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ABSTRACT
In this paper we consider the problem of answering queries using
views, with or without ontological constraints, which is important
for data integration, query optimization, and data warehouses. Our
context is data integration, so we search for maximally-contained
rewritings. We have produced a very scalable and efficient solution
for its simplest form, conjunctive queries and views, and we are
working towards the full relational case. When considering con-
straints, the problem is usually divided in two phases: (1) query
expansion, which rewrites queries w.r.t. the intentional knowledge
and (2) expanded query reformulation using the views. Relevant
algorithms have given little attention to the second phase and have
studied a limited form of view definition languages overall (namely,
only GAV). By looking at the problem from a graph perspective we
are able to gain a better insight and develop designs which com-
pactly represent common patterns in the source descriptions, and
(optionally) push some computation offline. This allows us to con-
tribute significantly in both aforemention phases individually, tailor
one to each other, and moreover address them in a unified way. We
intend to provide a solution that supports a variety of ontology lan-
guages, and all prevalent view definition languages (G/LAV). To-
wards such a general and scalable system our preliminary results
for the relational case, show an experimental performance about
two orders of magnitude faster than current state-of-the-art algo-
rithms, rewriting queries using over 10000 views within seconds.

1. INTRODUCTION
In information integration, a virtual mediator integrates infor-

mation from multiple heterogeneous sources by defining a global
schema and then describing the contents of the sources in terms of
this schema. The user poses queries to the system using the global
schema as if it were a single centralized repository. The actual data
however are stored at the sources and are organized according to
independently developed source schemas. Therefore, the sources
must be queried accordingly: the mediator reformulates (rewrites)
the user query into another query that only uses terms from the
source schemas. In the problem’s most prevalent form (widely
known as answering queries using views and extensively studied
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in query optimization, data integration and other areas [10, 12]) the
sources and the mediator are modeled by relational schemas.

Nevertheless, a significant part of industrial and academic inter-
est has recently focused on imposing various forms of constraints
on the mediator schema, that allow for intensional knowledge [5,
12, 14, 16]. In this problem, usually referred to as ontology-based
data integration (OBDI), a set of constraints (written e.g., in DL-
lite [5]) form an ontology that lies on top of the mediator. The
user’s query addresses the ontology schema (could be written, e.g,
in SPARQL) and needs to be rewritten not only in terms of the
sources but taking the ontological constraints into account as well.
We are focusing on the query rewriting problem in data integration
both in the relational case and under richer ontological constraints.

Mappings between the sources’ schemas and the mediator schema
are usually given in the form of logical formulas, which we call
source descriptions, or views1. In the Global-as-View (GAV) [9]
approach, each mediator relation (or predicate) is defined by a view
involving source predicates. Conversely, in the Local-as-View(LAV)
[13, 7] approach each source predicate is defined by a view over
mediator predicates. GLAV [8] is a generalization of GAV and
LAV. We intend using all different kinds of mapping and towards
this goal we choose to start from the most interesting case of LAV.

In [11] we looked at the relational query rewriting problem us-
ing LAV mappings, from a graph perspective and we were able to
gain better insights and design a solution which compactly repre-
sents common patterns in the mappings, and (optionally) pushes
some computation offline. This together with other optimizations
resulted in an experimental performance that rewrites queries us-
ing over 10000 views within seconds, and is about two orders of
magnitude faster than current state-of-the-art algorithms. We are
currently extending this work to cover the full relational case.

At the same time we point out that relevant OBDI approaches,
have paid little attention to the integration aspect of the problem.
The problem is usually divided into two phases, and relevant algo-
rithms focus mostly on the first one, known as query expansion [5],
which rewrites the original (ontological) query by taking into ac-
count the ontology inferences; it is, in essence, “compiling” the
ontology in the query and expanding the latter by adding a (pos-
sibly exponential) number of queries that account for the inten-
tional knowledge. This technique, rather than integration, is tai-
lored for Ontology-Based Query Answering of data stored in a sin-
gle database. The actual integration of sources happens in a second
phase, where the aforementioned approaches call upon existing al-
gorithms to reformulate the expanded queries, typically using GAV
views. It is worth noticing that LAV query reformulation might pro-
duce an exponential number of rewritings, for each one of the expo-

