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Abstract. The algorithms dealing with the incorporation of new knowl-
edge in an ontology (ontology evolution) often share a rather standard
process of dealing with changes. This process consists of the specification
of the language, the determination of the allowed update operations, the
identification of the invalidities that could be caused by each such opera-
tion, the determination of the various alternatives to deal with each such
invalidity, and, finally, some selection mechanism for singling out the
“best” of these alternatives. Unfortunately, most ontology evolution al-
gorithms implement these steps using a case-based, ad-hoc methodology,
which is cumbersome and error-prone. The first goal of this paper is to
present, justify and make explicit the five steps of the process. The second
goal is to propose a general framework for ontology change management
that captures the of this process, in effect generalizing the methodology
employed by existing tools. The introduction of this framework allows
us to devise a whole class of ontology evolution algorithms, which, due
to their formal underpinnings, avoid many of the problems exhibited
by ad-hoc frameworks. We exploit this framework by implementing a
specific ontology evolution algorithm for RDF ontologies as part of the
FORTH-ICS Semantic Web Knowledge Middleware (SWKM).

1 Introduction

Change management is a key component of any knowledge-intensive application.
The same is true for the Semantic Web, where knowledge is usually expressed
in terms of ontologies and refined through various methodologies using ontology
evolution techniques. The most critical part of an ontology evolution algorithm
is the determination of what can be changed and how each change should be
implemented. The main argument of this paper is that this determination can be
split into the following 5 steps, which, although not explicitly stated, are shared
by many ontology evolution tools:

1. Model Selection. The allowed changes, as well as the various alternatives
for implementing each change, are constrained by the expressive power of
the ontology representation model. Thus, the selection of the model may
have profound effects on what can be changed, and how, so it constitutes an
important parameter of the evolution algorithm.



2. Supported Operations. In step 2, the supported change operations upon the
ontology are specified.

3. Validity Model. Problems related to the validity of the resulting ontology
may arise whenever a change operation is executed; such problems depend
on the validity model assumed for ontologies.

4. Invalidity Resolution. This step determines, for each supported operation
and possible invalidity problem, the different (alternative) actions that can
be performed to restore the validity of the ontology.

5. Action Selection. During this step, a selection process is used to determine
the most preferable among the various potential actions (that were identified
in the previous step) for execution.

Unfortunately, most of the existing frameworks (e.g., [1, 5, 8, 15]) address such
ontology evolution issues in an ad-hoc way. As we will see in Section 3, this
approach causes a number of problems (e.g., reduced flexibility, limited evolution
primitives, non-faithful behavior etc), so evolution algorithms could benefit a lot
from the formalization of the aforementioned change management process. In
Section 2, we define ontology evolution and give a general overview of the state
of the art in the field; this allows us to motivate our work and place it in its
correct context. In Section 3, we describe four typical ontology evolution systems,
namely OilEd [1], KAON [5], Protégé [8] and OntoStudio (formerly OntoEdit
[15]); we show how these systems fit on the aforementioned five-step process and
criticize the ad-hoc methodology that they employ to face these steps.

Section 4 introduces the general formal framework that we employ in order
to model the various steps of this process. Our framework allows us to deal
with arbitrary change operations (rather than a predetermined set). In addi-
tion, it considers all the invalidity problems that could, potentially, be caused
by each change, and all the possible ways to deal with them. Finally, it provides
a parameterizable method to select the “best” out of the various alternative op-
tions to deal with an invalidity, according to some metric. The formal nature of
the process allows us to avoid resorting to the tedious and error-prone manual
case-based reasoning that is necessary in other frameworks for determining in-
validities and solutions to them, and provides a uniform way to select the “best”
option out of the list of available ones, using some total ordering. Our framework
can be used for several different declarative ontological languages and semantics;
however, for implementation and visualization purposes, we instantiate it for the
case of RDF, under the semantics described in [11].

Finally, in Section 5, we exhibit the merits of our framework via the devel-
opment of a general-purpose algorithm for ontology evolution. This algorithm
has general applicability, but we demonstrate how it can be employed for the
RDF case. Then, we specialize our approach for the case of RDF and devise a
number of special-purpose algorithms for coping with RDF changes (similar to
the existing ad-hoc ontology evolution algorithms), which sacrifice generality for
efficiency; the main advantage of such special-purpose algorithms with respect
to the standard ad-hoc methodologies is that, due to their formal underpinnings



and their proven compatibility with the general framework, they enjoy the same
interesting properties.

The above algorithms are currently being implemented as part of the FORTH-
ICS Semantic Web Knowledge Middleware (SWKM), which provides generic ser-
vices for acquiring, refining, developing, accessing and distributing community
knowledge. The SWKM is composed of four services, namely the Comparison
Service (which compares two RDF graphs, reporting their differences), the Ver-
sioning Service (which handles and stores different versions of RDF graphs), the
Registry Service (which is used to manipulate metadata information related to
RDF graphs) and the Change Impact Service (which deals with the evolution
of RDF graphs). The SWKM is backed up by a number of more basic services
(Knowledge Repository Services) which allow basic storage and access function-
alities for RDF graphs1. This paper describes the algorithms we employ for the
Change Impact Service of SWKM, as well as the underlying theoretical back-
ground of the service.

2 Related Work and Motivation

2.1 Short Literature Review

Ontology evolution deals with the incorporation of new knowledge in an ontol-
ogy; more accurately, the term refers to the process of modifying an ontology in
response to a certain change in the domain or its conceptualization [4]. Ontology
evolution is an important problem, as the effectiveness of an ontology-based ap-
plication heavily depends on the quality of the conceptualization of the domain
by the underlying ontology, which is directly affected by the ability of an evolu-
tion algorithm to properly adapt the ontology both to changes in the domain (as
ontologies often model dynamic environments) and to changes in the domain’s
conceptualization (as no conceptualization can ever be perfect) [4].

