
Optimizing Query Rewriting for Multiple Queries

George Konstantinidis
Information Sciences Institute

University of Southern California
Marina Del Rey, CA 90292

konstant@usc.edu

José Luis Ambite
Information Sciences Institute

University of Southern California
Marina Del Rey, CA 90292

ambite@isi.edu

ABSTRACT
We present an scalable algorithm for answering multiple con-
junctive queries using views. This is an important problem
in query optimization, data integration and ontology-based
data access. Since rewriting one conjunctive query using
views is an NP-hard problem, we develop an approach where
answering n queries takes less than n times the cost of an-
swering one query, by compactly representing and indexing
common patterns in the input queries and the views. Our
initial experimental results show a promising speed up.

1. INTRODUCTION
In this paper, we consider the problem of query answer-

ing using views, an important problem in query optimization
and data integration [5, 7]. In query optimization, the sys-
tem rewrites queries by replacing a part of the original query
with view predicates to obtain an equivalent, but more effi-
cient, query. In data integration systems, users pose queries
over a global virtual schema. The system, using schema
mappings, rewrites the user query to a query using only the
schemas of the data sources. In this paper we consider Local-
as-View (LAV) mappings [5, 7], where each source relation
is expressed as a logical formula (a view) over the global
schema. We also call these formulas source descriptions. We
focus on conjunctive queries and views, which correspond to
select-project-join queries and are the core of every query
language. In data integration, sources are often incomplete
and hence the system needs to produce query rewritings that
instead of equivalent are maximally-contained.

Although multi-query processing has been studied in tra-
ditional relational database systems [12], relevant algorithms
and systems in data integration have focused on rewriting
a single user query using the views. We advocate the need
for (and present) an approach optimized to rewrite multiple
input queries using a set views, by taking advantage of over-
laps across queries. Our algorithm is useful in several inte-
gration contexts: (1) systems that serve multiple users each
issuing different queries simultaneously, (2) systems where

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
IIWeb ’12 , May 20 2012, Scottsdale, AZ, USA
Copyright 2012 ACM 978-1-4503-1239-4/12/05 $10.00.

users issue unions of conjunctive queries (UCQ), and (3)
systems enhanced with integrity constraints, as in ontology-
based data integration (OBDI) [3, 9, 8, 11]. For example, in
[9] the user writes a query over a global schema/ontology.
Then, the system rewrites the original query by compiling
the inferences embodied in the ontology into an expanded
query, which is a UCQ, still over the global ontology terms,
whose size may be exponential on the size of the ontology in
the worst case. Then, the integration system will rewrite this
UCQ into another UCQ query that uses only the sources’
schemas. In all these cases, it is important to efficient pro-
cess multiple queries over large numbers of sources.

In order to address the multi-query rewriting problem we
leverage insights revealed by our recent work on GQR [6] a
scalable algorithm for query rewriting that compactly repre-
sents and indexes common subexpressions in the views. In
GQR we used a graph representation of views, which we also
adopt in this paper for our input queries.

Our main contribution is an algorithm, MGQR, for scal-
able rewriting of multiple queries in the presence of large
numbers of views. Our algorithm extends the GQR ap-
proach in two significant ways. First, MGQR finds common
graph patterns in both the queries and in the views, com-
pactly representing and indexing these patterns, but care-
fully keeping track of which patterns are relevant for which
queries. Second, the graph patterns are combined incremen-
tally in a way that multiple views are used to cover multi-
ple queries simultaneously. Our initial experimental results
show a promising speedup of rewriting the user queries in
batch versus rewriting the user queries one by one.

