
A Formal Approach for RDF/S Ontology Evolution
George Konstantinidis and Giorgos Flouris and Grigoris Antoniou and Vassilis Christophides1

Abstract. In this paper, we consider the problem of ontology evo-
lution in the face of a change operation. We devise a general-purpose
algorithm for determining the effects and side-effects of a requested
elementary or complex change operation. Our work is inspired by
belief revision principles (i.e., validity, success and minimal change)
and allows us to handle any change operation in a provably ratio-
nal and consistent manner. To the best of our knowledge, this is the
first approach overcoming the limitations of existing solutions, which
deal with each change operation on a per-case basis. Additionally,
we rely on our general change handling algorithm to implement spe-
cialized versions of it, one per desired change operation, in order to
compute the equivalent set of effects and side-effects.2

1 INTRODUCTION

Stored knowledge, in any knowledge-based application, may need
to change due to various reasons, including changes in the modeled
world, new information on the domain, newly-gained access to infor-
mation previously unknown, and other eventualities [11]. Here, we
consider the case of ontologies expressed in RDF/S (as most of the
Semantic Web Schemas (85,45%) are expressed in RDF/S [14]) and
introduce a formal framework to handle the evolution of an ontology
given a change operation.

We pay particular attention to the semantics of change operations
which can, in principle, be either elementary (involving a change in
a single ontology construct) or composite (involving changes in mul-
tiple constructs) [5]. Even though RDF/S does not support negation,
the problem is far from trivial as inconsistencies may rise due to the
validity rules associated with RDF/S ontologies. In fact, naive set-
theoretical addition or removal of ontological constructs (i.e., direct
application of a change) has been acknowledged as insufficient for
ontology evolution [4, 6, 12].

Most of the implemented ontology management systems (e.g.,
[1, 2, 8, 13]), are designed using an ad-hoc approach, that solves the
problems related to each change operation on a per-case basis. More
specifically, they explicitly define a finite, and thus incomplete, set of
change operations that they support, and have determined, a priori,
the semantics of each such operation. Hence, given the lack of a for-
mal methodology, the designers of these systems have to determine,
in advance, all the possible invalidities that could occur in reaction
to a change, the various alternatives for handling any such possible
invalidity, and to pre-select the preferable solutions for implementa-
tion per case [6]; this selection is hard-coded into the systems’ im-
plementations. This approach requires a highly tedious, case-based
reasoning which is error-prone and gives no formal guarantee that

1 Institute of Computer Science, FO.R.T.H., Heraklion, Greece,
email:gconstan,fgeo,antoniou,christop@ics.forth.gr

2 This work was partially supported by the EU projects CASPAR (FP6-2005-
IST-033572) and KP-LAB (FP6-2004-IST-27490).

the cases and options considered are exhaustive.
To overcome these limitations, we propose an ontology evolution

framework and elaborate on its formal foundations. Our methodol-
ogy is driven by ideas and principles of the belief revision literature
[3]. In particular, we adopt the Principle of Success (every change
operation is actually implemented) and the Principle of Validity (re-
sulting ontology is valid, i.e., it satisfies all the validity constraints of
the underlying language). Satisfying both these requirements is not
trivial, as the straightforward application of a change operation upon
an ontology can often lead to invalidity, in which case certain ad-
ditional actions (side-effects) should be executed to restore validity.
Sometimes, there may be more than one ways to do so, in which case
a selection mechanism should be in place to determine the “best” op-
tion. In this paper, we employ a technique inspired by the Principle of
Minimal Change [3] (stating that the appropriate result of changing
an ontology should be as “close” as possible to the original).

The general idea of our approach is to first determine all the inva-
lidities that any given change (elementary or composite) could cause
upon the updated ontology, using a formal, well-specified validity
model, and then to determine the best way to overcome potential
invalidity problems in an automatic way, by exploring the various al-
ternatives and comparing them using a selection mechanism based
on an ordering relation on potential side-effects. In particular, our
formal approach is parameterizable to this relation, thus providing
a customizable way to guarantee the determination of the “best” re-
sult. Although our framework is general, in this paper we focus on a
fragment of the RDF/S model which exhibits interesting properties
for deciding query containment and minimization [10]. To the best of
our knowledge, our implementation is the first one that allows pro-
cessing any type of change operation, and in a fully automatic way.