In order to tame the complexity of the problem, six phases of ontology evo-
lution have been identified in [12], occurring in a cyclic loop. Initially, we have
the change capturing phase, where the changes to be performed are determined;
these changes are formally represented during the change representation phase.
The third phase is the semantics of change phase, in which the effects of the
change(s) to the ontology itself are determined; during this phase, possible prob-
lems that might be caused to the ontology by these changes are also identified and
resolved. The change implementation phase follows, where the changes are phys-
ically applied to the ontology, the ontology engineer is informed of the changes
and the performed changes are logged. These changes need to be propagated to
dependent elements; this is the role of the change propagation phase. Finally, the
change validation phase allows the ontology engineer to review the changes and
possibly undo them, if desired. This phase may uncover further problems with
the ontology, thus initiating new changes that need to be performed to improve
1 For more details on the architecture of the SWKM, see:

http://athena.ics.forth.gr:9090/SWKM/index.html



the conceptualization; in this case, we need to start over by applying the change
capturing phase of a new evolution process, closing the cyclic loop.

This paper focuses on the second and third phase (change representation and
semantics of change), which are the most critical for ontology evolution [10].
Notice that during the change representation phase we determine the requested
change (i.e., what should be changed), whereas during the semantics of change
we determine the actual change (i.e., how the change should be performed). With
respect to the five-step process described in Section 1, the change representation
phase corresponds to the first two steps of our framework, whereas the semantics
of change phase corresponds to the last three steps.

There is a rich literature that deals with the problem of ontology evolution.
In general, two major research paths can be identified [4]. The first focuses on
aiding the user performing changes in ontologies through some intuitive interface
that provides a number of useful editing features; such tools resemble an ontol-
ogy editor (and some of them are indeed ontology editors [13]), even though
they often provide many more features than a simple ontology editor would.
The second research path focuses on the development of automated methods to
determine the effects and side-effects of any given update request (which cor-
respond to phases 2 and 3 of [12]); this approach often borrows ideas from the
related, and much more mature, discipline of belief change [6].

The first class of tools is more mature at the moment, but the second ap-
proach seems more interesting from a research point of view, as well as more
promising; for this reason, it is gaining increasing attention during the last few
years [4]. The two research paths are complementary, as results from the sec-
ond could be applied to the first in order to further improve the quality of the
front-end editing tools; similarly, automated approaches are of little use unless
coupled with tools that address the practical issues related to evolution, like
support for multi-user environments, transactional issues, change propagation,
intuitive visual interfaces etc (i.e., the remaining four phases of [12]).

2.2 Motivation

Unfortunately, the above complementarity is not sufficiently exploited. Auto-
mated approaches (second research path) seem, in general, detached from real
problems and are not easily adaptable for use in an ontology evolution tool; to
our knowledge, there is no implemented tool that uses one of the algorithms de-
veloped by such approaches. On the other hand, editor-like tools (first research
path) do not provide enough automation and employ ad-hoc methodologies to
deal with the problems raised during an update operation; such ad-hoc method-
ologies cause several problems that are thoroughly discussed in Section 3.

Our approach is motivated by the need to develop a formal framework that
will lead to an easily implementable ontology evolution algorithm. We would
like our approach to enjoy the formality of the second class of tools, and use this
formality as a basis that will provide guarantees related to the behavior of the
implemented system, thus avoiding the problems related to the ad-hoc nature of
existing practical methodologies. This paper is an attempt towards this end. In



this respect, the work presented here lies somewhere between the two research
paradigms described above, sharing properties with both worlds.

More specifically, our approach could be viewed as belonging to the second
class of works, in the sense that it results to a formal, theoretical model to
address changes. This model is based on a formal framework that is used to
describe the process of ontology evolution as addressed by current editor-like
tools (so it is also related to the first class of works), and allows us to develop
an abstract, general-purpose algorithm that provably performs changes in an
automated and rational way for a variety of languages, under different param-
eters (validity model and ordering). Like other works of the second research
path above, our work is focused on the “core” of the ontology evolution prob-
lem, namely the change representation and semantics of change phases. Issues
related to change capturing, implementation of changes, transactional issues,
change propagation, visualization, interfaces, validation of the resulting ontol-
ogy etc are not considered in this paper.

On the other hand, our approach could be viewed as belonging to the first
class of tools, in the sense that it results to an implemented tool, namely the
Change Impact Service of the SWKM. Our general-purpose algorithm can be
applied for any particular language and set of parameters that is useful for prac-
tical purposes; for the purposes of SWKM we set these parameters so as to
correspond to the RDF language under the semantics described in [11]. Fixing
these parameters also allows us to better present our approach, as well as to
evaluate and verify its usefulness towards the aim of implementing an ontology
evolution tool. In addition to the implementation of the general-purpose algo-
rithm, our formal framework allows the development (and implementation) of
special-purpose algorithms which are more suited for practical purposes; such al-
gorithms provably exhibit the same behavior as the general-purpose one, so we
can have formal guarantees as to their expected output. For reasons explained
in Section 5, both the general-purpose and the special-purpose algorithms are
implemented for the Change Impact Service of SWKM.

3 Evolution Process in Current Systems

In this section, we elaborate on the five steps we described in Section 1 and de-
scribe how some typical ontology evolution tools ([1, 5, 8, 15]) fit into this five-step
process. In addition, we point out the problems that the ad-hoc implementation
of these tools causes, and show how such problems could be overcome through
the use of a formal framework, like the one described in Section 4.

3.1 Model Selection and Supported Operations

Obviously, the first step towards developing an evolution algorithm is the deter-
mination of the underlying representation model for the evolving ontology; this
is what we capture in the first step of our 5-step process. Most systems assume
a language supporting the basic constructs used in ontology development, like



class and property subsumption relationships, instantiation relationships and
domain and range restrictions for properties.

The selection of the representation model obviously affects (among other
things) the operations that can be supported; for example, OntoStudio [15] does
not support property subsumption relations so all related changes are similarly
overruled. Further restrictions to the allowable changes may be introduced by
various design decisions, which may disallow certain operations despite the fact
that they could, potentially, be supported by the underlying ontology model.
For example, OntoStudio does not allow the manipulation of implicit knowledge,
whereas OilED [1] does not support any operation that would render the ontology
invalid (i.e., it does not take any actions to restore validity, but rejects the
entire operation instead). The determination of the allowed (supported) update
operations constitutes the second step of our 5-step process.

