
University of Crete
Computer Science Department

Belief Change in Semantic Web
Environments

George Konstantinidis
Master's Thesis

Heraklion, January 2008

PANEPISTHMIO KRHTHS
SQOLH JETIKWN KAI TEQNOLOGIKWN EPISTHMWN

TMHMA EPISTHMHS UPOLOGISTWN

Anaje¸rhsh Gn¸shc se Perib�llonta ShmasiologikoÔ IstoÔ

ErgasÐa pou upobl jhke apo ton
Gi¸rgo KwnstantinÐdh

wc merik ekpl rwsh twn apait sewn gia thn apìkthsh
METAPTUQIAKOU DIPLWMATOS EIDIKEUSHS

Suggrafèac:

Gi¸rgoc KwnstantinÐdhc, Tm ma Epist mhc Upologist¸n

Eishghtik Epitrop :

Grhgìrhc AntwnÐou, Kajhght c, Epìpthc

Dhm trhc Plexous�khc, Kajhght c, Mèloc

Gi�nnhc TzÐtzikac, EpÐkouroc kajhght c, Mèloc

Dekt :

P�noc Traqani�c, Kajhght c
Prìedroc Epitrop c Metaptuqiak¸n Spoud¸n

Hr�kleio, AprÐlioc 2008

Abstract

Towards the realization of the vision of the Semantic Web, one of the most signif-
icant tasks to be performed is the transformation of current human-oriented Web
information into machine-processable Web information. In this direction, stan-
dards have been adopted in order to structure the data (XML) and to describe the
semantics of the data (meta-data expressed in RDF).

RDF is a data model and along with the RDF Schema, which defines the vo-
cabulary of this model, they form a mechanism which provides a formal, machine
processable representation of knowledge. However the nature of world is dynamic
and as the world changes, the knowledge itself, or our view of it, is subject to
changes. Consequently, modeling a dynamic world means encapsulating a mecha-
nism for updating knowledge.

The algorithms dealing with the incorporation of new knowledge in an on-
tology (ontology evolution) often share a rather standard process of dealing with
changes. We acknowledge that this process consists of the specification of the lan-
guage, the determination of the allowed update operations, the identification of the
invalidities that could be caused by each such operation, the determination of the
various alternatives to deal with each such invalidity, and, finally, some (manual or
automatic) selection mechanism that allows singling out the “best” of these alter-
natives. Unfortunately, most ontology evolution algorithms implement these steps
using a case-based, ad-hoc methodology, which is cumbersome and error-prone.

Knowledge updating is a problem which has been thoroughly examined in the
field of Artificial Intelligence under the term belief change. One key idea in the
belief change field is that an update operation should produce an updated belief
which is as close as possible to the original belief. This approach is often described
as minimal change approach. Trying to define “minimal” a lot of propositions have
been made, among which is the definition of an ordering of the possible update
results.

This work presents a framework for updating knowledge, where both the initial
knowledge and the update are expressed in a special subset of First Order Logic.
Updating is based on a well-formed set of Integrity Constraints on this logic and

a predefined ordering between the possible update results. Using this framework
we apply this updating mechanism to a specific application: the RDF/S language.
We define a model to express RDF language in terms of First Order Logic; an or-
dering between possible update results and build optimizations of the framework’s
updating techniques based on RDF’s particular set of integrity constraints.

Through the application of our framework’s techniques on RDF/S we express
how the peculiarities of a specific language (which can be expressed with First Or-
der Logic) could be used to optimize the proposed framework for the specific case.
On the practical side, we speedup our general-algorithm by developing several,
special per-operation, versions of it, which are also formally equivalent to it. We
also discuss a number of issues raised during the implementation of the algorithm
in a real-world environment.

Anaje¸rhsh Gn¸shc se Perib�llonta ShmasiologikoÔ IstoÔ

Gi¸rgoc KwnstantinÐdhc
Metaptuqiak ErgasÐa

Tm ma Epist mhc Upologist¸n, Panepist mio Kr thc

Anaje¸rhsh Gn¸shc se Perib�llonta ShmasiologikoÔ IstoÔ

àna apì ta shmantikìtera èrga pou prèpei na epitelesjoÔn proc thn prag-
matopoÐhsh tou or�matoc tou ShmasiologikoÔ IstoÔ, eÐnai o metasqhmatismìc
twn anjrwpÐnwς-prosanatolismènwn istiak¸n plhrofori¸n se mhqanik� epex-
erg�simec plhroforÐec. Se aut n thn kateÔjunsh, prìtupa èqoun uiojethjeÐ
prokeimènou na dom soun ta dedomèna (XML) all� kai na perigr�youn th shma-
siologÐa twn dedomènwn (metadedomèna pou ekfr�zontai se RDF).

RDF einai ena montèlo dedomènwn kai mazÐ me to RDF Schema, to opoÐo ka-
jorÐzei to lexilìgio autoÔ tou montèlou, apoteloÔn èna mhqanismì pou parèqei
mia tupik , mhqanik� epexerg�simh anapar�stash thc gn¸shc. Wstìso, h fÔsh
tou kìsmou eÐnai dunamik kai kaj¸c o kìsmoc all�zei, h Ðdia h gn¸sh, h
�poy mac gia aut n, upìkeitai se allagèc. Kat� sunepeia, h montelopoÐhsh
enìc dunamikoÔ kìsmou prèpei na sunodeÔetai apì èna mhqanismì gia thn ana-
je¸rhsh/epikairopoÐhsh thc gn¸shc.

Oi algìrijmoi pou exet�zoun thn enswm�twsh thc nèac gn¸shc se mia on-
tologÐa (exèlixh ontologÐac) suqn� moir�zontai mia m�llon tupopoihmènh di-
adikasÐa gia na antimetwpÐsoun tic allagèc (enhmer¸seic). AnagnwrÐzoume
aut th diadikasÐa h opoÐa apoteleÐtai apì thn prodiagraf thc gl¸ssac,
ton prosdiorismì twn telest¸n/pr�xewn anaje¸rhshc, twn prosdiorismì a-
sunepei¸n pou ja mporoÔsan na proklhjoÔn apì k�je tètoia leitourgÐa, ton ka-
jorismì twn di�forwn enallaktik¸n lÔsewn gia thn antimet¸pish k�je tètoiac
asunèpeiac, kai, telik�, k�poio (qeirwnaktikì autìmato) mhqanismì epilog c
pou ja epitrèpei na xeqwrÐzei h “kalÔterh� aut¸n twn enallaktik¸n lÔsewn.
Dustuq¸c, oi perissìteroi algìrijmoi exèlixhc ontologi¸n efarmìzoun aut�
ta b mata qrhsimopoi¸ntac mia “ad-hoc”, eidik mejodologÐa, h opoÐa eÐnai
dÔsqrhsth kai epirrep c se l�jh.

H enhmèrwsh (anaje¸rhsh) gn¸shc eÐnai èna prìblhma pou èqei exe-
tasteÐ leptomer¸c ston tomèa thc Teqnht c NohmosÔnhc upì ton ìro ana-
je¸rhsh/allag pepoij sewn. Mia basik idèa ston tomèa allag c pepoij -
sewn eÐnai ìti mia leitourgÐa enhmer¸sewn prèpei na par�gei mia enhmerwmènh
pepoÐjhsh pou eÐnai ìso to dunatìn piì kont� sthn arqik pepoÐjhsh. Aut
h prosèggish perigr�fetai suqn� wc prosèggish el�qisthc allag c (minimal
change approach). àqoun gÐnei pollèc prot�seic prospaj¸ntac na kajoristeÐ

autì to “el�qisto�, metaxÔ twn opoÐwn eÐnai kai o kajorismìc miac di�taxhc
twn pijan¸n apotelesm�twn twn enhmer¸sewn.

H paroÔsa ergasÐa parousi�zei èna plaÐsio gia anaje¸rhsh gn¸sewn, ìpou
kai h arqik gn¸sh kai h enhmèrwsh ekfr�zontai se èna eidikì uposÔnolo thc
pr¸thc t�xewc logik c (First Order Logic–FOL). H enhmèrwsh eÐnai basismènh
se èna kal� diatupwmèno sÔnolo periorism¸n akeraiìthtac p�nw se aut th
logik , kai se mia prokajorismènh di�taxh metaxÔ twn pijan¸n apotelesm�twn
twn enhmer¸sewn. Qrhsimopoi¸ntac autì to plaÐsio efarmìzoume ton mhqanis-
mì enhmer¸sewn se mia sugkekrimènh efarmog : th gl¸ssa RDF/S. OrÐzoume è-
na montèlo gia na ekfr�soume th gl¸ssa RDF me ìrouc pr¸thc t�xewc logik c,
mia di�taxh metaxÔ twn pijan¸n apotelesm�twn anaprosarmog¸n kai qtÐzoume
beltistopoi seic twn teqnik¸n enhmèrwshc tou plaisÐou mac, basismènoi sto
idiaÐtero sÔnolo periorism¸n akeraiìthtac thc RDF/S.

Me me thn efarmog twn teqnik¸n tou plaisÐou mac se RDF/S epideiknÔ-
oume ton trìpo me ton opoÐo oi idiaiterìthtec miac sugkekrimènhc gl¸ssac
(pou mporeÐ na ekfrasteÐ me FOL) ja mporoÔsan na qrhsimopoihjoÔn gia na
beltistopoi soun to proteinìmeno plaÐsio gia eidikèc peript¸seic. Se praktikì
epÐpedo, epitaqÔnoume ton genikì algìrijmì mac me thn an�ptuxh arket¸n prìs-
jetwn, sugkekrimènwn an�-leitourgÐa enhmèrwshc, ekdìsewn autoÔ, oi opoÐec
eÐnai epÐshc tupik� isodÔnamec me autìn. Akìma, suzht�me di�fora zht mata
pou tÐjentai kat� th di�rkeia ulopoÐhshc tou algorÐjmou se èna perib�llon
pragmatikoÔ qrìnou.

Epìpthc Kajhght c: Grhgìrhc AntwnÐou
Kajhght c Epist mhc Upologist¸n

Panepist mio Kr thc

To my parents, Theo and Katia,

for their endless support

Acknowledgements

There are too many people, directly or indirectly, connected to this long and dif-
ficult effort; I would like to thank Professor Grigoris Antoniou for supervising,
guiding and having trust in this work. I would like to deeply thank Associate Pro-
fessor Vassilis Christophides for our turbulent but most productive discussions. I
would also like to thank Assistant Professor Yiannis Tzitzikas and Professor Dim-
itris Plexousakis for their comments on this dissertation.

A deep acknowledgement and many thanks to Giorgos Flouris; many initial
theorems and proofs of this thesis are his intellectual property. Apart from starting
this work, he was always watching, helping and producing with me.

An effort to list friends and beloved persons who supported me during my
work, would be fruitless as they are too many; thanks to all my friends, from early
university years to the M.Sc. program. Special thanks to my girlfriend Katerina.

Contents

1 Introduction 1
1.1 Formalizing Ontology Evolution 1

1.1.1 Success and Validity . 1
1.1.2 Minimal Change Approach: Choosing how to Evolve . . . 3
1.1.3 RDF/S Ontology Evolution 4

1.2 Identifying the Evolution Process 4
1.2.1 Acknowledging the Pattern 4
1.2.2 Ad-hoc Nature . 5
1.2.3 Need of A Framework 6

1.3 This Thesis . 6
1.3.1 Contribution of this Study 6
1.3.2 Structure of the Thesis 7

2 Background 10
2.1 Tarski’s Logical Framework . 10
2.2 Belief Change . 12

2.2.1 Basic Concepts . 12
2.2.2 Knowledge Representation 13
2.2.3 Change Operations . 15
2.2.4 Change Process . 18
2.2.5 The AGM theory . 20

2.3 Ontology Change in Literature 22
2.3.1 Why do ontologies change? 22
2.3.2 Phases of Changing . 23
2.3.3 Fields of Change . 25

2.4 Change and Evolution: Current Context 28
2.4.1 Changes: Elementary and Composite 29
2.4.2 Representing changes . 30

2.5 Belief Change In Ontology Evolution 30

i

2.5.1 Why belief change . 30
2.5.2 Relevant works . 31

3 Related Work And Motivation 33
3.1 Problems in current approaches 33

3.1.1 Ad-hoc nature . 33
3.1.2 Towards Formality and Practicality 37

3.2 Evolution Process . 38
3.2.1 Model Selection and Supported Operations 38
3.2.2 Validity Model and Invalidity Resolution 39
3.2.3 Action Selection . 41

3.3 Discussion . 42

4 Evolution Framework 45
4.1 A Framework For Updating Knowledge 45

4.1.1 Model and Operations 45
4.1.2 Consistency and Validity 47
4.1.3 Invalidities Resolution 50

4.2 Selection Mechanism . 54
4.2.1 Deltas . 55
4.2.2 Rational Change Operator 57

4.3 Algorithm . 60
4.3.1 Termination and Efficiency 63
4.3.2 Complexity . 65
4.3.3 Results . 65

5 Application to RDF/S 70
5.1 General Model Description . 70

5.1.1 Constants and variables 71
5.2 Validity Rules . 73
5.3 Ordering . 73
5.4 Termination . 87
5.5 Example and Optimizations . 89
5.6 Necessity of our algorithm . 91

6 Implementation 93
6.1 General Setting: The SWKM . 93
6.2 The Evolution Service . 95
6.3 Implementation Level Details . 104

6.3.1 Bulk Update . 108

ii

6.3.2 Conclusion . 115

7 Conclusions 118

iii

List of Figures

2.1 The 6 Ontology Evolution Phases 24

3.1 Three alternatives for deleting a class 41
3.2 Implicit knowledge handling in KAON 42

5.1 Ordering is update generating . 86

6.1 An architectural overview of the SWKM services 94
6.2 The Evolution or ChangeImpact service 96
6.3 ChangeImpact: Building Blocks 102
6.4 Dispatching the updates . 108
6.5 Exceptions . 109
6.6 Bulk Update . 111
6.7 Update function . 112
6.8 Implementing the “min” through Ordering 113

iv

List of Tables

3.1 Summary of ontology evolution tools 43

4.1 General Update Algorithm . 61
4.2 Update Function . 62

5.1 Representation of RDF facts using FOL predicates 71
5.2 FOL Ground Facts to RDF Triples 72
5.3 Validity Rules . 74
5.4 Components of the Rules . 76
5.5 Ordering of predicates . 80
5.6 Our Ordering . 83
5.7 Remove Class . 91

v

Chapter 1

Introduction

Everything that exists, it is only change.

Heraclitus

1.1 Formalizing Ontology Evolution

An indispensable part of any knowledge-based application is the ability to change
its corpus of knowledge. Stored knowledge may need to change due to various
reasons, including changes in the modeled world, new information on the domain,
newly-gained access to information previously classified, unknown, or otherwise
unavailable, changes in the usage pattern, and other eventualities [20]. Therefore
as change management is a key component of any knowledge-intensive applica-
tion, the same is true for the Semantic Web, where knowledge is usually expressed
in terms of ontologies and refined through various methodologies using ontology
evolution techniques. In this work, we consider the case of ontologies and intro-
duce a formal framework to handle the evolution (change) of an ontology given a
change operation.

1.1.1 Success and Validity

The problems that arise during knowledge evolution are related with how to re-
spond to the requested update in a consistent manner. This basically amounts to
two requirements. The first is making sure that the update is successful, i.e., that
the update request is actually implemented in the ontology. This requirement cor-
responds to the Principle of Success in the standard belief revision literature [34].
The second requirement amounts to guaranteeing that the resulting ontology is

1

valid (Principle of Validity [34]). Validity in this context may take several different
forms, depending on the application and the ontology language considered.

In order to explain these notions, we will provide an example: Consider mod-
eling a domain where any property in the ontology representing that world has
exactly one domain concept. In effect we could enforce this restriction in our
ontology by naming valid the ontologies whose properties follow the above rule.
Then, in the face of a change, one major aspect of the problem of revising our on-
tology is to find a different ontology that includes our change and still obeys the
aforementioned rule, i.e. an ontology, all of whose properties, have exactly one
domain concept. If we didn’t have to obey to the above constraint, we wouldn’t
have a problem; we would apply directly any change, e.g. delete any class without
caring if this was the domain of any property.

The above requirements are not always compatible. In many cases, the raw
(naive) execution of a change request upon an ontology (in order to satisfy success)
may cause problems leading the ontology to invalidity. On the other hand rejecting
the operation would violate success, so satisfying both these requirements is not
trivial. In such cases certain additional actions should be executed (more change
operations) in order to restore validity (and retain success satisfaction). These ad-
ditional actions are usually referred to as side-effects).

Returning to our example, consider that the desired change which we would
like to apply to our ontology is to delete a class concept. Due to the existence
of the integrity constraints on our knowledge, such as the “exactly one domain
concept” rule, we cannot just apply a reckless deletion of a class; yet we want to
end up in a result where the following two conditions hold:

(a) The class we have deleted is missing

(b) Every property has exactly one domain

This gives rise to the problem of identifying the side-effects that would restore
validity; these shall be somehow dictated by the ontology modeling constraints
and can, in their turn, trigger more side effects in order for the result to be valid.
In fact, there may be more than one ways to restore validity. For example, while
implementing the above change we should take care of any properties that turn up
without domains; in these cases we conclude that either we have to delete them
or attach them to an alternative domain. This is the only way for our update (the
removal of a concept) to be successful, still adhering to the specified constraint.

2

1.1.2 Minimal Change Approach: Choosing how to Evolve

As we can see an update operation can have some alternative side-effects in order
to be implemented. In such a case, an ontology evolution algorithm could either
detect every alternative and choose one, or it could choose all along to enforce
one inconsistency resolution, without estimating all possible; by rejecting, for ex-
ample, other potential solutions as provably worse. In either case, it is counter
intuitive that a selection mechanism should be in place to determine the “best” op-
tion. Note that as we will see later, most implemented ontology evolution attempts,
unfortunately, choose one way to implement a change without any formally sus-
tained excuse (i.e., they reject other possibilities inconsiderately). Also, note that
as side-effects can trigger side-effects of their own there are in fact many differ-
ent alternative sequences of side-effects that would result to a successful and valid
update; moreover, in some cases, it is possible that there is no way to perform an
operation that satisfies both the Principles of Validity and Success (in which case
our technique will be able detect the problem and report it).

This element of choice among our various options on satisfying success and
validity, calls indeed for formal confrontation. A key idea that this work employs
towards addressing this problem uses the Principle of Minimal Change [14, 34].
This principle is used in Belief Revision and the current work is indeed inspired by
the field of belief revision, exploiting techniques whose origins lie in the Artificial
Intelligence area. The Principle of Minimal Change states that the appropriate side-
effects of an updating action should be such that the resulting ontology (or corpus
of knowledge in general) should be as “close” to the original as possible, i.e., this
corpus of knowledge should undergo the least possible changes. By “closest” we
imply a function that computes a “distance” between two valid ontologies.

In an effort to define “minimal” a lot of belief change propositions have been
made, among which is the definition of an ordering of the possible valid update
results [36]. This ordering implies a “distance”’ or else a “cost” of the results. In
the current work, the problem of determining the “distance” between two ontolo-
gies, or the “cost” of the resulting one is similarly introduced and dealt with. This
study, provides customization of the evolution strategy using such an ordering, so
as to select the side-effects that lead to the minimal (with respect to the ordering)
changes to the original ontology; this way we establish a formal way of choos-
ing the "cheapest" side-effect and therefore "cheapest" ontology among the set of
alternatives that arise due to an update operation.

Although cost is defined by the proposal of a specific ordering, the framework
designed is independent and parameterizable to any possible ordering that retains
certain properties. More specifically, our ordering is defined among the constructs
of an ontology, reflecting in an ordering among the resulting ontologies. The selec-

3

tion of the “cheapest” side-effects, the evolution strategies, the representation of the
knowledge and of the change operations are all described using formal tools that
allow us to handle changes in a more consistent,transparent and fully customizable
way, as well as to handle any type of change, including yet undefined operations or
bulk updates.

1.1.3 RDF/S Ontology Evolution

For presentation and implementation purposes, we chose RDF as a platform upon
which to apply our framework. Note that, quite often, modeling different domains
of discourse is reflected upon customizing RDF’s loose semantics in tighter forma-
tions. For example, RDF allows membership loops, but, it has been acknowledged
as a reasonable possibility to restrict oneself to a subset of RDF graphs which
do not contain any such ‘loops’ of class membership1. In effect, semantic exten-
sions may impose syntactic conditions which forbid such looped or other per-case
undesired constructions. Known efforts towards these directions can be found in
[51, 68, 74].

It seems therefore legitimate to use a concretization of RDF with respect to
one’s particular needs and characteristics. In this work, we make use of such RDF
concretizations. This is done, firstly, for presentation purposes, as it is much easier
to visualize the process with a particular language in mind, secondly, to reveal the
way our proposed framework is established upon the notion of validity and there-
fore to point out how such ontology validity contexts can be formed, and, thirdly,
to exhibit practical feasibility by implementing our approach for a particular RDF
variant, namely the one presented in [51].

1.2 Identifying the Evolution Process

1.2.1 Acknowledging the Pattern

Although the intuition of Minimal Change lies silently underneath most of the
current systems and tools supporting ontology evolution, the lack of a formal theo-
retical model creates a series of inconsistencies in defining and selecting the side-
effects of an update operation or in defining the evolution strategies within these
systems. Apart from the Principle of Minimal Change, manifestations of almost
any idea presented in this chapter can be found in the implementations of standard
ontology evolution systems, nevertheless this approach is the first to handle the
problem in a formal manner.

1http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#technote

4

These notions, ideas and principles that we are referring to are in fact the most
critical part of an ontology evolution algorithm and they regard the determination
of what can be changed and how each change should be implemented. One of the
arguments of this study is that this determination can be split into the following 5
steps, which, although not explicitly stated, are shared by many ontology evolution
frameworks:

1. Model Selection. The allowed changes are constrained by the expressive
power of the ontology representation model. Thus, the selection of the model
may have profound effects on what can be changed and constitutes an im-
portant parameter of the evolution algorithm.

2. Supported Operations. In step 2, the allowed change operations upon the
ontology are specified.

3. Validity Model. Problems related to the validity of the resulting ontology
may arise whenever a change operation is executed; such problems depend
on the validity model assumed for ontologies.

4. Invalidity Resolution. This step determines, for each supported operation
and possible invalidity problem, the different (alternative) actions that can
be performed to restore the validity of the ontology.

5. Action Selection. During this step, a selection process is used to determine
the most preferable among the various potential actions (that were identified
in the previous step) for execution.

Unfortunately, most of the existing frameworks (e.g., [33, 6, 71, 85]) address
ontology evolution issues related to the above 5 steps in an ad-hoc way. As we
will see, this approach causes a number of problems (e.g., reduced flexibility, lim-
ited evolution primitives, non-faithful behavior etc), so evolution algorithms could
benefit a lot from the formalization of the aforementioned change management
process. In fact the above pattern is a pattern that could express any ontology evo-
lution process, yet current tools often miss entirely addressing some steps of this
pattern.

1.2.2 Ad-hoc Nature

An ad-hoc solution is an implementation of a specific change operation (or set of
them), so as to end up in a resulting ontology, enforcing these operations upon an
initial ontology. When considering the result of one ad-hoc change operation (or
a set of them), this lies among every valid ontology that implements the operation

5

requested. Hence, we could say that an ad-hoc operation selects to implement one
(or even a few) of the many valid ontologies that contain the initial update request.
It is obvious at first that these resulting ontologies could be infinite in the general
case.

Therefore,it is also obvious that, in order to implement an ad-hoc evolution
system, one should decide in advance the change operations to be supported, so
that the proper side-effects and selection mechanisms (or parameterizations) can
be determined and inserted into the program code. This decision usually involves
the determination of a set of fine-grained elementary updates, as well as a set of
more coarse-grained composite updates.