1In the context of query optimization views are materialized an-
swers of previously evaluated queries.



nentially many queries that the query expansion outputs. Hence, it
is very difficult for practical systems to emerge from this approach.
No relevant work, to the best of our knowledge, has addressed the
two phases in a unified way, and moreover no relevant approach
has focused in addressing the interesting case of LAV (or GLAV)
mappings. Our contributions are foreseen as follows:

• We present a scalable algorithm for the problem of relational
query answering using LAV views. We are working to op-
timize it further and to extend it to cover constants, GLAV
rules, interpreted predicates, minimization of output and more
expressive queries as our input such as unions of conjunctive
queries (UCQs) and non-recursive (nr) datalog programs.

• Having a scalable algorithm for query rewriting will allow
“porting” a query expansion phase on top, to support prac-
tical OBDI. Moreover efficient UCQ rewriting using views
will allow rewriting entire outputs of the query expansion
phase as a batch, rather than each one in isolation, optimiz-
ing our ontology-based data integration solution even more.

• In parallel, the two major contributions of our relational al-
gorithm,i.e., compact representation of common patterns and
offline preprocessing can apply also for the case of query ex-
pansion. These insights will allow for a faster query expan-
sion phase that yields a compact output which additionally is
tailored for our query reformulation algorithm.

• Coupling the two phases together will (1) yield a more effi-
cient algorithm, (2) avoid redundant work by not rewriting
similar or redundant ontology-expanded queries using the
views multiple times, and (3) allow us to deal with the chal-
lenging case of LAV (and GLAV) mappings, reusing our in-
sights and leveraging the benefits of our relational approach.

2. THE DATA INTEGRATION PROBLEM
Answering Relational Queries Using Views. To define the prob-
lem formally we introduce the concepts of query containment [6,
1] and query rewritings [13]. Initially, we focus on conjunctive
queries; the core of every query language. Their body is a conjunc-
tion of atoms and they correspond to select-project-join queries.
Definition 1 (Query Containment): For queries Q1,Q2 defined
over the same schema, Q1 is contained in Q2 (Q1 ⊆ Q2), iff for all
databases D, the result of evaluating Q1 on D, denoted Q1(D), is
contained in the result of evaluating Q2, that is, Q1(D) ⊆ Q2(D).

Chandra and Merlin [6], showed that conjunctive query contain-
ment is NP-complete, and can be done through containment map-
pings. For two same schema conjunctive queries, a containment
mapping from Q1 to Q2 is a homomorphism, from the variables of
Q1 to those of Q2, h:vars(Q1) → vars(Q2) (h is extended over
atoms, sets of atoms, and queries in the obvious manner), such that:
(1) for all atoms A ∈ body(Q1), it holds that h(A) ∈ body(Q2),
and (2)h(head(Q1)) = head(Q2) (modulo the names of Q1, Q2).
For all conjunctive queries Q1, Q2 over the same schema, Q2 ⊆
Q1 iff there is a containment mapping from Q1 to Q2 [6].

Q1 is equivalent to Q2, denoted Q1 = Q2 iff Q1 ⊆ Q2 and
Q2 ⊆ Q1. Given a query Q and a set of view definitions V =
{V1, ..., Vn} both over the same schema R, a query Q′ is a rewriting
of Q using V if Q′ uses only predicates from V . In our context we
are looking for all maximally-contained query rewritings:
Definition 2 (Maximally-Contained Rewriting): A query Q′ is a
maximally-contained rewriting of Q using V if: (1) Q′ is a rewrit-
ing of Q using V , (2) Q′ ⊆ Q, and (3) there is no rewriting Q′′ of
Q using V , such that Q′ ⊆ Q′′ ⊆ Q and Q′′ 6= Q.