2 PROBLEM FORMULATION
2.1 Modeling RDF/S, ontologies and updates
In order to abstract from the syntactic peculiarities of the underly-
ing language and develop a uniform framework, we will map RDF
to First-Order Logic (FOL). Table 1 (restricted for presentation pur-
poses) shows the FOL representation of certain RDF statements.

The language’s semantics is not carried over during the mapping,
so we need to combine the FOL representation with a set of validity
rules that capture such semantics. For technical reasons, we assume
that all constraints can be encoded in the form of (or can be broken
down into a conjunction of) DEDs (disjunctive embedded dependen-
cies), which have the following general form:

∀~uP (~u) → ∨i=1,...,n∃~viQi(~u, ~vi) (DED)

where:

• ~u,~vi are tuples of variables



Table 1. Representation of RDF facts using FOL predicates

RDF triple Intuitive meaning Predicate

C rdf:type rdfs:Class C is a class CS(C)
P rdf:type rdf:Property P is a property PS(P )
x rdf:type rdfs:Resource x is a class instance CI(x)
P rdfs:domain C domain of property Domain(P, C)
P rdfs:range C range of property Range(P, C)
C1 rdfs:subClassOf C2 IsA between classes C IsA(C1, C2)
P1 rdfs:subPropertyOf P2 IsA between properties P IsA(P1, P2)
x rdf:type C class instantiation C Inst(x, C)
x P y property instantiation PI(x, y, P )

• P , Qi are conjunctions of relational atoms of the form
R(w1, ..., wn) and equality atoms of the form (w = w′), where
w1, ..., wn, w, w′ are variables or constants

• P may be the empty conjunction

We employ DEDs, as they are expressive enough for capturing the
semantics of different RDF fragments and other simple data mod-
els which are appropriate for our purposes in this paper. Moreover,
DEDs will prove suitable for constructing a convenient mechanism
for detecting and repairing invalidities.

Table 2 shows some rules that are used to capture the semantics of
the various RDF constructs (e.g., R11 captures IsA transitivity), as
well as the restrictions imposed by our RDF model (e.g., R8 captures
that the domain of a property should be unique). It should be stressed
that the semantics of the language captured by tables 1 and 2 essen-
tially corresponds to a fragment of the standard RDF/S data model3

in which there is a clear role distinction between ontology prim-
itives, no cycles in the subsumption relationships, while property
subsumption respects corresponding domain/range subsumption re-
lationships. Such a fragment has been first studied in [10] in an effort
to provide a group of sound and complete algorithms for query con-
tainment and minimization while it is compatible with W3C guide-
lines4 for devising restricted fragments of the RDF/S data model.
Similarly, the general-purpose change handling algorithm presented
in this paper can be also applied to other fragments of RDF/S (see
also [7, 9]) or the standard RDF/S semantics.

In Table 2, Σ denotes the set of constants in our language. We
equip our FOL with closed semantics, i.e., CWA (closed world as-
sumption). This means that, for two formulas p, q, if p 0 q then
p ` ¬q. Abusing notation, for two sets of ground facts U , V , we will
say that U implies V (U ` V ) to denote that U ` p for all p ∈ V .
Any expression of the form P (x1, ..., xk) is called a positive ground
fact where P is a predicate of arity k and x1, ..., xk are constant sym-
bols. Any expression of the form ¬P (x1, ..., xk) is called a negative
ground fact iff P (x1, ..., xk) is a positive ground fact. L denotes the
set of all well-formed formulae that can be formed in our FOL. We
denote by L+ the set of positive ground facts, L− the set of negative
ground facts and set L0 = L+ ∪ L−, called the set of ground facts
of the language. We define:

• An ontology is a set K ⊆ L+

• An update is a set U ⊆ L0

In simple words, an ontology is any set of positive ground facts
whereas an update is any set of positive or negative ground facts.
Applying an update to an ontology should result in the incorporation
of the update in the ontology.