The popular ad-hoc methodology of building change algorithms relies on, and
therefore suffers from, the necessity of pre-determining the supported evolution
operations. Unforeseen change operations can be supported only by adding more
code to the system, but this is a non-ending process, as the number of operations is
potentially infinite. Ergo, we are faced to the problem of confronting any different
change operation (a very difficult problem for complex operations) and also any
different initial ontology. Our only recourse is to try to encode our preference in
such a way that comparing of new side-effects of unforseen update operations in
any ontology, would be evident.

1.2.3 Need of A Framework

We argue that many of the above problems could be resolved by introducing an
adequate evolution framework that would allow the description of an algorithm
in more formal terms, as a modular sequence of selections in terms of the model
used, supported operations, identification of plausible side-effects and selection
mechanism. Such a framework would allow justified reasoning on the system’s
behavior.

Such a framework should use fine-grained modeling of ontologies, support evo-
lution operations regarding all elements of the model and address all side-effects
of every operation. To be transparent and fully customizable it should be param-
eterizable with respect to an evolution strategy which would be applied to every
change operation. In addition, change operations supported should not be limited
to the elementary but be any arbitrary combination of them.

6

1.3 This Thesis

1.3.1 Contribution of this Study

A general description of our major ideas mostly directed to the Ontology Evolution
process we acknowledge was introduced in [61], where we criticize the informal-
ity of current semantic web tools’ approaches to ontology evolution. We thereby
presented a sketch of our formal ontology evolution framework found in this work.

The main advantage of our approach lies in its formal foundations, which al-
low us to avoid most of the problems associated with standard ontology evolution
algorithms, which are usually designed using an ad-hoc approach.

In particular, our formal approach allows us to deal with arbitrary change oper-
ations (rather than a predetermined set). In addition, it considers all the invalidities
related to each change and all the possible ways to deal with them. Moreover, it
provides a parameterizable method to select the “best” option to deal with an inva-
lidity, according to some metric. it allows us to deal with implicit knowledge, as
well as to prove results related to our method. In addition, it is general, so it can be
applied to a variety of ontology representation languages, and exhibits consistent
behavior, in the sense that it is faithful to the choices and policies adopted.

The formal nature of the process allows us to avoid resorting to the tedious
and error-prone case-based reasoning that is necessary in other frameworks for de-
termining invalidities and solutions to them, and provides a uniform way to select
the “best” option out of the list of available ones, using some total ordering. Our
framework can be used for several different declarative ontological languages and
semantics, despite that for implementation and visualization purposes, we instanti-
ated it for the case of RDF(S), under the semantics described in [51].

Another view of this work reveals an attempt to model the nature of the prefer-
ence we might have, in the "way" a change operation is carried out. The rationale
is that the arguments that drive us to implement one solution instead of another,
can be gathered and force an evolution strategy or politics. Such a strategy (which
lies underneath the choices taken when designing any ad-hoc change operation)
will help us slough off the necessity of coping with evolution cases one by one,
permitting us to deploy a mechanism that counters evolution “automatically” with
respect to this strategy.

We, thereby, enforce predictability and so transparency between different up-
date requests, as a system that is consistent to its strategy will always respond to
any update requested in a transparent manner.

7

1.3.2 Structure of the Thesis

We organize the rest of the dissertation as following. Chapter 2 provides surveys
on the areas that this study steps in. The first two sections deal with Artificial
Intelligence, as this area’s basic ideas and techniques are followed by our ontology
evolution approach. Section 2.1 presents an introduction to the Tarski’s Logical
Framework, a logic-based mechanism whose formalisms and definitions will be
very useful to the continuing study. Following, section 2.2 constitutes an informal
survey on the Belief Change literature. This survey will be kept at a rather informal
level for presentation purposes and cite relevant references for additional studying.

The aim of this chapter 2 is to make the current dissertation self-contained.
However, a survey of the Semantic Web area is not provided. Given that the con-
tent of this dissertation addresses mostly the Semantic Web community, several
issues are taken for granted; readers not familiar with the semantic web concepts
and techniques should first get acquainted with this area before reading this disser-
tation. Chapter 2 continues with sections 2.3 and 2.4, where we define ontology
evolution and give a general overview of the principles, attempts and studies in the
field; this allows us to place our work in its correct context. We will make a short
review of the theoretical works on Ontology Evolution both related and non-related
to Belief Change theories.

Next, in Chapter 3 we will we summarize some of the most important problems
related to existing ontology systems and briefly explain how these problems can be
overcome using a formal approach (see section 3.1). This chapter also studies the
most dominant implementations of ontology evolution algorithms and formulates
our motivation towards formalizing the evolution attempt.

In section 3.2 we present and describe some typical ontology evolution sys-
tems, having some update operations submitted to the most prevalent of them and
analyzing their behavior. Thus we present some motivating examples for the cur-
rent work. We show that some of these systems lack an underlying overall “cost”
model (with respect to the afore-mentioned ordering for minimal change) and oth-
ers make inconsistent underlying assumptions in update operations, i.e. they don’t
react with the same “evolution strategy” to every update. Basically, we show how
these systems fit on a five-step evolution process, which we thereby recognize and
propose. We criticize the ad-hoc methodology that other systems employ to tackle
the problems related to certain steps. Moreover, we motivate the general frame-
work that we employ in order to model the various steps of the evolution process
recognized and to deal with the problems determined.

In chapter 4 we materialize the previously formulated evolution process, propos-
ing a theoretical framework for updating knowledge, where both the initial knowl-
edge and the update are expressed in a special subset of First Order Logic. Up-

8

dating is based on a well-formed set of Integrity Constraints on this logic and a
predefined ordering between the possible update results. This mechanism is intro-
duced in section 4.1, where we we present our modeling of ontologies and updates
while we also emphasize the main properties of our framework and show how it
can be applied to several representation languages.

In sections 4.2 and 4.3 we exhibit the merits of our framework via the devel-
opment of a general-purpose algorithm for ontology evolution. Such an algorithm
has general applicability, but we demonstrate how this algorithm can be employed
for the RDF/S case in Chapter 5; using this framework we apply our updating
mechanism to the RDF/S language .We define a model to express RDF/S language
(section 5.1) and the validity constraints of our RDF Fragment (section 5.2) in
terms of First Order Logic. In subsequent sections, we define an ordering between
the possible update results and we also build optimizations of the framework’s
updating techniques based on RDF’s particular set of integrity constraints. This
is done by exploiting the peculiarities of RDF/S in order to optimize our general
framework for the RDF/S case. We elaborate on change operations, stating that
our initial framework is tunable and can support any operation (even those not
presented here).

Moreover, in section 5.5, we specialize our approach for devising a number of
special-purpose algorithms for coping with RDF/S changes (similar to the existing
ad-hoc ontology evolution algorithms), which sacrifice generality for efficiency;
although these instantiations are similar to ad-hoc approaches, predetermining all
possible eventualities and building them into the system, they are provably exhibit-
equivalent to the general-purpose algorithm, thus having the desired behavior, and
guarantying that no special case has been left out of our consideration. Therefore,
we illustrate how our algorithm can be sped up using special-purpose instantiations
of it for most of the common operations.

The above algorithms have been implemented as part of the FORTH-ICS Se-
mantic Web Knowledge Middleware (SWKM), which provides generic services
for acquiring, refining, developing, accessing and distributing community knowl-
edge. The SWKM is composed of four main services, namely the Comparison
Service (which compares two RDF graphs, reporting their differences), the Ver-
sioning Service (which handles and stores different versions of RDF graphs), the
Registry Service (which is used to manipulate metadata information related to the
stored RDF graphs) and the Evolution Service (which deals with the evolution of
RDF graphs). Chapter 6 describes the implementation of our algorithms for the
Evolution Service; it provides architecture of our software, a design documenta-
tion for the implemented system and also discusses over a number of technical
issues that arose during this process of implementation. To the best of our knowl-
edge, our implementation is the first one that allows the handling of changes to

9

ontologies in a fully automatic way, as well as the first system that allows any type
of update request to be processed.

Finally, this dissertation concludes in chapter 7 by summarizing our main re-
sults and proposing ideas for future work.

10

Chapter 2

Background

Progress is a nice word. But change is its motivator.

Robert Francis Kennedy

This chapter aims at providing the general background knowledge needed so
as to make this dissertation as much self-contained as possible. We provide a brief
overview of the necessary main concepts, fields and ideas expressed in the relevant
fields as well as the appropriate terminology.

This chapter is spreading over two directions: Firstly we will be studying some
very useful logic-based mechanisms, and we thereinafter, will make an informal
survey on the belief change literature as this is our main means towards our effort
to develop an automatic, rational and effective ontology evolution algorithm. This
survey will be kept at a rather informal level for presentation purposes and cite
relevant references for additional studying. Secondly, we will shortly present the
Ontology Evolution field within the Semantic Web. We will make a short review of
the theoretical works on Ontology Evolution both related and non-related to Belief
Change theories.

2.1 Tarski’s Logical Framework

In 1928 Tarski introduced a general logical framework. This framework currently
engulfs most prevalent knowledge representation languages, as well as most of the
logics considered by belief change approaches. Therefore, Tarski’s framework is
not only very important but it can (and will in this work) serve as a useful com-
mon ground for interaction between a belief change algorithm and an ontology
representation language.

11

Tarski’s logical framework defines a logic as a pair < L,Cn >, where L is the
set of expressions or propositions of the underlying language and Cn is a unary
consequence operator; it basically is a function which maps sets of propositions to
sets of propositions. The intuitive meaning of Cn is that a set X implies exactly the
propositions contained in Cn(X). In other words, L represents what is expressible
in the logic (i.e., the language), while Cn determines what is implied by each set of
propositions. In this framework, a set of propositions of the underlying language
L (i.e., a subset of L) defines a belief, which is the basic block of knowledge of the
framework.

Some intuitive restrictions on the Cn operator were introduced in order to con-
strain the inference mechanism of the logic. These restrictions force the Cn opera-
tor to behave in a rational manner and are summarized in the following conditions:

∀X ⊆ L,X ⊆ Cn(X) (Inclusion)

∀X ⊆ L,Cn(X) = Cn(Cn(X) (Iteration)

∀X,Y ⊆ L, if X ⊆ Y then Cn(X) ⊆ Cn(Y) (Monotonicity)

Now, an inference relation (`) between sets (beliefs) is defined as follows:

X ` Y ⇔ Y ⊆ Cn(X)

We say that a belief Y is implied by a belief X iff Y ⊆ Cn(X), or, equivalently,
iff X ` Y . The inference relation, can be easily shown to satisfy the following
properties:

∀X,Y ⊆ L, if X ⊆ Y, then Y ` X (Reflexivity)

∀X, Y, Z ⊆ L, if X ` Y and X ∪ Y ` Z, then X ` Z (Transitivity)

∀X,Y, Z ⊆ L, if X ` Y then X ∪ Z ` Y (Weakening)

The opposite can also be shown as given a relation which satisfies the prop-
erties of reflexivity, transitivity and weakening, the function: Cn(X) = {y ∈
L|X ` {y}} satisfies inclusion, iteration and monotony (i.e., it is a consequence
operation). Therefore, there is a tight correspondence between inference relations
and consequence operations. From this aspect, a logic can also be defined as a pair
< L,`> [31], [65].

Two beliefs are called equivalent, denoted by X ≡ Y , iff X ` Y and Y ` X ,
or, equivalently, iff Cn(X) = Cn(Y). Tarski’s consequence operator has the
properties of an algebraic closure operator, or an abstract mathematical closure
operator. Hence, calculating the consequences of a set corresponds to taking the

12

closure of this set. Note that later on, we will often use the term closure to refer to
the process of calculating the consequences of a set. Based on the aforementioned
properties, several interesting results have been gathered in the following lemma.

Lemma 1. Consider a logic < L,Cn >, under Tarski’s model. The following
hold:

Cn(Cn(X) ∪ Cn(Y)) = Cn(Cn(X) ∪ Y) = Cn(X ∪ Y)

Cn(Cn(X) ∩ Cn(Y)) = Cn(X) ∩ Cn(Y)

If X ⊆ Cn(Y)then Cn(X ∪ Y) = Cn(Y)

If X ⊆ Cn(Y)then Cn(X) ⊆ Cn(Y)

Cn(X ∩ Y) ⊆ Cn(X) ∩ Cn(Y) ⊆ Cn(Cn(X) ∩ Cn(Y))

Cn(X ∪ Y) ⊇ Cn(X) ∪ Cn(Y)

2.2 Belief Change

2.2.1 Basic Concepts

A certain set of beliefs or knowledge, as the world itself is generally not static,
evolves over time. Possible causes of the alteration of one’s beliefs could be that
new, previously unknown, classified, or otherwise unavailable information may
have become known; revealment of a new fact through a new observation or ex-
periment may have happened; or the actual world (e.g., domain of interest) may
change, as, in principle, domains are not static themselves. Change Adaptation
refers to the process the beliefs should be somehow subjected to, in all the above
cases. Alternatively, the new information could be ignored.

Any structure, in effect Knowledge Base (i.e., KB) that holds beliefs or other
information like facts, rules, data etc regarding a domain of interest, adheres to the
discussed thoughts. The research area of belief change deals with the adaptation
of a KB to new information [34]. This research has found applications in diverse
areas like learning [54], software engineering [88], marketing research [88], on-
tology evolution [26, 27] and others. While, the field of knowledge representation
deals with static knowledge and how this can be represented, belief change deals
with the dynamic aspects of knowledge, i.e., how this knowledge evolves. The
purpose of the rest of this brief review is to expose the diversity of the change
problem, as well as the variety of approaches that have been considered. In times,
several philosophical and practical issues related to belief change have been iden-
tified. We will not be concerned with a detailed description of such issues; we will

13

rather briefly scratch the surface of the field, by mentioning the main tradeoffs and
problems that have been dealt within the field and point to certain references to
further studying.

It is due to the amount of diverse work performed in the area, as well as the
maturity of many approaches, that allowed researchers to hope that several belief
change techniques, ideas or intuitions will prove useful in the field of ontology
evolution [20].

2.2.2 Knowledge Representation

A prior step to that of approaching the practical subject of knowledge changing is
to decide on the formalisms that will be employed for the representation of knowl-
edge. A few rather general assumptions should be satisfied by any mechanism used
for knowledge representation and these requirements have been realized in a family
of logics which most approaches in the literature deal with (e.g., [1, 2, 3, 9, 10, 16,
36, 37, 65, 70]; this family includes most classical logics, e.g., Propositional Logic
and First-Order Logic (FOL) [11, 18, 66]. However, the most studied logic in the
belief change area is Propositional Logic: [13, 14, 24, 23, 25, 52, 87]. There are
few exceptions that deal with non-classical logics, most notably [8], dealing with
non-monotonic theories and [19], which focuses on the database paradigm.

Recently, there have been some belief change approaches dealing with Descrip-
tion Logics (DLs) or related languages; however the small number of attempts
shows that the issue of ontology evolution has not been addressed by the belief
change community. Some of these attempts try to apply existing belief change ap-
proaches to DLs (e.g., [50, 62, 67, 20, 77, 41]), while others apply belief change
techniques to the evolution of concepts [30, 86].

Belief Bases versus Belief Sets

A fundamental question regarding the representation of knowledge should be re-
solved before deciding which underlying language (i.e, logic) to select for con-
structing a changing mechanism; this involves the decision of whether one should
consider knowledge being represented in the form of a belief base or a belief set.
Belief sets are (large) infinite structures, closed under their logical consequences,
in effect, they contain explicitly all the knowledge deducible from the KB. On the
other hand, belief bases are (small) finite sets of expressions of the underlying lan-
guage which contain some of the information of a KB explicitly, the rest being
deducible via the inference mechanism (or the standard reasoning) of the underly-
ing logic.

As one can calculate the logical consequences of a belief base, or in other words

14

closing it with respect to its inference, we can reveal the full knowledge of a KB,
whenever necessary. Therefore we can easily transform a belief base to a belief set
(and vice-versa). Hence, the two views of a knowledge set are equivalent, and in
fact as far as knowledge representation is concerned, they are the same; one states
explicitly what the other implies.

However, things differentiate in belief change. When changes are performed
upon a belief base, we temporarily have to ignore the logical consequences of the
base; one can only apply direct changes to knowledge that is stored explicitly. On
the other hand, implicit knowledge cannot be changed directly (though it could be
indirectly affected by the changes in the explicit knowledge). In effect,in belief
change there is a clear distinction between the two alternatives for storing knowl-
edge.

Both the approaches have pros and cons in the extend that belief change is con-
cerned. In the belief base approach, our options for the change are limited to affect
the base itself, so the changes are generally more coarse-grained; this restricts our
options for belief change, opposing a common principle which desires fine-grained
changes. In the belief set approach, all the information is stored explicitly, the
changes are fine-grained and there is no distinction between implicit and explicit
knowledge. Nevertheless, this could mean that belief sets are infinite structures.
Therefore, it is not possible to deal with them directly in a practical setting, so, in
application level, only a small subset of a belief set is explicitly stored; in contrast
to the belief base approach however, the implicit part of our knowledge is assumed
to be of equal value to the explicitly stored one and treated similarly. An extensive
discussion on a knowledge-level and motivation on belief base operations is pre-
sented in [44]. Studies have been done on comparison of the approaches[42, 45]
and thoughts on their connection can be found in in [31, 43].

Foundational versus Coherence Theories

Knowledge Representation in literature has also been considered by several related
philosophical studies. Mainly, two viewpoints have been discussed: foundational
theories and coherence theories. Under the foundational viewpoint, each piece of
our knowledge serves as a justification for other beliefs; our knowledge is like
a pyramid, in which every belief rests on stable and secure foundations whose
identity and security does not derive from the upper stories or sections [79].

On the other hand, according to the coherence theory, our beliefs do not require
any justification. A belief is justified by how well it fits with the rest of the beliefs,
in forming a coherent and mutually supporting set; thus, every piece of knowledge
helps directly or indirectly to support any other. In this sense, knowledge is like
a raft, every plank of which helps directly or indirectly to keep all the others in

15

place, and no plank of which would retain its status with no help from the others
[79]. Note that the foundational viewpoint is closer to the belief base approach,
while coherence theories match with the use of belief sets as a proper knowledge
representation format. A more detailed discussion on these issues can be found in
[35].

Change Representation

The format (and semantics) of the new information may vary. One common ap-
proach is to regard the “new information” as a single expression of the underlying
logic, which is received and rendered to our knowledge in an autonomous, inde-
pendent manner. In other occasions, belief change is encountered as a continuous
process, so each change is related to previous (and future) changes, in effect a
change can be a set of more elementary changes occurring in a sequence rather
than a one-off, standalone process. Iterated belief change is a field which deals
with the kind of semantics for this type of belief change [10, 15, 49, 63, 69]. Apart
from the above we could regard the new information to be a whole new KB; in this
case, we are dealing with belief merging [58, 59].

2.2.3 Change Operations

In the following we turn our focus away from stored knowledge towards issues
regarding the nature of new information, and the way to handle it. In several cases,
the new information is something to be added to our knowledge. In other occasions,
the new information represents or opposes to something which is “wrong” in our
beliefs and should be retracted. These two basic actions, however do not have
always the same semantics.

Changing a static world: Revision

In [1] the authors identify three different types of belief change. The simplest
one, though not an interesting one, is expansion. Expansion refers to the naive
addition of information to our knowledge; reckless application without taking any
special provisions to ensure the quality (i.e., consistency) of the KB after this addi-
tion. This operation is implemented trivially as a set-theoretical union of the new
information (i.e., the change) and our beliefs (old KB). Therefore, it is not a worth-
studying operation; if the new information contradicts the currently held beliefs
then the result will be an inconsistent KB and hence useless.

Secondly, revision operation is defined, which is the most useful operation in
terms of practical applicability. While similar to expansion, revision has the very

16

important difference that demands a certain quality on the results; the result should
be a consistent set of beliefs. There are several ways to achieve this property on the
resulting beliefs. When contradicting old knowledge one could choose to reject
the change, although this would object to the well-known and used principle of
Primacy of New Information [13], which is discussed later on this chapter. Hence
most of the times, one chooses to apply the changes upon the beliefs, facing how-
ever, possible inconsistency problems. These problems could be overcome with
potential additional application of consequential changes, in order to retain the
quality of the result. In some cases for example, one may need to abandon a part
of the currently held beliefs while adding the new information. The difficult and
interesting part of revision is how to select the beliefs that should be abandoned.

The most fundamental operation and, consequently, the most important oper-
ation for theoretical purposes is contraction [34]. Contraction corresponds to the
removal of information from a KB, but in a consistent way. For example, when
a piece of information becomes unreliable and we would like to stop believing it,
contraction may be necessary. A property of a contraction operator is that it should
retract the unreliable information from both explicit and implicit knowledge; the
latter could re-emerge as a consequence of the remaining beliefs, so simply re-
moving the information from explicit knowledge may not be enough. Hence, a
contraction operator may need to also remove beliefs which at first seem unrelated
to the retracted piece of knowledge.

Throughout some approaches, several semantics was introduced for contrac-
tion. For example, some regard the new information (change) to be a whole set of
expressions and to have package or choice semantics [32]; under package seman-
tics, all expressions in the set must be retracted from the KB, while under choice
semantics, it is sufficient that at least one of them is retracted.

The above operations regard a static world; in effect, as far as revision and
contraction are concerned, the world itself does not change, but our perception of
the world does. Thus, these operations are used when some new information about
the real world has been disclosed, driving us to alter our conceptualization of the
world in order to represent it more accurately.

Changing a dynamic world: Update Vs. Revision

In reality, the world is not indeed static and it might change as well. Therefore,
we should realize another type of change and the KB should be adapted to the new
reality. The semantics of this kind of change is quite different from those men-
tioned above, calling for introduction of a new pair of operations, namely update
and erasure [53]. Update refers to addition of information and is similar to revi-
sion, while erasure refers to removal of information and is similar to contraction.

17

These operations are substantially different from their “static” correspondents as
they both apply when the world dynamically changes.

In order to clarify the situation, we will consider the useful switch example
[20]. In this example our world consists of three independent switches S1, S2 and
S3. Suppose that our knowledge or belief of this world is that exactly one of S1, S2
or S3 is on. Our knowledge could be represented by the Propositional Logic KB:

(S1 ∧ ¬S2 ∧ ¬S3) ∨ (¬S1 ∧ S2 ∧ ¬S3) ∨ (¬S1 ∧ ¬S2 ∧ S3)

Now, suppose that somehow we learn or observe that S1 is on. The proper
reaction to this observation is to assume that S2 and S3 are off, as this coincides
with both the fact that exactly one switch is on (old KB) and with the fact that S1
is on (change). Therefore, the new KB should be:

(S1 ∧ ¬S2 ∧ ¬S3)

Notice that initially our knowledge was a disjunction of the several possible
worlds that could exist. One switch was on for sure, and there was only one reality,
however we did not know the true reality and we kept all the possibilities. Later on,
among the three possible states of the world, we chose to keep the one that agrees
with the new information. This is the case of a revision operator. Nevertheless,
things are very different when coming to deal with a dynamically changing world.
In this latter case the world itself alters rather than being disclosed.

Consider for example that we send a robot into the room with the intention to
turn S1 on; after that we have no reason to assume that S1 was on before the robot’s
intrusion. We now know that the robot changed the real world by switching S1 on;
so S1 should be on in the new KB. However, we cannot know if S1 was indeed the
switch that was formerly on or wether we now have two switches on. Concluding
we should assume that at the end of the robot’s action, either S1 alone, or S1 and
S2, or S1 and S3 are on. The new KB should be:

(S1 ∧ ¬S2 ∧ ¬S3) ∨ (S1 ∧ S2 ∧ ¬S3) ∨ (S1 ∧ ¬S2 ∧ S3)

In this case the expected result is different than in the case of revision. We don’t
choose among the possible worlds; we rather change each of the possible worlds
independently so as to coincide with the new fact. This is the case of an update op-
erator. Notice that in our example, in both operations the formal representation of
the original KB and the information that initiated the change (S1) is the same. Nev-
ertheless, the outcome of each operation is different. For an extensive discussion
on the differences between the various change operations, see [53].