According to [12, 13], change operations can be classified into elementary (in-
volving a change in a single ontology construct) and composite ones (involving
changes in multiple constructs), also called atomic and complex in [14]. Elemen-
tary changes represent simple, fine-grained changes; composite changes repre-
sent more coarse-grained changes and can be replaced by a series of elementary
changes. Even though possible, it is not generally appropriate to use a series of
elementary changes to replace a composite one, as this might cause undesirable
side-effects [12]; the proper level of granularity should be identified in each case.
Examples of elementary changes are the addition and deletion of elements (con-
cepts, properties etc) from the ontology. There is no general consensus in the
literature on the type and number of composite changes that are necessary. In
[12], 12 different composite changes are identified; in [9], 22 such operations are
listed; in [14] however, the authors mention that they have identified 120 differ-
ent interesting composite operations and that the list is still growing! In fact,
since composite operations can involve changes in an arbitrary number of con-
structs, there is an infinite number of them. Although composite operations can,
in general, be decomposed into a series of elementary ones, for ad-hoc systems
this is not of much help, as the decomposition of a non-supported operation into
a series of supported ones (even if possible) should be done manually.

The above observations indicate an important inherent problem with ad-hoc
algorithms, namely that they can only deal with a predefined (and finite) set of
supported operations, determined at design time. Therefore, any such algorithm
is limited, because it can only support some of the potential changes upon an
ontology, namely the ones that are considered more useful (at design time) for
practical purposes, and, thus, supported.

3.2 Validity Model and Invalidity Resolution

It is obvious that a user expects his update request to be executed upon the
ontology. Thus, it is necessary for the resulting ontology to actually implement
the change operation originally requested, i.e., that the actual changes performed
upon the ontology are a superset of the requested ones; this requirement will be
called success.



The naive way to implement an update request upon an ontology would
be to simply execute the request in a set-theoretic way. That would guarantee
the satisfaction of the above principle (success); nevertheless, this would not be
acceptable in most cases, because the resulting ontology could be invalid in some
sense (e.g., if a class is removed, it does not make sense to retain subsumption
relationships involving that class). Thus, another basic requirement for a change
operation is that the result of its application should be a valid ontology, according
to some validity model. This requirement is necessary in order for the resulting
ontology to make sense.

Both the above principles are inspired by research on the related field of belief
revision [2, 6], in which they are known as the Principle of Validity and Principle
of Success respectively. The Principle of Success is well-defined, in the sense
that we can always verify whether it is satisfied or not. The Principle of Validity
however, depends on some underlying validity model, which is not necessarily
the same for all languages (ontology models) and/or ontology evolution systems.
Thus, each system should define the validity model that it uses. For example,
do we accept cycles in the IsA hierarchy? Do we allow properties without a
range/domain, or with multiple ranges/domains? Such decisions are included in
the validity model determined in step 3 of our 5-step process. Notice that the
validity model has a different purpose than the ontology model: the ontology
model is used to determine what constructs are available for use in an ontology
(e.g., IsAs), whereas the validity model determines the valid combinations of
constructs in an ontology (e.g., by disallowing cyclic IsAs).

Determining how to satisfy the Principles of Success and Validity during
a change operation is not trivial. The standard process in this respect is to
execute the original update request in a naive way (i.e., by executing plain set-
theoretic additions and deletions), followed by the initiation of additional change
operations (called side-effects) that would guarantee validity. In principle, there
is no unique set of side-effects that could be used for this purpose: in some cases,
there is more than one alternatives, whereas in others there is none. The latter
type of updates (i.e., updates for which it is not possible for both Success and
Validity to be satisfied) are called infeasible and should be rejected altogether.
For example, the request to remove a class, say C, and add a subsumption
relationship between C and D at the same time would be infeasible, because
executing both operations of the composite update would lead the ontology to
an invalid state (because a removed class C cannot be subsumed by another
class) and it can be easily shown that there is no way (i.e., side-effects) to
restore validity without violating success for this update. The determination
of whether an update is infeasible or not, as well as of the various alternative
options (for side-effects) that we have for guaranteeing success and validity (for
feasible updates) constitutes the fourth step of our 5-step process.

Let us consider the change operation depicted in Figure 1(a), where the
ontology engineer expresses the desire to delete a class (B) which happens to
subsume another class (C). It is obvious that, once class B is deleted, the IsAs
relating B with A and C would refer to a non-existent class (B), so they should
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Fig. 1. Three alternatives for deleting a class

be removed; the validity model should capture this case, and attempt to resolve
it. One possible result of this process, employed by Protégé [8], is shown in
Figure 1(b); in that evolution context, a class deletion causes the deletion of its
subclasses as well. This is not the only possibility though; Figures 1 (c) and (d),
present other potential results of this operation, where in (c), B’s subclasses are
re-connected to its father, while in (d), the implicit IsA from C to A is not taken
into account. KAON [5], for example, would give either of the three as a result,
depending on a user-selected parameter.

In this particular example, both KAON and Protégé detect the invalidity
caused by the operation and actively take action against it; however, the valid-
ity model employed by different systems may be different in general. Moreover,
notice that an invalidity is not caused by the operation itself, but by the combi-
nation of the current ontology state and the operation (e.g., if B was not in any
way connected to A and C, its deletion would cause no problems). Therefore, in
order for a mechanism to propose solutions against invalidities, both the ontol-
ogy and the update should be taken into account. Notice that the mechanism
employed by Protégé, in Figure 1, identifies only a single set of side-effects, while
KAON identifies three different reactions. This is not a peculiarity of this exam-
ple; the invalidity resolution mechanism employed by Protégé identifies only a
single solution per invalidity; this is not true for KAON and OntoStudio.

3.3 Action Selection

Since, in the general case, there are several alternative ways (i.e., sets of side-
effects) to guarantee success and validity, we need a mechanism that would
allow us to select one of the alternatives for implementation (execution). This
constitutes the last component of an evolution algorithm (step 5). Such a mech-
anism is “pre-built” into systems that identify only a single possible action, like
Protégé, but can be also parameterizable. KAON, for example, provides a set of
options (called evolution strategies) which allow the ontology engineer to tune
the system’s behavior and, implicitly, indicate what is the appropriate invalid-
ity resolution action for implementation per case. OntoStudio provides a similar
customization over its change strategies.