By definition, ontologies have two properties: (a) they are always
consistent (in the purely logical sense) and (b) they imply only the

3 http://www.w3.org/TR/rdf-concepts/
4 http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#technote

Table 2. Validity Rules

Rule ID/Name Integrity Constraint Intuitive Meaning

R2 Domain
Applicability

∀x, y ∈ Σ:
Domain(x, y) →
PS(x) ∧ CS(y)

Domain applies to prop-
erties; the domain of a
property is a class

R4 C IsA
Applicability

∀x, y ∈ Σ:
C IsA(x, y) →
CS(x) ∧ CS(y)

Class IsA applies be-
tween classes

R6 C Inst
Applicability

∀x, y ∈ Σ:
C Inst(x, y) →
CI(x) ∧ CS(y)

Class Instanceof applies
between a class instance
and a class

R8 Domain is
unique

∀x, y, z ∈ Σ:
Domain(x, y) →
¬Domain(x, z) ∨ (y =
z)

The domain of a prop-
erty is unique

R10 Domain and
Range exists

∀x ∈ Σ, ∃y, z ∈ Σ:
PS(x) →
Domain(x, z) ∧
Range(x, y)

Each property has a do-
main and a range

R11 C IsA
Transitivity

∀x, y, z ∈ Σ:
C IsA(x, y) ∧
C IsA(y, z) →
C IsA(x, z)

Class IsA is Transitive

R12 C IsA
Irreflexivity

∀x, y,∈ Σ:
C IsA(x, y) →
¬C IsA(y, x)

Class IsA is Irreflexive

R15 Determining
C Inst

∀x, y, z ∈ Σ :
C Inst(x, y) ∧
C IsA(y, z) →
C Inst(x, z)

Class instance propaga-
tion

R17 Property
Instance of and
Domain

∀x, y, z, w ∈ Σ :
PI(x, y, z) ∧
Domain(z, w) →
C Inst(x, w)

Instanceof between
properties reflect in their
sources/domains

R23 P IsA
Irreflexivity

∀x, y ∈ Σ:
P IsA(x, y) →
¬P IsA(y, x)

Property IsA is Irreflex-
ive

positive ground facts that are already in the ontology. The above two
properties together with the CWA semantics, imply that:

• P (x) ∈ K ⇔ K ` P (x) ⇔ K 0 ¬P (x)
• P (x) /∈ K ⇔ K ` ¬P (x) ⇔ K 0 P (x)

An application of these properties is that updating K with ¬P (x)
corresponds to contracting P (x) from K, because “incorporating”
¬P (x) in an ontology could be achieved only by removing P (x)
from K. Therefore, updating an ontology with negative ground
facts corresponds to contraction/erasure in the standard terminology,
whereas updating an ontology with positive ground facts corresponds
to revision/update in the standard terminology.

2.2 Updating under constraints
We say that an ontology K satisfies a validity rule c, iff K ` c.
Obviously for a set C of validity rules, K satisfies C (K ` C) iff
K ` c for all c ∈ C. It is easy to see that for a simple constraint
of the form c = ∀uP (u) → Q(u), where P, Q are simple positive
predicates and u is a variable, it holds that:

K ` c iff for all constants x : K ` {¬P (x)} or K ` {Q(x)}.

This can be easily extended to the general case. Suppose that c =
∀~uP (~u) → ∨i=1,...,n∃~viQi(~u, ~vi), where P (~u) = P1(~u) ∧ . . . ∧
Pk(~u) for some k > 0 and Qi(~u, ~vi) = Qi1(~u, ~vi) ∧ . . . ∧
Qim(~u, ~vi) for some m > 0 depending on i. Then K ` c iff for
all tuples of constants x at least one of the following is true (note that
in case of obvious reference to tuples of constants or variables we
will be omitting the ′~′ symbol):

• There is some j : 0 < j 6 k such that K ` {¬Pj(x)}.