18

2.2.4 Change Process

Apart from the aforementioned technicalities, there are several philosophical ques-
tions related to belief change for which, in general, any attempt to give an answer
depends on the application at hand. Several such issues, mostly related to the rep-
resentation of the knowledge and change have been presented; we now come to
discuss about how to decide on the realization of a change, i.e., how the change
itself should be performed.

Change Methodology

In general, there are two methodology approaches: postulation and explicit con-
struction[65]. The postulation approach dictates the formulation of a set of formal
conditions (usually in the form of postulates) that a belief change algorithm should
satisfy in a given context. On the other hand under the prism of explicit construc-
tion, one seeks explicit algorithms or constructions leading to algorithms, which
are appropriate for the given context.

The two approaches are not contrarious but complementary [65]. While de-
veloping an explicit construction (or algorithm), one may identify certain wanted
conditions for this construction, something that could be seen as a “request specifi-
cation”, that could drive to or form a postulation. On the other hand sometimes, in
order for postulation to produce better results, it’s initial findings are checked with
an explicit construction that satisfies (or not) the postulates; this algorithm may
help in determining the applicability and rationality of the proposed postulation(s)
and lead to refinements and improvements.

Belief change area has took advantage of both methods and both have given
interesting results. Explicit belief change algorithms are presented in [13, 14, 16,
87],and constructions that lead to algorithms or families of algorithms are given
in [1, 2, 3, 9, 10, 31, 36, 37, 49, 52, 70] whereas potential postulations of the
process are provided in [1, 16, 17, 44, 49, 53, 52]. The overlapping in this lists of
references for the methods presented, exposes that such works have been developed
in a parallel and complementary manner [65].

Change Implementation

Subsequently we will briefly discuss issues related to the determination and im-
plementation of the actual change, which is the main focus of belief change. Any
given approach to belief change has its properties determined by the stance it takes
towards these concerns. Hence, each work is more suitable for a certain context
and class of applications.

19

One issue that concerns the determination of a change early in the process of a
specification of a change approach is related to the acceptance of the new informa-
tion. It is a very common strategy to accept unconditionally the new information,
so the resulting KB should contain the new information (in case of a revision, for
example) or should not contain it(e.g, in case of a contraction). This implies a
complete entrustment to the incoming data, and is often referred to as the Princi-
ple of Primacy of New Information [13]. Primacy of New Information coincides
with the common intuition that newer information generally reflects a newer and
more accurate view of the world. An alternative and less employed approach is to
review the changes under a more critical scope and possibly reject them or a part
of them. This approach is most useful in an agent communication context, or when
a possible unreliable or untrustworthy source provides the information. This effort
can be found in literature under the term non-prioritized belief change [46].

Principle of Irrelevance of Syntax [13] argues that the result of a change should
not be affected by the syntactical representation of the KB nor of the change. While
the principle applies in both the KB and the change it is possible and happens to
apply it partially, only on the KB or the new information. Clearly this principle
finds strong grounds in coherence theories [1, 13, 34]. This is generally true as
in approaches that use belief sets the intuitively expected result of a change is
determined by the semantics of the operands (KB and change), rather than their
syntactical formulation. Under the foundational viewpoint, however, Principle of
Irrelevance of Syntax generally fails [44].

According to the Principle of Consistency Maintenance [13] the result of a
change should be a consistent KB. This is generally accepted as we have already
stated that inconsistent (under classical logic) KBs do not carry any interesting
information and, therefore, should be avoided. Whereas for classical logic this
principle is valid, there are frameworks in which the underlying logic itself has
an internal mechanism to deal with inconsistencies, such as nonmonotonic and
paraconsistent KBs [5]. One thing that remains to be settled is the exact meaning
of the “consistency” term; in terms of FOL we consider inconsistent any set that
contains or implies both a proposition and its negation. More generally in the belief
change literature, the meaning of a consistent KB is one which does not imply any
tautologically false propositions.

Principles that are intuitively obvious, as well as essential for technical reasons,
have often been implicitly used in the literature without explicit referral. Two such
principles that stand out as commonly but silently used are the Principle of Fairness
which guarantees determinism and reproducibility of the result of a change and the
Principle of Adequacy of Representation which ensures that the resulting, altered
KB will be represented using the same underlying formalisms as the initial one
[13].

20

Undebatably, the most important, and by so far the most influential principle
related to the implementation of a change is the Principle of Minimal Change [52];
other names in the literature are the Principle of Persistence of Prior Knowledge
[13] or the Principle of Conservation [35]. This principle argues that the resulting
KB should be as “close” as possible to the original KB; in other words, from all
the possible results that satisfy the other principles, one should choose the one
that retains most of the information from the old KB. Although the validation of
this principle for change operators is taken for granted in most works, there is no
consensus on how this principle should be formally expressed. The exact meaning
of “closeness of KBs” or the measurement of “loss of information” needs to be
defined.

Towards these directions there have been several attempts; proposals on metrics
that count loss information in several ways, being used in different algorithms can
be found in [2, 13, 14, 31, 36, 37, 52, 65, 87], different postulations that capture
the same principle in a different manner are presented in [1, 44] and long debates
on the pros and cons of each postulation are discussed in [34, 42]. The major
reason for this diversity of is that when it comes to choosing what has to be given
up in a certain change, extra-logical information needs to be considered; logical
considerations alone cannot point this out [34]. The instantiation of the Principle
of Minimal Change in a formal realization is in the core of each belief change
algorithm or postulation attempt. In fact this principle is the very essence of belief
change and the way this principle is being formulated, determines the properties of
any given approach to a large extent.

2.2.5 The AGM theory

The most influential approach in the field of belief change is with no doubt the
AGM theory [1], developed by Alchourron, Gärdenfors and Makinson (AGM is an
acronym of their last names initials). AGM used the postulation method, although
the general trend at the time was the explicit construction. In effect, in this work an
attempt is made to introduce formalisms to the field of belief change by address-
ing the general problem of finding the properties that a “rational” belief change
operator should adhere to. AGM dealt with the operators revision, contraction and
expansion, providing one set of postulates, namely the AGM postulates, for the
revision and contraction operations.

When formulating their theory the authors made several, quite general assump-
tions. They followed Tarski’s viewpoint on the definition of a logic: a logic in the
AGM theory is a pair <L,Cn>. Nevertheless, they made some additional assump-
tions: they assumed (a) that the underlying logic is closed under the standard oper-
ators of PL (¬,∧, ∨,→ etc) and (b) that the consequence operator includes classical

21

tautological implication, (c) is compact (i.e., closed and bounded) and (d) satisfies
the rule of introduction of disjunctions in the premises (IDP rule).

The formal expression of IDP is:

Cn(X ∪ (Cn(Y) ∩ Cn(Z))) = Cn(X ∪ Y) ∩ Cn(X ∪ Z),∀X,Y, Z ⊆ L

AGM theory assumes a KB to be a set of propositions of the underlying logic
(say K ⊆ L) which is closed under logical consequence (i.e., K = Cn(K)).
A KB is also called a theory and we can see that it is indeed a belief set, i.e.,
AGM adopts the coherence model. The KB can be revised or contracted with any
single expression x ∈ L of the underlying logic. Therefore, the operations can
be formalized as follows: revision can be regarded as a function mapping the pair
(K,x) to a new KB K′ = K + x and contraction as a function mapping the pair
(K,x) to the new KB K′ = K − x.

The AGM Postulates

By the aforementioned assumptions and only, any binary operator is allowed to
be or “revision” or a “contraction” operator, which, of course, should not be the
case; AGM introduced several constraints in the form of rationality postulates on
the result of such operators. These postulates are only enumerated here; for a
discussion on the AGM theory and a more detailed presentation see [1].

For K a KB and x a change expression, the AGM postulates for revision are the
following:

K + x is a theory (K+1)

x ∈ K + x (K+2)

If ¬x /∈ Cn(K), then K + x = Cn(K ∪ {x}) (K+3)

If ¬x /∈ Cn(K), then K + x = Cn(K ∪ {x}) (K+4)

If Cn({x}) = Cn({y}), then K + x = K + y (K+5)

(K + x) ∩K = K − (¬x) (K+6)

K + (x ∧ y) ⊆ Cn((K + x) ∪ y) (K+7)

Cn((K + x) ∪ {y}) ⊆ K + (x ∧ y), provided that ¬y ∈ K + x (K+8)

For K a KB and x a change expression, the AGM postulates for contraction are
the following:

K − x is a theory (K-1)

22

K − x ⊆ K (K-2)

If x /∈ Cn(K), then K − x = K (K-3)

If x /∈ Cn(∅), then x /∈ Cn(K − x) (K-4)

If Cn({x}) = Cn({y}), then K − x = K − y (K-5)

K ⊆ Cn((K − x) ∪ {x}) (K-6)

(K − x) ∪ (K − y) ⊆ K − (x ∧ y) (K-7)

K − (x ∧ y) ⊆ K − x, provided that x /∈ K − (x ∧ y) (K-8)

2.3 Ontology Change in Literature

The development and maintenance of ontologies, which are generally large and
complex structures, rises a number of interesting research issues such as the very
important problem of ontology change. Ontology change refers to the problem of
changing an ontology in response to a certain need.

2.3.1 Why do ontologies change?

In literature, the term ontology change came to be used in a broad sense, covering
any aspect of change or ontology modification, including changes to the ontology
in response to external events, changes dictated by the ontology engineer, changes
forced by the need to translate the ontology in a different language or using dif-
ferent terminology and so on. Apart of such change implementations the term
Ontology Change has often in fact been met to refer to the problem of deciding
the modifications to perform upon an ontology in response to a certain need for
change, as well as the problems that are indirectly related to the change proce-
dure such as the maintenance of an ontology’s different versions. Some times the
term has broaden even further to cover the management of the changes effects in
depending data, services, applications or agents.

In this context of changing an ontology can change for several reasons the
simplest of which simply because the domain of interest has changed [81]. Inde-
pendently of the changing world or domain, we may need to alter the perspective
under which the domain is viewed [72]. In other cases we may wish to embody
additional functionality, according to a change in a client’s needs [39]; we may
for example want to serve communication needs between heterogeneous sources
of information or to fuse information from different ontologies.

23

Furthermore, we may also discover a design flaw in the original conceptualiza-
tion of the world [76]. Other reasons of change: a sub-domain or different features
of the domain become important [47]; new, previously unknown, classified or oth-
erwise unavailable information, becomes available (could be discovery of some
instance data, another ontology or a new observation) [47]. More examples of
reasons initiating changes can be found in [55, 72].

2.3.2 Phases of Changing

The definition of change so far involves the decision on the modifications to per-
form; these may be made automatically, semi-automatically or manually. In order
to tame the complexity of the problem, six phases of ontology evolution have been
identified, occurring in a cyclic loop [80]. Initially, we have the change capturing
phase, where the changes to be performed are identified. Three types of change
capturing have been identified: structure-driven, usage-driven and data-driven [40].

Once the changes have been determined, they have to be properly represented
in a suitable format during the change representation phase. The third phase is the
semantics of change phase, in which the effects of the change(s) to the ontology
itself are identified; during this phase, possible problems that might be caused
in the ontology by these changes are also determined and resolved. The change
implementation phase follows, where the changes are physically applied to the
ontology, the ontology engineer is informed on the changes and the performed
changes are logged.

These changes need to be propagated to dependent elements; this is the role
of the change propagation phase. Finally, the change validation phase allows the
ontology engineer to review the changes and possibly undo them, if desired. This
phase may uncover further problems with the ontology, thus initiating new changes
that need to be performed to improve the conceptualization; in this case, we need
to start over by applying the change capturing phase of a new evolution process,
closing the cyclic loop. An alternative, but similar, approach which identifies five
phases, can be found in [76].

In order to illustrate the role of the six phases consider the example of Fig. 2.1.
In this example the intention of the change is to remove concept A from our on-
tology. During the change capturing phase we identify the need to remove A and
initiate the six-phase process of ontology evolution. During the change representa-
tion change we determine the kind of change(s) that must be performed in order to
remove A. Once the required change is identified (i.e. “Remove_Concept” for the
concept A in our example), we proceed to the semantics of change phase.

At this phase one should identify any problems that will be caused when the
chosen action is actually implemented, thus guaranteeing the (correctness) validity

24

Remove_Concept (A) Remove_Concept (A)

Make_Instance (x , B)
Remove_Concept (A) Remove_Concept (A)

Make_Instance (x , B)

Phase 1: Change Capturing

Determine improvements:
concept A must be removed

Phase 2: Change Representation

(representing changes formally)

Phase 3: Semantics of Change

(finding changes’ side-effects)

Phase 4: Change Implementation
Apply changes to ontology

Phase 5: Change Propagation
Propagate changes to all dependent
elements

Phase 6: Change Validation

Verify quality of result
Seek for new improvements

B

CA

x

B

CA

x

B

CA

x

B

C

x

B

C

x

B

C

x

Figure 2.1: The 6 Ontology Evolution Phases

of the ontology at the end of the process. In our example, we need to determine
what to do with A’s instances; for example, we could delete them or re-classify
them to one of A’s superconcepts. Several proposals have been made in order to
implement this step. This phase is the most crucial of ontology evolution; during
that phase the direct or indirect changes caused by a given change request are
determined.This is also the phase which our work mainly focus upon.

Some have stated that the final decision should be made directly by the ontol-
ogy engineer, or by the system’s designers at design time. Towards this direction,
the authors of [80] suggest a change designment through the selection of certain
pre-determined “evolution strategies”, which indicate the appropriate action per-
case. Other manual or semi-automatic approaches are also possible (see [40]).

Next, during the implementation phase, the changes identified in the two pre-
vious phases are actually implemented in the ontology. This could be done using
an appropriate tool, like, for example, the KAON API [80] or the Versioning Ser-
vice of SWKM [4]. Such a tool should have transactional properties, based on the
ACID model, i.e., guaranteeing Atomicity, Consistency, Isolation and Durability
of changes [40]. It should also present the changes to the ontology engineer for
final verification and keep a log of the implemented changes [40].

The change propagation phase guarantees that all induced changes will be
propagated to the interested parties or ontologies. This problem has been addressed

25

in [64], where two different methods to address the problem are presented, namely
push-based and pull-based approaches.

The first approach (used by [64] and [80]), propagates the changes to the de-
pendent ontologies as they happen, whereas in the second (pull-based approach),
the propagation is initiated after the explicit request of each of the dependent on-
tologies. Alternatively, an ontology versioning algorithm could be used, allowing
the interested parties to work with the original version of the ontology and update
to the newer version at their own pace, if at all [56]. Given the decentralized and
distributed nature of the Semantic Web, this alternative is considered more realistic
for practical purposes [47].

Finally, the change validation phase should allow the ontology engineer to re-
view and possibly undo the changes performed. At this point the engineer can start
a new sequence of changes to further improve the conceptualization of the domain
as represented by the ontology.

2.3.3 Fields of Change

Change as defined above intersects with several related research areas which are
studied both separately and in combination with each other in the literature. In
[20, 22], the authors identify nine such areas, namely ontology mapping, mor-
phism, alignment, articulation, translation, evolution, versioning, integration and
merging. Each one of these fields exposes a certain facet of the complex prob-
lem of ontology change from a different view or perspective, dealing with different
application needs, change scenarios or “needs for change”.

Translation, alignment, articulation, mapping, morphism, integration, merg-
ing

A change in the specification of a domain refers to a change in the way the con-
ceptualization is formally recorded, i.e., a change in the representation language.
This type of change is dealt with in the field of ontology translation, and so it is not
regarded as an “immiscible” type of change. In addition, ontology development is
becoming more and more a collaborative and parallelized process, whose parts (of
the ontology) need to be combined to produce the final ontology [57]; this process
would require changes in each subontology to reach a consistent final state.

However in ontologies a “final” state is rarely final, as ontology development
is usually an ongoing process [47]. Ontology changes are also related to the dis-
tributed nature of the Semantic Web; ontologies are usually depending on other
ontologies, (over which the ontology engineer may indeed have no control), so if
the remote ontology is changed for any reason, the dependent ontology might also

26

need to be modified to reflect possible changes in terminology or representation
[47].

For example, a certain agent, service or application may need to use an ontol-
ogy whose terminology or representation is different from the one it can under-
stand1, so the change she needs to perform is some kind of translation between
ontologies. Furthermore, we may also need to merge or integrate information from
two or more ontologies as a for a certain application’s necessities [75]. Some times
there is a need to support and maintain different interoperable versions of the same
ontology [47, 56, 48] a problem greatly interwoven with ontology change [55].

Ontology Versioning

Ontology versioning refers to the ability to handle an evolving ontology by creating
and managing different variants (versions) of it [55]. After performing the actual
changes on an ontology, ontology versioning algorithms come into play. Ontology
versioning typically involves the storage of both the old and the new version of the
ontology in a way, thought, that the different versions of the ontology are identi-
fiable. Versioning deals with the relation between different versions (e.g., a tree
of versions) as well as some compatibility information, like information regarding
the compatibility of any pair of versions of the ontology. In effect, it deals with
the process of managing different versions of an evolving ontology, maintaining
interoperability between versions and providing transparent access to each version
as required by the accessing element (data, service, application or other ontology).

Several problems are associated with this task. Some of these problems are
not at all trivial as for example, the fact that any ontology versioning algorithm
should be based on some type of identification mechanism (to differentiate between
various versions of an ontology) is not as easy as it may seem; for example, it is not
clear when two ontologies constitute different “versions”. Should any change in the
file that stores the ontology specification constitute the creation of a new version?
When a concept specification changes, but the new specification is semantically
equivalent to the original one, should this constitute a new version? More generally,
how do syntactical changes compare with semantical ones? Should any change
constitute a new version?

These and similar problems are discussed with in [47] and [56]. A desirable
ontology versioning system should also have the ability to allow transparent access
to different versions of the ontology, by automatically relating versions with data
sources, applications and other dependent elements [55].

1http://www.starlab.vub.ac.be/research/projects/knowledgeweb/kweb-223.pdf

27

Ontology Evolution in Ontology Change

In the previous paragraphs, we noted that the term ontology evolution has in fact
been used used as encapsulated in the ontology change field. The term ontology
evolution has not always been used to refer to the same ideas or processes. The
greatest confusion that prevails is between evolution and versioning.

For example a recent survey which counterpoises ontology schema evolution
and versioning to database schema evolution and versioning [72], argues that evo-
lution and versioning in ontologies are in fact indistinguishable. Moreover it is
the distributed and decentralized nature of the Semantic Web which bounds exis-
tence of multiple versions of ontologies; interdependent ontologies are likely to
be owned by different parties and as a result, some parties may be unprepared to
change and others may even be opposed to it [47]. All these facts enforce the main-
tenance of different versions of ontologies, making ontology evolution (under this
understanding) useless in practice.

In other works, ontology versioning is considered a stronger variant or a super-
set of ontology evolution [40]; ontology evolution is concerned with the ability to
change the ontology without losing data or invalidating the ontology, whereas on-
tology versioning should additionally allow access to different variants (versions)
of the ontology. However, while ontology evolution is concerned with the valid-
ity of the newest version, ontology versioning additionally deals with the validity,
interoperability and management of all previous versions, including the current
(newest) one. This viewpoint is also influenced by related, relational and object-
oriented database schema evolution and versioning research.

Nevertheless, apart from versioning, in literature there other areas claiming also
a strong interleaving with ontology evolution. Propagation of changes to dependent
elements is acknowledged as a part of ontology evolution, because the extensive
web of interrelationships that is usually formed around an ontology forces us to
consider such issues [64]. Therefore there is a tight coupling of ontology evolution
algorithms (and systems) with these issues as well.

Another example claiming the definition of evolution, is in [80], where on-
tology evolution is defined as the timely adaptation of an ontology to changed
business requirements, to trends in ontology instances and patterns of usage of
the ontology-based application, as well as the consistent management and prop-
agation of these changes to dependent parts. Again, this definition covers both
ontology evolution and versioning. Under this prism, however, ontology version-
ing and change propagation are considered internal parts of the process of ontology
evolution.

The dominant confusion is partly justified by the fact that ontology evolution
and ontology versioning are indeed closely related areas; despite that, in this thesis

28

we will consider the definitions of works where the two areas have discrete and
well-defined boundaries [20, 60]. The most disambiguating description of ontology
evolution is the process of modifying an ontology in response to a certain change
in the domain or its conceptualization[20]. The diversity of the different forms
that the problem of ontology change may take disallows any attempt for a unifying
formal specification, because the purpose, the scope, the input, the output and the
properties of the various fields are different. Ontology evolution in this context is
further discussed in the next subsection.

Ontology evolution could be considered as the “purest” type of ontology change,
in the sense that it deals with the changes themselves. As already mentioned, this
area will be the main focus of this thesis. Ontology evolution is a very important
problem, as the effectiveness of an ontology based application heavily depends on
the quality of the conceptualization of the domain by the underlying ontology [81],
which is directly affected by the ability of an evolution algorithm to properly adapt
the ontology to changes in the domain and to new necessities in the conceptualiza-
tion. Its significance is further emphasized by the fact that ontologies often model
dynamic environments [80].

As we have already stated, an ontology is a specification of a shared concep-
tualization of a domain [38]. Thus, a change may be caused by either a change in
the domain, a change in the conceptualization or a change in the specification [55].
The third type of change (specification change), as mentioned in the previous sub-
section, is in fact a translation problem. Thus, the definition of ontology evolution
covers the first two types of change only; changes in the domain and changes in
the conceptualization.

2.4 Change and Evolution: Current Context

For the scopes of this dissertation note that we will be narrowing down the mean-
ing ontology evolution. For the rest of this work we will be focusing upon the
two “major” phases of ontology change, namely the change representation and the
semantics of change phase [80]. That is what we will be referring to as evolution
and there lies also the practical interest of evolution. In effect, this is where the
“problematic” part of ontology evolution resides and what justifies the existence of
this work and our contribution.

Before these two phases, the necessity for a change is identified; during these
phases, we represent the change in a suitable format and determine the modifica-
tions that must be made to the ontology in response to this need, as well as the
indirect effects of these modifications on the validity, consistency and quality of
the information stored in the ontology. In case that our initial modifications cause

29

problems that we detect (e.g., the removal of a class renders a certain instance un-
classified and thus invalid, as in our example), further actions (changes) may be
required to restore the ontology to an “acceptable” state. Later, during the fourth,
fifth and sixth phase all the changes that have been determined, are to be applied to
the ontology, propagated to dependent elements and validated respectively.

2.4.1 Changes: Elementary and Composite

According to [80, 82], change operations can be classified into elementary (in-
volving a change in a single ontology construct) and composite ones (involving
changes in multiple constructs), also called atomic and complex in [83]. Ele-
mentary changes represent simple, fine-grained changes; composite changes rep-
resent more coarse-grained changes and can be replaced by a series of elementary
changes. Even though possible, it is not generally appropriate to use a series of
elementary changes to replace a composite one, as this might cause undesirable
side-effects [80]; the proper level of granularity should be identified in each case.

Examples of elementary changes are the addition and deletion of elements
(concepts, properties etc) from the ontology. In our particular example of sec-
tion 2.3.2, a simple “Remove_Concept” operation should be enough to perform
the required change, executed as an elementary operation. Alternatively, we might
have wished to move the concept A to some other point in the concept hierarchy.
Intuitively we would characterize any operation representing this change as a com-
posite change (or by a series of elementary changes).