2. THE QUERY REWRITING PROBLEM
To define the problem formally we introduce the concepts

of query containment [4, 1] and query rewritings [5].
Definition 1 (Query Containment): A query Q1 is con-
tained in a query Q2, Q1 ⊆ Q2, iff for all databases D, the
result of evaluating Q1 on D, denoted Q1(D), is contained
in the result of evaluating Q2, that is, Q1(D) ⊆ Q2(D).
Definition 2 (Query Equivalence): Q1 is equivalent to
Q2, denoted Q1 = Q2 iff Q1 ⊆ Q2 and Q2 ⊆ Q1.
Definition 3 (Maximally-Contained Rewriting): A
query Q′ is a maximally-contained rewriting of Q using views
V if: (1) Q′ is using only source predicates, V, (2) Q′ ⊆ Q,
and (3) there is no rewriting Q′′ of Q using V, such that
Q′ ⊆ Q′′ ⊆ Q and Q′′ 6= Q.

To ground these definitions, consider the following LAV
rules describing medical records sources. S1 contains doc-
tors that treat patients with a chronic disease. S2 contains

doctors, patients and clinics where the doctor is responsible
for discharging the patient from the clinic.

S1: V1(doctor, disease) → TreatsPatient(doctor, patient),
HasChronicDisease(patient,disease)

S2: V2(doctor, patient, clinic) →
DischargesPatientFromClinic(doctor, patient, clinic)

We use a logical notation for queries and views [1]. For
historical reasons and similarity to datalog, in LAV rules
the (single source predicate) antecedent is called the head
and the consequent the body of the rule. In our example,
S1 contains only references to the doctors and the diseases
they treat, but not to the patients that have these diseases;
this information conceptually exists in the body but is not
provided by the source (perhaps due to privacy concerns).
The variables in the head of a query/view are called distin-
guished, e.g., “doctor” and “disease” in S1. Otherwise, they
are called existential, e.g., “patient” in S1.

Logical implication (→) in the mapping (view) indicates
that the source (antecedent, head) contains tuples that sat-
isfy the logical formula in the consequent (body), but it does
not contain all such tuples (i.e., if follows an open-world as-
sumption). Usually in data integration (e.g., web sources,
peer data, or medical records), we can describe the con-
straints that a source satisfies, but rarely be assured that
the source is complete. For example, we do not expect S2 to
provide all possible tuples of doctors, patients and clinics,
but rather a subset specific to the source, e.g., for a region
or a hospital. In this paper, we focus on open-world and
maximally-contained rewritings.

Assume the user asks for doctors treating chronic diseases
and the clinics that they work (discharge patients from):

q2(d, c) ← TreatsPatient(d,x), HasChronicDisease(x,y),
DischargesPatientFromClinic(d,z,c)

A rewriting of q is: q′(d, c) ← V1(d, y), V2(d, z, c).
Intuitively, we can get the doctors treating chronic dis-

eases from V1 and join it on “doctor” with V2 to find the
clinics. In this example, the selection of relevant views and
the reformulation process was quite simple. We just built
the conjunctive query q′ using the two views and tested that
q′ ⊆ q. Since V1 and V2 are the only sources available, q′ is
the best we can do and it is a maximally-contained rewrit-
ing of q using V1 and V2. In general, there may be a large
number of sources and the number of possible rewritings
that would need to be considered and tested for contain-
ment grows exponentially.

Conjunctive query containment is NP-complete and can
be computed through containment mappings [4].
Definition 4 (Containment Mapping): For two con-
junctive queries over the same schema, a containment map-
ping from Q1 to Q2 is a homomorphism from the variables
of Q1 to those of Q2, h:vars(Q1) → vars(Q2) (h is ex-
tended over atoms and queries in the obvious manner), such
that: (1) for all atoms A ∈ body(Q1), it holds that h(A) ∈
body(Q2), and (2) h(head(Q1)) = head(Q2).

For all conjunctive queries Q1, Q2 over the same schema,
Q2 ⊆ Q1 iff there is a containment mapping from Q1 to Q2.
In order to check whether a rewriting q′ (over the source
schemas, V) is contained in a user query q (over the global
schema), we unfold the atoms of q′ with their definitions.
The new query unfold(q′) is defined over the global schema,
and we can check whether unfold(q′) ⊆ q through contain-
ment mappings.