• There is some i : 1 6 i 6 n and some tuple of constants z such
that for all j = 1, 2, ..., m K ` {Qij(x, z)}.

We can conclude that K ` c iff for all tuples of constants x at least
one of the following sets is implied by K:

• {¬Pj(x)}, 0 < j 6 k
• {Qi1(x, z)∧Qi2(x, z)∧ ...∧Qim(x, z)}, 1 6 i 6 n, z:constant

Based on the above observation, we define the component set of c
with respect to some tuple of constants x as follows:

Comp(c, x) = {{¬Pj(x)}|0 < j 6 k} ∪ {{Qi1(x, z) ∧Qi2(x, z)

∧... ∧Qim(x, z)} |1 6 i 6 n, z : constant}
Prop. 1 will subsequently help us define a valid ontology.

Prop. 1 K ` c iff for all constants x there is some V ∈ Comp(c, x)
such that K ` V .

Def. 1 Consider a FOL language L and a set of validity rules C.
An ontology K will be called valid with respect to L and C iff K is
consistent and it satisfies the validity rules C.

Note that a valid ontology, by our rules of Table 2, contains all
its implicit knowledge as well (i.e., it is closed with respect to in-
ference). Due to the special characteristics of our framework (e.g.,
CWA, the form of rules, etc), one does not need to employ full FOL
reasoning to determine whether an ontology K is valid (i.e., using
Def. 1 and Prop. 1); instead, we can use the specialized procedure
described below (Prop. 2).

Prop. 2 A ground fact P (x), added to an ontology K, would violate
rule c, iff there is some set V and tuple of constants ~u for which
¬P (x) ∈ V and V ∈ Comp(c, ~u) and for all V ′ ∈ Comp(c, ~u),
V 6= V ′ it holds that K 0 V ′.

As an example, consider the ontology of Fig. 1(a). The orig-
inal ontology in our case, per Table 1, is: K = { CS(A),
CS(B), CI(a), CI(b), PS(P ), Domain(P, A), Range(P, B),
PI(a, b, P ), C Inst(a, A), C Inst(b, B)} and the update is: U =
{Domain(P, D)}. To detect rule violations in an automated way,
according to Prop. 2, we must find all the rules that contain
¬Domain(x, y), set x = P , y = D, and determine whether some
other component for the particular instantiation is implied by the
ontology. If the answer is no, then the addition of Domain(P, D)
would violate the particular instantiation of this rule. In our case,
this is true for rule R2.2 (domain applicability), for x = P, y = D
and rule R8 (unique domain) for x = P, y = D, z = A as well
as for x = P, y = A, z = D (see also Table 3 for some rules
in their component set format). Moreover, it violates rule R17 for
x = a, y = b, z = P, w = D.

One nice property of our detection mechanism is that it provides
an immediate way to restore invalidities as well, i.e., generate po-
tential side-effects that would restore the violation. In particular, the
violation that Prop. 2 detects can be restored by making any of the
elements of Comp(c, ~u) true in the ontology. At this point note that
when a Qij(x, z) in some set V ∈ Comp(c, x) is an equality of
the form w = w′, then the truth value of this equality is revealed
as soon as we instantiate this rule’s variables to constants. There-
fore, by evaluating an equality as a tautology (>) or contradiction
(⊥) and replace it accordingly in the rule’s instances, we are able
to eliminate all the equality atoms from the components sets. With-
out equalities, the elements of Comp(c, x) contain only positive and

negative ground facts, so they are updates in our terminology. This is
a very useful remark, as we will subsequently take advantage of the
elements of Comp(c, x), applying them as updates.

In our example, the validity of rule R2.2, for x = P, y = D can
be restored iff either {¬Domain(P, D)} or {CS(D)} are added
as additional updates (side-effects) to the ontology. Note that side-
effects could trigger side-effects of their own if violating any rules.