There is no general consensus in the literature on the type and number of com-
posite changes that are necessary. In [80], 12 different composite changes are iden-
tified; in [72], 22 such operations are listed; in [83] however, the authors mention
that they have identified 120 different interesting composite operations and that the
list is still growing! In fact, since composite operations can involve changes in
an arbitrary number of constructs, there is an infinite number of them. Although
composite operations can, in general, be decomposed into a series of elementary
ones, for ad-hoc systems this is not of much help, as (as we will see later) the de-
composition of a non-supported operation into a series of supported ones (even if
possible) should be done manually.

Thus, creating a complete list of composite operations is not possible, but,
fortunately, as we will see it is not necessary either, since a composite operation
can always be defined as a series of elementary operations. What remains to be
done is to develop an ontology evolution framework which exploits this feasibility.

30

2.4.2 Representing changes

A change specification in [55], is presented as “version relation” between onto-
logical elements (such as classes) appearing in different versions of the ontology.
The introduction of such a relation and the properties that such a relation should
have form an interesting problem. Change specification’s role is to make the rela-
tionship between different versions of ontological elements explicit. Other issues
involved is the so-called “packaging of changes” [56] as well as the different types
of compatibility and how these are identified [55].

A survey on the different ways that can be used to represent a set of changes,
as well as the relation and possible interactions between such representations is
provided in [57]; furthermore, a standard ontology of changes is proposed, con-
taining both elementary and composite operations. A similar ontology of changes
is proposed in [76], where the changes are identified through a version log stored
in this ontology which in fact implements the pre-mentioned version relation in or-
der to store the different versions of each element, as well as the relation between
them and some related meta-data regarding these changes. The latter is in fact a
technique proposed in [56].

2.5 Belief Change In Ontology Evolution

2.5.1 Why belief change

The considerations of section 2.2 form only a partial list of the issues that have
been addressed by the belief change literature. The determination of the changes
to be made in reaction to some new data is a complex and multifaceted issue. Apart
from that several considerations need to be taken into account before choosing the
modifications to be performed upon a KB.

Ontology change is a type of knowledge change, and therefore the pre-mentioned
considerations hold also there, including ontology evolution. However, current on-
tology evolution works handle the problem in an inadequate manner, as they are not
even considering most of these issues in the determination of their evolution algo-
rithms [20, 27, 26]. For example, note that unlike the ontology evolution literature,
in the belief change there is no human involved in the process of change.

Some works ([27, 26]) have recognized that the need for automatization in the
evolution process calls for a belief change confrontation. Belief change deals with
the problem in a fully automatic manner. In fact, the option of using a human
in the loop of belief change was never even considered as an option, despite the
complexity of the problem. This fact forms an additional argument in favor of
the use of belief change techniques in ontology evolution, as such techniques will

31

arguably lead to automatic methods for dealing with such problems.

2.5.2 Relevant works

It is only recently, that the idea of recruiting belief change techniques for changing
ontologies have come into use. Basically a few applications and works which are at
a preliminary stage have taken exploitation of certain belief change techniques[50,
62, 67, 77, 41]. These works were developed independently, and they more or less
agree to our line of thought as described in this thesis. We will briefly present these
approaches, as they are somehow complementary to our view and our research
direction regarding ontology evolution.

AGM

In AGM [1] theory, while authors where formulating their theory they made sev-
eral, quite general assumptions. They followed Tarski’s viewpoint on the definition
of a logic: a logic in the AGM theory is a pair <L,Cn>. This assumption provides
the link between their theory and the world of ontologies, as ontological represen-
tation languages like DLs and OWL can also be viewed as <L,Cn> pairs, as already
mentioned.

This standpoint gave rises to several works which proposed the use of the AGM
theory for ontology evolution. One such work, at a preliminary stage, is [50]. In
this work some informal ideas regarding the connection of the AGM theory with
ontology evolution are provided. The focus lies on the operations of contraction
and revision and, following the lead of the AGM postulates, certain properties that
should hold in a rational contraction and revision operation are presented.

However, these properties are not directly applicable to many DLs, for the
same reasons that the AGM theory itself is not directly applicable to such DLs
[28]. In [20, 29] the authors perform a study on the AGM theory and explain why
the AGM postulates cannot be applied in the ontology evolution context as-is; they
also provide a generalization of the AGM theory, which is one possible solution to
the problems faced by the authors of [50] during their preliminary attempt with the
AGM theory.

An other interesting feature of our study is the verification that current research
on ontology evolution which steps on belief change uses only the explicit construc-
tion method (see section 2.2); one interesting side-effect of our approach is that it
allows the development of a postulation method for this problem.

32

Epistemic Entrenchment

Classical belief merging has inspired works on ontology merging and has triggered
further discussion upon these [58, 59]. However initial results that initiated such
discussion were not examining ontology merging, but evolution. Based on epis-
temic entrenchment (another work of belief change literature), the authors of [62],
the focus on a certain preference ordering. This approach is very similar to ours as
we also model the minimal change principle with a certain ordering as we will see
in chapter 4. However there are significant differences; unlike our approach, the
authors try to enforce the updating upon DL’s and in fact the only DL considered
is ALU. Nevertheless, we focus on RDF/S as we will see.

Moreover in the above work the new knowledge is constrained to be a single
DL axiom (however in literature there exist proposals on how to address the family
of DLs as a whole, as well as OWL [20]). Apart form this furher simplifications
are also made; the interrelationship between the Abox and the Tbox of the DL
KB in the context of ontology evolution is studied and the distinction between the
two parts of the KB is taken seriously. Under their understanding, the term ontol-
ogy revision refers to the addition of an Abox assertion to the DL KB (i.e., they
deal mostly with changes in the data level of abstraction rather than the schema;
however, there have been discussions on applying belief change techniques to the
evolution of concepts [30, 86]). Furthermore this “revision” is the only change op-
eration considered, studying how new knowledge can be incorporated in a DL KB
without introducing inconsistencies.

Maxi-adjustment

The maxi-adjustment algorithm [7], originally introduced for propositional knowl-
edge integration, is re-cast to the context of DLs, in [67]. This algorithm allows the
elimination of any inconsistencies that could arise in a stratified KB after its ex-
pansion with a new proposition. The authors propose that this process can, in turn,
lead to the development of a revision algorithm. However, to overcome certain
problem the authors depart from the classical DL model, limiting the applicability
of their approach.

33

Chapter 3

Related Work And Motivation

Everyone thinks of changing the world,
but no one thinks of changing himself.

Leo Tolstoy

3.1 Problems in current approaches

3.1.1 Ad-hoc nature

Human driven change

The field of Ontology Evolution is very active, yet immature [72], however more
and more works are dealing with it, as it is a research area of great importance for
the Semantic Web. Similarly [73] states that the current situation of the research on
ontology evolution is still in its early stages.The current state of the art in ontology
evolution, as well as a list of existing tools that help the process can be found in
[40]. Some of these tools are simple ontology editors, while others provide more
specialized features to the user. Attempts to address this problem have found a lot
of obstacles and problems. In literature there is a respectable amount of problem-
atic approaches recognized.

For example, one problem with current approaches is that they require a vary-
ing level of human intervention in order to work properly. Some researchers con-
sider this a necessary feature of the ontology evolution process [39], [40], con-
sidering unrealistic the expectation that changes upon ontologies could be handled
automatically [73]. This conclusion is based on the argument that any given change
can be resolved in several ways; moreover, the user requirements may be differing,
even for the same change [81].

34

Thus, it is difficult for a computer system to decide on the best way to resolve
a given change. Despite the validity of this claim, we believe that it is unrealistic
to always rely on human participation during ontology evolution [80], for several
reasons. First of all, the human user that intervenes in the process should be an
ontology engineer and have certain knowledge on the domain. Very few people
can be both domain and ontology experts. But even for these specialized experts,
it is very hard to perform ontology evolution manually [39], [80].

So, in domains where changes occur often, it is simply not practical to rely on
humans; the same holds in applications where it is difficult, impossible or unde-
sirable for an ontology engineer to handle the change himself (as in autonomous
robots, software agents or time-critical applications). A manual evolution approach
will, in many cases, perform better, in the sense of rationality, than any computer
system devisable. However, there are exceptions to this rule. Different ontology en-
gineers may have different views on how a certain change should be implemented
[80].

Whenever necessary, the ontology engineer should have the option to undo
some, or all, the changes performed and/or perform changes of his own. In short,
the role of the ontology engineer is not to perform the changes himself but to verify
the quality of the system’s output and possibly parameterize it, if she is not satis-
fied with the results. The most sophisticated current ontology evolution systems
provide all these supporting features [40], but cannot perform the changes auto-
matically. Therefore, the main gap that remains to be resolved is the automation of
the process; this problem will be one of the main concerns of this thesis.

A list of systems related to the task of ontology evolution can be found in [40].
Some of these systems are simple ontology editors, but the most sophisticated of
them provide features that greatly aid the user in the task of changing an ontol-
ogy.For more details on such systems refer to [DSWKB00], [40].

Lack of adequate formalization

In existing attempts there is a general lack of adequate formalizations. A change
request is an explicit statement of the modifications that are to be performed on the
ontology. Nonetheless, the knowledge engineer should a-priori define the request
in response to a more abstract need (e.g., an observation or a new fact). Therefore,
current systems do not determine the actual modifications to be made upon the
ontology when confronted with a different fact, but actually they more or less help
the user determine the changes and import them to the system for implementation.

Furthermore, the fraction of the systems that do materialize some of the tasks
of evolution are usually developed using ad-hoc heuristics that are based on the
experience and expertise of their designers, ontology engineers or domain experts.

35

Practically, these tools attempt to emulate human behavior [84]. They are not theo-
retically founded nor have they specified any theoretical properties, formal methods
or evaluation. Consequently, given an ontology and a change, a result is charac-
terized as “good” or “best” based solely on intuition. Therefore we are not able to
compare two ontology evolution algorithms with respect to effectiveness or ratio-
nality. In the majority of the current tools or systems dealing with evolution, such
issues have been disregarded, as the decisions on the modifications to be made are
left either on humans or are ad-hoc predesigned.

Empirical decisions based on the expertise of the person who represents the
modification are taken when evolution is performed: when the ontology engineer
encounters a change, she takes the decision based on his alternatives and chooses
the best one, which is then fed to the system for implementation. All these de-
cisions rely on her expertise on the subject, instead of a step-by-step, exhaustive
method of evaluation. Nevertheless, in order to develop fully automatic ontology
evolution algorithms, considerable issues need to have a clear, formal confronta-
tion. In effect, in order to construct an ideal system, one should analyze and set
specific properties to be satisfied by a “proper” ontology evolution algorithm, like:

• Track down (provably) all the alternative ways to address a given change,
using a formal and exhaustive process and guarantee that there are no further
alternatives for a given change, except the ones found.

• Acknowledge the features and properties that make a certain result of a
change “better” than another, therefore maintaining a clear definition of best
in this context, so it is able to:

• Decide on the “best” of the different alternatives.

Unfortunately, addressing these issues in a general frame is not easy using the
current research direction as each type of change is treated in a different way, us-
ing a stand-alone, specialized and informal procedure. If a more formal path is not
taken, the ontology evolution research is doomed to never find answers to these
questions, and as a result to never escape the need for an ontology engineer super-
vising and participating in the procedure of ontology evolution. The opposite also
is true: the participation of the ontology engineer in the process of ontology evolu-
tion threatens any formalization attempt, because it suggests non-determinism and
non-reproducibility of the outcome.

More changes, more designing

A further problem with the so-far research is related to the representation of changes
(second phase of ontology change). In current tools, which are mainly ontology

36

editors, there is usually little or no support for any kind of composite (complex)
changes to the ontology. Ontological elements are simply deleted and added by the
user, or, can be moved or copied [40]. In a little more sophisticated tools for ontol-
ogy evolution, there is a pre-defined set of elementary and/or composite operations
that are predesigned and stored onto the system in order to be supported, providing
a somewhat greater flexibility to the engineer.

For each operation, there is a associated process that manipulates the change
and its semantics. This procedure can sometimes be parameterized to comprise
different necessities. However, there is no guarantee that the provided parame-
terization is enough to cover any possible need of the ontology engineer. Unpre-
dictable needs may require unpredictable reactions to a certain change. Moreover,
the number of complex operations that can be considered has no limit, as already
discussed. Even in the case that we restrict ourselves to the most ordinary types, as
we already mentioned there is usually a large number of them [83].

As a consequence the number of complex different operations to consider is
extremely high; creating a new procedure for each such change is a non-scalable
approach which increases the complexity of current ontology evolution tools. In
effect, as also mentioned and will also be seen later the number of different com-
posite changes is indeed infinite. Therefore any attempt to number them is doomed
to always be insufficient.

Furthermore not all the different types of change are readily available at design-
time; the problem becomes more complicated. New needs may require new oper-
ations. To manipulate operations that are not in the supported list, the ontology
engineer must select a sequence of two or more simpler (more elementary) opera-
tions to perform. Such a selection might affect the quality of the change and could
lead to unpredictable problems [80].

For example, deleting and then re-adding a concept in a different position in the
hierarchy is not the same as moving the concept; in the former case, the instances
of the concept will have to be removed or re-instantiated to a different concept;
in the latter, no changes to the individuals will be required. In this example, the
effects of the dividing of the operation in two more introductory operations may
be easy to determine and/or undo. Yet, in more complex cases, this is far from
trivial. In any case, this process cannot be performed without human involvement
as it is unfeasible for a computer system to manipulate automatically a change that
is not in its list of supported operations, even though the unknown operation can
be perfectly split in more elementary, known operations.

An unforeseeable to the system operation is one that the former does not know
its semantics. So there is a major problem on how could the system manipulate
an operation it does not know and whether it could choose to use some of the
supported operations for substituting the unknown operation. This kind of problem

37

is very likely to occur (as the creation of a complete list of composite operations is
not possible [57]). In section 5.6 construct a paradigm showing that:

(a) Not any change operation can be decomposed to the existing elementary
changes, in fact

(b) there is not a finite number of elementary, modular with respect to valid-
ity, changes in which any complex change can be decomposed, as in some
occasions

(c) the estimated effects of the split series of changes, on the final result, are not
the same with the intended effects of the initial complex change.

(d) Moreover different composite changes are of an infinite amount.

As a result, the current situation as far as the representation of changes is con-
cerned practically overrules the possibility for automatic ontology evolution, which
is a significant drawback of current systems.

3.1.2 Towards Formality and Practicality

Automated ontology evolution approaches seem, in general, detached from real
problems and are not easily adaptable for use in an ontology evolution tool; to our
knowledge, there is no implemented tool that uses one of the algorithms developed
by formal approaches. On the other hand, editor-like tools do not provide enough
automation and employ ad-hoc methodologies to deal with the problems raised
during an update operation; such ad-hoc methodologies cause several problems
that are thoroughly discussed in Section 3.2.

Our approach is motivated by the need to develop a formal framework that will
lead to an easily implementable ontology evolution algorithm. We would like our
approach to enjoy the formality of the second class of tools, and use this formality
as a basis that will provide formal guarantees related to the behavior of the imple-
mented system, thus avoiding the problems related to the ad-hoc nature of existing
practical methodologies.

More specifically, our approach could be viewed as belonging to the class of
works that it result to a formal, theoretical model to address changes. This model
is based on a formal framework that is used to describe the process of ontology
evolution as addressed by current editor-like tools (so it is also related to the first
class of works), and allows us to develop an abstract, general-purpose algorithm
that provably performs changes in an automated and rational way for a variety of
languages, under different parameters (validity model and ordering). As discussed,

38

Our work is focused on the “core” of the ontology evolution problem, namely the
change representation and semantics of change phases. Issues related to change
capturing, implementation of changes, transactional issues, change propagation,
visualization, interfaces, validation of the resulting ontology etc are not considered
in this study.

On the other hand, our approach also results to an implemented tool, namely the
Evolution Service of the SWKM. Our general-purpose algorithm can be applied for
any particular language and set of parameters that is useful for practical purposes;
for the purposes of SWKM we set these parameters so as to correspond to the
RDF language under the semantics described in [78]. Fixing these parameters
also allows us to better present our approach, as well as to evaluate and verify its
usefulness towards the aim of implementing an ontology evolution tool. In addition
to the implementation of the general-purpose algorithm, our formal framework
allows the development (and implementation) of special-purpose algorithms which
are more suited for practical purposes; such algorithms provably exhibit the same
behavior as the general-purpose one, so we can have formal guarantees as to their
expected output. Both the general-purpose and the special-purpose algorithms are
implemented for the Evolution Service of SWKM.

3.2 Evolution Process

In this section, we elaborate on the five steps we described in section 1.2 and de-
scribe how some typical ontology evolution tools ([6, 33, 71, 85]) fit into this five-
step process. In addition, we point out the problems that the ad-hoc implementation
of these tools causes, and show how such problems could be overcome through the
use of a formal framework, like the one described in Section 4.1.

3.2.1 Model Selection and Supported Operations

Obviously, the first step towards developing an evolution algorithm is the deter-
mination of the underlying representation model for the evolving ontology; this is
what we capture in the first step of our 5-step process. Most systems assume a
language supporting the basic constructs used in ontology development, like class
and property subsumption relationships, instantiation relationships and domain and
range restrictions for properties.

The selection of the representation model obviously affects (among other things)
the operations that can be supported; for example, OntoStudio [85] does not sup-
port property subsumption relations so all related changes are similarly overruled.
Further restrictions to the allowable changes may be introduced by various design

39

decisions, which may disallow certain operations despite the fact that they could,
potentially, be supported by the underlying ontology model. For example, On-
toStudio does not allow the manipulation of implicit knowledge, whereas OilED
[6] does not support any operation that would render the ontology invalid (i.e., it
does not take any actions to restore validity, but rejects the entire operation in-
stead). The determination of the allowed (supported) update operations constitutes
the second step of our 5-step process.

According to [80, 82], change operations can be classified into elementary (in-
volving a change in a single ontology construct) and composite ones (involving
changes in multiple constructs), also called atomic and complex in [83]. Ele-
mentary changes represent simple, fine-grained changes; composite changes rep-
resent more coarse-grained changes and can be replaced by a series of elementary
changes. Even though possible, it is not generally appropriate to use a series of
elementary changes to replace a composite one, as this might cause undesirable
side-effects [80]; the proper level of granularity should be identified in each case.
Examples of elementary changes are the addition and deletion of elements (con-
cepts, properties etc) from the ontology. There is no general consensus in the liter-
ature on the type and number of composite changes that are necessary. In [80], 12
different composite changes are identified; in [72], 22 such operations are listed; in
[83] however, the authors mention that they have identified 120 different interest-
ing composite operations and that the list is still growing! In fact, since composite
operations can involve changes in an arbitrary number of constructs, there is an
infinite number of them. Although composite operations can, in general, be de-
composed into a series of elementary ones, for ad-hoc systems this is not of much
help, as the decomposition of a non-supported operation into a series of supported
ones (even if possible) should be done manually.

The above observations indicate an important inherent problem with ad-hoc
algorithms, namely that they can only deal with a predefined (and finite) set of
supported operations, determined at design time. Therefore, any such algorithm is
limited, because it can only support some of the potential changes upon an ontol-
ogy, namely the ones that are considered more useful (at design time) for practical
purposes, and, thus, supported.

3.2.2 Validity Model and Invalidity Resolution

It is obvious that a user expects his update request to be executed upon the on-
tology. Thus, it is necessary for the resulting ontology to actually implement the
change operation originally requested, i.e., that the actual changes performed upon
the ontology are a superset of the requested ones; this requirement will be called
success.

40

The naive way to implement an update request upon an ontology would be to
simply execute the request in a set-theoretic way. That would guarantee the satis-
faction of the above principle (success); nevertheless, this would not be acceptable
in most cases, because the resulting ontology could be invalid in some sense (e.g.,
if a class is removed, it does not make sense to retain subsumption relationships in-
volving that class). Thus, another basic requirement for a change operation is that
the result of its application should be a valid ontology, according to some validity
model. This requirement is necessary in order for the resulting ontology to make
sense.

Both the above principles are inspired by research on the related field of belief
revision [13, 34], in which they are known as the Principle of Validity and Princi-
ple of Success respectively. The Principle of Success is well-defined, in the sense
that we can always verify whether it is satisfied or not. The Principle of Valid-
ity however, depends on some underlying validity model, which is not necessarily
the same for all languages and/or ontology evolution systems. Thus, each system
should define the validity model that it uses. For example, do we accept cycles in
the IsA hierarchy? Do we allow properties without a range/domain, or with multi-
ple ranges/domains? Such decisions are included in the validity model determined
in step 3 of our 5-step process.

Determining how to satisfy the Principles of Success and Validity during a
change operation is not trivial. The standard process in this respect is to execute
the original update request in a naive way (i.e., by executing plain set-theoretic
additions and deletions), followed by the initiation of additional change operations
(side-effects) that would guarantee validity. In principle, there is no unique set of
side-effects that could be used for this purpose: in some cases, there is more than
one alternatives, whereas in others there is none. The latter type of updates (i.e.,
updates for which it is not possible for both Success and Validity to be satisfied)
are called infeasible and should be rejected altogether. For example, the request
to remove a class, say C, and add a subsumption relationship between C and D
at the same time would be infeasible, because executing both operations of the
composite update would lead the ontology to an invalid state (because a removed
class C cannot be subsumed by another class) and it can be easily shown that there
is no way (i.e., side-effects) to restore validity without violating success for this
update. The determination of whether an update is infeasible or not, as well as
of the various alternative options (for side-effects) that we have for guaranteeing
success and validity (for feasible updates) constitutes the fourth step of our 5-step
process.

Let us consider the change operation depicted in Figure 3.1(a), where the ontol-
ogy engineer expresses the desire to delete a class (B) which happens to subsume
another class (C). It is obvious that, once class B is deleted, the IsAs relating B

41

A

B

C

A

(a) (b)

A

C
(c)

A

C
(d)

Figure 3.1: Three alternatives for deleting a class

with A and C would refer to a non-existent class (B), so they should be removed;
the validity model should capture this case, and attempt to resolve it. One possible
result of this process, employed by Protégé [71], is shown in Figure 3.1(b); in that
evolution context, a class deletion causes the deletion of its subclasses as well. This
is not the only possibility though; Figures 3.1 (c) and (d), present other potential
results of this operation, where in (c), B’s subclasses are re-connected to its father,
while in (d), the implicit IsA from C to A is not taken into account. KAON [33],
for example, would give either of the three as a result, depending on a user-selected
parameter.

In this particular example, both KAON and Protégé detect the invalidity caused
by the operation and actively take action against it; however, the validity model em-
ployed by different systems may be different in general. Moreover, notice that an
invalidity is not caused by the operation itself, but by the combination of the current
ontology state and the operation (e.g., if B was not in any way connected to A and
C, its deletion would cause no problems). Therefore, in order for a mechanism to
propose solutions against invalidities, both the ontology and the update should be
taken into account. Notice that the mechanism employed by Protégé, in Figure 3.1,
identifies only a single set of side-effects, while KAON identifies three different
reactions. This is not a peculiarity of this example; the invalidity resolution mech-
anism employed by Protégé identifies only a single solution per invalidity; this is
not true for KAON and OntoStudio.

3.2.3 Action Selection

Since, in the general case, there are several alternative ways (i.e., sets of side-
effects) to guarantee success and validity, we need a mechanism that would allow
us to select one of the alternatives for implementation (execution). This consti-
tutes the last component of an evolution algorithm (step 5). Such a mechanism is
“pre-built” into systems that identify only a single possible action, like Protégé, but
can be also parameterizable. KAON, for example, provides a set of options (called

42

A

B

C

A

C

A

B

C

A

B

C(a) (b)

Figure 3.2: Implicit knowledge handling in KAON

evolution strategies) which allow the ontology engineer to tune the system’s be-
havior and, implicitly, indicate what is the appropriate invalidity resolution action
for implementation per case. OntoStudio provides a similar customization over its
change strategies.

