of the form χ :: t[π ′] are a short-hand for
χ :: t[boolean(π ′)]. Likewise, any occurrence of a location path π as an operand of
one of the logical operators “and”, “or”, and “not” may be replaced by boolean(π)
without changing the meaning of the XPath query (i.e., we just make the type
conversion explicit). Hence, Core XPath is clearly contained in the Extended
Wadler Fragment.

Actually, the only reason why we have quadratic time complexity with respect
to the size of the data |D| in Corollary 11.4 is that we possibly have to evaluate
predicates in a loop over all (quadratically many) pairs of previous/current
context-node in order to take the context-position and context-size into account.
However, in Core XPath, position() and last() are not allowed and, therefore, no
such loop is required.

On the other hand, the quadratic time complexity with respect to the size |e|
of a subexpression e of |Q | in Corollary 11.4 is due to the possible blow up of
strings and numbers by iterated application of XPath core library functions like
concat and arithmetic operations. However, these constructs are not contained
in Core XPath. We thus end up with a linear time upper bound both with respect
to the data and the query for these subexpressions.

12. CONCLUSIONS

In this article, we presented the first XPath query evaluation algorithm that
runs in polynomial time with respect to the size of both the data and of the
query. Our results will allow for XPath engines to deal efficiently with very
sophisticated queries.

Moreover, we have presented several interesting fragments of XPath for
which the query evaluation can be even further optimized. We have also shown
how the ideas presented here can be profitably integrated into existing XPath
processors thus reducing their complexity from exponential to polynomial time.

We have made a main-memory implementation of the top-down algorithm
of Section 7. Table VII compares it to IE6 along the assumptions made in Ex-
periment 2 (i.e., the queries of which were strictly the most demanding of all
three experiments).10 It shows that our algorithm scales linearly in the size

10Note that the performance of the systems should not be directly compared since they were run
in different hardware and software environments—IE6 is only available on MS Windows. IE6 was
benchmarked using the hardware setup of Experiment 2, while XMLTaskforce XPath (release tag

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

486 • G. Gottlob et al.

Table VII. Benchmark Results in Seconds for IE6 vs. Our Implementation (“XMLTaskforce
XPath”), on the Queries of Experiment 2 and Document Sizes 10, 20, and 200

IE6 XMLTaskforce XPath

|Q | 10 20 200 10 20 200 500 1000 2000
1 0.00 0.00 0.00 0.00 0.00 0.01
2 2 0.00 0.00 0.02 0.12 0.57 2.57
3 346 0.00 0.00 0.02 0.23 1.14 5.07
4 1 — 0.00 0.00 0.05 0.33 1.70 7.58
5 21 — 0.00 0.00 0.07 0.44 2.32 10.09
6 5 406 — 0.00 0.00 0.07 0.54 2.88 12.58
7 42 — — 0.00 0.00 0.09 0.67 3.45 15.42
8 437 — — 0.00 0.00 0.12 0.78 4.03 17.58
9 — — — 0.00 0.00 0.14 0.90 4.59 20.46

10 — — — 0.00 0.00 0.15 0.99 5.13 22.61
20 — — — 0.00 0.01 0.30 2.20 10.80 47.90
30 — — — 0.01 0.01 0.48 3.19 16.72 73.13
40 — — — 0.01 0.02 0.65 4.39 22.37 98.50
50 — — — 0.01 0.02 0.80 5.53 28.13 123.79

of the queries and quadratically (for this class of queries) in the size of the
data. Our implementation is still an early prototype without sophisticated op-
timizations. It closely coheres to the specification given in this article. Our
system and further resources related to this article can be downloaded from
http://www.xmltaskforce.com.

In this article, we have exclusively dealt with XPath 1. Note that XPath
2, which currently has the status of a W3C working draft (see World Wide
Web Consortium [2004b]), significantly extends XPath 1 in many directions. Of
course, XPath 1 will remain an important fragment of XPath 2. Moreover, the
ideas presented in this article can be easily extended to cope with some of the
new XPath 2 features, for example, it is no problem to deal with the simple types
of XML Schema in the last column of our context-value tables. Likewise, most
of the new built-in functions and operators easily fit into the CVT-framework.
On the other hand, adding node variables to XPath 1 immediately leads to
NP-completeness of the XPath evaluation problem. The situation gets even
worse if we consider full XPath 2 (including the use of arbitrary XQuery expres-
sions which may in turn contain arbitrary recursions of user-defined functions),
which is known to be Turing-complete. Hence, there is clearly no hope to extend
our CVT-principle to these features of XPath 2.