Table 3. Some validity rules in component set form
Rule ID/Name Components of the rule

R2 Domain
Applicability

R2.1 : ∀x, y ∈ Σ : Comp(R2.1, (x, y))=
{{¬Domain(x, y)}, {PS(x)}}
R2.2 : ∀x, y ∈ Σ : Comp(R2.2, (x, y))=
{{¬Domain(x, y)}, {CS(y))}}

R8 Domain is
unique

∀x, y, z ∈ Σ : Comp(R8, (x, y, z))=
{{¬Domain(x, y)}, {¬Domain(x, z)}, {(y =
z)}}

R10 Domain and
Range exists

R10.1 : ∀x ∈ Σ, ∃z ∈ Σ :
Comp(R10.1, (x, z))=
{{¬PS(x)}, {Domain(x, z)}}
R10.2 : ∀x ∈ Σ, ∃y ∈ Σ :
Comp(R10.1, (x, y))=
{{¬PS(x)}, {, Range(x, y)}}

R17 Property
Instance of and
Domain

∀x, y, z, w ∈ Σ :
Comp(R17, (x, y, z, w)) =
{{¬PI(x, y, z)}
,{¬Domain(z, w)}, {C Inst(x, w)}}

BA
P

Make D 
domain of P

ba
P

B
D P

ba
P

A

(a) (b)

Figure 1. Adding a new domain to a property.

2.3 Selection of side-effects: ordering
If there were no validity rules or we were not interested in the result
being a valid ontology the most rational way to perform an update
would be to simply apply the changes in U upon K.

Def. 2 The raw application of an update U to an ontology K is de-
noted by K + U and is the following ontology: K + U = {P (x) ∈
L+|P (x) ∈ K ∪ Uand¬P (x) /∈ U}

When a set of changes (i.e., an update U ) is raw applied to a valid
ontology K, some of the changes that appear in U may be void,
i.e., they don’t need to be performed because they are already im-
plemented (implied) by the original ontology. We define an operator
which, given a resulting ontology K′ that an update would produce
on a valid ontology K, calculates the actual effects of the update:

Def. 3 For K a valid ontology and K′ an ontology:
Delta(K, K′) = {P (x) ∈ L0|K′ ` {P (x)} and K 0 {P (x)}}

Delta function is some kind of “edit distance”5 between K and
K′; if K′ = K + U , then Delta represents the actual changes that
U enforces upon K. Thus, K +U = K +Delta(K, K +U) = K′,
so Delta(K, K + U) produces the same result as U when applied
upon an ontology; however they may be different as U could contain
void changes.

5 Note that the term “edit-distance” is usually used for sequences and not sets
(i.e., edit scripts)



As already mentioned, the raw application of an update would not
work for our case, because it may not respect the validity constraints
of the language. Thus, applying an update involves the application
of some side-effects. In some cases, it may not be possible to find
adequate side-effects for the update at hand; such updates are called
infeasible and cannot be executed. For example, any inconsistent up-
date (such as, U = {CS(A),¬CS(A)}) is infeasible.

In most cases though, an update has several possible alternative
sets of side-effects, which implies that a selection should be made.
Consider an update U with alternative side-effects U1 and U2. Then,
the set of changes that should be raw applied on the initial ontology,
in order to reach a valid result, is either U ∪ U1 or U ∪ U2. Accord-
ing to the Principle of Minimal Change we should choose the one
which causes the “mildest” effects upon the ontology; to determine
the “relative mildness” (or “relative cost”) of such effects, we define
an ordering 6 between updates. Note that this ordering should de-
pend on K itself: for example, the “cost” of removing an IsA relation
between A and B should depend on the importance of the concepts
A, B in the RDF graph itself. The following conditions have proven
necessary for an ordering to produce “rational” results.

Def. 4 An ordering 6K is called update-
generating iff the following conditions hold:

Delta Antisymmetry: For any U , U ′: U 6K U ′ and U ′ 6K U
implies Delta(K, K + U)=Delta(K, K +
U ′).

Transitivity: For any U , U ′, U ′′: U 6K U ′ and U ′ 6K
U ′′ implies U 6K U ′′.