3. OUR APPROACH: MGQR
Approaches to scalable LAV query rewriting [10, 2] have

focused on pruning views that would result in a non-contained
rewriting. In [6], we pushed this intuition further and de-
veloped a much more efficient approach. In this paper we
use the same intuitions, but present a novel solution for the
case of multiple query reformulation.

Coverings are restrictions of containment mappings that
map a sub-part of the query body to a sub-part of a view. A
rewriting essentially consists of multiple view sub-parts, so
we can “combine” these partial mappings (coverings) to es-
tablish the containment mapping between the query and the
rewriting. Query rewriting algorithms look for legitimate
coverings to select which views participate in a rewriting.
Definition 5 (Covering): For all queries Q, views V , pred-
icates gq ∈ body(Q), predicates gv ∈ body(V), and partial
homomorphisms ϕ : vars(Q) → vars(V), we say that a view
predicate gv covers a predicate gq of Q with ϕ iff: (1) ϕ(gq)
= gv, and (2) for all x ∈ vars(gq) if x is distinguished then
ϕ(x) ∈ vars(gv) is distinguished.

Condition 2 in Def. 5 is exactly the same as condition 2 in
the containment mapping definition. The intuition behind
this is that whenever a part of a query needs a value, you
cannot cover that part with a view that does not explicitly
provide that value. Abusing definition we say that a set of
predicates of V , or even V itself, covers qq with ϕ (since
these coverings involve trivial extensions of ϕ).

Coverings should adhere to one more constraint. Consider
the example sources S1 and S2 of Sect. 2 and q3 below which
asks for doctors that treat patients with chronic diseases and
the clinics where they discharge those same patients from:

q3(d, c) ← TreatsPatient(d,x), HasChronicDisease(x,y),
DischargesPatientFromClinic(d,x,c)

In contrast to q2, q3 requires that the second argument
of DischargesPatientFromClinic is joined with the patients
that are treated for chronic diseases. This is impossible to
answer, given S1 and S2, as S1 does not provide the patients.
The property revealed here is that whenever an existential
variable x in the query maps on an existential variable in
a view, this view can be used for a rewriting only if it cov-
ers all predicates that mention x in the query (clause C2
in Property 1 in [10]). This is the basic idea of the Mini-
Con algorithm: trying to map all query predicates of q3 to
all possible views, it will notice that the existential query
variable x in the query maps to patient in S1; since patient
is existential it needs to go back to the query and check
whether all predicates mentioning x can be covered by S1.
Here DischargesPatientFromClinic(d,x,c) cannot.

We notice that MiniCon does some redundant work in this
process. First, it would try to do this mapping and “back-
tracking” for every possible view, even for those that contain
the same pattern of S1, like S3 below, which provides sur-
geons and the (chronic) diseases of the patients they treat:

S3: V3(doctor, disease) → TreatsPatient(doctor, patient),
HasChronicDisease(patient,disease), Surgeon(doctor)

S3 cannot be used for q3 as it violates MiniCon’s Prop-
erty1, again due to patient being existential and Discharges-
PatientFromClinic not covered. Second, any “one-by-one”
algorithm would check this property for every possible query,
regardless of the overlap with previous queries, as in q4:

q4(d, c)← TreatsPatient(d,x),DischargesPatientFromClinic(d,x,c)

S1 and S3 cannot be used for q4 exactly for the same
reason as q3: patient is existential and DischargesPatient-
FromClinic is not covered. Despite multiple occurrences of
TreatsPatient across different input queries, any “one-by-
one” query rewriting algorithm would try to use S1 and S3

multiple times (and fail for all queries that join TreatsPatient
with DischargesPatientFromClinic in the way shown in
q3 and q4). Note that these redundancies hold even for suc-
cessful rewritings. If S1 and S3 did cover DischargesPatient-
FromClinic, in order to use them, a “one-by-one” algorithm
would make the same steps for both q3 and q4.