In order to check whether a rewriting Q′ (defined over V) is
contained in a query Q (defined over schema R), we need to get

the rewriting’s unfolding [13], i.e., unfold the atoms of V in the
body of Q′ with their definitions (which are over R). The new
query unfold(Q′) is defined over R, and we can check wether
unfold(Q′) ⊆ Q. To ground these definitions consider the fol-
lowing example. Assume that we have two LAV sources, S1 and
S2, that provide information about healthcare medical records. S1

contains doctors that treat patients with a chronic disease. S2 con-
tains doctors, patients and clinics where the doctor is responsible
for discharging the patient from the specific clinic. The contents of
these sources are modeled respectively by the two views:
S1: V1(doctor, disease)→ TreatsPatient(doctor, patient),

HasChronicDisease(patient,disease)

S2: V2(doctor, patient, clinic) → DischargesPatientFromClinic(doctor,
patient, clinic)

We use a logical notation for queries and views similar to data-
log [1]. Logical implication is denoted by→ or←, and conjunction
between atoms by ‘,’. Same variable names used in two predicates
denotes equality of the corresponding arguments of the predicates,
within this source (variables across sources are considered differ-
ent). On the left side of a rule, lies the head; the relation the view or
the query contain or ask for respectively. On the right side we write
the body of the view/query, which is its description. It is important
to stretch out that the bodies of such rules consist of mediator predi-
cates which stand for virtual relations. The actual data are provided
by the head of a view. In our example, S1 contains only references
to the doctors and the diseases they treat, but not to the patients
that have these diseases; this information conceptually exists in the
body but is not provided by the source (it could be missing or con-
sidered private). Assume the user asks for doctors treating chronic
diseases and the clinics that they work (discharge patients from):
q(d, c) ← TreatsPatient(d,x), HasChronicDisease(x,y),

DischargesPatientFromClinic(d,z,c)

A rewriting of q is:
q′(d, c) ← V1(d, y), V2(d, z, c)

Intuitively, we can get the chronic diseases’ doctors information
from V1 and join it on “doctor” with the patient discharging infor-
mation from V2. In this example, the selection of views relevant
to answer the user query and the reformulation process was quite
simple since there were only two views. We just built q′ using
the two views and tested that unfold(q′) ⊆ q. Here, unfold(q′)
← TreatsPatient(d,p), HasChronicDisease(p,y), DischargesPatient-
FromClinic(d,z,c). Since V1 and V2 are the only sources available,
q′ is the best we can do and it is a maximally-contained rewrit-
ing of q using V1 and V2. However, in general, there may be a
large number of sources and the number of possible rewritings that
would need to be tested for containment grows exponentially to this
number of sources. Algorithms in this area, as discussed in Sect. 3,
try to reduce the number of candidate rewritings. Notice that, in
our example, we had to select views that contained a predicate
needed by the query: the definition of V1 involves TreatsPatient
and HasChronicDisease, and V2 involves DichargesPatientFrom-
Clinic. This is, however, not a sufficient condition for selecting a
view. Had the attribute “doctor” been missing from V1 or V2, they
would be useless (since the query asks for the “doctor” attribute).
In effect, we want “doctor” to be a distinguished (returning) vari-
able in the relevant views. If a variable is not in the head of the
query (i.e., returning or distinguished), we call it existential.
Ontology-Based Data Integration. To introduce the OBDI prob-
lem, we employ the description logic syntax [3] which we will
here use as the mediator language. In this syntax, consider the
following rules as a part of the mediator ontology exposed to the
user: (1) Dentist v Doctor, (2) Doctor v ∃ TreatsPatient, and (3)



∃HasDoctor− v Doctor. These axioms state that dentists are doc-
tors, that doctors participate at least once in the TreatsPatient rela-
tion, and they are the range of the HasDoctor relation. Given a user
query q on the ontology (written over the ontology’s predicates)
and a set of (relational) views, the problem is again to obtain all
maximally-contained query rewritings of q using only the views.
Towards this, related algorithms consider the problem in two sep-
arate phases [5, 14, 16]. The first phase, namely query expansion,
is to rewrite the user query taking the ontology inferences into ac-
count. Consider for example the query on the mediator being: q1(x)
← TreatsPatient(x,y). Upon examination the reader can verify that
the complete query in this example (that is, closed with respect to
ontology inferences) is the union of the original query plus the fol-
lowing additional “entailed” ones:
q1(x) ← Doctor(x), q1(x) ← Dentist(x), q1(x) ← HasDoctor(y,x).