Notice that our preference for the result of an operation reflects in a prefer-
ence among the possible side-effects of the operation. For instance, if we prefer
the result of Figure 1 (c), we can equivalently say that we prefer the (explicit)



addition of the (implicit) subsumption relation shown in (c) together with the
deletion of the two initial IsAs as a side-effect to this operation, over the deletion
of the two initial IsAs and class C, shown in (b), or just the deletion of the two
IsAs, as in (d). Therefore, the evolution process can be tuned by introducing
a preference ordering upon the operations’ side-effects that would dictate the
related choice (evolution strategy). Given that the determination of the alterna-
tive side-effects depends on both the update and the ontology, there is an infinite
number of different potential side-effects that may have to be compared. Thus,
we are faced with the challenge of introducing a preference mechanism that will
be able to compare any imaginable pair of side-effects.

It is worth noting here the connection of this preference ordering with the
well-known belief revision Principle of Minimal change [2] which states that the
resulting ontology should be as “close” as possible to the original one. In this
sense, the preference ordering could be viewed as implying some notion of relative
distance between different results and the original ontology, as identified by the
preference between these results’ corresponding side-effects.

3.4 Discussion

To the best of authors’ knowledge, all currently implemented systems employ
ad-hoc mechanisms to resolve the issues described above. The designers of these
systems have determined, in advance (i.e., at design time), the supported opera-
tions, the possible invalidities that could occur per operation, the various alter-
natives for handling any such possible invalidity, and have already pre-selected
the preferable option (or options, for flexible systems like KAON) for imple-
mentation per case; this selection (or selections) is hard-coded into the systems’
implementations.

This approach causes a number of problems. First of all, each invalidity, as
well as each of the possible solutions to each one, needs to be considered individ-
ually, using a highly tedious, manual case-based reasoning which is error-prone
and gives no formal guarantee that the cases and options considered are exhaus-
tive. Similarly, the nature of the selection mechanisms cannot guarantee that the
selections (regarding the proper side-effects) that are made for different opera-
tions exhibit a faithful overall behavior. This is necessary in the sense that the
side-effect selections made in different operations (and on different ontologies)
should be based on an operation-independent “global policy” regarding changes.
Such a global policy is difficult to implement and enforce in an ad-hoc system.

Such systems face a lot of limitations due to the above problems. For exam-
ple, OilED deals only with a very small fraction of the operations that could
be defined upon its modeling, as any change operation that would be trigger-
ing side-effects is unsupported (e.g., the operation of Figure 1 is rejected). In
Protégé, the design choice to support a large number of operations has forced
its designers to limit the flexibility of the system by offering only one way of
realizing a change; in OntoStudio, they are relieved of dealing with (part of) the
complexity of the aforementioned case-based reasoning as the severe limitations
on the expressiveness of the underlying model constrain drastically the number
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Fig. 2. Implicit knowledge handling in KAON

of supported operations and cases to consider. Finally, in KAON, some possible
side-effects are missing (ignored) for certain operations, while the selection pro-
cess implied by KAON’s parameterization may exhibit invalid or non-uniform
behavior in some cases. As an example, consider Figure 2, in which the same
evolution strategy was set in both (a) and (b); despite that, the implicit IsA
from C to A is only considered (and retained) in case (a).

Table 1. Summary of ontology evolution tools

Protégé KAON OntoStudio OilED SWKM

Fine-grained Model (Step 1) X X × X X

Change
Representation

Supported
Operations
(Step 2)

Elementary X X X × X

Composite × × × × X
Validity Model
(Step 3)

Faithful × × X X X
Complete × × X × X

Semantics of
Change

Invalidity
Resolution
(Step 4)

No alternatives X

One alternative X
Many alternatives X
All alternatives X X

Selection
Mechanism
(Step 5)

None X X

Per-case X X
Globally X

Table 1 summarizes some of the key features of ontology evolution systems,
categorized according to the 5-step process introduced in this paper, and shows
how each step is realized in each of the four systems discussed here, as well as
in the Change Impact Service of SWKM, described in Sections 4, 5 below.

We argue that many of the problems identified in this section could be re-
solved by introducing an adequate evolution framework that would allow the
description of an algorithm in more formal terms, as a modular sequence of
choices regarding the ontology model used, the supported operations, the valid-
ity model, the identification of plausible side-effects and the selection mechanism.
Such a framework would allow justified reasoning on the system’s behavior, with-



out having to resort to a case-by-case study of the various possibilities. To the
best of the authors’ knowledge, there is no implemented system that follows this
policy. In Section 4, we describe such a framework and specialize it for RDF
ontologies.

4 A Formal Framework for RDF/S Ontology Evolution

Our evolution framework consists of a fine-grained modeling of ontologies (step
1), a description of how both elementary and composite operations can be han-
dled in a uniform way (step 2), a validity model formalized using integrity rules
(step 3), which also allow us to document how side-effects are generated (step
4), and, finally, a selection mechanism based on an ordering that captures the
Principle of Minimal Change (step 5). This framework will be instantiated to
refer to RDF updating, but can be used for many different declarative languages,
by tuning the various parameters involved.

4.1 Model Selection, Supported Operations and Validity Model

The representation model we use in this paper is the RDF language, in par-
ticular the model described in [11]. For ease of representation, RDF constructs
will not be represented in the standard way, but we will use an alternative rep-
resentation, which, in short, amounts to mapping each statement of RDF to a
First-Order Logic (FOL) predicate (see Table 2); this way, a class IsA between
A and B, for example, would be mapped to the predicate: C IsA(A, B), while
a triple denoting that the domain of a property, say P , is C, would be denoted
by Domain(P,C). Note that the standard alternative mapping (e.g., for IsA:
∀xA(x) → B(x)) does not allow us to map assertions of the form “C is a class”,
and, consequently, does not allow us to handle operations like the addition or
removal of a class, property, or instance (see [3] for more details on this issue).
Notice that the same representation pattern can be used for other declarative
languages as well, even though it is more suitable for simpler ones [3].