Our idea is to avoid this redundant work by compactly
representing all occurrences of the same query or view pat-
tern, extending [6] to handle multiple queries. Our solution
is divided in an offline phase which preprocess all the views,
and an online phase which produces rewritings in the face
of a set of input queries. Our online phase has three stages.
First, we represent the queries as graphs and find common
patterns. Second, for every query graph pattern (which now
represents pieces of multiple queries), we retrieve the pre-
constructed view patterns that cover it (which in turn rep-
resent pieces of multiple views). Third, we incrementally
combine the view patterns to larger ones, progressively cov-
ering the underlying queries. Consequently, we naturally
come up with a “batch” of contained rewritings using multi-
ple views to cover multiple queries at the same time.

We will use the following queries and views to illustrate
our algorithm:

q3(x,z) ← P1(x,y), P2(y,z), S4(x,y) → P1(x,y)
P3(y) S5(x,y) → P2(x,y)

q4(x,z) ← P1(x,y), P2(y,z) S6(z) → P3(z), P1(z,x), P2(z,y)
q5(w) ← P2(y,w), P3(w) S7(x,y) → P1(x,z), P2(z,y)

3.1 Graph Modeling
Our graph representation translates predicates and their

arguments to graph nodes. Predicate nodes are labeled with
the name of the predicate, and they are connected through
edges to their arguments. Edges are labeled with the ar-
gument position. Shared variables between atoms result
in shared variable nodes. We discard variable names, be-
cause the only knowledge we require for deciding on a cov-
ering is the type of the variables. Distinguished variables
are depicted with a circle, and existential ones with the
symbol ⊗. Queries q3,q4,q5 correspond to the graphs on
Fig. 1(a). The graphs for source descriptions S4, S6 and
S7 appear in Fig. 1(b). Our algorithm consists of mapping
subgraphs of the queries to subgraphs of the sources, and to
this end the smallest subgraphs we consider represent one
atom’s “pattern”: they consist of one central predicate node
and its (existential or distinguished) variable nodes. These
primitive graphs we call predicate join patterns (for short,
PJs). Fig. 1(c) shows all predicate join patterns that the
query q3 contains, (i.e., the query PJs for q3).

A critical feature that boosts our algorithm’s performance
is that the graph patterns of predicates repeat themselves
in multiple queries (sources). Therefore we compactly rep-
resent each occurrence of the same predicate across different
queries (sources) with the same PJ. This has a tremendous
advantage; mappings from a query PJ to a view one are
computed just once instead of every time this predicate (or
set of predicates) is met in a query (resp. source descrip-
tion). For the query PJ for P1 seen in Fig. 1(c), all source
PJs that could potentially cover it (cf. Def. 5) appear in

Fig. 1(d). Unless our sources contain one of these two pat-
terns any query that contains this variation of P1 will fail
(immediately) to be rewritten.

Nevertheless, the“join conditions”for a particular PJ within
each query or view are different and some ”bookkeeping” is
needed to capture these joins. To retain this information,
we attach to each variable a data structure that we call in-
fobox. A variable’s infobox contains a list of queries/views
in which this PJ appears, and for each such rule the vari-
able’s join descriptions, which record which other PJs this
variable (directly) joins to within the specific query/view.
Fig. 1(e) shows two example infoboxes for one query and
one view variable node. The upper level of Fig. 2 also shows
all the different PJs that appear in queries q1−q3 with their
infoboxes (aggregating information from all queries where
they appear). All the different source PJs, relevant to the
query ones, that appear in sources S4 − S7 with their in-
foboxes are shown on the middle level of the same figure.
Additionally, at different steps of our algorithm, each source
graph consisting of PJs, covers a certain part of the queries
and within this graph we maintain a list of “candidate”parts
of the final conjunctive rewritings per query (that will even-
tually be “responsible” for covering this part of the query);
we call these, partial conjunctive rewritings.

3.2 Multi-query rewriting
The three stages of MGQR online phase correspond to

the three horizontal levels of Fig. 2. First, MGQR con-
structs unique PJs and infoboxes for all common patterns
that appear across the queries. This procedure can be im-
plemented in time polynomial in the number and the length
of the queries (we omit its description for space).