Intuitively if asking for all individuals that treat some patient,
and given the incompleteness of the sources in the data integration
context, we should also query the sources for all doctors (since all
doctors treat patients by axiom 2), and hence all dentists and all the
ranges of the HasDoctor relation (axioms 1 and 3 resp.).

Note that all these ontology-expanded queries use mediator pred-
icates, and so we need a second phase in order to reformulate them
with respect to the views. Most approaches assume the trivial case
of GAV mappings as the source descriptions available after the on-
tology is “compiled” in the query. GAV reformulation using the
views is straightforward; one needs simply to “unfold” (i.e., sub-
stitute) the ontology concepts and relations that appear in the ex-
panded queries with the source queries that define them on the
bodies of the corresponding mappings. Relevant algorithms usu-
ally focus on optimizing the “ontology compilation” phase. The
union of ontology-compiled queries is exponential to the size of
the ontology, and a lot of the queries in this union are possibly re-
dundant. Hence the biggest focus of recent algorithms has been to
minimize the output of the query expansion.

3. OUR PREVIOUS WORK: GQR
Recent approaches [15, 2] in query rewriting using LAV views

have focused on pruning the selection of views that will potentially
form the rewriting, so as not to result in a non-contained rewriting
to the query. In [11], we pushed this intuition even further and
managed to develop a much more efficient and scalable solution.
This section summarizes our results, and defines the foundations
for our proposed approach. The reader should refer to [11], for the
full details of our approach and algorithms.

We will start with some preliminaries. We introduce coverings,
which are restrictions of containment mappings. Coverings map a
sub-part of the query body to a sub-part of a view. Recall that a
query rewriting essentially consists of multiple view sub-parts, so
we can “combine” these “partial” mappings (coverings) to establish
the containment mapping between the query and the rewriting. As
we explain later, all relevant algorithms, look for legitimate cover-
ings in order to select a view for participation in a rewriting.
Definition 3 (Covering): For all queries Q, for all views V , for
all predicates gq ∈ body(Q), for all predicates gv ∈ body(V ),
for all partial homomorphisms ϕ : vars(Q) → vars(V ), we say
that a view predicate gv covers a predicate gq of Q with ϕ iff: (1)
ϕ(gq) = gv , and (2) for all x ∈ vars(gq) if x is distinguished then
ϕ(x) ∈ vars(gv) is distinguished.

The second part of Def. 3 is exactly condition (2) in the contain-
ment mapping definition, and the intuition behind it, is that when-
ever a part of a query needs a value, you cannot cover that part with
a view that does not explicitly provide this value. Abusing defini-
tion we say that a set of predicates of V , or even V itself, covers qq

with ϕ (since these coverings involve trivial extensions of ϕ).
Coverings should adhere to one more constraint. Consider the

sources defined in the example of Sect. 2 and q2 below which asks
for doctors that treat patients with chronic diseases and the clinics
where they discharge those same patients from:
q2(d, c) ← TreatsPatient(d,x), HasChronicDisease(x,y),

DischargesPatientFromClinic(d,x,c)

In contrast to q of Sect. 2, this query demands that the second ar-
gument of DischargesPatientFromClinic is joined with the patients
that are treated for chronic diseases. This is impossible to answer,
given S1 and S2, as S1 does not provide the patients (i.e., patient
in its definition). The property revealed here is that whenever an
existential variable x in the query maps on an existential variable
in a view, this view can be used for a rewriting only if it covers all
predicates that mention x in the query. This property is referred to
as (clause C2 in) Property 1 in MiniCon[15]. This is also the basic
idea of the MiniCon algorithm: trying to map all query predicates
of q2 to all possible views, it will notice that the existential query
variable x in the query maps on patient in S1; since patient is
existential it needs to go back to the query and check whether all
predicates mentioning x can be covered by S1. Here Discharges-
PatientFromClinic(d,x,c) cannot. We notice that there is duplicate
work being done in this process. First, MiniCon does this proce-
dure for every query predicate, this means that if q2 had multi-
ple occurrences of TreatsPatient it would try to use S1 multiple
times and fail (although as [15] states certain repeated predicates
can be ruled out of consideration). Second, MiniCon would try to
do this for every possible view, even for those that contain the same
pattern of S1, as S3 below which offers doctors and the diseases
they treat on some patient, where the doctors are also dentists:
S3: V3(doctor, disease)→ TreatsPatient(doctor, patient),