Notice that our preference among resulting ontologies reflects in a preference
among side-effects of the corresponding update operations. For instance, if we
prefer the result of Figure 3.1 (c), we can equivalently say that we prefer the (ex-
plicit) addition of the (implicit) subsumption relation shown in (c) together with
the deletion of the two initial IsAs as a side-effect to this operation, over the dele-
tion of the two initial IsAs and class C, shown in (b), or just the deletion of the
two IsAs, as in (d). Therefore, the evolution process can be tuned by introducing
a preference ordering upon the operations’ side-effects that would dictate the re-
lated choice (evolution strategy). Given that the determination of the alternative
side-effects depends on both the update and the ontology, there is an infinite num-
ber of different potential side-effects that may have to be compared. Thus, we are
faced with the challenge of introducing a preference mechanism that will be able
to compare any imaginable pair of side-effects.

It is worth noting here the connection of this preference ordering with the well-
known belief revision Principle of Minimal change [13] which states that the result-
ing ontology should be as “close” as possible to the original one. In this sense, the
preference ordering could be viewed as implying some notion of relative distance
between different results and the original ontology, as identified by the preference
between these results’ corresponding side-effects.

3.3 Discussion

To the best of the author’s knowledge, all currently implemented systems employ
ad-hoc mechanisms to resolve the issues described above. The designers of these
systems have determined, in advance, the supported operations, the possible in-

43

Table 3.1: Summary of ontology evolution tools
Protégé KAON OntoStudio OilED SWKM

Fine-grained Model (Step 1) X X × X X

Change Representation Supported Operations
(Step 2)

Elementary X X X × X
Composite × × × × X

Validity Model (Step 3) Faithful × × X X X
Complete × × X × X

Semantics of Change Invalidity Resolution
(Step 4)

No alternatives X
One alternative X
Many alternatives X
All alternatives X X

Selection Mechanism
(Step 5)

None X X
Per-case X X
Globally X

validities that could occur per operation, the various alternatives for handling any
such possible invalidity, and have already pre-selected the preferable option (or op-
tions, for flexible systems like KAON) for implementation per case; this selection
(or selections) is hard-coded into the systems’ implementations.

This approach causes a number of problems. First of all, each invalidity, as
well as each of the possible solutions to each one, needs to be considered individ-
ually, using a highly tedious, case-based reasoning which is error-prone and gives
no formal guarantee that the cases and options considered are exhaustive. Simi-
larly, the nature of the selection mechanisms cannot guarantee that the selections
(regarding the proper side-effects) that are made for different operations exhibit a
faithful overall behavior. This is necessary in the sense that the side-effect selec-
tions made in different operations (and on different ontologies) should be based on
an operation-independent “global policy” regarding changes. Such a global policy
is difficult to implement and enforce in an ad-hoc system.

Such systems face a lot of limitations due to the above problems. For example,
OilED deals only with a very small fraction of the operations that could be defined
upon its modeling, as any change operation that would be triggering side-effects is
unsupported (e.g., the operation of Figure 3.1 is rejected). In Protégé, the design
choice to support a large number of operations has forced its designers to limit the
flexibility of the system by offering only one way of realizing a change; in OntoStu-
dio, they are relieved of dealing with (part of) the complexity of the aforementioned
case-based reasoning as the severe limitations on the expressiveness of the under-
lying model constrain drastically the number of supported operations and cases to
consider. Finally, in KAON, some possible side-effects are missing (ignored) for
certain operations, while the selection process implied by KAON’s parameteriza-
tion may exhibit invalid or non-uniform behavior in some cases. As an example,
consider Figure 3.2, in which the same evolution strategy was set in both (a) and

44

(b); despite this, the implicit IsA from C to A is only considered/retained in case
(a).

Table 3.1 summarizes some of the key features of ontology evolution systems,
categorized according to the 5-step process introduced in this work, and shows how
each step is realized in each of the four systems discussed here, as well as in the
Evolution Service of SWKM, described in Sections 4.1, 4.3 below.

We argue that many of the problems identified in this section could be resolved
by introducing an adequate evolution framework that would allow the description
of an algorithm in more formal terms, as a modular sequence of choices regarding
the model used, the supported operations, the validity model, the identification of
plausible side-effects and the selection mechanism. Such a framework would allow
justified reasoning on the system’s behavior, without having to resort to a case-by-
case study of the various possibilities. To the best of the authors’ knowledge, there
is no implemented system that follows this policy. In Section 4.1, we describe such
a framework and specialize it for RDF ontologies.

45

Chapter 4

Evolution Framework

Change begets change.

Charles Dickens

4.1 A Framework For Updating Knowledge

Our first work is to define the logic that will be working with. We will then de-
fine our framework with respect to the evolution process we acknowledged in the
previous chapter.

4.1.1 Model and Operations

We consider a First-Order Language which allows the following:

• Parentheses: (,)

• Sentential connective symbols: ∧, ¬, →, ...

• A countably infinite number of variables: u1, u2, ...

• The equality symbol: =

• Quantifier symbols: ∀, ∃
• A finite number of predicate symbols: P1, P2, ..., Pn

• A countably infinite number of constant symbols: x1, x2,...

• No function symbols

46

We will denote with L the set of all well-formed formulae that can be formed
in this FOL. We equip our FOL with closed semantics, i.e., CWA (closed world
assumption). This means that, for two formulas p, q, if p 0 q then p ` ¬q. Any
expression of the form P (xj1, ..., xjk) will be called a positive ground fact where
P is a predicate of arity k and xj1, ..., xjk are constant symbols. Any expression of
the form ¬P (xj1, ..., xjk) is called a negative ground fact iff P (xj1, ..., xjk) is a
positive ground fact.

We denote by L+ the set of positive ground facts, L− the set of negative ground
facts and set L0 = L+∪L−, called the set of ground facts of the language. The ma-
jor restriction of our model is that knowledge is represented using positive ground
facts only. On the other hand, updates can contain only ground facts, which can
be either positive or negative. Positive ground facts encode the information that
should be added in the knowledge, while negative ground facts encode the infor-
mation that should be removed from our knowledge. Formally:

• A belief set is a set K ⊆ L+

• An update is a set U ⊆ L0

In simple words, belief set is any set of positive ground facts whereas update
is any set of positive or negative ground facts. By definition, belief sets have two
properties:

(a) they are always consistent and

(b) they imply only the ground facts that are already in the belief set.

Note that in this chapter the term consistent has the very specific meaning of
FOL consistency, which dictates that a belief set is consistent iff it does not imply
both a proposition and its negation. Notice that, abusing notation, for two sets of
ground facts U , V , we will say that U implies V (U ` V) to denote that U ` p for
all p ∈ V . Combining the above two properties with the CWA semantics, we can
state that if a ground fact isn’t contained in a belief set, then the belief set implies
its negation. In effect it holds:

• iff P (x) ∈ K then K ` P (x)

• iff P (x) ∈ K then K 0 ¬P (x)

• iff P (x) /∈ K then K ` ¬P (x)

• iff P (x) /∈ K then K 0 P (x)

47

• iff K ` P (x) then K 0 ¬P (x)

• iff K 0 P (x) then K ` ¬P (x)‘

One first application of these properties is that the addition of¬P (x) in K is the
same as the contraction of P (x) from K, because being unable to infer P (x) im-
plies (due to CWA) being able to infer ¬P (x) (and vice-versa). Therefore, the ad-
dition of negative ground facts to our belief sets corresponds to contraction/erasure
in the standard terminology, while the addition of positive ground facts corresponds
to revision/update in the standard terminology. Note that under closed semantics
revision and update do not differentiate as in our example of section 2.2.3. In that
example, we had partial knowledge of the world, but under CWA, what we don’t
know simply doesn’t hold. In fact, in a closed world, update is degenerating to
revision. Although this might be an obstacle for the applicability of our framework
in richer languages, CWA is sufficient, useful and desirable for the scopes of our
work.

4.1.2 Consistency and Validity

We assume that, in general, not every belief set is a valid representation of our
knowledge. To discriminate between “valid” and and “non-valid” representations,
we allow the introduction of Integrity Constraints. For technical reasons, we as-
sume that all constraints can be encoded in the form of a DED (disjunctive embed-
ded dependencies), which have the following general form:

∀uP (u) → ∨i=1,...,n∃viQi(u, vi) (DED)

where:

• u,vi are tuples of variables

• P , Qi are conjunctions of relational atoms of the form R(w1, ..., wn) and
equality atoms of the form (w = w′),

• where w1, ..., wn, w, w′ are variables or constants

• P may be the empty conjunction

An integrity constraint (or rule) is a FOL formula of the above form (i.e., a
DED). Integrity constraints (DEDs) are FOL formulas. Notice however, that not
all FOL formulas can be written in this form. Yet, DEDs are expressive enough
for our case. We say that a belief set K satisfies an integrity constraint c, if K ` c.

48

Obviously for a set C of Integrity Constraints, K satisfies C (K ` C) iff K satisfies
c, for all c ∈ C.

Let us see what it means for K to satisfy an integrity constraint c. Let’s start
with a simple case; suppose that c = ∀uP (u) → Q(u), where P , Q are simple
positive predicates and u is a variable. Take some constant x. It holds:

If P (x) /∈ K then K ` {¬P (x)} ` {P (x) → Q(x)}

and
If Q(x) ∈ K then K ` {Q(x)} ` {P (x) → Q(x)}.

Also

If P (x) ∈ K and Q(x) /∈ K

then K ` {P (x)} and K ` {¬Q(x)},
so K ` {P (x) ∧ ¬Q(x)}.

Equivalently K ` {¬(P (x) → Q(x))}. Since K is consistent, we conclude that
K 0 {P (x) → Q(x)}. The above thoughts lead to the following conclusion:

K satisfies c iff for all constants x : P (x) /∈ K or Q(x) ∈ K.

Or

K satisfies c iff for all constants x : K ` {¬P (x)} or K ` {Q(x)}.

This can be easily extended to the general case: Suppose that c = ∀uP (u) →
∨i=1,...,n∃viQi(u, vi). Suppose also that: P (u) = P1(u)∧ P2(u)∧ ...∧ Pk(u) for
some k ≥ 0 and that Qi(u, vi) = Qi1(u, vi) ∧ Qi2(u, vi) ∧ ... ∧ Qim(u, vi) for
some m > 0 depending on i. Then K satisfies c iff for all tuples of constants x at
least one of the following is true:

• There is some j : 0 < j ≤ k such that K ` {¬Pj(x)}.

• There is some i : 1 ≤ i ≤ n and some tuple of constants z such that for all
j = 1, 2, ..., m K ` {Qij(x, z)}.

We can conclude that K ` c iff for all tuples of constants x at least one of the
following sets is implied by K:

{¬Pj(x)}, 0 < j ≤ k

{Qi1(x, z) ∧Qi2(x, z) ∧ ... ∧Qim(x, z)}, 1 ≤ i ≤ n, z : constant

49

Based on the above observation, we define the component set of c with respect to
some tuple of constants x as follows:

Comp(c, x) = {{¬Pj(x)}|0 < j ≤ k} ∪ {{Qi1(x, z) ∧Qi2(x, z) ∧ ...

∧Qim(x, z)} |1 ≤ i ≤ n, z : constant}

Using Comp(c,x), the above facts can be rewritten by saying that:

K satisfies c iff for all constants x there is some U ∈ Comp(c, x) such that K ` U .

Our definitions are also suitable also in the limit cases. For example, if V = ∅,
then the empty set is perfectly acceptable in Comp(c, x), and it is trivially satisfied
by all K (i.e., K ` ∅, so K ` c). If, on the other hand, Comp(c, x) turns out to be
∅, then K does not satisfy c, because there is no U ∈ Comp(c, x) = ∅ for which
K ` U . Thus, the above process is embedded neatly into our framework.

Elimination of equality atoms

Some special consideration should be taken for the case where a Qij(x, z) is an
equality of the form w = w′. Obviously, during updates, we cannot change the
value of a constant. For example, if x, y are distinct constants, then it is assumed
that x 6= y. This is known in the literature as the “unique name assumption”. This
assumption is appropriate for our purposes; for example, as we will see later two
RDF classes A, B are by definition distinct. Now take any Qij(x, z)in some set
V ∈ Comp(c, x). If this is an equality of the form w = w′, then the truth value of
this equality is known from the very beginning. Since there are no free variables
in Qij(x, z) and given the unique name assumption, the truth value of w = w′ is
independent of any particular KB K. In other words w = w′ is either a tautology
or a contradiction, for the given assignment of variables to constants. This allows
us to simplify the definition of Comp(c, x) as follows: Take any V ∈ Comp(c, x)
and some Qij(x, z) ∈ V such that Qij(x, z) is an equality of the form w = w′. If
w = w′ is a tautology, then remove it from V, i.e., set V := V \ {Qij(x, z)}. If
w = w′ is an antinomy, then remove V from Comp(c, x), i.e., set Comp(c, x) :=
Comp(c, x) \ {V }. For the rest of this thesis we will not be discussing about
equalities, as we consider these eliminated at run-time of an update, as described.

The intuition behind these decisions is obvious (it preserves the definition of
“K satisfies c”). This process does not add any extra complexity to the problem,
even in the limit cases. Moreover, the above process is being undertaken for two
reasons:

50

(a) it reduces the size of Comp(c, x) and speeds up the relevant checks, and

(b) under the above assumptions, the elements of Comp(c, x) contain only pos-
itive and negative ground facts, so they are updates in our terminology; this
way, Comp(c, x) is a family of updates set.

Def. 1. Consider a FOL language < L, Cn > and a set of Integrity Constraints
C. A belief set K will be called valid with respect to < L, Cn > and C iff K
is consistent and it satisfies the integrity constraints C. Valid belief sets will also
called Knowledge Bases (KBs). Using our terminology, a belief set K is valid iff
for all c ∈ C and all constants x, there is some U ∈ Comp(c, x) such that K ` U .

4.1.3 Invalidities Resolution

After deciding on the logic and defining our terminology we will dive into the
detailed process of an update operation. As an initial simple case, consider that
there are no integrity constraints or that we are not interested in the result being a
KB. In this case, the most rational choice would be to simply apply the changes
in U upon K; this means that the positive ground facts that appear in U should be
added to K (if not already present) and the positive ground facts that appear in U
as negative ground facts should be removed from K (if present). The other ground
facts that appear in K should stay unaffected. These ideas can be formalized as
follows:

Def. 2. The raw application of an update U upon a belief set K is denoted by
K + U and is the following belief set: K + U={P (x) ∈ L+ | P (x) ∈ U or
(P (x) ∈ K and ¬P (x) /∈ U)}
If we assume that U is consistent (as we will also see later we are interested only
in consistent updates) then it is trivial to show that:

K + U = {P (x) ∈ L+|P (x) ∈ K ∪ Uand¬P (x) /∈ U}

An elementary or singular operation or update is the addition of a positive or
negative ground fact in a KB. Every ground fact in our FOL can form an elementary
operation when contracting it from a KB or revising the latter with this. However,
raw application of even one singular operation to a KB may drive to an non-valid
belief set.

For example: consider the rule c = P (x) → Q(x), where P ,Q are ground
facts,and x a constant. Component set of c, is Comp(c, x)={{¬P (x)}, {Q(x)}}.
Let K be our KB before the update. From the definition of a KB we have that for all
constants x, there is some U ∈ Comp(c, x) such that K ` U . Let P (x) and Q(x)

51

miss from K. Then it holds that K 0 ¬P (x). Suppose and that U = {¬P (x)}.
The absence of P (x) is exactly why K respects our rule. Now suppose we want to
add P (x) in K and get a resulting belief set K ′. K ′ is not any more a KB (is not
valid), because K ′ ` P (x), and so there is not a U ∈ Comp(c, x) that K ′ ` U .

In order to restore the validity, we have to add also to our belief set one set
U ∈ Comp(c, x), so then our belief set will imply U ,satisfying the above rule. In
simple words, under the specific constraint when we add P (x) to a KB, we have
to add also Q(x) as a side-effect. This is the essence of a side-effect; a set of
elementary operations, i.e. an update triggered by an elementary operation (or a
set of them) due to the existence of a rule. Notice that the contents of a component
set not only are updates, as we have discussed, but are updates that should be
possibly enforced upon our KB in case the rule containing them is threatened. In
order to pay respect a specific rule, each KB, has to imply at least one component
of this rule’s component set. Otherwise we are obliged to add at least one these
components as an update to our belief set. Notice as updates, the components
themselves could trigger another rule to be violated and subsequently more side-
effects and so on.

The components of the a rule, might be many in amount, and so there would
be many possibilities in order for a change, that violated this rule, to be realized.
In the previous example the rule could be c = P (x) → Q(x) ∨ R(x), which
would alter our reaction; when adding P (x) we would have to add Q(x) or R(x)
as a side-effect. Hence, we now that side-effects are encapsulated inside the rule’s
themselves (actually their component set variant). We now have to set up a mecha-
nism that exploits this property of component sets acknowledging all the different
side-effects and enforcing the “best” of them according to a preference parameter-
ization.

Cost of Updating

Actually, when a set of changes (i.e., an update U) is enforced upon a KB K, we
would like to know the number and type of elementary operations that are required
in order for the changes to be performed. In effect, what is the cost of the above raw
application; what changes are needed. We are, firstly looking upon a formalism
which would encapsulate the cost of the raw application of an update, although
this cost may be increased if side-effects are taken into account. For example,
the addition of P (x) in K could violate an integrity constraint, thus forcing us,
in turn, to add (or remove) another predicate in order to preserve the integrity of
the KB. Such additional changes are called side-effects and they are not taken into
account in the calculation of cost. In fact, we will later use this formalism in order
to provide a rational mechanism that estimates those side-effects which unified

52

together with the update (as if it were parts of it all along) will produce the most
desirable (profitable) cost when this reformed update is raw applied to our initial
KB.

This cost we try to formulate (of raw applying U to K) will be denoted by
Cost(K, U) and is a set of positive and negative ground facts (i.e., an update).
Notice that this cost is determined by the number of operations that really need
to be performed. For example, if we are asked to add P (x) in K and P (x) is
already in K, then there is no cost for this operation; similarly, if we are asked
to add ¬P (x) to K (i.e., remove P (x) from K) and P (x) is not in K, then this
operation has no cost, or more correct: the cost is the empty set. Using the above
observations, we define:

Def. 3. Cost(K, U)={P (x) ∈ L+ | P (x) ∈ U and P (x) /∈ K} ∪ {¬P (x) ∈ L−

| ¬P (x) ∈ U and P (x) ∈ K}
Using the properties of belief sets, we can equivalently rewrite this as follows:

Cost(K, U) = {P (x) ∈ U |K 0 {P (x)}}

This cost represents a particular “edit distance” or “delta”between the belief set
K and the belief set that occurs after raw applying the changes U to K. A first
observation on our definitions is that Cost(K,U) produces the same result with
U , when applied on a KB. This is synopsized in lemma 2.

Lemma 2. Consider K a valid belief set and U a consistent update. It holds:

K + U = K + Cost(K, U)

Proof:

K + Cost(K, U) =
{P (x) ∈ L+|P (x) ∈ K ∪ Cost(K, U) and ¬P (x) /∈ Cost(K, U))} =

{P (x) ∈ L+|(P (x) ∈ Kor(P (x) ∈ UandK 0 {P (x)})) and

(¬P (x) /∈ {P (x) ∈ UandK 0 {P (x)}})} =
{P (x) ∈ L+|(P (x) ∈ K ∪ Uand(P (x) ∈ Kor P (x) /∈ K)) and

(¬P (x) /∈ {P (x) ∈ UandP (x) /∈ K})} =
{P (x) ∈ L+|P (x) ∈ K ∪ U and ¬P (x) /∈ {P (x) ∈ UandP (x) /∈ K}} =

{P (x) ∈ L+|P (x) ∈ K ∪ U and ¬P (x) /∈ U =

= K + U¥

53

Note also, that the cost function is an operator which given an update and a KB,
keeps only the meaningful operations, i.e, those that are non already implemented
(implied) by the KB. Lemma 3 states that any part of the update is not contained in
Cost(K, U) iff it is not implied by K, and also that since Cost(K,U) is already
“irredundant” of void changes, then if we apply Cost on itself will get back the
same result. Third part of lemma 3 informs us that different updates which result
in same KB, have the same (unique) cost.

Lemma 3. Consider U a consistent update, P (x) ∈ U , and K a valid belief set.
It holds:

(a) P (x) /∈ Cost(K,U) iff K ` {P (x)}
(b) Cost(K,U) = Cost(K, Cost(K,U))

(c) Cost(K,U) = Cost(K, U ′) iff K + U=K + U ′

Proof:

(a) P (x) ∈ U , so if P (x) /∈ Cost then (by definition of Cost) K ` P (x),
as if it was not, then P (x) would be a part of cost. On the other way round, if
K ` {P (x)} then again by definition of Cost the P (x) cannot be a part of it.

(b) Consider some P (x) ∈ Cost(K, U). Then P (x) ∈ U , K 0 {P (x)} and
P (x) ∈ Cost(K,U), so P (x) ∈ Cost(K, Cost(K, U)). Now consider some
P (x) ∈ Cost(K, Cost(K,U)). Then P (x) ∈ Cost(K, U) by definition. Thus:
Cost(K, U) = Cost(K,Cost(K, U)).

(c) Suppose Cost(K, U) = Cost(K, U ′) then K + Cost(K, U) = K +
Cost(K, U ′) and according to lemma 2(a) it holds that K + U = K + U ′. If
on the other hand K + U = K + U ′ then :

If P (x) ∈ Cost(K, U) then P (x) ∈ U and K 0 {P (x)}; moreover ¬P (x) /∈
U . This means that if P (x) is a positive ground fact then P (x) ∈ K + U , but if
P (x) is a negative ground fact, then ¬P (x) /∈ K + U ; in either case: K + U `
{P (x)}, so (as K + U = K + U ′) K + U ′ ` {P (x)}. For P (x) to belong to
U ′ it remains to show that P (x) ∈ U ′. If P (x) is a positive ground fact, then
P (x) ∈ K + U ′ so P (x) ∈ U ′ (since P (x) /∈ K). If, on the other hand, P (x) is
a negative ground fact, then ¬P (x) /∈ K + U ′; therefore, ¬P (x) ∈ K (from that
K 0 {P (x)})and ¬P (x) /∈ K +U ′, so P (x) ∈ U ′. Therefore P (x)inU ′. Entirely
symmetrically we show that if P (x) ∈ Cost(K,U ′) then P (x) ∈ Cost(K,U).
Thus, Cost(K,U) = Cost(K, U ′)¥

54

4.2 Selection Mechanism

Considering an update operation U , which when being enforced on K might cause
some side-effects U ′, the set of changes that should be performed in this case is
U ∪ U ′, i.e., the direct effects (U), expanded with the side-effects (U ′). We can
estimate the total cost for this cases that is Cost(K,U ∪ U ′).

Now suppose an update U which can have two possible (alternative) sets of
side-effects U1 and U2. This could happen if the violation of an integrity constraint
could be resolved in more than one ways. Which set of side-effects should be
selected for application? The answer seems obvious: the one that is less costly.
To determine the “less costly” one, we need a method to compare the two updates
U∪U1 and U∪U2. Actually given such a method we can compare the cost operators
Cost(K, U ∪ U1) and Cost(K,U ∪ U2), which are themselves also updates (in
effect equivalent to the above according to lemma 3) but which contain non-void
changes, thus better “measuring” the effects of U ∪ U1 and U ∪ U2.

In general, we need an ordering ≤ between updates; for technical reasons,
this ordering should depend on K itself. This is true because the same set of
operations may have different “weight” or cost in different KBs (even if they have
the same side-effects). As an example in RDF, consider the removal of an IsA
relation between A and B. The importance (i.e., cost), and in fact the effects and
side-effects (i.e., Cost), of this IsA removal should depend on the importance of
the concepts A, B in the RDF graph itself.