Table 2. Representation of RDF facts using FOL predicates

RDF triple Intuitive meaning Predicate

C rdf:type rdfs:Class C is a class CS(C)
P rdf:type rdf:Property P is a property PS(P )
x rdf:type rdfs:Resource x is a class instance CI(x)
P rdfs:domain C domain of property Domain(P, C)
P rdfs:range C range of property Range(P, C)
C1 rdfs:subClassOf C2 IsA between classes C IsA(C1, C2)
P1 rdfs:subPropertyOf P2 IsA between properties P IsA(C1, C2)
x rdf:type C class instantiation C Inst(x, C)
x P y property instantiation PI(x, y, P )



We equip our FOL with closed semantics, i.e., admit the closed world as-
sumption (CWA). This means that, for a set S and a formula p, if S 0 p, then
S ` ¬p. We overload ` relation so as to be applicable between two sets as well:
for two sets S, S′ it holds that S ` S′ iff S ` p for all p ∈ S′. Let us denote by L
the set of ground facts allowed in our model (e.g., C IsA(A,B),¬CS(C)), and
L+ the set of positive ground facts of L (e.g., C IsA(A,B)).

An ontology is represented as a set of positive ground facts only, so an on-
tology is any set O ⊆ L+. Given CWA, the definition of an ontology and FOL
semantics, it follows that: (a) an ontology is always consistent (in the standard
FOL sense), (b) a positive ground fact is implied by an ontology iff it is contained
in it, and, (c) a negative ground fact is implied by an ontology iff its positive
counterpart is not contained in it.

An update is any set of positive and/or negative ground facts, so an update
is any set U ⊆ L. According to the Principle of Success, an update should be
implemented upon the ontology. Implementing a positive ground fact contained
in an update is easy: all we have to do is add it to the ontology. However, this
is not true for negative ground facts, because negative ground facts cannot be
contained in an ontology, by definition. By CWA and the property (c) above, we
conclude that “including” a negative ground fact in an ontology is equivalent to
removing its positive counterpart. Given this analysis, we conclude that positive
ground facts in an update correspond to additions, while negative ones corre-
spond to removals. This way of viewing updates allows us to express essentially
any operation, because any operation can be expressed as a set of additions
and/or removals of ground facts in our model. Thus, we put no constraints on
the allowed (supported) update operations.

Our framework needs also to define its validity model in a formal way. Validity
can in general be formalized using a set of integrity constraints (rules) upon the
ontology; therefore, a validity model is a set R of generic FOL formulas, which
correspond to the axiomatization of the constraints of the model. For technical
reasons that will be made apparent later, we constrain R to contain only “∀∃”
formulas. Notice that the validity constraints should: (a) capture the notion of
validity in the standard sense (e.g., that class subsumptions should be applied
between classes in the ontology) and (b) encode the semantics of the various
constructs of the underlying language (RDF in our case), which are not carried
over during the transition to FOL (e.g., IsA transitivity) [3]. The latter type of
constraints is very important, in the sense that it forces an ontology to contain
all its implicit knowledge as well in order to be valid.

Similar to our approach, the authors of [17] consider the case of updating
a set of facts representing a knowledge base, under a set of well-formed con-
straints on this base. However this work supports rather näıve changes as it does
not consider any side-effects for a change (storing the updates that violate any
rules as exceptions to the latter) nor composite updates. So, instead of imple-
menting a more sophisticated change mechanism the authors of [17] emphasize
on minimizing the size of the knowledge base, in the face of an update. Another
work which considers updating structured data under constraints is presented in



[16], where XML documents are automatically evaluated against a set of rules
they should adhere to. However in case of invalidities, the process of updating
the documents accordingly is left to be done manually. Therefore both of these
works are essentially different from our approach as we develop an automated,
parameterizable to its change policy, change mechanism, under a certain validity
context (set of rules).

Table 3. Indicative list of validity rules

Rule ID/Name Integrity Constraint Intuitive Meaning

R3 Domain
Applicability

∀x, y : Domain(x, y) → PS(x)∧CS(y) Domain applies to proper-
ties; the domain of a prop-
erty is a class

R5 C IsA
Applicability

∀x, y : C IsA(x, y) → CS(x) ∧ CS(y) Class IsA applies between
classes

R12 C IsA
Transitivity

∀x, y, z : C IsA(x, y) ∧ C IsA(y, z) →
C IsA(x, z)

Class IsA is Transitive

Table 3 contains an indicative list of the rules we use for RDF [11] (see also [7]
for a similar effort). Notice that the rules presented are only a parameter of the
model; our framework does not assume any particular set of rules (in the same
sense that it does not assume any particular ontology representation language).
However, the task of defining the respective rules becomes increasingly complex
as the expressive power of the underlying logic increases, so this technique is
more useful for less expressive languages (like RDF) [3].

4.2 Formalizing Our Model

We now have all the necessary ingredients for our formal definitions. Initially,
an update algorithm can be formalized as a function mapping an ontology (i.e.,
a set of positive ground facts) and an update (i.e., a set of positive and negative
ground facts) to another ontology. Thus:

Definition 1. An update algorithm is a function • : L+ × L 7→ L+.

An ontology is valid iff it satisfies the rules of the validity model R, i.e., iff
it implies all rules in R. Thus:

Definition 2. An ontology O is valid, per the validity model R, iff O ` R.

As already mentioned, the Principle of Success implies that all positive
ground facts in an update should be included in the result, whereas the pos-
itive counterparts of the negative ground facts in an update should not. Thus,
any (positive or negative) ground fact p in an update U should be implied by
the result of the change operation. Of course, this is true for feasible updates;
for infeasible updates, by definition, there is no valid ontology that satisfies the
above requirement. Therefore:



Definition 3. An update U is called feasible, per the validity model R, iff there
is a valid ontology O (O ` R) such that O ` U . An update U is called infeasible
iff it is not feasible.

Definition 4. Consider a language L, a set of validity rules R and an update
algorithm • : L+ × L 7→ L+. Then:

– The algorithm • satisfies the Principle of Success iff for all valid ontologies
O ⊆ L+ and all feasible updates U ⊆ L, it holds that O • U ` U .

– The algorithm • satisfies the Principle of Validity iff for all valid ontologies
O ⊆ L+ and all feasible updates U ⊆ L, it holds that O•U is a valid ontology.

Notice that the above definition does not handle the cases where the input
ontology is not valid to begin with, or when the update is infeasible; these are
limit cases that will be handled separately later.

4.3 Invalidity Resolution and Action Selection

As already mentioned, the raw application of an update would guarantee success
but could often violate validity (i.e., it could violate an integrity constraint). For
example, under the validity context of Table 3, the raw application of the class
deletion of Figure 1 would violate rule R5. In such cases, we need to determine
the various options that we have in order to resolve the invalidity.