HasChronicDisease(patient,disease), Dentists(doctor)

S3 cannot be used for q2 as it violates MiniCon’s Property1,
again due to its second variable, patient, being existential and
DischargesPatientFromClinic not covered. Our idea is to avoid
this redundant work by compactly representing all occurrences of
the same view pattern. Our algorithm (called Graph-based Query
Rewriting or GQR [11]) compactly represents common subexpres-
sions in the views. Instead of considering every view subgoal, we
only consider the distinct patterns that all views contain. We start
by finding coverings for small atomic view patterns, that repeat
themselves accross views and hence compactly represent pieces of
multiple views (which alternatively cover the same query part). We
then incrementally combine these patterns to larger ones, progres-
sively covering the underlying query. Consequently, we naturally
come up with a “batch” of contained rewritings, right away. In our
solution, we use a graph representation of queries and views pre-
sented subsequently.

3.1 Graph Modeling
Our graph representation, translates predicates and their argu-

ments to graph nodes. Predicate nodes are labeled with the name
of the predicate, and they are connected through edges to their ar-
guments. Shared variables between atoms result in shared variable
nodes, directly connected to predicate nodes. We equip our edges
with integer labels that stand for the variables’ positions within the
atom’s parentheses, and we discard variables’ names; the latter is
because the only knowledge we require for deciding on a cover-
ing is the types of the variables involved. Distinguished variable
nodes are depicted with a circle, while for existential ones we use
the symbol ⊗. Using these constructs the query q of Sect. 2 (with
abbreviated predicate names for brevity, i.e., q(d, c) ← TP (d, x),
HCD(x, y), DPFC(d, z, c)) corresponds to the graph seen on



(a) (b) (c)
Figure 1: (a) Query Q, and sources S1-S3 as a graphs. (b) Predicate Join Patterns. (c) Infobox for a variable node. The node is
existential and is attached on its predicate node on edge with label 3 (this variable is the third argument of the corresponding atom).
We can find this specific PJ in three views, so there is information about the join descriptions of each of these views in the infobox.
The two join descriptions associated to S6 tell us that this variable, in view S6, joins with the second argument of P4 and the second
argument of P2.

the left part of Fig. 1(a). The right part of Fig. 1(a) shows the
graph representation (again with abbreviated predicate names) of
our running example’s LAV source descriptions S1, S2, and S3.
Our algorithm consists of mapping subgraphs of the query to sub-
graphs of the sources, and to this end the smallest subgraphs we
consider represent one atom’s “pattern”: they consist of one central
predicate node and its (existential or distinguished) variable nodes.
These primitive graphs are called predicate join patterns (or PJs)
for the predicate they contain. Left part of Fig. 1(b) shows all pred-
icate join patterns that the query Q contains, (i.e., all query PJs).

A critical feature that boosts our algorithm’s performance is that
the patterns of predicates as graphs repeat themselves in multiple
sources. Therefore we choose to compactly represent each such
occurrence of the same predicate across different sources with the
same PJ. This has a tremendous advantage; mappings from a query
PJ to a view one are computed just once instead of every time this
predicate (or set of predicates) is met in a source description. For
the query PJ for HCD seen in the left part of Fig. 1(b), all source
PJs that could potentially cover it, per Def. 32, can be seen in the
right part of the same figure. Unless our sources contain one of
these four patterns the query fails (right away) to be rewritten.