Since the ordering depends on K, we use the more adequate symbolism ≤K .
The set of all orderings {≤K |K : KB} is called an ordering scheme and will be
denoted by ≤. This ordering is defined among updates only.

An update-generating ordering scheme allows us to determine for all K and for
all possible sets of effects and side-effects U1, U2, ... the one that is the “cheapest”,
as the relation is transitive and all costs are comparable (totality), and even in the
case that more than one “cheapest” updates may exist, these will have the same set
of actual effects (Cost antisymmetry). In addition, conflict Sensitivity identifies the
cost of a certain update with the actual changes required upon the KB. This way,
void changes do not affect the cost of a change. Finally, monotonicity encodes the
intuitively expected property that “more” changes are more expensive than “less”
changes.

Def. 4. An ordering ≤K is called update-generating iff the following conditions

55

hold:

Cost Antisymmetry :
For any U,U ′ : U ≤K U ′ and U ′ ≤K U,

implies Cost(K, U) = Cost(K, U ′).
Transitivity :

For any U,U ′, U ′′ : U ≤K U ′ and U ′ ≤K U ′′

implies U ≤K U ′′.
Totality :

For any U,U ′ : U ≤K U ′ or U ′ ≤K U.

Conflict Sensitivity :
For any U,U ′ : U ≤K U ′ iff Cost(K,U) ≤K

Cost(K,U ′).
Monotonicity :

For any U,U ′ : U ⊆ U ′ implies U ≤K U ′

Similarly, an ordering scheme {≤K |K : KB} is called update-generating iff ≤K

is update-generating for all KBs K.

4.2.1 Deltas

As we have observed the Cost function is a kind of edit distance between the initial
and the resulting belief of an update. Note here that Cost(K, U), is the “distance”
between K and K + U , not between K and U . This latter observation can be used
to invent a little trick:

Suppose that:
1. K = {P (x)}
2. K1 = {Q(x)}
3. K2 = {P (x), Q(x)}
Viewing K1, K2 as beliefs, we notice that K2 can be taken from K by the

simple addition of Q(x) in K; on the other hand, getting K1 from K requires two
operations, namely to remove P (x) and to add Q(x). So, we would expect that
K2 is closer to K than K1. However, Cost(K, K1)=Cost(K,K2)={Q(x)}, so by
monotonicity and conflict sensitivity we get that K1 ≤K K2 and K2 ≤K K1.

In fact, the ordering defined cannot be used directly to determine the distance
between two belief sets. ≤K encodes the cost of performing a certain number

56

of operations upon K. It determines the distance between the initial set and the
resulting sets coming up from the application of the two belief sets on the original.
If we had viewed K1 and K2 as updates upon K, they would have the same cost,
as they practically enforce upon K the exact same operations. However, getting to
K1 from K is a different thing than applying K1 upon K. Given an initial KB K
and an update U Cost(K,U) gives us the delta of K to K + U . We would find
useful an operator which given two belief sets K and K ′, would return us their
delta; a specific update U ′ for which K ′ = K + U ′. In addition we would prefer
to have not U ′ but U ′ without its void changes on K, i.e., Cost(K, U ′)

Def. 5. We define the delta of two KBs K, K ′ as follows:

Delta(K, K ′) = {P (x) ∈ L+|P (x) ∈ K ′ and P (x) /∈ K} ∪
{¬P (x) ∈ L−|P (x) ∈ K and P (x) /∈ K ′}

Using the properties of beliefs we can equivalently rewrite this as follows:

Delta(K, K ′) = P (x) ∈ L0|K ′ ` {P (x)} and K 0 {P (x)}

Delta(K, K ′) encodes the cost of the change request that should be applied
upon K in order to get to K ′. Notice that Delta(K, K ′) is an update. While
we could have defined it elsewise, with respect to cost, we preferred the above
definition of delta for theoretic symmetry and compatibility with a complementary
to ours work, published in [89]. In this work the author’s exhibit several nice
properties of the same definition of delta between two KBs (and in fact they map
this work on RDF/S, as we will also do later). Delta set correctly encodes the
distance between two beliefs, because it contains the exact changes that should be
performed upon a belief K to get a new belief K ′, as seen in lemma 4.

Lemma 4. For U a consistent update and K a KB, it holds that:

(a) K + Delta(K, K ′) = K ′

(b) Delta(K,K + U) = Cost(K, U)

(c) If a KB K ′ ` U then Cost(K, U) ⊆ Delta(K, K ′)

Proof:

(a) Take some P (x) ∈ K ′. Obviously P (x) is a positive ground fact and
K ′ ` {P (x)}, K ′ 0 ¬P (x). Thus: ¬P (x) 0 Delta(K, K ′). If P (x) ∈ K,
then P (x) ∈ K + Delta(K, K ′). If P (x) /∈ K, thenK 0 {P (x)}, so P (x) ∈

57

K + Delta(K, K ′). Suppose now that P (x) /∈ K ′. If P (x) is not a positive
ground fact, then obviously P (x) /∈ K + Delta(K, K ′), so let’s consider the
case that P (x) is a positive ground fact. Then, K ′ ` {¬P (x)}, K ′ 0 {P (x)}.
If P (x) ∈ K, then K 0 {¬P (x)}, so ¬P (x) ∈ Delta(K,K ′), so P (x) /∈
K +Delta(K, K ′). If P (x) /∈ K, then, since P (x) /∈ Delta(K, K ′) we conclude
that P (x) /∈ K +Delta(K,K ′). These facts imply that K +Delta(K,K ′) = K ′.

(b) If P (x) ∈ Cost(K,U) then P (x) ∈ U and K 0 {P (x)}; moreover
¬P (x) /∈ U . This means that if P (x) is a positive ground fact then P (x) ∈ K +U ,
but if P (x) is a negative ground fact, then ¬P (x) /∈ K + U ; in either case:
K+U ` {P (x)}, so P (x) ∈ Delta(K,K+U). If P (x) ∈ Delta(K, K+U) then
K 0 {P (x)} and K + U ` {P (x)}. It remains to show that P (x) ∈ U . If P (x) is
a positive ground fact, then P (x) ∈ K +U so P (x) ∈ U (since P (x) /∈ K). If, on
the other hand, P (x) is a negative ground fact, then ¬P (x) /∈ K + U ; therefore,
¬P (x) ∈ K (from that K 0 {P (x)})and ¬P (x) /∈ K + U , so P (x) ∈ U .

(c) Take some P (x) ∈ Cost(K,U). Then K 0 P (x); moreover P (x) ∈ U , so
K ′ ` P (x). Thus, P (x) ∈ Delta(K,K ′).¥

Now, in order to determine whether K1 is closer to K than K2, we need
to determine whether the operations required to get to K1 from K are cheaper
than the operations required to get to K2 from K. This is equivalent to com-
paring Delta(K, K1) with Delta(K, K2) and whenever we want to determine
whether K1 is closer to K than K2, we will determine whether Delta(K, K1) ≤K

Delta(K, K2) or vice-versa, thus estimating whether Cost(K, U1)≤K Cost(K, U2)
for K + U1 = K1 , K + U2 = K2.

4.2.2 Rational Change Operator

One of the most important properties that an update operation should satisfy is to
actually perform the changes that is asked to perform. This is guaranteed even
with the raw application of U upon K. Additionally, an update operation should
guarantee that the result is a valid KB; this is not guaranteed by the raw application
of U upon K, but can be achieved by introducing a set of side-effects to the original
update effects. For some updates however, these two requirements are conflicting.
It is possible that there is no adequate set of side-effects guaranteeing that at the
end of the process the resulting belief set will be valid. Such changes cannot be
implemented.

Def. 6. An update U is called feasible iff there is some KB K such that K ` U .

58

For an infeasible update, there is some rule where all its components are forced
not to implied by the KB. Notice that an inconsistent update is infeasible.

We are now ready to formally define a change operator:

Def. 7. A change operation (denoted by •) is a function • : L+ × L0 → L+.

In effect, a change operation is applied upon a belief set and an update and
returns a new belief set. We will use infix notation to denote change operations
(i.e., K • U). Not all change operations are interesting, as we would like to add
some nice properties to the one we will use:

Def. 8. Consider a FOL language < L, Cn >, a set of integrity constraints C
and some update-generating ordering scheme ≤. A change operation K • U will
be called rational with respect to ≤ iff it satisfies the following properties for all
belief sets K and updates U :

• Limit Cases: If K is not a KB or U is not a feasible update, then: K•U = K.

• General Case: If K is a KB and U is a feasible update, then:

– Primacy of New Information: K • U ` U

– Consistency Maintenance: K • U is a KB

– Principle of Minimal Change: For all KBs K ′ such that K ′ ` U , it
holds that Delta(K,K • U) ≤K Delta(K, K ′)

Definition 8 dictates that applying a rational change operator between an up-
date and a KB should result (in the general case) to a valid KB, which implies the
update (i.e., the changes are successful). Moreover, for any other KB K ′ that could
be an alternative result (i.e, K ′ is implementing the changes and is valid) the set of
(non-void) side-effects leading to K ′ (captured by the Delta function) is more “ex-
pensive” than the set of (non-void) side-effects leading to the result of the rational
change operation. In effect, the rational change operator applies the “minimum”,
with respect to ≤, set of side-effects. Some results on Def. 8 follow.

Lemma 5. Consider a FOL < L, Cn >, a set of integrity constraints C and an
update-generating ordering scheme ≤, there is exactly one rational update oper-
ation because there is one minimum by the definition of ≤K (totality and Cost
antisymmetry).

Proof:
Consider an update U and a KB, there is always one rational change operation
(by definition) if U is infeasible, as K • U = K (limit case). If U is feasible then

59

there is a KB K ′ which K ′ ` U . Now consider any change operation ’?’ for which
K ? U = K ′. Obviously for K ? U the first two properties of the rational change
operation definition hold and if there is no other KB that implies U , the third prop-
erty also holds and so ’?’ is a rational change operator. If there is a second different
than K ′, KB K ′′ ` U , then we can define another change operation K ¦ U = K ′′.
Now, for Delta(K,K ? U) and Delta(K,K ¦ U) it must hold either that one of
them is cheaper than the other in terms of ≤K (because of totality) or they are
equal (by Cost antisymmetry). In any occasion if the update is feasible (so there is
a change operator which satisfies the first two properties), there also is one opera-
tor ’•’ which produces the minimal Delta(K,K •U) thus satisfying also the third
property of the definition and being a rational change operator. So there exists at
least one rational change operation for every language, set of integrity constraints,
and update-generating ordering scheme.

Suppose that there are two different rational change operators with respect to
the same update-generating ordering scheme ≤. We represent them ’•’ and ’?’
respectively. For a specific feasible update U let K1, K2 be the results of the cor-
responding change operations on K. In effect, K • U = K1 and K ? U = K2.
We have that K • U = K1 and that K2 ` U (primacy of new information), there-
fore by the principle of minimal change Delta(K, K • U) = Delta(K,K1) ≤K

Delta(K, K2). Symmetrically since K ? U = K2 and K1 ` U ,by the same
principle we have that Delta(K, K ? U) = Delta(K, K2) ≤K Delta(K, K1).
However, by the Cost antisymmetry property of the ordering it must be the case
that Delta(K, K1) = Delta(K, K2), which by definition of Delta gives us that
K1 = K2. Thus, K •U = K ? U . Concluding there is exactly one rational update
operation. ¥

Lemma 6. Given a FOL < L,Cn >, a set of integrity constraints C and two
KBs, K, K ′, there is some update U such that for all ≤ and its associated rational
update operation ’•’ it holds that K • U = K ′.

Proof:
Let U = Delta(K, K ′). It holds that K ′ is a KB and by the Delta definition
K ′ ` U . So the first two properties of the rational change operation hold. In
addition by lemma 4(a) it holds that K + U = K ′. Now for a specific ordering
scheme ≤ consider a change operation K •U = K ′. We must show that this is the
rational change operation w.r.t to ≤, so we must prove that for any KB K ′′ ` U it
holds that Delta(K, K • U) ≤K Delta(K, K ′′) . We have that K + U = K ′ =
K • U and lemma 4(c) tell us that Cost(K,U) ⊆ Delta(K,K ′′).By lemma 4
Cost(K, U) = Delta(K, K + U), so Delta(K,K + U) = Delta(K, K • U) ⊆
Delta(K, K ′′). Lastly, by monotonicity of the ordering we have Delta(K,K •U)

60

≤K Delta(K, K ′′). Therefore • is a rational change operator.¥

Lemma 6 states that, regardless of the ≤ defined, the user can always get the
desired result (K ′), starting from a KB K; an update resulting to any desired KB
is guaranteed to exist. This, in turn, means that the user can always override the
default behavior of the algorithm if she wants to, regardless of the order at hand
and the starting KB. This is a very important property, because examples can show
that no behavior is optimal (intuitively) for any type of change.

4.3 Algorithm

Consider a language < L, Cn >, a set of constraints C and an update-generating
ordering scheme ≤. Our general algorithm takes as input a belief K and an update
U . The first step of the algorithm is to determine whether its inputs are ok (i.e.,
K is a belief and U is an update). If not, return an error message and exit. Then,
we must check whether K is a KB. This can be done easily by verifying that the
rules are satisfied. If K is not a KB, then return K with an error message and exit.
Finally, we must check that U is a feasible update.

In the following, we will assume that the first two checks have been made, so
the algorithm will take for granted that K is a KB and U is an update (which may
be feasible or not). We will need one special function “min” which takes as input
two updates and returns the one which results in a belief closest to K (per the order
≤K). We will use a special cost constant, INFEASIBLE, to denote infinite
cost; infinite cost will be used to identify sequences of effects and side-effects that
cannot possibly lead to an acceptable result (KB). The function min should return
INFEASIBLE iff both updates in its input are INFEASIBLE (if only one
is, it returns the other). If more than one updates are “preferable”, one is selected
arbitrarily; the actual selection makes no difference, as, due to conflict sensitivity
and Cost antisymmetry, the actual cost is the same and the result of applying the
two “different” updates upon K is the same as well.

Our algorithm is divided into two modules, namely the main algorithm (or
general update algorithm) and the update function. The main algorithm, seen in
table 4.1 takes K and U as input and returns K ′ = K • U , where • is a rational
change operation for the given language (< L, Cn >), constraints (C) and update-
generating order (≤). This algorithm is a very simple frame surrounding our major
mechanism and core of our work: the update function (table 4.1). The update
function is returns the Delta(K,K + U) or else the Cost(K, U ∪ U ′) where U ′

are the “cheapest” with respect to K side-effects of U . The main algorithm simply
raw applies this Delta (if applicable) to the initial KB, and we will omit detailed

61

Table 4.1: General Update Algorithm

STEP Main1: Set U ′ = ∅
STEP Main2: Set Delta = Update(U,K,U ′)
STEP Main3: If Delta = INFEASIBLE, then return K and an error message
STEP Main4: Delta 6= INFEASIBLE, then return the belief set K+Delta

further discussion on it; note that subsequently unless otherwise stated, the term
“algorithm” will refer to the Update function.

Update function takes as input the same inputs as the main algorithm plus two
more; firstly, the set of effects and side-effects that have been already considered
(ESE) this parameter is the empty set initially. It also takes the best (per≤K)result
so far found (B), in order to avoid estimating more “costly” ones. B is initially
set to INFEASIBLE, this is necessary so as for the algorithm to know that B
is initially unset and therefore cannot compare a result to it; the algorithm sets
the first outcome to B and subsequently comparing all the rest to B keeping the
minimum each time. Function “min” represents the implementation of a specific
ordering ≤K . The output of Update is the full set of effects and side-effects that
the current thread of execution has generated.

As it can seen a specific implementation of the algorithms would be parameter-
izable to any update and initial KB, in fact, the framework itself is parameterizable
to different orderings through different implementations of “min” function; more-
over the set of rules over which our algorithms iterate corresponds to setting the
framework for updating based on a different validity model. Therefore our frame-
work is tunable in multiple ways. It supports different change strategies (through
different orderings), different sets of integrity constraints as also any arbitrary set
of update operations.

Update function is a recursive process and it starts by detecting whether the
current process thread leads to an infeasible result (step 1); this is true iff:

(a) the remaining update operations contradict or are more expensive than the
ones that have been already made, or

(b) the remaining update operations are more expensive than a solution of this
specific update request already computed.

If so, the algorithm cancels this thread, as it clearly cannot lead to an accept-
able (a) or profitable (b) result. Notice that a call to the update might return
INFEASIBLE even in the case that the update is not infeasible, but is provably
more expensive than an alternative one. We use this trick and consider infinite the
cost of an expensive update in order to reject it (when having a better alternative).

62

Table 4.2: Update Function

STEP1: If U ∪ ESE is inconsistent or min(Cost(K,U \ ESE), B) == B return
INFEASIBLE.
STEP2: If (K ∪ ESE) ` U , then return ∅
STEP3: Take an arbitrary ground fact P (x) ∈ U \ ESE such that K 0 {P (x)}
STEP4: Find a rule r, and Select tuple of constants ~y for which ¬P (~y) ∈ V and
V ∈ Comp(r, ~y) and for all V ′ ∈ Comp(r, ~y), V 6= V ′ it holds that V ′ * U ∪ ESE.
STEP5: If there is no such rule, then return {P (x)} ∪ Update(U,K, ESE ∪
{P (x)}, B).

STEP6: Otherwise, select (arbitrarily) one such rule, say r and for all
V ′ ∈ Comp(r, ~y), V ′ 6= V :
STEP6.1 : If B == INFEASIBLE then B :=

{Update(U ∪ V ′,K, ESE,B)}
STEP6.2 : Else if B 6= INFEASIBLE then B :=

min(B, {Update(U ∪ V ′,K, ESE,B)})
STEP7: Return B

In step 2, the algorithm detects whether the current thread of execution needs
to stop; this is true iff the remaining operations (parameter U) are implied by the
initial KB or ESE, so no further operations need to be executed.

If both these tests fail, then more operations need to be executed. A particular
effect from the “to-do list” (i.e., U) is selected (step 3) and verified against the
rules (step 4). If no rule is violated by the execution of this effect (step 5), then the
effect is added to the “Delta” of this particular thread of execution (to be returned
to the caller), the effect is added in the “done list” ESE) and the Update function
is called recursively to consider new parts of the update. Notice that in step 5 it is
assumed that X ∪ INFEASIBLE = INFEASIBLE for any set X.

On the other hand, if there is some rule that is violated, then we identify each
possible way to restore the rule violation, and spawn a new thread of recursive ex-
ecution for each of the different alternative side-effects (step 6). This is done by
adding each candidate side-effect in the “to-do list” (U) and calling the Update
function recursively once for each such candidate; we do this sequentially and we
compare a returned threads with the minimal so-far (per <), that minimal one is
selected and returned to the caller (step 7). Notice again that if one of the threads
returns the special value INFEASIBLE, then this thread is by default consid-
ered to have maximal “cost”, and is ignored in taking the minimum; if all threads
return INFEASIBLE, then the same value is returned to the caller.

63

4.3.1 Termination and Efficiency

Notice that in certain cases, there may be an infinite number of V ′ that satisfy
the conditions of step 6 as the existential quantifier in the DEDs might result in a
Comp set of infinite width. Consider for example ∀P (x) → ∃yiQ(yi). This turns
out to the set Comp(c, u) = {{¬P (x)}, {Q(y1)}, {Q(y2)}, ...}. Since it is the
infinite number of constants symbols in our language which causes this problem,
we provided a function, namely Select in STEP4 of our framework, which could
be used to overcome it. When adjusting our framework to a particular setting, one
could choose to materialize Select in such a way that would select provably less
“costly” components of Comp(c, u) bounding the latter in a finite set. Such an
example appears in chapter 5 where we tune our framework for a specific language
(the RDF/S). We thereby, based slightly on a property of our ordering, prove that
for our particular rules it is pointless for the algorithm to examine (in STEP4) all the
constants of our language, as we know the best solution is among a priori known
finite sets of constants.

Except the above case, (where the determination of the minimum would take an
infinite amount of time) our algorithm suffers from one more problem related to ter-
mination and this is also related to the infinite number of constants in our language;
when bounding the variables of a Comp family to Comp(c, ~x) instantiations, any
free variables in ~x cause infinite such instantiations. Consider for example the rule
with components Comp(c, ~x) = {{¬P (u)}, {Q(y)}}. Here ~x = (u, y); so, when
we have {P (z)} as an update the rules violated are all the instances of the above
rule family ∀~(x), i.e.,∀y(z, y); which are infinite. This fact would result to an “in-
finite depth” in our algorithm, i.e, an infinite number of recursive calls to Update
for all different rule instances. Again with the Select function of STEP4, any
implementation of our framework, could choose to examine those rule instances
which are actually violated. More discussion on this issue will take place also in
chapter 5, where we bound the set of selectable constants of STEP4 to a finite size
for our particular setting.

Lemma 7. Given an update U, a KB K, and ESE = ∅, under a finite set
of constants in the assumed language L, the algorithm of table 4.2 termi-
nates.

Proof:

Consider a random run (say nth) of the update function; it returns infeasible,
terminates or processes to the third step. Our goal towards the proof is to point
out that as recursive calls are executed the predicates allowable for selection at
STEP3 will becoming lesser. At STEP3 a ground fact, say P (~x), is selected from

64

U \ ESE.
If P (x) does not violate any rule, we proceed to STEP5 where the predicate is

added to ESE and Update function is re-called. From this point and on the same
predicate cannot be selected at STEP3 of any subsequent calls.

On the other hand, if there is a rule instance violated this means that there is
a Comp(c, ~y), for which ¬P (~x) ∈ V and V ∈ Comp(r, ~y) and for all V ′ ∈
Comp(r, ~y), V 6= V ′ it holds that V ′ * U ∪ESE. Now at STEP6 all these V ′ will
be added to update, opening the respective branches of execution and comparing
them upon return. Note that under a finite number of constants there is a finite
number of V ′ that this particular Comp(c, ~y) contains.

Let us examine one of these finite branches; the specific V ′ which restores the
aforementioned rule instance is now a part of U .

Therefore if this branch does not return INFEASIBLE, there is a particular
Update run (in one of subsequent calls), say mth, wherem > n, in which P (~x)
will be selected in STEP3. This is certain as if not, this would mean that P (~x) ∈
ESE in STEP3, which would in turn mean that P (~x) was selected in a previous
call (after nth), did not violate any rules and made it to ESE at STEP5. However
we defined the mth call to be this one.

When P (~x) is selected, during mth call, it is checked against rule instances
it might violate. Note that it cannot violate Comp(c, ~y) for the aforementioned ~y
again, as V ′ is a part of U, thus V ′ ⊆ U ∪ ESE, spoiling the last condition of
STEP4.

Therefore if P (~x) violates any rule, this would be a new rule instance, and this
will be restored by adding one of its components in the update in STEP6. Based
on the inclusion of a solution to a specific rule instance, we can see that the same
ground fact will never break again the same rule instances in subsequent calls.

A key observation at this point is that under a finite number of constants, there
is a finite number of rule instances (i.e., under a finite number of tuples of constants
~a there is a finite number of Comp(c,~a)). So, as the algorithm continues (and
continuing to assume that it doesn’t return infeasible), there will be a call, where
ground fact P (~x) will be selected and as not violating any rule instances and will
be added to ESE to start a new branch of calls at STEP5.

From that point and on any runs of the algorithm will contain P (~x) in the ESE,
not allowing it to be selected again.