Second, having constructed and indexed all source PJs
offline, MGQR can efficiently retrieve the source PJs that
cover our query PJs at runtime. All source PJs that cover
a query PJ form a set (each “bubble” in the second level of
Fig. 2), whose elements contain alternative partial rewrit-
ings for the pieces of the queries represented by the query
PJ. At the third level of Fig. 2, MGQR combines these sets
into larger ones, combining their partial rewritings and pro-
gressively covering larger subgoals of the underlying queries.

3.2.1 Retrieving source patterns
MGQR uses Algorithm 1 to retrieve all the relevant source

PJs that cover each query PJ (i.e., the output of the algo-
rithm is a set of PJs). For an input query PJ, line 1 of Alg. 1
iterates over all (existing) view PJs that cover the input.
Moreover, due to MiniCon’s Property 1 discussed in Sect. 2,
if both a query variable and its mapped view variable (uq

and vs correspondingly in our pseudocode) are existential,
we won’t be able to use this view PJ for a particular query
if the view cannot “preserve” the join patterns of the query.
Depending on this, all the sources in a source PJ’s infobox
are associated with some or all the queries in the underlying
query PJ.

When considering a source variable node and its covered
query variable we examine all pairs of sources and queries
that the corresponding infoboxes contain; if the variables are
existential (line 7) we need to make sure that each source in
the source PJ (in our algorithm PJs) will be used to cover
underlying queries for which it describes their joins.

Therefore for every source of vs’s infobox, and query in
uq’s infobox we have to verify that all join descriptions of uq

Figure 1: (a) Queries q3,q4,q5, and (b) sources S4-S7 as a graphs. Query (c) and Source (d) Predicate Join
Patterns. (e) Infoboxes for a query and a view variable nodes. The variable in the upper box is existential
and it appears in two queries q3, q4. The join description associated with q3 states that the variable joins, in
q3, with the first argument of P3 and the first argument of P2.

are included in the sources. If we find a source S that breaks
this requirement we mark that qi and S are uncombinable
in PJs (line 9). On the other hand, if S can cover qi on
this variable’s joins (line 13) or it doesn’t need to because
uq and vs are distinguished (line 16), we associate S with qi.
Note that further checks on a different variable node might
break a previous association of a query with a source on PJs

(we do this in line 9 as well). Association, apart from the
creation of a relative pointer, means that we create a partial
conjunctive rewriting that uses a source for a specific query.
In the set of source PJs that is retrieved for query PJ P1

in Fig. 2, source S7 does not cover the existential joins of
query q3 and hence it is only associated to q4.

If a source cannot be associated to any query for a certain
query PJ (e.g. source S6 in Fig. 2 for P1), we drop this source
from every infobox of this source PJ and we delete the partial
conjunctive rewriting that mentions the corresponding view
as well (line 18). We do all that as if this source PJ pattern
never appeared in that view (for the specific subgoal of this
query PJ’s queries, the specific view subgoal that this source
PJ represents is useless). Moreover if some query (of the
query PJ) does not get associated to any view for PJs, this
means the specific query subgoal (that PJq represents) and
consequently the entire query cannot be rewritten. Hence,
we destroy all the information for this query in the system,
as if this query never existed in our input (line 23).

This fail-fast behavior allows us to keep only the neces-
sary query/view references in a PJ. Moreover, if none of the
views can cover a query PJ, the source PJ itself is ignored
and never returned, leading to a faster reformulation per-
formance as (1) a dropped view PJ means that a significant
number of source pieces/partial rewritings are ignored and
(2) if we ignore all source PJs that could cover a specific
query PJ, the algorithm fails instantly for the queries of this
query PJ. On the other hand if some PJs go through this
procedure and get returned, these are really relevant and
have a high possibility of generating rewritings for their as-
sociated queries.