Nevertheless, the “join conditions” for a particular PJ within
each view are different and some ”bookkeeping” is needed to cap-
ture these joins. To retain this information we use a conceptual
data structure called information box (or infobox). Each infobox is
attached to a variable v. Fig. 1(c) shows an example infobox for a
variable node. A variable’s infobox contains a list of views that this
PJ appears in and for each such view the variable’s join descriptions
which record which other PJs this variable (directly) joins to within
the specific view. Fig. 2 shows for all predicates of Q, all the differ-
ent relevant PJs that appear in sources S1−S3 with their infoboxes
(aggregating information from all sources where they appear). Ad-
ditionally, at different steps of our algorithm, each source graph
consisting of PJs, covers a certain part of the query and within this
graph we maintain a list of “candidate” parts of the final conjunc-
tive rewritings (that will eventually be “responsible” for covering
this part of the query). We call these partial conjunctive rewritings.

3.2 Graph-based query rewriting
Our solution is divided in two phases. Initially, we process all

view descriptions and construct all source PJs. In our second phase,
we start by matching each atomic query subgoal to the source PJs
and we go on by combining the relevant source PJs to form larger
subgraphs that cover larger “underlying” query subgoals.
2Def. 3 translates using our graph terminology: A view PJ covers
a query PJ if there is a graph homomorphism from the query graph
to the view one (preserving predicates and edges), s.t. it maps dis-
tinguished query variables to distinguished view ones

One of the core ideas of our approach is that our preprocessing
phase does not need any information from the query, as we de-
signed it to involve only views. This preprocessing constructs (1)
unique PJs for all common patterns that appear across the views,
(2) their infoboxes and (3) their initial partial rewritings. Although
this phase has a polynomial complexity to the number and length of
the views one can create more sophisticated indices on the source
PJs, at the expense of space and additional offline time. For our
prototype implementation, we are creating an exponential index on
the source PJs so as to be able to retrieve the relevant to the query
ones very efficiently on runtime (in essence we create all different
potential query PJs that could map on the sourcePJs at hand). As
discussed in Sect. 4 we plan to elaborate on different offline index-
ing approaches and research on offline vs. runtime trade-offs.

After the source indexing phase, the first thing we do when a
query is given to the system is to retrieve all the relevant source PJs
that cover each query PJ3. During this retrieval we perform some
pruning on the PJs returned, based on the distinguished-existential
allowed mappings, as well as the join descriptions in their infoboxes.
We might, for example, prune some of the views out of a PJs in-
fobox, in case that a pattern appears in a specific source, but the
specific join descriptions in this source do not satisfy the underly-
ing query’s join descriptions (we do this to satisfy Minicon’s Prop-
erty 1 discussed in the beginning of this section). This leads to a
fail-fast behavior of our algorithm.

Subsequently, we start exhaustively combining PJs forming larger
ones which progressively cover a larger part of the underlying query.
The order of source patterns combination (or alternatively the order
of query predicates we choose to cover) is currently random. We
plan to do further research on good heuristics on this order which
would improve our algorithm’s performance even more. During
the combination procedure pruning is done again. Moreover, even
if two patterns are combinable this does not mean that all the views
in their infoboxes are combinable to each other, as they need to
satisfy the corresponding underlying query join descriptions, so we
may again have to prune some of the infoboxes information (as well
as some of the partial rewritings). As we combine source graphs
(progressively covering larger parts of the query) we also combine
the remaining partial conjunctive rewritings they contain into larger
partial rewritings, eventually producing the maximally-contained
rewritings of the query. Due to space limitations we omit the rele-
vant algorithms (see [11]). For our running example (query q, with
sources S1, S2, S3) Fig. 2 gives a schematic intuition behind this
procedure. As seen from the figure the resulting rewritings are:
q(d,c) ← V1(d,y),V2(d, z, c) and q(d,c) ← V3(d,y),V2(d, z, c).

3More details of our approach and the exact algorithms can be
found in [11].



Figure 2: The PJs that cover TP are combined with the PJs
that cover DPFC, and the PJs that cover HCD. Here there is
only one source PJ covering each query predicate but, in gen-
eral, we try all combinations of PJs that cover the query. The
figure does not show source PJs for predicate D (predicate Den-
tist in source S3; this will not be retrieved as the query does not
mention dentists). In the current example, PJ (a) is combined
with (b), resulting in (d), and subsequently (d) combined with
(c) cover the entire query. The union of the rewritings of the
resulting graph (e) is our solution.