Concluding as the algorithm runs, and if not all branches return INFEASIBLE,
the allowable predicates to be selected will becoming lesser. At some point, all the
predicates of U, will be unaible to be selected, by the condition of STEP3, which
means the the corresponding runs will return at STEP2. Thus, under a finite num-
ber of constants, the algorithm terminates. ¥

65

4.3.2 Complexity

Clearly as the algorithm is a brute force algorithm its complexity is exponential.
Even with the pruning done by the maintenance of the best result so far (i.e, vari-
able B of our algorithm), the algorithm in the worst case will find the best solution
last. For each predicate of update it checks all instances of the rules (each rule
instantiated for every possible variable combination) and when found one rule vio-
lated it opens a new branch for each part of it. The new branch re-examines all rule
instances and could examine also again the same rule this branch was opened to sat-
isfy; although for a different predicate. Therefore a detailed complexity analysis of
the algorithm depends on the particular setting this is instantiated; on the language,
and integrity constraints used and could also be affected by the implementation of
the Select and “min”(ordering) functions.

This framework is very generic and applicable to every possible FOL, set of
constraints and update-generating ordering scheme. When tuning it one should
take into account the peculiarities of the particular setting in which this algorithm
is applied and prune a part of the recursive calls required; this would guarantee
efficiency and termination.

4.3.3 Results

In all the following lemmata and propositions, we consider a particular run of the
above algorithm, with inputs K, U , such that K is a KB.

We also assume that the very first call to Update (that initiates the recursion) is
of the form Update(U,K, ∅) and during that same step we verify that U is consis-
tent. If it is not, the algorithm will return INFEASIBLE immediately. There-
fore our findings below take for granted that during execution and after the first
step the updates are consistent. Lastly, note that we don’t consider any special im-
plementation for the Select function of STEP4; we assume it returns any constant
of our language arbitrarily.

Now take any particular sequence of recursive calls to Update. We will assume
that these calls are of the form:
Update(U1,K, ESE1, B1),
Update(U2,K, ESE2, B2),
...
By our assumptions: U1 = U , ESE1 = ∅, B1 = INFEASIBLE. All the
lemmata below are regarding to the Update function.

Lemma 8. Consider some terminating sequence of recursive calls of length n that
does not return INFEASIBLE. Then, P (x) ∈ Ui for some i = 1, 2, ..., n
implies K + ESEn ` {P (x)}.

66

Proof:
Take some P (x) ∈ Ui. Obviously, Ui ⊆ Un ⊆ and K ∪ ESEn ` Un ` Ui,
by STEP2, since the sequence terminates and does not return INFEASIBLE,
so K ∪ ESEn ` {P (x)}. If ¬P (x) ∈ ESEn then Un ∪ ESEn inconsistent,
so the sequence would return INFEASIBLE, by STEP1; a contradiction. So
¬P (x) /∈ ESEn. Thus, if P (x) ∈ L+, then P (x) ∈ K + ESEn by the definition
of ‘+’ so K + ESEn ` {P (x)}. If P (x) ∈ L−, then K ∪ ESEn 0 {¬P (x)},
implies that ¬P (x) /∈ K + ESEn, so K + ESEn ` {P (x)}.¥

Lemma 9. Consider some terminating sequence of recursive calls of length n that
does not return INFEASIBLE. Then, K + ESEn is a KB.

Proof:
Set K ′ = K + ESEn. Suppose, for the sake of contradiction, that there is some
constraint c ∈ C that is not satisfied by K ′. Then, there is some constant (or tuple
of constants) x, such that for all V0 ∈ Comp(c, x): K ′ 0 V0. For this particular
pair (c, x), since K is a KB, there is some V ∈ Comp(c, x) such that K ` V .
Therefore, for this V it holds that K ` V , K ′ 0 V , so there is some ground
predicate, say Q(y) ∈ V for which K ` {Q(y)}, K ′ 0 {Q(y)}. If Q(y) ∈ L+

then Q(y) ∈ K, Q(y) 0 K ′=K + ESEn, so ¬Q(y) ∈ ESEn. If Q(y) ∈ L−.
then ¬Q(y) /∈ K, ¬Q(y) ∈ K ′=K + ESEn, so ¬Q(y) ∈ ESEn. In either case,
¬Q(y) ∈ ESEn, so ¬Q(y) was added in STEP5 in some call, say the jth call.

Thus, in the jth call it holds that ¬Q(y) ∈ Uj \ ESEj) and K 0 {¬Q(y)}
Furthermore, as we said Q(y) ∈ V , V ∈ Comp(c, x), so, since STEP5 was ex-
ecuted, for the particular constraint c and constants x it holds that there is some
V ′ ∈ Comp(c, x), V 6= V ′ for which V ′ ⊆ Uj ∪ ESEj . Take any P (x) ∈ V ′. If
P (x) /∈ Uj then P (x) ∈ ESEj , so P (x) was added in a previous call, say the ith

call, so in the ith call the following was true: P (x) ∈ Ui \ESEi and K 0 {P (x)}.
Thus, P (x) ∈ Ui ⊆ Uj , a contradiction. Thus for all P (x) ∈ V ′ it holds that
P (x) ∈ Uj , so by the previous lemma, K ′ ` {P (x)}. Thus, K ′ ` V ′, which
contradicts our initial hypothesis.¥

Lemma 10. Consider some terminating sequence of recursive calls of length n that
does not return INFEASIBLE. Then ESEn=(∪Ui)\{P (x)|K ` {P (x)}}=Un\
{P (x)|K ` {P (x)}}.

Proof:
Firstly, notice that by steps 3, 4, 5, once a ground fact is added to U, it cannot
later be removed from U (even though it can be re-added). Therefore (∪Ui)=Un.
Consider some P (x) ∈ ESEn. By steps 3, 5 it is obvious that once a ground fact
is added to ESE, it cannot be later removed from ESE, nor re-added to ESE.

67

We conclude that there is some j such that P (x) was added to ESE in the jth

call, so in that call it was the case that P (x) ∈ Uj \ {P (x)|K ` {P (x)}} ⊆
(∪Ui) \ {P (x)|K ` {P (x)}}. Thus: ESEn ⊆ (∪Ui) \ {P (x)|K ` {P (x)}}.
For the opposite inclusion, consider any P (x) ∈ Un \ {P (x)|K ` {P (x)}} then
P (x) ∈ Un and K 0 {P (x)}. Since the sequence terminates after n calls and does
not return INFEASIBLE, by lemma 8 it follows that K + ESEn ` {P (x)}.
Since K is a KB and ESEn an update it follows. by definition 2, that P (x) ∈
K ∪ ESEn and ¬P (x) /∈ ESEn. Since K 0 {P (x)}, P (x) /∈ K but P (x) ∈
K ∪ ESEn so, P (x) ∈ ESEn and the proof is complete.¥

Lemma 11. Consider any KB K and any update U . Suppose that there is some
KB K ′, such that K ′ ` U . Suppose also that, by running the above algorithm with
inputs K, U , the algorithm terminates. Then, there is some terminating sequence
of recursive calls of finite length (say n) that does not return INFEASIBLE, for
which Delta(K, K + ESEn) ≤K Delta(K, K ′).

Proof:
By lemma 4 it holds that Cost(K,ESEn) = Delta(K,K+ESEn) and Cost(K, U)
⊆ Delta(K, K ′). Take any P (x) ∈ Delta(K, K ′). If there is some constraint
c ∈ C, some (tuple of) constants y and some V ∈ Comp(c, y) such that ¬P (x) ∈
Comp(c, y), then, since K ′ is a KB, there is some other V ′ ∈ Comp(c, y), V ′ 6= V
such that K ′ ` V ′.

We will denote by S0 the union of all such V ′ for all P (x) ∈ Delta(K, K ′)
and all constraints and (tuples of) constants for which the above condition is true.
We set S = Delta(K, K ′) ∪ S0. Obviously, K ′ ` Delta(K,K ′) and K ′ ` S0, so
K ′ ` S. Now consider the sequence of recursive calls in which, the V ′ followed
(chosen) in step 6 is one of the V ′ that comprise S, whenever possible. We will
show that for this sequence, ESEn ⊆ S.

By lemma 10 ESEn = (∪Ui) {P (x)|K ` {P (x)}}, so it suffices to show
that for all i = 1, 2, ..., n it holds that Ui \ {P (x)|K ` {P (x)}} ⊆ S. We
will use recursion to show this. For i = 1, U1\ {P (x)|K ` {P (x)}} = U \
{P (x)|K ` {P (x)}} ⊆ Cost(K, U) ⊆ Delta(K, K ′) ⊆ S by lemma 4. Suppose
that this holds for 1, 2, ..., i− 1. We will show that it holds for i too. We only need
to check the ground facts in Ui \ (Ui−1 ∪K). By step 6, it follows that the ground
facts that need to be checked belong all to some set V ′, which occurred in step 4.
By the phrasing of step 4, the definition of S and the hypothesis of the recursion, it
follows that Ui \ (Ui−1 ∪K) ⊆ S0, so Ui \K ⊆ S. We conclude that ESEn ⊆ S.

By the monotonicity of≤K , it follows that Cost(K,ESEn) ≤K Cost(K,S).
Now take any P (x) ∈ Cost(K, S) \ Delta(K, K ′). Since P (x) ∈ Cost(K,S),
it follows that P (x) ∈ S and K 0 {P (x)}. But K ′ ` S, so K ′ ` {P (x)}
and P (x) 0 Delta(K,K ′), so K ` {P (x)}, a contradiction. We conclude that

68

Cost(K, S)\Delta(K, K ′) = ∅, so Cost(K, S) ⊆ Delta(K,K ′). By the mono-
tonicity of ≤K , it follows that Cost(K,S) ≤K Delta(K,K ′). Thus, using tran-
sitivity of ≤K : Delta(K, K + ESEn) = Cost(K,ESEn) ≤K Cost(K, S) ≤K

Delta(K, K ′) and the proof is complete.¥

Prop. 1. Suppose that the Main algorithm of table 4.1 terminates and set, for
every pair K ⊆ L+, U ⊆ L0: K •U = K ′, where K ′ is the belief returned by the
algorithm. Then • is a rational update operation with respect to the given ≤.

Proof:
If K is not a KB then the main algorithm would return K. Suppose that K is a
KB, but the update is infeasible. Suppose also that the update function algorithm
does not return INFEASIBLE. By steps 5, 6 and 7 of the Update function it
is obvious that the returned value Delta = ESEn for some sequence of recursive
calls. By lemmata 8 and 9 it follows that K ′ = K + Delta = K + ESEn is a
KB and K ′ ` U , so U is feasible (a contradiction). So the Update function will
return INFEASIBLE and the output of the main algorithm will be K. These
arguments take care of the limit cases.

Suppose now that K is a KB, and that the update is feasible. Then, there
is some K0 ⊆ L+, such that K0 is a KB, K0 ` U . By lemma 11, there is
some sequence of recursive calls (of the update function) that does not return
INFEASIBLE, for which Delta(K, K + ESEn) ≤K Delta(K, K0). Sup-
pose that the prevailing (minimal) sequence of calls that returns the result has
length m. Then, by steps 5,6 and 7 it is obvious that the returned value is equal
to ESEm. By lemmata 8 and 9, no matter which sequence of recursive calls
is selected from “min” for the final output of Update, the final result K ′ = K +
Delta = K + ESEm is a KB and K ′ ` U . Now take any KB K ′′ ` U ; by
lemma 11, there is some sequence of recursive calls for which Delta(K, K +
ESEk) ≤K Delta(K, K ′′). Since the prevailing (minimal) sequence of calls
returns ESEm by step 6 and lemma 4 it obviously holds that: Delta(K, K +
ESEm)=Cost(K,ESEm) ≤K Cost(K, ESEk)= Delta(K, K + ESEk) ≤K

Delta(K, K ′′). Therefore Delta(K, K ′) ≤K Delta(K,K ′′). We conclude that •
is a rational update operation.¥

Proposition 1 guarantees that the algorithm returns the “proper” result of the
update, with the assumption that the algorithm terminates. Therefore, for any par-
ticular application of the above model (e.g., RDF) we need to do the following:

• Specify the model (i.e., FOL) that will be used; this process in fact refers
to the definition of a finite number of predicates, as well as the definition of
variables and constant symbols.

69

• Determine the integrity constraints of the model and formally describe them.
(In the current setting this is done in the form of DEDs, as they are expres-
sive enough for our case. However, other rule forms could be analogously
embedded in our framework.)

• Define a particular update-generating order, that looks most “rational” intu-
itively.

• Based on the above constructs, prove results that allow one to prune the tree
explored by the above algorithm to a finite size so that the algorithm termi-
nates. One could just restrain the number of constants; implement Select of
step 4 of the Update function in such a way that this function would choose
a constant out of a finite set.

• Also, provide heuristics and optimization techniques that are based on the
peculiarities of the model, integrity constraints and update-generating order
under question to speed up the algorithm as much as possible (computational
complexity).

The results presented so far show that the above process will lead to the defini-
tion of a rational change operation.

70

Chapter 5

Application to RDF/S

Change in all things is sweet.

Aristotle

The particular proposals described in this section for the language (predicates
and rules) and the ordering are just parameters of our approach. Different param-
eters would result to different update operations, but the general approach (and
algorithm) can be still applied, so long as the requirements set for the rules and
ordering are respected. For the implementation described in the following, the
parameters are fixed to be the ones that were defined here, as this particular param-
eterization is adequate for the purposes of the KP-Lab (e-learning) and CASPAR
(digital preservation) projects, which partially supported this thesis. Mark that in
this section, KBs will also be called RDF Graphs.

5.1 General Model Description

Our first task towards the development of our model is to describe RDF statements
in terms of FOL predicates. This representation is shown in table 5.1. Note that
the actual mapping of these statements to RDF triples is shown in table 5.2. Notice
that several ground facts might be represented with the same triple. However there
is a clear distinction of them based on the context. Consider, for example ground
fact PI(x,y,P) and PLI(x,y,P); the same triple represents them and in order to be
distinguished we should consider whether P is a common property a or a data-type
one (having Literal as range). More discussion on the triple-view of our ontologies
is postponed until chapter 6; throughout the rest of the current chapter we will be
using the FOL representation.

71

Table 5.1: Representation of RDF facts using FOL predicates
Predicates Intuitive meaning

CS(C) The name C exists in the RDF graph and it is a class
PS(P) The name P exists in the RDF graph and it is a property
CI(x) The name x exists in the RDF graph and it is a class instance
MCS(C) The name C exists in the RDF graph and it is a meta class
PL(P) The name P exists in the RDF graph and it is a datatype prop-

erty (has ‘rdfs:Literal’ as range)
Domain(C,P) The domain of P is C (denotes the domain of a property)
DTP_Domain(C, P) The domain of P is C (denotes the domain of a datatype prop-

erty)
Range(C,P) The range of P is C (denotes the range of a property)
C_IsA(C1, C2) Class C1 is a direct or indirect subclass of class C2

M_IsA(M1,M2) Metaclass M1 is a direct or indirect subclass of metaclass M2

P_IsA(P1, P2) Property P1 is a direct or indirect subproperty of property P2

DTP_IsA(P1, P2) Datatype Property P1 is a direct or indirect subproperty of
Datatype property P2

C_Inst(x,C) Instance x is a direct or indirect class instance of C
M_Inst(A, MA) Class A is a direct or indirect instance of metaclass MA
PI(x, y, P) The pair(x,y) is a direct or indirect instantiation of property P
DTPI(x, s, P) The pair(x,s) (s is a literal) is related a direct or indirect instan-

tiation of datatype property P

Notice that mapping each statement of RDF to a FOL predicate (as seen in
the Table 5.1) is not representing RDF constructs in the standard way, but is an
alternative representation; this way, a class IsA between A and B, for example, is
mapped to the predicate: C_IsA(A,B), while a triple denoting that the domain
of a property, say P , is C, is denoted by Domain(P, C). Note that the standard
alternative mapping (e.g., for IsA: ∀xA(x) → B(x)) does not allow us to map
assertions of the form “C is a class”, and, consequently, does not allow us to handle
operations like the addition or removal of a class, property, or instance (see [21]
for more details on this issue). Also note that the same representation pattern can
be used for other declarative languages as well [21].

5.1.1 Constants and variables

The set of constants can be taken to be any countably infinite set. For ease of use,
it will be assumed to contain all the strings of the English language up to a certain
length (say N) plus a countably infinite set of auxiliary constants (c1, c2, ...), plus
the special constant >, which will be used to denote the top class, as the version
of RDF/S we are modeling is the one defined in [51] and it contains > which
is a superclass of all the classes in an ontology. Note that only classes and not

72

Table 5.2: FOL Ground Facts to RDF Triples
FOL Triple subject Triple Predicate Triple object

1 CS(A) A rdf:type rdfs:Class
2 PS(P) P rdf:type rdfs:Property
3 CI(x) x rdf:type rdfs:Resource
4 MCS(MA) (meta-class) MA rdfs:subClassOf rdfs:Class

AND
MA rdf:type rdfs:Class

5 PL(P) P rdf:type rdfs:Property
AND

P rdf:range rdfs:Literal
6 Domain(P,A) P rdfs:domain A
7 DTP_Domain(P,A) P rdfs:domain A
8 Range(P,A) P rdfs:range A
9 C_IsA(A,B) A rdfs:subClassOf B
10 M_IsA(A,B) A rdfs:subClassOf B
11 P_IsA(P,Q) P rdfs:subPropertyOf Q
12 DTP_IsA(P,Q) P rdfs:subPropertyOf Q
13 C_Inst(x,A) x rdf:type A
14 M_Inst(A,MA) (meta-

class instantiation link)
A rdf:type MA

15 PI(x,y,P) (property in-
stance)

x P y

16 PLI(x,y,P) (property in-
stance of a PL)

x P y

metaclasses are related to the top class. Thus, the set of constants is the following
set: {s|s : stringoflengthn, 1 ≤ n ≤ N} ∪ {c1, c2, ..} ∪ {>}. The set of
variables can be any countably infinite set, for example u1, u2, ...

Notice that our formal framework defined earlier needs a countably infinite
set for our constants. Taking all the strings of the English language up to any
length would result to an uncountably infinite set (isomorphic to the set of real
numbers). For this reason, we constraint the length of the strings to be up to a finite
length. This is not a real restriction for practical purposes, as N can be taken to
be arbitrarily large. For example set N = 108; the storage of such a long name
requires more bits than any computer could store anyway.

On the other hand, our framework doesn’t want the set of constants to be a fi-
nite set, because, for some updates, we may need to introduce new constant names
in our KB; we need to be able to do that in any circumstance and this can only be
guaranteed if we have an infinite number of constant names (this is true in theory;
in practice we will prove that a finite size is enough). Thus, we introduce an infinite
sequence of auxiliary constants (ci) to serve this purpose. Notice that in the previ-
ous section we stated that the infinite constants number is a problem for algorithm’s
termination, however tuning appropriately the Select function is overcoming this

73

problem. We later elaborate on this issue and exhibit how the Select function can
always face a finite number of constants even though in principle these are infinite.

5.2 Validity Rules

Now we should determine the integrity constraints of our model. It should be em-
phasized that our framework is very general and can be used for many different rep-
resentation languages, by carefully defining the appropriate predicates and validity
rules. Here, we will use (for presentation and implementation purposes) a partic-
ular, alternative RDF semantics [51]. For example, C_IsA, P_IsA, C_Inst are
assumed to be transitive (also PI is transitive) and irreflexive. In effect, we record
direct and indirect IsAs, but we don”t record self-loops (e.g., C_IsA(x, x) is not
recorded).

The current RDF concretization but is not in any way an inherent restriction
of the framework. In particular, our algorithm is also applicable for the standard
RDF semantics1, by restricting the validity rules accordingly. In effect, any graph
constructed with respect to the semantics used here is a valid RDF graph (as we
are considering a sub-language of RDF). Also notice that our model considers even
the implicit information in the KB (due to CWA). The aforementioned integrity
constraints are shown in Table 5.3, which exposes all the rules of our language
together with their Intuitive meaning. In this table, Σ denotes the set of constants
in our language. Note also that we assume that every Datatype property has the
standard class “rdfs:Literal” as range, and in the instance level such a property
instance has any value as range. We don’t record this, as from the evolution point
of view we do not care about the exact values. Therefore each time we talk about
datatype properties the above range information will be missing (but implied). This
form of the integrity constraints gives immediately the families Comp(c, x) for any
constraint c and constant x. These Component sets are shown in Table 5.4.

5.3 Ordering

Our RDF KB update framework is parameterizable with respect to the ordering
that chooses the minimal update result set. Any ordering could embedded neatly
in our system. Before defining the update-generating order, we will need some
supportive definitions.