The algorithm also addresses repeated predicates, i.e., self-
joins, in the input queries (line 29). In the face of multiple
occurrences of the same predicate in a query, it is conve-
nient to consider all source PJs discussed so far as classes
of PJs: we instantiate the set of source PJs that cover a
specific predicate as many times as the predicate appears in
the algorithm’s input. Each time we instantiate the same PJ
we “prime” the sources appearing in the partial rewritings
so as to know that we are calling the same source but a sec-

Algorithm 1 Retrieve Source PJ Sets for Input Queries

Input: Predicate join patterns PJq in the queries
Output: Set of source PJs that “alternatively” cover each

PJq.
1: for all PJs, source PJ that covers PJq do
2: OkToAdd ← true
3: for all uq variable nodes in PJq do
4: vs ← variable of PJs that uq maps on to
5: for all sources S in vs’s infobox do
6: for all queries qi in PJq do
7: if vs is existential and uq is existential then
8: if joins in uq for qi * joins in S then
9: mark qi and S as uncombinable in PJs

10: else
11: if qi and S are not marked as uncombin-

able in PJs then
12: if joins in uq for qi ⊆ joins in S then
13: Associate S with qi

14: else
15: if qi and S are not marked as uncombinable

in PJs then
16: Associate S with qi

17: if There is some source marked as uncombinable
with all queries of PJq then

18: drop S from PJs

19: if some of PJs infoboxes became empty then
20: OkToAdd ← false
21: break
22: if some queries are not associated with any source

then
23: drop all those queries from all query PJs and all

return cover-sets of source PJs
24: OkToAdd ← false
25: break
26: if OkToAdd then
27: add PJs to C
28: if we have seen the input query PJq before, i.e., it is a

repeated pattern (selfjoin) then
29: Rename (i.e. prime) the elements of C (which have

also been returned in the past)
30: return C

ond, different time. This modeling is a natural extension of
our approach for repeated predicates in the views (described
in [6]). We omit further discussion of repeated predicates in
the same query or view due to space limitations.

Alg. 1 returns a set of PJs which alternatively cover the
same query PJ. Also, different queries of the query PJ could
be associated with different source PJs in the returned set.
Furthermore the different sets that Alg. 1 returns, cover dif-
ferent (and all) subgoals of the queries. Next we want to

Figure 2: The PJs covering P1 are first combined
with the PJs covering P2, and then with the PJs
covering P3. The union of the complete rewritings
(marked with ?) is the solution.

combine these sets to cover larger parts of the queries.

3.2.2 Combination of Source Graph Patterns
To combine two sets of source graphs that cover two differ-

ent query PJs and consequently two different sets of pieces
of queries, MGQR uses Algorithm 2. We want to combine
elements of these sets that cover the same queries (no need
to try to combine a PJ that covers a part of q3 with a PJ
that covers a part of q4 but not q3). In fact, if one of the two
sets covers queries that are not covered by the other set, we
copy the corresponding source PJs directly in the resulting
set (lines 7-11). In line 10, in case these PJs are also cover-
ing queries common between the two sets, we keep a copy of
them in the original set so we can go on and combine it; this
copy is now associated only with the common queries (in
essence we “project out” of the source PJs the non-common
queries before we combine them). Thus, we only combine
elements of these sets (i.e., source PJs) if they cover com-
mon queries (lines 12-17). The third level of Fig. 2 shows
this procedure; the all-distinguished-variable source PJs for
P1 and P2 are combined on their common queries (i.e., q3

and q4), while a copy of the source PJs for P2 associated
with q5 is directly passed onto the resulting set.