3.3 Initial Results
For evaluating our prototype approach we compared with the

most efficient (to the best of our knowledge) state-of-the-art algo-
rtihm, MCDSAT [2]. We should note that MCDSAT is a satisfi-
ability translation of MiniCon. Hence the inside advantages that
we discussed against MiniCon apply to MCDSAT as well. We
show our performance in Fig. 3 for two kinds of randomly gen-
erated queries/views: star and chain queries. In all cases GQR
outperforms MCDSAT even by close to two orders of magnitude.
Moreover, GQR runs in seconds for thousands of views, produc-
ing thousands of rewritings. Our approach is very scalable, as it
“fails” very fast (when output rewritings are not produced, the al-
gorithm realizes that quickly). As seen from the figures the time
of reformulation at runtime clearly depends more on the size of the
output than that of the problem. Moreover, we save a big overhead
by choosing to have an offline source preprocessing phase; Fig. 3
shows that when the number of views grows substantially, the ex-
ponential time of the preprocessing phase dominates. See [11] for
details, more experiments, discussion and the experimental setting.

As discussed throughout this section our design for an incremen-
tal covering of the query is ideal for early pruning of irrelevant view
patterns. Moreover, this is a “batch” pruning: due to our compact
representation entire sets of irrelevant views are pruned out simul-
taneously. On top of that, the same compact representation of view
patterns leads to a compact and very efficient view combination
phase (for the really relevant views). Lastly, this design together
with the off-line preprocessing makes our algorithm able to scale
to tens of thousands of views, where no algorithm scaled before.

4. TOWARDS SCALABLE AND GENERAL
MEDIATORS

Query rewriting under relational constraints. We have some
impressive results on query rewriting using LAV sources and we
are extending to solve the full relational case, as follows. A first
step is to increase the expressiveness of the language of conjunc-

tive queries that we use to describe our queries and views: we plan
to add constant symbols and interpreted predicates, which were ab-
sent from our approach. Constants would be represented by a third
different type of node in our graphs, and constants in the query
should be covered either by the same constants in the views, or by
distinguished variables (so we get a hold on them and “manually”
set the constant value). Interpreted predicates (≤,=, 6=, etc.) are
more tricky. Our feeling is that we can use them as constraints and
early detect irrelevant rewritings in our incremental building. We
also plan to investigate different heuristics to come up with an ef-
ficient order of combination of source patterns, or equivalently an
efficient order of selecting how to cover the query predicates.

We intend to leverage our incremental covering of the query to
do on-the-fly optimization on our output; we plan to recognize and
delete redundant predicates or partial rewritings, early on in our
PJ combination phase. Incrementally checking for containment is
inherent in our algorithm, and so we hope to attack the optimization
problem at little additional cost.

Currently, we have used a naive exponential indexing of the source
PJs, that allows for a very efficient runtime retrieval of the relevant
ones. Next, we plan to design more clever indices; we can offline
index the available source PJs on a lattice capturing the generality
of their variables’ distinguished/existential patterns, where a source
PJ higher in the hierarchy will have more distinguished variables.
To retrieve the source PJs matching a query PJ, the system will tra-
verse the generalization lattice down from the root, until the fron-
tier of nodes that cannot cover the query PJ. Another approach is
to leverage existing relational technology for our search of relevant
PJs. When faced with a query PJ we essentially ask (as seen in
Fig. 1(b)) for source PJs with the same or a more general pattern
(one that has distinguished variables where our query has existen-
tial ones). Let 1 stand for distinguished variables and 0 for the exis-
tential ones. We can arrange our PJs in a relational table, with each
row corresponding to each existential/distinguished (0/1) pattern of
each source. Then, it suffices to query for the source PJs that pro-
vide distinguished variables in the same position as the query PJ.
Both approaches will avoid the exponential indexing and we will
compare and use the one has the most efficient runtime PJ retrieval.