Totality: For any U , U ′: U 6K U ′ or U ′ 6K U .
Conflict Sensitivity: For any U , U ′: U 6K U ′ iff Delta(K, K +

U) 6K Delta(K, K + U ′).
Monotonicity: For any U , U ′: U ⊆ U ′ implies U 6K U ′.

Similarly, an ordering scheme {6K |K : a valid ontology} is called
update-generating iff 6K is update-generating for all valid
ontologies K.

For our RDF case we introduced a particular update-generating or-
dering, which is based on the ordering shown in Table 4 (among the
positive and negative predicates presented in Table 1 for simplicity).
The details of the expansion of this ordering to refer to ground facts
and sets of ground facts (i.e., updates) is omitted due to space limita-
tions. In short, the general idea is that an update U1 is “cheaper” (or
preferable) than U2 (denoted by U1 6K U2) iff the “most expensive”
predicate used in update U1, is “cheaper” than the “most expensive”
predicate used in update U2 where the predicates’ relative preference
is determined by the order shown in Table 4. Ties are resolved us-
ing cardinality considerations and/or the relative importance of the
predicate’s arguments in the original ontology (details omitted). Our
ordering was based on the results of experimentation on various al-
ternative orderings and results to an efficient and intuitive implemen-
tation. Nonetheless, our algorithm works with any update-generating
ordering; each different ordering would model and impose a differ-
ent global evolution policy on our algorithm. Fig. 1(b) depicts the
outcome of the requested update with respect to our ordering.

Table 4. Ordering of predicates

PI <p C Inst <p P IsA <p C IsA <p ¬PI <p ¬C Inst <p

¬P IsA <p ¬C IsA <p ¬Domain <p ¬Range <p ¬CI <p

¬PS <p ¬CS <p Domain <p Range <p CI <p PS <p CS

Def. 5 Consider a FOL language L, a set of integrity constraints C,
some update-generating ordering scheme 6 and a change operator
• : L+ × L0 → L+. A change operation K • U will be called
rational with respect to 6 iff it satisfies the following properties for
all ontologies K and updates U :

• Limit Cases: If K is not a valid ontology or U is an infeasible update,
then: K • U = K.

• General Case: If K is a valid ontology and U is a feasible update, then:

– Principle of Success: K • U ` U

– Principle of Validity: K • U is a valid ontology

– Principle of Minimal Change: For all valid ontologies K′ such that
K′ ` U , it holds that Delta(K, K • U) 6K Delta(K, K′)

Def. 5 dictates that applying a rational change operator between an
update and an ontology should result (in the general case) in a valid
ontology (Principle of Validity), which implies the update (Principle
of Success). Moreover, for any other valid ontology K′ that could be
an alternative result, the set of (non-void) side-effects leading to K′

(captured by the Delta function) is more “expensive” than the set of
(non-void) side-effects leading to the result of the rational change op-
eration. In effect, the rational change operator applies the minimum,
with respect to 6K , set of effects and side-effects.

3 ALGORITHMS
3.1 General-purpose algorithm
We now present our general-purpose algorithm shown in Table 5.
For a given language L (predicates and rules) and update-generating
ordering 6, the function takes as inputs the ontology K, an update
U , and the set ESE (initially empty) of already considered effects
and side-effects. The algorithm identifies all invalidities caused by
the predicates of the update, appends the update with each possible
alternative side-effect separately and calls itself. Upon returning, it
compares the different alternatives with the “min” function (which
implements 6). Upon termination it returns the effects (U ) and the
minimal (per 6K ) set of side-effects of U upon K. The output of the
algorithm, if not infeasible, is ready to be raw applied to K, as stated
in Theorem 1.

Table 5. Function Update: (U, K, ESE)→Delta(K, K • U)

STEP1: If U ∪ ESE is inconsistent, then return INFEASIBLE.
STEP2: If (K ∪ ESE) ` U , then return ∅
STEP3: Take an arbitrary ground fact P (x) ∈ U \ ESE such that K 0
{P (x)}
STEP4: Find a rule r, such that there is some set V and tuple of con-
stants ~y for which ¬P (x) ∈ V and V ∈ Comp(r, ~y) and for all V ′ ∈
Comp(r, y), V 6= V ′ it holds that V ′ * U ∪ ESE.
STEP5: If there is no such rule, then return {P (x)} ∪
Update(U, K, ESE ∪ {P (x)}).
STEP6: Otherwise, select (arbitrarily) one such rule, say r, and return
min{Update(U ∪ V ′, K, ESE)}, where the min is taken over all V ′ ∈
Comp(r, ~y), V ′ 6= V .