Finally, note that, in Gottlob et al. [2003], which is based on work subsequent
to the research reported on in this article, the upper bounds on the complexity
of XPath of the present article are complemented by tight lower bounds. It is
shown that full XPath 1 is complete for polynomial time. Further complexity
results related to XPath can be found in Segoufin [2003]. In Bar-Yossef et al.
[2004], several memory lower bounds for evaluating XPath queries over XML
streams are shown by communication complexity methods.

20040812) was benchmarked using the hardware setup of Experiment 5. Note that the timings of
the IE6 only have the precision of ±1 second. Hence, we left those entries in Table VII empty where
we got values below 1 second since these values are not meaningful.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 487

APPENDIX

A. PSEUDOCODE PRESENTATIONS

Analogously to Section 8, we use the
following notation: For a node N in
the parse tree, we write table(N) to de-
note the context-value table at N and
expr(N) to denote the subexpression
of Q corresponding to N . Conversely,
for a subexpression e of Q , we denote
by node(e) the corresponding node in
the parse tree. For the sake of better
readability, the parse tree T of the in-
put query Q and the context value ta-
bles table(N) for the nodes N in T are
treated as global variables.

procedure eval outermost locpath
input: node N in the parse tree

set X of possible context-nodes

output: set Y of nodes that can be reached
from X via expr(N).

begin
/* case distinction over expr(N) */
if expr(N) = /π then return
eval outermost locpath(node(π), {root});

elseif expr(N) = π1|π2 then
begin
Y1 := eval outermost locpath(node(π1), X);
Y2 := eval outermost locpath(node(π2), X);
return Y1 ∪ Y2;

end;
elseif expr(N) = π1/π2 then
begin
Y := eval outermost locpath(node(π1), X);
return
eval outermost locpath(node(π2), Y);

end;
elseif expr(N) = χ :: t[e1] · · · [eq] then
begin
Y := nodes reachable from X via χ :: t;
for i := 1 to q do
eval by cnode only(node(ei), Y);

R := ∅;
if (∀i ∈ {1, . . . , q}) ({‘cp’, ‘cs’}∩
Relev(node(ei))) = ∅ holds then
for each y ∈ Y do
if ∀i ∈ {1, . . . , q}
eval single context(node(ei), 〈 y , ∗, ∗〉) =
true then R := R ∪ { y};
/* “∗” denotes the wildcard for

irrelevant parts of the context */
else /* some ei depends on ‘cp’ or ‘cs’ */
begin
for each x ∈ X do
begin

Z := {z ∈ Y | xχz};
for i := 1 to q do
begin
let Z = {z1, . . . , zm} be ordered
according to the axis χ ; /* i.e., in
document order or reverse order. */

Z ′ := ∅;
for j := 1 to m do
if eval single context(node(ei),
〈z j , j , m〉) = true then Z ′ := Z ′ ∪ {z j };

Z := Z’; /* i.e., Z = {z ∈ � |
xχz and e1, . . . , ei hold} */

end; /* for i */
R := R ∪ Z ;

end; /* for each x */
end; /* some ei depends on ‘cp’ or ‘cs’ */
return R;

end; /* case distinction over expr(N) */
end;

procedure eval by cnode only:
input: node N in the parse tree

set X of context-nodes (If ‘cn’ �∈
Relev(N), then X may consist of the
wildcard “∗” only.)

output: modifies the global data table(M) of
nodes M below N in the parse tree.

begin
if {‘cp’, ‘cs’} ∩ Relev(N) �= ∅ then
begin
let N1, . . . , Nk be the child nodes of N
in the parse tree;

for i := 1 to k do
eval by cnode only(Ni , X);

end;
elseif expr(N) = π then
table(N) := eval inner locpath(π, X);

else
begin
let expr(N) = Op(e1, . . . , ek);
for i := 1 to k do
eval by cnode only(node(ei), X);

table(N) := {(c, F[[Op]](r1, . . . , rk) |
∃c ∈ X s.t. (∀i ∈ {1, . . . , k}) (ci , ri) ∈
table(node(ei)) holds, where ci is the
projection of c to the relevant context
of node(ei)};

end;
end;

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

488 • G. Gottlob et al.

procedure eval single context:
input: node N in the parse tree

single context triple 〈x, p, s〉, s.t. the
wildcard “∗” may be used for any
irrelevant part of the context.