Lines 1-6 of Alg.2 check whether some queries have com-
pleted so far, in which case we output their rewritings and
delete their PJs (if the PJs are not associated with any other
“active” rewriting). We omit the procedure that combines
two specific graphs patterns (line 15), but we should state
that it does so based on the underlying query joins, com-
bining/merging the source PJ’s partial conjunctive rewrit-
ings per query, into larger ones, eventually producing the
maximally-contained rewritings of each query. This combi-
nation could also fail (due to existential-distinguished pat-
terns or due to violation of the corresponding underlying
query joins), in which case nothing will be added in the re-
sulting set in line 17. If combining two sets returns an empty
set, the two query PJs and all their associated queries in-
stantly fail. The order in which we combine the retrieved

Algorithm 2 Combine Source PJ Sets

Input: Two sets of source PJs: A, B
Output: 1) Set C combining A and B, with partial rewrit-

ings. 2) Complete rewritings R found so far.
1: for all queries qi covered by set A (or set B) do
2: if qi is completely covered then
3: Add rewritings to R
4: delete this query from set A (resp. set B) and any

associated PJs
5: if some sources PJs are “empty” of queries then
6: delete them from the set
7: for all queries q covered by exactly one set out of A or

B do
8: for all PJs PJi (elements of A or B) associated with

q do
9: create a copy of PJi, associate it only with q and

put it in set C
10: if PJi is also associated with some queries that do

exist in both A and B then
11: the copy of PJi remaining in A or B should be

associated only with queries common between A
and B (drop information about other queries)

12: for all queries q common in sets A, B do
13: for PJa elements of A associated to q do
14: for PJb elements of B associated to q do
15: combine (PJa, PJb)
16: if combination successful then
17: put result in C
18: return C, R

sets of PJs is currently driven by a simple heuristic: prefer
to combine the sets that share the biggest number of queries.

4. EXPERIMENTAL RESULTS
To evaluate our multiple-query rewriting algorithm, we

generated 100 experiments, each one testing a multi-query
input on a set of views. Each input had 10 chain queries and
each view set had up to 1000 chain views. Each query/view
had 8 predicates out of which up to 4 could be repeated.
Each atom had 4 randomly generated variables and each
query had 10 distinguished variables.1 We ran our exper-
iments on a cluster of 2GHz processors each with 2Gb of
memory, and gave each processor one (out of the one hun-
dred) experiment: one multi-query and one view set. Each
processor runs the experiments between 0 and 1000 views
(in increments of 50 views at a time) in two settings: (1)
using our MGQR multi-query “batch” rewriting algorithm,
and (2) using GQR to rewrite the queries one-by-one.

Since we compute all rewritings, we want to avoid prob-
lems that produce an exponential number of rewritings or
produce no rewritings. In the first case, the times would
be dominated by the exponential output, and in the second
case, our algorithms prove unsatisfiability extremely fast.
So, none of those settings would be interesting. Hence, we
try to find the“phase transition”of the query rewriting prob-
lem, where there are a number of rewritings produced that
are hard to find. To simulate this condition, we generated
the first 180 views for all our view sets containing 10 dis-
tinguished variables and each additional view (up to 1000)
with only 3 distinguished variables. We created the bodies
of our views by randomly choosing 8 predicates out of an
increasing predicate space. These two choices led to view

1The initial version of the query/view generator was kindly
provided to us by Rachel Pottinger and it was the same one
she used for the experiments of MiniCon.

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

tim
e i

n
m

s

nu
m

be
r o

f c
on

j.
re

w
rit

in
gs

number of views

10 multi-queries of 10 chain conj. queries each

one-by-one GQR
multi-query rewriting

rewritings

Figure 3: Average online time and number of rewrit-
ings for 10 chain queries over up to 1000 views. The
MGQR multiquery rewriting algorithm outperforms
GQR rewriting queries one by one. Offline times are
the same for both algorithms (not shown).

sets that initially generate an exponential number of rewrit-
ings, but subsequently the number of rewritings grows very
slowly as the number of views grows (see Fig. 3).

Initially, we generated the user queries randomly, as we
did for the views. To produce overlap in the user queries,
we used a space of 20 predicate names out of which each
query chooses randomly 8 to populate its body. We hoped
to create enough overlap in the queries to demonstrate the
benefits of our algorithm. However, it turned out that this
was not adequate. In each multi-query experiment only one
or two, out of the ten, queries would generate rewritings.
As both GQR and MGQR fail very quickly when there are
no rewritings, both algorithms had similar performance. In
fact we were only measuring the rewriting time for one or
two queries, making GQR and MGQR indistinguishable.