As already mentioned, we plan to extend our approach to GLAV
rules. Also known as tuple-generating-dependencies (or tgds) [1],
these rules look like LAV but have more than one view predicates
in the head. We plan to investigate two alternatives here. The first,
is to rewrite the GLAV rules using some temporary intermediate
predicates, into a combination of GAV and LAV rules; then we can
rewrite using the LAV mappings and unfold using the temporary
GAV ones. Since the same view predicate will generally partici-
pate in multiple heads of the GLAV rules, it will possibly redun-
dantly end up in multiple places in a single rewriting, so we again
have to employ our envisioned incremental optimization technique.
A parallel idea, is to use directly the entire conjunction of source
predicates of the rules’ heads in our partial rewritings. This is sim-
ilar as using intermediate predicates, but will allow for more fine-
grained optimization. Our plan is to evaluate both aforementioned
approaches and keep the best one. Note that our system will able
to work with all kinds of G/LAV mappings simultaneously.

After the above extensions, and towards richer mediator lan-
guages, we want to address unions of conjunctive queries (UCQs)
as the input user query. To the best of our knowledge, no system
or specific algorithm addresses UCQs in a unified way. This will
allows us to also support nr-datalog programs. Our graph-encoding
of PJs, is perfectly fitted for capturing overlapping parts of multiple
rules. Hence, we plan to exploit this design to compactly represent
UCQs as inputs of our algorithm. This is especially beneficial when
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Figure 3: (a) Average time and size of rewritings for star queries. GQR time does not take into account the source preprocessing
time while gqr+p does. As we can see the preprocessing phase (for this small set of views) does not add much to our algorithm; the
query reformulation phase is dominating the time as the number of views increases. (b) Average time and size of rewritings for chain
queries. The data were generated in a way s.t after the point of 80 views, while the problem size continues to grow linearly, the output
(number of rewritings) grows very slowly. (c) Ten chain queries on views constructed so as the rewritings don’t grow exponentially.
The upper bunch of straight lines gives the total time for the queries, while the lower dotted part gives only the reformulation time.
The number of rewritings is proportional to the dotted lines and ranges from several hundreds to several thousands (see in [11]).

considering ontological constraints, since UCQs produced by the
query expansion phase are usually highly redundant [16].
Query rewriting under ontological constraints. We will consider
different “interesting” ontology languages, such as DL-lite [5], var-
ious OWL2 profiles4 and fragments of Datalog+/- [4], all of which
are sweet-spots between high expressivity, and being able to ex-
pand into first-order queries (equivalent to SQL).

We plan to use our common pattern representation idea to the
query expansion phase as well. Having a compact representation of
the ontology axioms will allow us to design a (1) faster expansion
algorithm, that will (2) avoid redundancy in the output, and so save
time for subsequent reformulation phases (both GAV and LAV). It
will also (3) help us integrate the output specifically with GQR and
hence take advantage of its optimizations and performance, and (4)
possibly lead us to design an algorithm that does query expansion at
the same time as query reformulation using the views. A first idea
towards building graph patterns that “capture” the ontology axioms
is rewriting the latter into logical clauses in the spirit of [14].

The aforementioned approach couples the two OBDI phases in
a top-down manner, by optimizing query expansion and tailoring it
to relational query reformulation using views. However, we plan
to explore deeper forms of integration. We are particularly inter-
ested in being able to check for partial containment of ontological
queries (in the spirit of coverings, see Def. 3), which might be eas-
ier than full containment, which requires the expansion of one of
the queries. Being able to check for partial containment without
expanding any queries, would mean that GQR, would be almost
directly applicable in the ontological context: our coverings would
be partial ontological containments from source PJs to the query
PJs. Combining source PJs in a legitimate way as to maintain the
containment would end up in maximally contained (w.r.t. the con-
straints) rewritings using the LAV sources. This approach enjoys
all the benefits discussed, ranging from the use of GLAV rules, to
offline preprocessing of the ontological views and from incremen-
tal optimization of our output to support for UCQs as inputs.

With our proposed approach queries would be rewritten much
faster (in correspondence with our initial experiments for conjunc-
tive queries) and systems will be much more scalable. We hope
to build a mediator capable of offering languages of adjustable ex-
pressivity, ranging form relational to rich ontological constraints,
and all with efficient runtime cost.

4http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
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