output: result value of expr(N) for the
context 〈x, p, s〉.

begin
if {‘cp’, ‘cs’} ∩ Relev(N) = ∅ then
begin
let (c, r) ∈ table(N) where c is the projection
of 〈x, p, s〉 to the relevant context of N ;

return r;
/* i.e. result value according to table(N) */

end;
else
begin
let expr(N) = Op(e1, . . . , ek);
for i := 1 to k do ri :=
eval single context(node(ei), 〈x, p, s〉);

return F[[Op]](r1, . . . , rk);
end;

end;

procedure eval inner locpath:
input: node N in the parse tree

set X of possible context-nodes

output: table(N) ⊆ dom × 2dom

begin
/* case distinction over expr(N) */
if expr(N) = /π then
begin

R ′ := eval inner locpath(node(π), {root});
return {(x0, x) | x0 ∈ X ∧ (root, x) ∈ R ′};

end;
elseif expr(N) = π1|π2 then
begin

R1 := eval inner locpath(node(π1), X);
R2 := eval inner locpath(node(π2), X);
return R1 ∪ R2;

end;
elseif expr(N) = π1/π2 then
begin

R1 := eval inner locpath(node(π1), X);
let Y := {x | ∃x0: (x0, x) ∈ R1};
R2 := eval inner locpath(node(π2), Y);
return {(x0, x) | ∃x1: (x0, x1) ∈ R1∧
(x1, x) ∈ R2};

end;
elseif expr(N) = χ :: t[e1] . . . [eq] then
begin
Y := nodes reachable from X via χ :: t;

for i := 1 to q do
eval by cnode only(node(ei), Y);

if (∀i ∈ {1, . . . , q}) ({‘cp’, ‘cs’}∩
Relev(node(ei))) = ∅ holds then

begin
Y ′ := ∅;
for each y ∈ Y do
if ∀i ∈ {1, . . . , q}
eval single context(node(ei), 〈 y , ∗, ∗〉) =
true then Y ′ := Y ′ ∪ { y};

R := {(x, y) | x ∈ X ∧ y ∈ Y ′ ∧ xχ y};
end;
else /* some ei depends on ‘cp’ or ‘cs’ */
begin

R := ∅;
for each x ∈ X do
begin

Z := {z ∈ Y | xχz};
for i := 1 to q do
begin
let Z = {z1, . . . , zm} be ordered
according to the axis χ ; /* i.e., in
document order or reverse order. */

Z ′ := ∅;
for j := 1 to m do if
eval single context(node(ei), 〈z j , j , m〉) =
true then Z ′ := Z ′ ∪ {z j };

Z := Z’; /* Z = {z ∈ dom |
xχz and e1, . . . , ei hold} */

end; /* for i */
R := R ∪ ({x} × Z);

end; /* for each x */
end; /* some ei depends on ‘cp’ or ‘cs’ */
return R;

end; /* case distinction over expr(N) */
end;

eval bottomup path:
input: node N in the parse tree with

expr(N) ≡ boolean(π) or expr(N) ≡
π RelOp c, s.t. π is a “bottom-up
location path”, c is independent
of the context, and c is of type nset,
str, or num.

output: The global data structure table(N) is
filled in.

begin
/* Step 1: determine the initial node set Y */
if expr(N) = boolean(π) then Y := dom;
elseif expr(N) = π RelOp c then
begin
eval by cnode only(node(s), {∗}); /* note
that c is independent of the context */

if c is of type nset then

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 489

begin
Y := { y | ∃z ∈ table(node(c)) |
strval(y) RelOp strval(z)};

end;
elseif c is of type str then
begin
let val denote the only element in
table(node(s));

Y := { y | strval(y) RelOp val };
end;
elseif c is of type num then
begin
let val denote the only element in
table(node(c));

Y := { y | to number(strval(y)) RelOp val };
end;

end;

/* Step 2: propagate Y backwards via π and
fill in table(N) */
let M1 := node(π); /* i.e., M1 corresponds
to the first location step of π */

let M2 denote the node in the parse tree
corresponding to the last location step of π ;

X := propagate path backwards(Y , M1, M2);
table(N) := {(x, true) | x ∈ X }∪
{(x, false) | x ∈ (dom − X)};

end;

propagate path backwards:
input: node set Y ⊆ dom

nodes M1 and M2 in the parse tree
(corresponding to first/last step of a
“bottom-up path” π)

output: node set X ⊆ dom, where
X := {x ∈ dom | ∃ y ∈ Y , s.t.
y is reachable from x via π}

begin
if Y = ∅ then return ∅;
/* case distinction over all possible
location steps at M2: */
if location step at M2 is ‘/’ then R := dom;
/* this is the top of an absolute location
path and Y �= ∅ holds */
elseif location step at M2 is id then
begin