Theorem 1 The raw application of the output of Update(K, U, ∅)
to K implements a rational change operation.

The complexity of our algorithm depends on the parameters (lan-
guage, rules, ordering). When considering an infinite number of con-
stants in our language, we could have an infinite number of rule in-
stances or a rule instance with an infinite size (when ∃ in a DED
stands before a free variable). However, for our parameters, we can
limit Σ to the finite set of all the names appearing in K or U , plus an
extra auxiliary constant. The intuition behind this choice is that our
ordering guarantees that no solution involving more than one auxil-
iary constant names (i.e., names not in K or U ) could ever be se-
lected for implementation (per 6). This fact and Theorem 2 below
guarantee termination of the algorithm:



Theorem 2 Consider the language and the ordering defined in sec-
tion 2, an ontology K and an update U . Then, if we restrict the
set of constants of our language to a finite set, before calling
Update(K, U, ∅), the latter terminates.

3.2 Special-purpose algorithms
In practice, our general-purpose algorithm will be applied for a par-
ticular language and ordering. For such a case, it makes sense to trade
generality for computational efficiency and develop special-purpose
algorithms that would produce the same output as the general-
purpose one for the particular set of parameters. For this purpose,
we singled out a number of useful change operations and developed
a special-purpose algorithm for each one (for the particular language
and ordering at hand). Since there is an infinite number of possible
updates, this effort is inherently incomplete, and we will necessar-
ily have to resort to the general-purpose algorithm for unconsidered
operations.

This approach may seem to reintroduce the drawbacks of ad-hoc
approaches mentioned earlier, but this is not the case: the special-
purpose algorithms have been formally proven to be equivalent to
the general algorithm (i.e., they are rational change operators) for
the specific operation they tackle. This can be proved by running
the general-purpose algorithm for all relevant states of an ontology
and verifying its output against the output of the special-purpose al-
gorithms. Thus, special-purpose algorithms are more efficient than
the general-purpose algorithm, but use the same general approach
as a formal foundation; moreover, any unforseen operation can any-
way be dealt with by the general algorithm. As an example, Table 6
shows such an algorithm for adding a domain to a property, and Prop.
3 shows the relevant result.

Prop. 3 Consider the language and the ordering defined in section
2, an ontology K and the update U = {Domain(P, D)} (for any
P, D ∈ Σ). Then, the output of the algorithm in Table 5 with the
above inputs is identical to the output of the algorithm in Table 6
with the same inputs.

Table 6. Add Domain Algorithm

If PS(P) doesn’t exist does not already exist in K:
Add to output {PS(P ), Range(P, rdfs : Resource)}

If CS(D) doesn’t exist does not already exist in K:
Add to output {CS(D)}

Remove the old Domain, e.g., add to output {¬Domain(P, A)}
Add the new Domain, i.e., add to output {Domain(P, D)}
If P is instantiated by a property instance, say PI(a, b, P )

Verify that (the new domain) D has as its instance the resource a
If not, add to output an instance relationship from a to D.

4 CONCLUSIONS
In this paper, we studied the problem of updating an ontology in the
face of new information. We criticized the currently used paradigm
of selecting a number of operations to support and determining the
proper effects of each operation on a per-case basis, and proposed a
formal framework to describe updates and their effects, as well as a
general-purpose algorithm to perform those updates. Our methodol-
ogy is inspired by the general belief revision principles of Validity,
Success and Minimal Change [3]. The end result is an algorithm that
is highly parameterizable, both in terms of the language used and in
terms of the implementation of the Principle of Minimal Change.