The formalization of the validity model using rules has the important prop-
erty that, apart from detecting invalidities, it also provides a straightforward
methodology to determine the various available options for resolving them. In
effect, the rules themselves and the FOL semantics indicate the appropriate side-
effects to be taken when an invalidity is detected. In the example with the class
deletion (Figure 1), rule R5 implies that, in order to restore validity after the
removal of class B (denoted by ¬CS(B)), we must delete the IsAs involving B.

In the general case, detecting and restoring an invalidity would require a
FOL reasoner; however, our assumption that an ontology is a set of positive
ground facts and that a rule is a “∀∃” formula, allows us to develop a much
more efficient way. In particular, a “∀∃” rule can be equivalently rewritten as
the conjunction of a set of subrules, where each subrule is a formula of the form
∀∨ ∃ (see Table 4). Thus, by definition, an ontology O is valid iff it implies all
subrules of all rules of the validity model. A subrule is implied by O iff, for all
possible variables, at least one of the constituents of the disjunction is true (i.e.,
implied). Thus, a subrule can be violated iff a previously true constituent of the
subrule is, due to the update, rendered false (i.e., not implied) and there is no
other true constituent of the subrule. Similarly, the possible ways to render a
violated subrule true should be chosen among all the constituents of the subrule,
i.e., we should select one of the constituents of the subrule to be rendered true
(through a side-effect); notice that the selected constituent should not be the one
that was rendered false by the update itself (or else we would violate success).

Let us explain this process using an example. Consider rule R5, which is
broken down into two subrules, as shown in Table 4. Let’s consider subrule R5.1;



Table 4. Breaking rules into subrules

Rule ID/Name Subrules of the rule

R3 Domain Applicability R3.1 : ∀x, y : ¬Domain(x, y) ∨ PS(x)
R3.2 : ∀x, y : ¬Domain(x, y) ∨ CS(y)

R5 C IsA Applicability R5.1 : ∀x, y : ¬C IsA(x, y) ∨ CS(x)
R5.2 : ∀x, y : ¬C IsA(x, y) ∨ CS(y)

R12 C IsA Transitivity R12.1 : ∀x, y, z :
¬C IsA(x, y) ∨ ¬C IsA(y, z) ∨ C IsA(x, z)

this subrule is satisfied iff for all variables x, y, it either holds that ¬C IsA(x, y),
or it holds that CS(x). If we remove a class (say B, denoted by ¬CS(B)) which
previously existed in the ontology (cf. Figure 1), we should verify that subrule
R5.1 is still true. This practically amounts to verifying that no class IsA starting
from B exists in the ontology, i.e., that ¬C IsA(B, y) is true for all y. If any such
y exists (say y = C), then we must remove the respective IsA (i.e., ¬C IsA(B, C)
should be recorded as a side-effect).

Rule R12 is similar: R12.1 (which is the only subrule of R12) can be violated
by, e.g., the addition of an IsA (say C IsA(C,B)). This could happen if, for
example, an ontology contains C IsA(B, A), but not C IsA(C, A) (cf. Figure
3). To see this, set x = C, y = B, z = A in R12.1, Table 4. The difference
with the previous case is that now the violation can be restored in two different
ways: either by removing C IsA(B, A), or by adding C IsA(C,A) (i.e., either
¬C IsA(B, A) or C IsA(C, A) could be selected as side-effects).

Notice that the selected side-effects are updates themselves, so they are en-
forced upon the ontology by being executed along with the original update;
moreover, they could, just like any update, cause additional side-effects of their
own. Another important remark is that, in some cases (e.g., R5.1), the invalidity
resolution mechanism gives a straightforward result, in the sense that we only
have one option to break the invalidity; in other cases (e.g., R12.1), we may
have more than one alternative options. In the cases where we have different
alternative sets of side-effects to select among, a mechanism to determine the
“best” option, according to some metric, should be in place. In Section 3, we
showed that our “preference” among the side-effects can be encoded using an
ordering; given such an ordering (say <), all we need to do is find the minimal
set of side-effects (with respect to <) among all possible ones and implement it.

As usual, our framework does not depend on any particular ordering. For
technical reasons however, not all orderings can be employed for this purpose.
In particular, to guarantee the rationality of the results, the ordering should
depend on the underlying ontology as well (e.g., it is generally accepted that the
removal of a general class is more “severe” than the deletion of a more specific
class, but this criterion implies knowing the position of the class in the class
hierarchy of the ontology). In addition, the ordering should be transitive and
total; furthermore, it should be monotonic with respect to ⊆ (i.e., U ⊆ U ′ implies
U ≤ U ′). Moreover, it should not be affected by void changes: for example, the



addition of class C is a void operation in an ontology that already contains C and
the removal of class D is a void operation in an ontology that does not contain
D, so the inclusion of CS(C) (or ¬CS(D), respectively) in the side-effects of an
update upon the above ontologies should not affect the “mildness” of the update.
Finally, the ordering should be antisymmetric, modulo void operations (i.e., two
updates have the same “mildness” iff their non-void operations are identical).
We will call update generating an ordering satisfying these properties.

In our implementation, the proposed ordering is based on the ordering shown
in Table 5 among the 18 positive and negative predicates. This ordering is ex-
panded to refer to updates (i.e., sets of ground facts) using the general idea that
an update U1 is “preferable” or “better” than U2 (denoted by U1 < U2) iff the
“worst” predicate used in U1, is “better” than the “worst” predicate used in U2

where the predicates’ relative preference is determined by the order shown in
Table 5. Ties are resolved using cardinality considerations and/or the relative
“importance” of the predicate’s arguments in the original ontology, according to
certain rules that determine “importance”. Further details are omitted due to
space limitations. It can be proven that our ordering is update-generating.

Table 5. Ordering of predicates

PI < C Inst < P IsA < C IsA < ¬PI < ¬C Inst < ¬P IsA < ¬C IsA <
¬Domain < ¬Range < ¬CI < ¬PS < ¬CS < Domain < Range < CI < PS <
CS

4.4 Rational Ontology Evolution Algorithms

Now consider an update U applied upon an ontology O per the update algorithm
•, returning O • U . The question is, what were the effects and side-effects that
were applied upon O to get O • U? The restriction that ontologies contain only
positive ground facts is extremely helpful in this respect too. In particular, we
can define the Delta between two ontologies as follows:

Definition 5. Consider two ontologies O1, O2 ⊆ L+. The Delta between O1 and
O2 is defined as Delta(O1, O2) = {p | p ∈ O2 \O1} ∪ {¬p | p ∈ O1 \O2}.