Thus, we decided to generate the user queries based on
combinations of the queries that did produce rewritings in
our early experiments. Specifically, we chose ten multi-query
sets that produced a substantial amount of rewritings and
kept only the two queries per set that produced rewritings.
We replicated these queries in order to grow them back to ten
queries per set. For each set, we also deleted two predicates
out of each query body (different predicates each time). This
way each set of queries, now of length 6, were all different,
but overlapping (and at the same time rewritable).

Fig. 3 shows the average online times that these 10 multi-
query sets, each having 10 conjunctive queries, took to refor-
mulate over different number of sources, up to 1000. Batch
MGQR outperforms the sum of the one-by-one rewritings
by GQR by a factor of approximately 1.5 (for the 1000 view
problem, GQR takes 4265 ms and MGQR takes 2798 ms).
Fig. 3 also shows that the number of rewritings grows up to
34771 for the 1000 view problem up from 27370 rewritings
for the 200 view problems. Note that in the region where the
number of rewritings grows slowly, both GQR and MGQR
times are proportional to the number or rewritings, instead
of depending on the number of sources available. In sum-
mary both GQR and MGQR can rewrite multiple queries
over large numbers of views, producing tens of thousands of
rewritings, under a few seconds. MGQR outperforms GQR
in the multiple query problems when there is meaningful
overlap between the queries.

5. DISCUSSION
We have presented MGQR, an scalable algorithm for mul-

tiple query rewriting, that exploits common patterns across
queries and source descriptions. Our initial experiments are
promising, and demonstrate that MGQR can take advantage
of the overlap in the user queries.

In future work, we plan to investigate heuristics for the
order of combination of our algorithm that may improve its
performance. We plan to perform additional experiments
with star and random queries, and to scale to larger num-
bers of views and queries. We also plan to support richer
schema mappings, namely GLAV (aka st-tgds), as well as
more expressive description languages, such as DL-Lite, so
that we can use the MGQR approach in OBDI applications.
We plan to explore whether our approach to compact repre-
sentation of common patterns can be extended to perform
efficient query rewriting under ontological constraints.

6. ACKNOWLEDGMENTS
This work was supported in part by the NIH through the

NCRR grant: the Biomedical Informatics Research Network
(1 U24 RR025736-01), and in part through the NIMH grant:
Collaborative Center for Genetic Studies of Mental Disor-
ders (2U24MH068457-06).

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] Y. Arvelo, B. Bonet, and M. E. Vidal. Compilation of
query-rewriting problems into tractable fragments of
propositional logic. In Proc. of AAAI’06.

[3] D. Calvanese, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and efficient query answering in
description logics: The DL-Lite family. Journal of
automated reasoning, 39(3):385–429, 2007.

[4] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In Proc.
9th ACM Symposium on Theory of Computing, 1977.

[5] A. Y. Halevy. Answering queries using views: A
survey. The VLDB Journal, 10(4):270–294, 2001.

[6] G. Konstantinidis and J. L. Ambite. Scalable query
rewriting: A graph-based approach. In ACM SIGMOD
Conference, Athens, Greece, June 2011.

[7] M. Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233–246, 2002.

[8] H. Pérez-Urbina, I. Horrocks, and B. Motik. Tractable
query answering and rewriting under description logic
constraints. Journal of Applied Logic, 8(2):186–209,
2010.

[9] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to
ontologies. J. on Data Semantics, X:133–173, 2008.

[10] R. Pottinger and A. Halevy. MiniCon: a scalable
algorithm for answering queries using views. The
VLDB Journal, 10(2–3):182–198, 2001.

[11] R. Rosati and A. Almatelli. Improving query
answering over dl-lite ontologies. pages 290–300,
Toronto, Canada, 2010.

[12] T. K. Sellis. Multiple-query optimization. ACM
Transactions on Database Systems, 13(1):23–52, 1988.