Our methodology exhibits a “faithful” behavior with respect to
the various choices involved, regardless of the particular ontology or
update at hand. It lies on a formal foundation, issuing a solid and
customizable method to handle any type of change on any ontology,
including operations not considered at design time. In addition, it
avoids resorting to the error-prone per-case reasoning of other sys-
tems, as all the alternatives regarding an update’s side-effects can
be derived from the language’s rules themselves, in an exhaustive
and provably correct manner. Although our general algorithm can be
applied to a variety of languages, in this paper we elaborated on a
specific fragment of RDF. This restriction allowed the development
of special-purpose algorithms which provably exhibit behavior iden-
tical to the general-purpose one (so they are rational change opera-
tors), but also enjoy much better computational properties.

Our approach was recently implemented in a large scale real-time
system, as part of the ICS-FORTH Semantic Web Knowledge Mid-
dleware (SWKM), which includes a number of web services for man-
aging RDF/S knowledge bases6. Future work includes experimental
evaluation of the algorithms’ performance and the incorporation of
techniques and heuristics that would further speed up our algorithms.
We also plan to evaluate the feasibility of applying the same method-
ology in richer languages, such as OWL Lite (notice that for highly
complex languages, the development of a complete set of validity
rules may be difficult).

REFERENCES
[1] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens, ‘OilEd: A Reason-

able Ontology Editor for the Semantic Web’, Ki 2001: Advances in AI:
Joint German/Austrian Conference on AI, Vienna, Austria, September
19-21, 2001: Proceedings, (2001).

[2] T. Gabel, Y. Sure, and J. Voelker, ‘KAON–ontology management in-
frastructure’, SEKT informal deliverable, 3(1).

[3] P. Gärdenfors, ‘Belief Revision: An Introduction’, Belief Revision, 29,
1–28, (1992).

[4] P. Haase and Y. Sure, ‘D3.1.1.b state of the art on ontology evolution’,
Technical report, (2004).

[5] M. Klein and N.F. Noy, ‘A component-based framework for ontology
evolution’, Workshop on Ontologies and Distributed Systems at IJCAI,
(2003).

[6] G. Konstantinidis, G. Flouris, G. Antoniou, and V. Christophides, ‘On-
tology evolution: A framework and its application to rdf’, in Proceed-
ings of the Joint ODBIS & SWDB Workshop on Semantic Web, Ontolo-
gies, Databases (SWDB-ODBIS-07), (2007).

[7] S. Munoz, J. Perez, and C. Gutierrez, ‘Minimal deductive systems for
rdf’, in Proceedings of the 4th European Semantic Web Conference,
(2007).

[8] N. Noy, R. Fergerson, and M. Musen, ‘The knowledge model of
Protégé-2000: Combining interoperability and flexibility’, Lecture
Notes in Artificial Intelligence (LNAI), 1937, 17–32.

[9] J.Z. Pan and I. Horrocks, ‘Metamodeling Architecture of Web Ontol-
ogy Languages’, Proceedings of the Semantic Web Working Sympo-
sium, 149, (2001).

[10] G. Serfiotis, I. Koffina, V. Christophides, and V. Tannen, ‘Containment
and minimization of rdf/s query patterns’, in Proceedings of the 4th

International Semantic Web Conference (ISWC-05), (2005).
[11] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic, ‘User-driven

ontology evolution management’, Proceedings of the 13th European
Conference on Knowledge Engineering and Knowledge Management
EKAW, (2002).

[12] L. Stojanovic and B. Motik, ‘Ontology Evolution within Ontology Ed-
itors’, Proceedings of OntoWeb-SIG3 Workshop, 53–62, (2002).

[13] Y. Sure, J. Angele, and S. Staab, ‘OntoEdit: Multifaceted Inferencing
for Ontology Engineering’, Journal on Data Semantics, 1(1), 128–152.

[14] Y. Theoharis, Y. Tzitzikas, D. Kotzinos, and V. Christophides, ‘On
graph features of semantic web schemas’, IEEE Transactions on
Knowledge and Data Engineering, 20(5), (2008).

6 http://athena.ics.forth.gr:9090/SWKM