Notice that the result of Delta is an update, i.e., Delta(O1, O2) ⊆ L; given
the above definition, the actual set of effects and side-effects that were applied
upon O to get O•U is just Delta(O,O•U). Notice that Delta(O, O•U) will just
return the non-void operations that led from O to O • U ; this is not a problem,
as void operations do not affect the ordering. Given this Delta function, the
Principle of Minimal Change can be formalized by requiring that an update
algorithm should return an ontology O •U such that Delta(O,O •U) is minimal
compared to Delta(O,O′) for all other possible results O′.



Of course, we need to specify what are the other “possible results”, which,
as already mentioned, are the ones that satisfy the Principles of Success and
Validity. Thus, our formal definition of the Principle of Minimal Change should
be coupled with the other principles. We will therefore define a rational update
algorithm to be one that satisfies the Principles of Success and Validity, and,
among all the possible results that satisfy these two principles, it selects the one
that has the minimal impact upon the original ontology (Principle of Minimal
Change). Notice that there are certain limit cases which need to be handled
separately, i.e, the case when the original ontology (to be updated) is invalid,
and the case when the update itself is infeasible:

Definition 6. Consider a language L, a validity model R, an update-generating
ordering < and an update algorithm • : L+ × L 7→ L+. Then the algorithm • is
called rational iff it satisfies the following requirements for all O ⊆ L+, U ⊆ L:

Limit Cases: if O is not valid or U is infeasible, then O • U = O
General Case: if O is valid and U is feasible, then • satisfies the following:

Principle of Success: O • U ` U .
Principle of Validity: O • U is valid.
Principle of Minimal Change: For any O′ such that O′ ` U and O′ is a

valid ontology, it holds that Delta(O,O • U) ≤ Delta(O,O′).

Note that rationality depends on the model (which determines L and L+), the
validity rules (for the Principle of Validity) and the ordering (for the Principle of
Minimal Change). Therefore, there is no “universally rational update algorithm”,
but rationality depends critically on these parameters.

5 Algorithms

5.1 General-purpose Algorithm

We will now show how one can use the above formal framework in order to de-
velop a rational evolution algorithm (which is shown in Table 6). Let us consider
the update example of Figure 3. Our original update is U = {C IsA(C, B)},
denoting that an IsA between C and B should be added. We first need to check
whether this update will violate any rule (line 4.1); as mentioned in Section 4,
this can be done by checking against all subrules in which ¬C IsA appears. In
general, several rules may be violated, in which case we process them in any or-
der (line 4.2). In our example, it can be verified that the addition of C IsA(C, B)
will only violate subrule R12.1 (IsA transitivity), for x = C, y = B, z = A. This
is true because the addition of C IsA(C, B) should cause the addition of the
implicit knowledge C IsA(C,A) as well. This option is the standard way of sat-
isfying transitivity, but our rule also gives us the alternative to remove the old
IsA between B and A (to prevent the transitivity rule from firing).

In order to explore all alternatives regarding the possible side-effects, the com-
parison (using <) between the first and the second option is postponed until the
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full set of side-effects has been computed. Therefore, at this point, the algorithm
suggests two different alternative updates, one per possible side-effect, namely
U1 = {C IsA(C, B), C IsA(C,A)} and U2 = {C IsA(C, B),¬C IsA(B, A)}
(line 4.2.1). Then, the algorithm recursively calls itself twice (once for U1 and
once for U2). Both calls will indicate no further side-effects, as there are no fur-
ther rules violated; in the general case, the side-effects could have side-effects
of their own, so the recursion should continue until no further side-effects exist.
Once all recursions stop, the returned sets of side-effects are compared using <
and the minimal is selected for implementation (line 4.2.2). In this case, the first
option (i.e., U1) is the “best”, according to < (see Table 5), i.e., the IsA between
C and A should be added; this indeed sounds like the most natural result, but
it could be different if the ordering was different.

If, during the recursion, the so-far processed predicates turn out to contradict
each other (line 1), then the particular branch of execution will obviously not
lead to an acceptable solution, so the special value infeasible is returned; if all
branches return infeasible, then the entire update is infeasible (and the recursive
process will also return infeasible). The same special value is returned by certain
branches (line 2) when their cost is predicted to be too large to be an acceptable
solution, so there is no point in exploring them further.

Table 6. General-purpose algorithm

Input: Model, Rules, Ordering <, Update U, Ontology O
WHILE there exist unprocessed predicates in U execute the following steps:
(1) If the predicates that have been processed so far contradict each other, return
INFEASIBLE
(2) If the total cost of the union of the predicates processed so far and the remaining
predicates (in U) is larger than the best solution found so far, return INFEASIBLE
(3) Select (arbitrarily) an unprocessed predicate in U , say P
(4.1) IF there is no rule violated by P, THEN mark P as processed, add P to the
side-effects of U and recursively call the algorithm using the same U
(4.2) ELSE select (arbitrarily) one violated rule, say R
(4.2.1) FOR each possible way to resolve the violation of R, add the respective
predicates as side-effects in U and recursively call the algorithm using the new U
(4.2.2) When recursion returns compare (using <) the returned side-effects and
return the “best” to the caller
Output: Update U enriched with its side-effects



Notice that the general algorithm (Table 6) is applicable for any language L
(i.e., ontology model), validity model R and ordering < and that several details
of the algorithm have been brushed out. The general idea is that the case-based
reasoning performed manually in other systems is now in-built in the algorithm,
so it is performed automatically and in a parameterizable way. The algorithm’s
complexity depends on its parameters, namely the language, validity model and
ordering; for the particular parameters used for RDF (described above), termi-
nation can be guaranteed:

Theorem 1. For the language, validity rules and ordering described in Section
4, the algorithm of Table 6 terminates for any input O,U .