R := F[[Op]]−1(Y);
end;
elseif location step at M2 is χ :: t[e1] · · · [eq]

then begin
Y ′ := { y ∈ Y | node test t is true for y};
for i := 1 to q do
eval by cnode only(node(ei), Y ′);

if (∀i ∈ {1, . . . , q}) ({‘cp’, ‘cs’}∩
Relev(node(ei))) = ∅ holds then
begin
Y ′′ := ∅;
for each y ∈ Y ′ do
if ∀i ∈ {1, . . . , q}
eval single context(node(ei), 〈 y , ∗, ∗〉) =
true then Y ′′ := Y ′′ ∪ { y};

R := χ−1(Y ′′);
end;
else /* some ei depends on ‘cp’ or ‘cs’ */
begin

X ′ := χ−1(Y ′);
R := ∅;
for each x ∈ X ′ do
begin

Z := {z ∈ Y ′ | xχz};
for i := 1 to q do
begin
let Z = {z1, . . . , zm} be ordered
according to the axis χ ; /* i.e.,
document order or reverse order. */

Z ′ := ∅;
for j := 1 to m do
if eval single context(node(ei),
〈z j , j , m〉) = true then
Z ′ := Z ′ ∪ {z j };

Z := Z’; /* i.e., Z = {z ∈ dom |
xχz and e1, . . . , ei hold} */

end; /* for i */
if Z �= ∅ then R := R ∪ {x};

end; /* for each x */
end; /* some ei depends on ‘cp’ or ‘cs’ */

end; /* case distinction over M2 */
if M1 = M2 then return R; /* i.e., we have
reached the top of the location path */

else
begin
let M ′

2 be the father node of M2;
/* i.e., M ′

2 corresponds to the location
step above M2 in π */

return
propagate path backwards(R, M1, M ′

2);
end;

end;

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

490 • G. Gottlob et al.

ACKNOWLEDGMENTS

We thank G. Moerkotte and the anonymous reviewers of VLDB 2002, ICDE
2003, and ACM TODS, whose constructive comments have helped to consid-
erably improve this article, and P. Fankhauser for a wealth of pointers to the
literature.

We also thank J. Siméon for pointing out to us that the mapping from XPath
to the XML Query Algebra [World Wide Web Consortium 2002], which will be
the standard semantics definition for XPath 2, in a direct functional implemen-
tation also leads to exponential-time query processing on XPath 1 (which is a
fragment of XPath 2).

Finally, we thank Thomas Lukasser for integrating the context-value table
principle into Xalan, as reported on in Section 9, and for contributing consider-
ably to the implementation of the XMLTaskforce XPath engine.

REFERENCES

AL-KHALIFA, S., SRIVASTAVA, D., JAGADISH, H. V., KOUDAS, N., PATEL, J. M., AND WU, Y. 2002. Structural
joins: A primitive for efficient XML query pattern matching. In Proceedings of the 18th IEEE In-
ternational Conference on Data Engineering (ICDE’02) (San Jose, Calif.). IEEE Computer Society
Press, Los Alamitos, Calif.

ALTINEL, M. AND FRANKLIN, M. 2000. Efficient filtering of XML documents for selective dissemi-
nation of information. In Proceedings of the 26th International Conference on Very Large Data
Bases (VLDB’2000) (Cairo, Egypt). 53–64.

APACHE FOUNDATION. 2004. Xalan-Java version 2.2.D11. http://xml.apache.org/xalan-j/.
BAR-YOSSEF, Z., FONTOURA, M., AND JOSIFOVSKI, V. 2004. On the memory requirements of XPath

evaluation over XML streams. In Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS’04). ACM, New York, 177–188.

BRUNO, N., KOUDAS, N., AND SRIVASTAVA, D. 2002. Holistic twig joins: Optimal XML pattern match-
ing. In Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data
(SIGMOD’02) (Madison, Wisc.). ACM, New York.

CHAN, C. Y., FAN, W., FELBER, P., GAROFALAKIS, M. N., AND RASTOGI, R. 2002a. Tree pattern aggre-
gation for scalable XML data dissemination. In Proceedings of the 28th International Conference
on Very Large Data Bases (VLDB’02) (Hong Kong, China). 826–837.