Termination is guaranteed by the form of the rules and the ordering (cost
model) used. In particular, it can be shown that, whenever there exists a non-
terminating recursive path (branch), there exists also a terminating one that is
significantly less costly. By carefully choosing the processing order of the various
side-effects (line 4.2.1), we can guarantee that the non-terminating branches will
be pruned in line 2, before jeopardizing termination.

The algorithm described in Table 6 returns the effects and side-effects of the
original update, or the special value infeasible. The end result of this recursive
algorithm can then be trivially applied upon the original ontology, by simply
adding every positive ground fact of the output to the ontology, and removing
the positive counterpart of any negative ground fact of the output from the
ontology. The result will be a valid ontology which should be returned as the
result of the update. The following can be shown:

Theorem 2. For any given language, validity rules and update-generating or-
dering, if the algorithm described above terminates, then it implements a rational
change operation.

The complete proof of the above theorem is quite complicated and technical,
so we provide only a short sketch. Principle of Success is guaranteed by the fact
that our algorithm considers all the predicates in U , and all such predicates are
added to the side-effects of U (line 4.1). The Principle of Validity is guaranteed
as well: the process cannot end unless all violated rules (identified in line 4.2) are
restored (line 4.2.1). Finally, the Principle of Minimal Change is guaranteed in
line 4.2.2: the recursive character of the algorithm will open up several different
branches, each of them spawned by a different way to restore a particular rule
violation. Upon returning of each branch, the calculated cost of each branch is
compared (line 4.2.2) and only the best is kept; notice that the comparison is
made at a position where the entire branch has been explored, so we know its
total cost and can guarantee that no ignored branch can have “minimal” cost
(so it can’t be an acceptable solution). The following corollary is immediate:

Theorem 3. For the language, validity rules and ordering described in Section
4, the algorithm of Table 6 terminates for any input O ⊆ L+, U ⊆ L and it can
be used to implement a rational change operation.



5.2 Special-purpose Algorithms

A downside of the generality enjoyed by the algorithm of Table 6 is that it is
not efficient. To remedy this problem, we can develop simpler, special-purpose
algorithms, for the particular application that we are interested in (RDF in our
case). These “instantiations” are much faster than the general algorithm, but
can still be proven equivalent to it, i.e., formally sustained. Thus, we can guar-
antee that they exhibit the expected/desired behavior, by verifying them against
the general-purpose algorithm. Notice that these special-purpose algorithms are
similar to ad-hoc methodologies employed by other systems; however, using our
formal framework and results, one can verify in a straightforward way the cor-
rectness (rationality) of those algorithms (see Theorem 4). Moreover, the general
algorithm could still be used to implement any possible, unforseen operation.

Table 7 shows, as an example, one such special-purpose algorithm for the
removal of a class from an ontology. Notice that some lines of the algorithm
(e.g., (1.4.1)-(1.4.4)) would spawn other special-purpose algorithms for executing
certain operations (in our case, the removal of IsAs, instantiation links etc), thus,
possibly, incurring further side-effects. For this reason, similar algorithms have
been developed for other operations, but are omitted due to space limitations.

Table 7. Special-purpose algorithm: remove class C from ontology O

Remove class C:
(1) If class C is in O THEN
(1.1) Remove all class IsA relationships deriving from C
(1.2) Remove all class IsA relationships arriving in C
(1.3) Remove all instantiation links between a resource and C
(1.4) FOR every property P whose range/domain is C
(1.4.1) Remove all property IsA relationships deriving from P
(1.4.2) Remove all property IsA relationships arriving in P
(1.4.3) Remove all instantiation links of P
(1.4.4) Remove P and the information on its range/domain
(1.5) Remove C

Theorem 4. Consider the language, validity rules and ordering described in
Section 4. Then for U = {¬CS(C)} and any O ⊆ L+, the output of the algorithm
in Table 6 is the same as the output of the algorithm in Table 7.

The above theorem can be easily shown by exhaustively considering all the
different rule violations that the update under question would cause (by scan-
ning the validity rules for violations); this would verify that the behavior of the
special-purpose algorithm is identical to the general-purpose one for the par-
ticular order considered. Similarly to the other ontology evolution systems, our
special-purpose algorithms cannot handle all possible update requests. However,
we can always resort to the general-purpose algorithm if the requested operation
is not supported by any special-purpose algorithm. Currently, we have devised



and implemented one special-purpose algorithm for each elementary operation,
but we plan to develop more, in order to handle certain useful composite opera-
tions. The selection whether to use a special-purpose algorithm or the general-
purpose one is made by the system itself, in a transparent manner to the user.

6 Conclusion

In this paper, we identified several difficulties associated with the development of
ad-hoc ontology evolution algorithms. We decomposed the process of coping with
ontology evolution into 5 discrete steps. This way, devising an ontology evolution
algorithm is reduced to the process of instantiating each step in a modular way.
To this end, we presented a formal framework with the aid of which an evolution
algorithm can be materialized as a set of adequate parameterizations, as follows:
1. The ontology representation model and its mapping to FOL.
2. The definition of the allowed change operations in the model. Notice that this

is not necessary, as the framework is general enough to support any update,
but we may want to disallow certain operations for some application.

3. The validity rules that allow us to detect invalidities as well as to determine
how the invalidities can be resolved.

4. The preference ordering that encodes the selection mechanism.

Parameters 1,2 and 4 of our framework correspond to steps 1,2 and 5 respec-
tively. The third parameter corresponds to the validity context, based on which
our framework instantiates steps 3 and 4. Once these parameters are set, we can
apply the general algorithm presented in Table 6 to perform any change. For ef-
ficiency reasons, it may be useful to generate simpler special-purpose algorithms
based on the general one. This can be done only for specific instantiations of the
above parameters, as in the case study of RDF updating presented here.

Our method exhibits a faithful behavior with respect to the various choices
involved, regardless of the particular ontology or update operation at hand. It
has a formal foundation, issuing a solid, consistent and customizable method
to handle any type of change operation, including updates that have not been
considered at design time. Our framework is modular and extensible in the sense
that it could work with any language, rules and/or ordering given.

As already mentioned, the presented algorithms have been implemented for
the Change Impact Service of SWKM, and the initial results are promising. In
the future, we plan to identify and optimize the most commonly used update op-
erations. In addition, we plan to verify the effectiveness of our proposed ordering
using experiments with real users.
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