CHAN, C. Y., FELBER, P., GAROFALAKIS, M. N., AND RASTOGI, R. 2002b. Efficient filtering of XML
documents with XPath expressions. In Proceedings of the 18th IEEE International Conference
on Data Engineering (ICDE’02) (San Jose, Calif.). IEEE Computer Society Press, Los Alamitos,
Calif.

CLARK, J. 1999. XT—A Java implementation of XSLT. http://www.jclark.com/xml/xt.html/.
GOTTLOB, G. AND KOCH, C. 2002. Monadic queries over tree-structured data. In Proceedings of the

17th Annual IEEE Symposium on Logic in Computer Science (LICS’02) (Copenhagen, Denmark).
IEEE Computer Society Press, Los Alamitos, Calif. 189–202.

GOTTLOB, G., KOCH, C., AND PICHLER, R. 2003. The complexity of XPath query processing. In Pro-
ceedings of the 22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’03) (San Diego, Calif.). ACM, New York.

GREEN, T. J., MIKLAU, G., ONIZUKA, M., AND SUCIU, D. 2003. Processing XML streams with determin-
istic automata. In Proceedings of the 9th International Conference on Database Theory (ICDT’03).
173–189.

GRUST, T., VAN KEULEN, M., AND TEUBNER, J. 2004. Accelerating XPath location steps in any RDBMS.
ACM Trans. Datab. Syst. 29, 1 (Mar.), 91–131.

GUPTA, A. K. AND SUCIU, D. 2003. Stream processing of XPath queries with predicates. In Proceed-
ings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD’03).
ACM, New York, 419–430.

KAY, M. 2003. Saxon version 6.5.2. http://saxon.sourceforge.net/.

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

Efficient Algorithms for Processing XPath Queries • 491

KILPELÄINEN, P. 1992. Tree matching problems with applications to structured text databases.
Ph.D. dissertation. Department of Computer Science, University of Helsinki. Report A-1992-6.

MICROSOFT CORPORATION. 2001. Internet Explorer IE6. http://www.microsoft.com/windows/ie/
default.asp.

PENG, F. AND CHAWATHE, S. 2003. XPath queries on streaming data. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data (SIGMOD’03). ACM, New York,
431–442.

RAMANAN, P. 2002. Efficient algorithms for minimizing tree pattern queries. In Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data (SIGMOD’02) (Madison,
Wisc.). ACM, New York, 299–309.

SEGOUFIN, L. 2003. Typing and querying XML documents: Some complexity bounds. In Proceed-
ings of the 22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’03). ACM, New York, 167–178.

SHASHA, D., WANG, J. T. L., AND GIUGNO, R. 2002. Algorithmics and applications of tree and graph
searching. In Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’02) (Madison, Wisc.). ACM, New York, 39–52.

WADLER, P. 1999. A formal semantics of patterns in XSLT. In Markup Technologies. Philadelphia.
Revised version in Markup Languages, MIT Press, June 2001.

WADLER, P. 2000. Two semantics for XPath. Draft paper available at
http://www.research.avayalabs. com/user/wadler/.

WORLD WIDE WEB CONSORTIUM. 1998. XSL working draft http://www.w3.org/TR/1998/WD-xsl-
19981216.

WORLD WIDE WEB CONSORTIUM. 1999. XML Path Language (XPath) Recommendation.
http://www.w3c.org/TR/xpath/.

WORLD WIDE WEB CONSORTIUM. 2000. Extensible Markup Language (XML) 1.0 (second edition).
http://www.w3.org/TR/REC-xml.

WORLD WIDE WEB CONSORTIUM. 2002. XQuery 1.0 and XPath 2.0 formal semantics. W3C working
draft (Aug. 16th 2002). http://www.w3.org/TR/query-algebra/.

WORLD WIDE WEB CONSORTIUM. 2004a. DOM Specification http://www.w3c.org/DOM/.
WORLD WIDE WEB CONSORTIUM. 2004b. XML Path Language (XPath) 2.0, working draft.

http://www.w3.org/TR/2004/WD-xpath20-20040723/.
YANNAKAKIS, M. 1981. Algorithms for acyclic database schemes. In Proceedings of the 7th Inter-

national Conference on Very Large Data Bases (VLDB’81). 82–94.

Received February 2004; revised August 2004; accepted November 2004

ACM Transactions on Database Systems, Vol. 30, No. 2, June 2005.