Consider some (positive) predicate P of arity n of the FOL language and an up-
date U . We set: UP = {P (x1, ..., xn), where P (x1, ..., xn) ∈ U and x1, ..., xn are

1http://www.w3.org/TR/rdf-mt/

74

Table 5.3: Validity Rules
Rule ID/Name Integrity Constraint Intuitive Meaning

R1 Typing ∀x ∈ Σ : ((CS(x) ∨ CI(x)) ∧
(CS(x) ∨ PS(x)) ∧ (CI(x) ∨
PS(x)) ∧ (CS(x) ∨MCS(x)) ∧
(PS(x) ∨MCS(x)) ∧ (CI(x) ∨
MCS(x)) ∧ (CS(x) ∨ PL(x)) ∧
(PS(x) ∨ PL(x)) ∧ (CI(x) ∨
PL(x)) ∧ (PL(x) ∨MCS(x)))

The names used for all facts of our language
are mutually disjoint

R2 Top Node
Typing

CS(>) The Top Node is a class

R3 Domain
Applicability

∀x, y ∈ Σ:
Domain(x, y) → PS(x) ∧ CS(y)

Domain applies to properties; the domain of
a property is a class

R4 Range
Applicability

∀x, y ∈ Σ:
Range(x, y) → PS(x) ∧ CS(y)

Range applies to properties; the range of a
property is a class

R5 C_IsA
Applicability

∀x, y ∈ Σ:
C_IsA(x, y) → CS(x) ∧ CS(y)

Class IsA applies between classes

R6 P _IsA
Applicability

∀x, y ∈ Σ:
P _IsA(x, y) → PS(x) ∧ PS(y)

Property IsA applies between properties

R7 C_Inst
Applicability

∀x, y ∈ Σ:
C_Inst(x, y) → CI(x) ∧ CS(y)

Class Instanceof applies between a class in-
stance and a class

R8 PI
Applicability

∀x, y, z ∈ Σ: PI(x, y, z) →
CI(x) ∧ CI(y) ∧ PS(z)

Property Instanceof applies between a pair of
class instances and a Property

R9 Domain is
unique

∀x, y, z ∈ Σ: Domain(x, y) →
¬Domain(x, z) ∨ (x == z)

The domain of a property is unique

R10 Range is
unique

∀x, y, z ∈ Σ: Range(x, y) →
¬Range(x, z) ∨ (x == z)

The range of a property is unique

R11 Domain and
Range exists

∀x ∈ Σ,∃y, z ∈ Σ: PS(x) →
Domain(x, z) ∧Range(x, y)

Each property has a domain and a range

R12 C_IsA
Transitivity

∀x, y, z ∈ Σ:
C_IsA(x, y) ∧ C_IsA(y, z) →
C_IsA(x, z)

Class IsA is Transitive

R13 C_IsA
Irreflexivity

∀x, y,∈ Σ:
C_IsA(x, y) → ¬C_IsA(y, x)

Class IsA is Irreflexive

R14 P_IsA
Transitivity

∀x, y, z ∈ Σ:
P _IsA(x, y) ∧ P _IsA(y, z) →
P _IsA(x, z)

Property IsA is Transitive

R15 P_IsA
Irreflexivity

∀x, y ∈ Σ:
P _IsA(x, y) → ¬P _IsA(y, x)

Property IsA is Irreflexive

R16 Determining
C_Inst

∀x, y, z ∈ Σ : C_Inst(x, y) ∧
C_IsA(y, z) → C_Inst(x, z)

Class instance propagation

R17 Determining
PI

∀x, y, z, w ∈ Σ : PI(x, y, z) ∧
P _IsA(z, w) → PI(x, y, w)

Property instance propagation

R18 Property
IsAs and Domain

∀x, y, z, w ∈ Σ : P _IsA(x, y) ∧
Domain(x, z) ∧Domain(y, w) →
C_IsA(z, w) ∨ (z = w)

IsAs between properties reflect in their do-
mains

R19 Property
IsAs and Range

∀x, y, z, w ∈ Σ : P _IsA(x, y) ∧
Range(x, z) ∧Range(y, w) →
C_IsA(z, w) ∨ (z = w)

IsAs between properties reflect in their
ranges

R20 Property
Instanceof and
Domain

∀x, y, z, w ∈ Σ : PI(x, y, z) ∧
Domain(z, w) → C_Inst(x, w)

Instanceof between properties reflect in their
sources/domains

R21 Property
Instanceof and
Range

∀x, y, z, w ∈ Σ : PI(x, y, z) ∧
Range(z, w) → C_Inst(y, w)

Instanceof between properties reflect in their
targets/ranges

75

R22 Class IsAs
and the Top Node

∀x∈ Σ : CS(x) → C_IsA(x,>) All classes are indirect subclasses of the top
node

R23 Class
Instanceof and
the Top Node

∀x∈ Σ : CI(x) → C_Inst(x,>) All class instances are indirect instances of
the top node

R24 Metaclass
IsA Applicability

∀x, y ∈ Σ: M_IsA(x, y) →
MCS(x) ∧MCS(y)

Metaclass IsA applies between metaclasses

R25 M_Inst
Applicability

∀x, y ∈ Σ:
M_Inst(x, y) → CS(x) ∧MCS(y)

Metaclass Instanceof applies between a class
and a metaclass

R26 Metaclass
IsA Transitivity

∀x, y, z ∈ Σ:
M_IsA(x, y) ∧M_IsA(y, z) →
M_IsA(x, z)

Metaclass IsA is transitive

R27 Determining
M_Inst

∀x, y, z ∈ Σ : M_Inst(x, y) ∧
M_IsA(y, z) → M_Inst(x, z)

Metaclass instance propagation

R28 M_IsA
Irreflexivity

∀x, y,∈ Σ:
M_IsA(x, y) → ¬M_IsA(y, x)

Metaclass IsA is Irreflexive

R29
DTP_Domain
Applicability

∀x, y ∈ Σ: DTP _Domain(x, y) →
PL(x) ∧ CS(y)

DTP_Domain applies to datatype properties;
the domain of a datatype property is a class

R30 DTP_IsA
Applicability

∀x, y ∈ Σ:
DTP _IsA(x, y) → PL(x) ∧ PL(y)

DataType Property IsA applies between
datatype properties

R31 DTPI
Applicability

∀x, y, P ∈ Σ:
DTPI(x, y, P) → CI(x) ∧ PL(P)

Datatype Property Instanceof applies to a
class instance and a datatype Property

R32
DTP_Domain is
unique

∀x, y, z ∈ Σ:
DTP _Domain(x, y) →
¬DTP _Domain(x, z) ∨ (y = z)

The domain of a datatype property is unique

R33
DTP_Domain
exists

∀x ∈ Σ∃z ∈ Σ:
PL(x) → DTP _Domain(x, z)

Each datatype property has a domain

R34 DTP_IsA
Transitivity

∀x, y, z ∈ Σ: DTP _IsA(x, y) ∧
DTP _IsA(y, z) →
DTP _IsA(x, z)

DataType Property IsA is Transitive

R35 DTP_IsA
Irreflexivity

∀x, y ∈ Σ: DTP _IsA(x, y) →
¬DTP _IsA(y, x)

DataType Property IsA is Irreflexive

R36 Determining
DTPI

∀x, y, p, q ∈ Σ : DTPI(x, y, p) ∧
DTP _IsA(p, q) → DTPI(x, y, q)

Datatype Property instance propagation

R37 DataType
Property IsAs
and
DTP_Domain

∀x, y, x′, y′ ∈ Σ : DTP _IsA(x, y)∧
DTP _Domain(x, x′) ∧
DTP _Domain(y, y′) →
C_IsA(x′, y′) ∨ (x′ = y′)

IsAs between datatype properties reflect in
their domains

R38 DataType
Property Instance
and
DTP_Domain

∀x, y, x′, y′ ∈ Σ : DTPI(x, y, x′) ∧
DTP _Domain(x′, y′) →
C_Inst(x, y′)

Instanceof between datatype properties re-
flect in their domains.

76

Table 5.4: Components of the Rules

Rule ID/Name Integrity Constraint in Comp(c, u) format

R1 Typing ∀x ∈ Σ:
Comp(R1.0, u) = {{¬CS(u)}, {¬CI(u)}}
Comp(R1.1, u) = {{¬CS(u)}, {¬PS(u)}}
Comp(R1.2, u) = {{¬CI(u)}, {¬PS(u)}}
Comp(R1.3, u) = {{¬CS(u)}, {¬MCS(u)}}
Comp(R1.4, u) = {{¬PS(u)}, {¬MCS(u)}}
Comp(R1.5, u) = {{¬CI(u)}, {¬MCS(u)}}
Comp(R1.6, u) = {{¬CS(u)}, {¬PL(u)}}
Comp(R1.7, u) = {{¬PS(u)}, {¬PL(u)}}
Comp(R1.8, u) = {{¬CI(u)}, {¬PL(u)}}
Comp(R1.9, u) = {{¬PL(u)}, {¬MCS(u)}}

R2 Top Node Typing Comp(R2, u) = CS(>)
R3 Domain Applicability ∀x, y ∈ Σ :

Comp(R4, u) = {{¬Domain(x, y)}, {PS(x), CS(y)}}
R4 Range Applicability ∀x, y ∈ Σ :

Comp(R3, u) = {{¬Range(x, y)}, {PS(x), CS(y)}}
R5 C_IsA Applicability ∀x, y ∈ Σ :

Comp(R5, u) = {{¬C_IsA(x, y)}, {CS(x), CS(y)}}
R6 P_IsA Applicability ∀x, y ∈ Σ :

Comp(R6, u) = {{¬P _IsA(x, y)}, {PS(x), PS(y)}}
R7 C_Inst Applicability ∀x, y ∈ Σ :

Comp(R7, u) = {{¬C_Inst(x, y)}, {CI(x), CS(y)}}
R8 PI Applicability ∀x, y, P ∈ Σ :

Comp(R8, u) = {{¬PI(x, y, P)}, {CI(x), CI(y), PS(P)}}
R9 Domain is unique ∀x, y, z ∈ Σ :

Comp(R9, u) = {{¬Domain(x, y)}, {¬Domain(x, z)}, {(y = z)}}
R10 Range is unique ∀x, y, z ∈ Σ :

Comp(R10, u) = {{¬Range(x, y)}, {¬Range(x, z)}, {(y = z)}}
R11 Domain and Range
exists

∀x ∈ Σ∃z ∈ Σ :

Comp(R11.1, u) = {{¬PS(x)}, {Domain(x, z)}}

∀x ∈ Σ∃y∈ Σ :
Comp(R11.2, u) = {{¬PS(x)}, {, Range(x, y)}}

R12 Class IsA is
Transitive

∀x, y, z ∈ Σ :

Comp(R12, u) = {{¬C_IsA(x, y)}, {¬C_IsA(y, z)}, {C_IsA(x, z)}}
R13 Class IsA is
Irreflexive

∀x, y ∈ Σ :

Comp(R13, u) = {{¬C_IsA(x, y)}, {¬C_IsA(y, x)}}
R14 Property IsA is
Transitive

∀x, y, z ∈ Σ :

Comp(R14, u) = {{¬P _IsA(x, y)}, {¬P _IsA(y, z)}, {P _IsA(x, z)}}
R15 Property IsA is
Irreflexive

∀x, y ∈ Σ :

Comp(R15, u) = {{¬P _IsA(x, y)}, {¬P _IsA(y, x)}}
R16 Determining C_Inst ∀x, y, z ∈ Σ :

Comp(R16, u) = {{¬C_Inst(x, y)}, {¬C_IsA(y, z)}, {C_Inst(x, z)}}
R17 Determining PI ∀x, y, p, q ∈ Σ :

Comp(R17, u) = {{¬PI(x, y, p)}, {¬P _IsA(p, q)}, {PI(x, y, q)}}
R18 Property IsAs and
Domain

∀x, y, x{′}, y{′} ∈ Σ :

Comp(R18, u) = {{¬P _IsA(x, y)}, {¬Domain(x, x′)}, {¬Domain(y, y′)},
{C_IsA(x′, y′)}, {(x′ = y′)}}

77

R19 Property IsAs and
Range

∀x, y, x′, y′ ∈ Σ :

Comp(R19, u) = {{¬P _IsA(x, y)}, {¬Range(x, x′)}, {¬Range(y, y′)},
{C_IsA(x′, y′)}, {(x′ = y′)}}

R20 Property Instance and
Domain

∀x, y, x′, y′ ∈ Σ :

Comp(R20, u) = {{¬PI(x, y, x′)}, {¬Domain(x′, y′)}, {C_Inst(x, y′)}}
R21 Property Instance and
Range

∀x, y, x′, y′ ∈ Σ :

Comp(R21, u) = {{¬PI(x, y, x′)}, {¬Range(x′, y′)}, {C_Inst(y, y′)}}
R22 Class IsAs and the
Top Node

∀x ∈ Σ :

Comp(R22, u) = {¬CS(x)}, {C_IsA(x,>)}
R23 Class Instanceof and
the Top Node

∀x ∈ Σ :

Comp(R23, u) = {¬CI(x)}, {C_Inst(x,>)}
R24 Metaclass IsA
Applicability

∀x, y ∈ Σ :

Comp(R24, u) = {{¬M_IsA(x, y)}, {MCS(x), MCS(y)}}
R25 M_Inst Applicability ∀x, y ∈ Σ :

Comp(R25, u) = {{¬M_Inst(x, y)}, {CS(x), MCS(y)}}
R26 Meta-Class IsA is
Transitive

∀x, y, z ∈ Σ :

Comp(R26, u) = {{¬M_IsA(x, y)}, {¬M_IsA(y, z)}, {M_IsA(x, z)}}
R27 Determining M_Inst ∀x, y, z ∈ Σ :

Comp(R27, u) = {{¬M_Inst(x, y)}, {¬M_IsA(y, z)}, {M_Inst(x, z)}}
R28 Metaclass IsA is
Irreflexive

∀x, y ∈ Σ :

Comp(R28, u) = {{¬M_IsA(x, y)}, {¬M_IsA(y, x)}}
R29 DTP_Domain
Applicability

∀x, y ∈ Σ :

Comp(R29, u) = {{¬DTP _Domain(x, y)}, {PL(x), CS(y)}}
R30 DTP_IsA
Applicability

∀x, y ∈ Σ :

Comp(R30, u) = {{¬DTP _IsA(x, y)}, {PL(x), PL(y)}}
R31 DTPI Applicability ∀x, y, P ∈ Σ :

Comp(R31, u) = {{¬DTPI(x, y, P)}, {CI(x), PL(P)}}
R32 DTP_Domain is
unique

∀x, y, z ∈ Σ :

Comp(R32, u) = {{¬DTP _Domain(x, y)}, {¬DTP _Domain(x, z)},
{(y = z)}}

R33 DTP_Domain exists ∀x ∈ Σ∃z ∈ Σ :
Comp(R33, u) = {{¬PL(x)}, {DTP _Domain(x, z)}}

R34 DataType Property
IsA is Transitive

∀x, y, z ∈ Σ :

Comp(R34, u) = {{¬DTP _IsA(x, y)}, {¬DTP _IsA(y, z)},
{DTP _IsA(x, z)}}

R35 DataType Property
IsA is Irreflexive

∀x, y ∈ Σ :

Comp(R35, u) = {{¬DTP _IsA(x, y)}, {¬DTP _IsA(y, x)}}
R36 Determining DTPI ∀x, y, p, q ∈ Σ :

Comp(R36, u) = {{¬DTPI(x, y, p)}, {¬DTP _IsA(p, q)},
{DTPI(x, y, q)}}

R37 DataType Property
IsAs and DTP_Domain

∀x, y, x′, y′ ∈ Σ :

Comp(R37, u) = {{¬DTP _IsA(x, y)}, {¬DTP _Domain(x, x′)},
{¬DTP _Domain(y, y′)}, {C_IsA(x′, y′)}, {(x′ = y′)}}

R38 DataType Property
Instance and
DTP_Domain

∀x, y, x′, y′ ∈ Σ :

Comp(R38, u) = {{¬DTPI(x, y, x′)}, {¬DTP _Domain(x′, y′)},
{C_Inst(x, y′)}}

78

constants}. In effect, UP contains all positive ground facts that use predicate P and
exist in U . Similarly, we set: U¬P = {¬P (x1, ..., xn), where ¬P (x1, ..., xn) ∈ U
and x1, ..., xn are constants}. U¬P contains all negative ground facts that use pred-
icate P (i.e., ¬P) and exist in U . We say that:

Def. 9. A FOL constant x appears in K iff there is some ground fact P of arity n
P (x1, ..., xn) ∈ K such that x = xi for some i = 1, 2, ..., n.

In the following, x, y, z refer to FOL constants. Here are some obvious def-
initions: We say that x is a direct subclass of y in K iff C_IsA(x, y) ∈ K and
there is no z such that C_IsA(x, z) ∈ K and C_IsA(z, y) ∈ K. Similarly, x is
a direct subproperty of y in K iff P_IsA(x, y) ∈ K and there is no z such that
P_IsA(x, z) ∈ K and P_IsA(z, y) ∈ K. The same holds for datatype proper-
ties. Following the same rational we use the general term direct sub-object, for a
ground fact, that although allowed, is not implied from two others due to transitiv-
ity (instance determining) rules of Table 5.3.

We say that x is a top object in K iff x appears in K and there is no y such
that x is a direct sub-object of y. The Intuitive meaning of these definitions in
RDF graphs (which satisfy the integrity constraints of the model) are obvious. The
direct sub-object definition identifies the pairs of objects that are directly related
through an IsA or instantiation relation. By the integrity constraints, if x is a direct
sub-object of y then both x and y appear in K. Notice that all class instances are
instances of the top class and all classes are subclasses of the top class; therefore
none of these objects can be a top object. On the other hand the top class (>) is a
top object.

Properties, datatype properties, and metaclasses could be top objects. Notice
that a property that has no superproperties, or a metaclass without a parent, are top
objects.

Def. 10. A path from x to the top in K is a set S of the form S = {x1, x2, ..., xn}
where:

(a) x1 = x

(b) xn is a top object in K

(c) For all i = 1, 2, ..., n− 1, it holds that xi is a direct sub-object of xi+1 in K.

The size of S is n.

A path is simply a sequence of direct sub-objects from the initial object (x) to
a top object (>, a property or a metaclass with no super objects). Notice that, in

79

the general case, there may be more than one paths from x to the top. If x is a top
object, then the only path from x to the top in K is {x}, whose size is 1 (special
case). If x does not appear in K, then there is no path from x to the top.

Lemma 12. If x appears in K and K is finite, there is a “shortest” (with respect
to size) path from x to the top.

Proof: There is always at least one path from x to the top. This is obviously true
if x is a top object; if it is not, then we can simply trace the sequence of direct
super-objects until we reach a top object. The finiteness of K and the integrity
constraints (no cycles allowed) guarantee that we will reach a top object after a
finite number of steps. In addition, the finiteness of K and the integrity constraints
guarantee that there is a finite number of paths from x to the top. ¥

Def. 11. We define the distance of x to the top to be ∞ whenever K is infinite or
x does not appear in K (limit cases). Consider a finite KB K and a FOL constant
x that appears in K. The distance of x to the top in K is a natural number n such
that:

(a) There is a path from x to the top in K whose size is n.

(b) There is no path from x to the top in K whose size is smaller than n.

(c) For all i = 1, 2, ..., n− 1, it holds that xi is a direct sub-object of xi+1 in K.

We will use the notation Dist(x) to denote the distance of x to the top in K (K
is omitted from the symbolism, but will be obvious from the context in each case).
Obviously, Dist(x) = ∞ in limit cases and a positive integer in any other case by
lemma 12.

In other words, the distance of x (if exists and K is finite) to the top is equal
to the size of the “smallest” path (in terms of path size) to the closest top object.
Note that in estimating Dist, resources on the schema level, even in the case that
they are classes, are evaluated against the closest top object, (i.e., the >) and no
possible metaclasses the former instantiate.

According to the above remarks, the distance of x to the top exists whenever
x appears in K and K is finite; so Dist(x) ∈ N and Dist(x) ≥ 1. Considering
the limit cases also, Dist(x) ∈ N ∪ {∞}. Notice that it might be the case that
Dist(x) = Dist(y) but x 6= y, even if Dist(x), Dist(y) are finite (i.e., not equal
to ∞). We define a relation ≤ between positive and negative predicates, denoted
by≤P . For two positive or negative predicates P , Q we say that P is cheaper than
Q iff P ≤P Q. This order is formally defined as the transitive closure of the one
shown in Table 5.5.

80

Table 5.5: Ordering of predicates

PI ≤P DTPI ≤P C_Inst ≤P M_Inst ≤P P_IsA ≤P DTP_IsA ≤P

C_IsA ≤P M_IsA ≤P ¬PI ≤P ¬DTPI ≤P ¬C_Inst ≤P ¬M_Inst ≤P

¬P_IsA ≤P ¬DTP_IsA ≤P ¬C_IsA ≤P ¬M_IsA ≤P ¬Domain ≤P

¬DTP_Domain ≤P ¬Range ≤P ¬CI ≤P ¬PS ≤P ¬PL ≤P ¬CS ≤P

¬MCS ≤P Domain ≤P DTP_Domain ≤P Range ≤P CI ≤P PS ≤P PL ≤P

CS ≤P MCS

Obviously, the relation ≤P is reflexive, antisymmetric, transitive and total. We
also define a ordering ≤lex based on the lexicographic ordering on the constants
of the FOL language; notice that a lexicographic ordering makes sense only for
strings, so we extend the standard lexicographic ordering as follows:

Def. 12. We define ≤lex relation, which for brevity, we will call “lexicographic”,
even though, technically, it is not entirely lexicographic:

• If x and y are auxiliary constants (say x = ci, y = cj respectively), then
x ≤lex y iff i ≤ j.

• If x is an auxiliary constant ci and y is a string, then x ≤lex y.

• If x and y are strings, then x ≤lex y iff x is “before” y in the standard
lexicographic ordering of the strings x, y.

• If x is equal to the constant > (i.e., x=>), then y ≤lex x.

In simpler words, def. 12 states that the “first” (minimal) element of this or-
dering is c1, followed by c2, c3,... All strings are “after” the auxiliary constants
in the ordering and are ordered lexicographically. Finally, the constant > is “last”
(maximal) in the order. Obviously, the relation ≤lex is reflexive, antisymmetric,
transitive and total. In addition, our lexicographic ordering has the following very
useful property:

Lemma 13. For any finite or infinite set S of constants, there is some constant x
such that x ≤lex y for all y ∈ S, i.e., S has a minimum.

Proof: If there is any auxiliary constant in S, take x = ci where i is the “first” in-
dex such that ci ∈ S. If there is no auxiliary constant in S, then S is finite (because
all strings have finite size, so there is a finite number of them, so the union {s|s :
string of length n, 1 ≤ n ≤ N} ∪ {>} is finite and S ⊆ {s|s : string of length n,
1 ≤ n ≤ N} ∪ {>} is also finite).¥

81

Finally, we define the relation ≤G between ground facts as summarized in Ta-
ble 5.6. Consider two (positive or negative) ground facts P (x1, ..., xn), Q(y1, ..., ym).
Then, if P 6= Q we set P (x1, ..., xn) ≤G Q(y1, ..., ym) iff P ≤P Q. If P = Q we
Compare the arguments of the ground facts as described in the table. We there-
fore say that P (x1, ..., xn) is cheaper than Q(y1, ..., ym), iff P (x1, ..., xn) ≤G

Q(y1, ..., ym). The first column of the table represents the order ≤P , as well as
the order ≤G whenever P 6= Q, i.e., when the Compared predicates are different.
In this column, the most “expensive” type of predicate is first in the list (in the first
raw). The predicate order does not depend on K. The second column represents
the order ≤G whenever P = Q, i.e., when the Compared predicates are the same.
The second column informally describes how to determine the cheapest fact when
P = Q. The ground fact order depends on K (because it depends on Dist). So, in
simpler words, when having to Compare two ground facts, one would find cheaper
the ground fact which uses a predicate lying at a lower raw in the table. If the
ground facts are in the same raw in the table (i.e., we are dealing with the same
predicate), the Comparison is determined as described in the right cell of this raw.

This relation depends on ≤lex, ≤P and the standard ≤ relation of natural num-
bers. The nice properties of these relations (reflexivity, antisymmetry, transitivity
and totality), allows us to show that the relation ≤G is reflexive, antisymmetric,
transitive and total. The full proof requires considering each case separately (omit-
ted). In addition, this ordering has the same very useful property as the lexico-
graphic one:

Lemma 14. For any KB K and any non-empty, finite or infinite set U of ground
facts, there is some ground fact P (x1, ..., xn) such that P (x1, ..., xn) ≤G Q(y1, ..., ym)
for all Q(y1, ..., ym) ∈ U , i.e., U has a minimum.

Proof: Suppose that K is finite; then all Dist(.) are finite natural numbers and
there is a finite number of them, so there is a minimum and a maximum Dist(.)
for the constants that appear in K. Now take any constant x; if the constant appears
in K, then Dist(x) is a value from a finite set; if the constant does not appear in
K, then Dist(x) = ∞ . On the other hand, if K is infinite, then for all constants x,
Dist(x) = ∞. We conclude that for any K there is some finite set S, such that for
any constant x, Dist(x) ∈ S. In addition, there is a finite number of predicates, so
the number of different predicates that appear in U is finite. Notice that ≤G takes
into account the predicate involved (≤P), the Dist of the constants in the pred-
icates (under the standard numerical ordering ≤) and the lexicographic ordering
(≤lex). All three orderings have minimums (see above); exploiting this fact, we
can prove the result. Details are omitted.¥

82

Notice that the inclusion of K in the proposition is necessary, because ≤G

depends on K.
The ordering ≤G provides an order of “cheapness” for each ground fact that

appears in an update U . We need to expand this definition so as to be able to
Compare sets of ground facts (i.e., updates); this expansion should result to an
update-generating order.

Def. 13. Consider any two updates U1, U2 and a KB K. Set U ′
1 = Cost(K,U1),

U ′
2 = Cost(K, U2). Then U1 ≤K U2 iff any of the following are true:

(a) There is some predicate P such that |U ′P
1 | < |U ′P

2 | or U ′P
1 ⊂ U ′P

2 and for
all predicates Q such that P ≤P Q, Q 6= P it holds that |U ′Q

1 |=|U ′Q
2 |, U ′P

2

(U ′P
1 .

(b) For all predicates P it holds that |U ′P
1 | = |U ′P

2 |, U ′P
1 (U ′P

2 and U ′P
2

(U ′P
1 and there is some (positive or negative) ground fact of the form

Q(x1, ..., xn) ∈ U ′
1 \ U ′

2, such that for all (positive or negative) ground
facts of the form Q′(y1, ..., ym) ∈ U ′

2 \ U ′
1 it holds that Q(x1, ..., xn) ≤G

Q′(y1, ..., ym).

(c) U ′
1 = U ′

2.

This defines an ordering ≤K (which depends on K, because ≤G depends on
K). Suppose that we are given two updates U1, U2 ⊆ L0. Instead of considering
the facts in U1, U2 directly, we consider the facts in U ′

1 = Cost(K, U1), U ′
2 =

Cost(K, U2) (this guarantee conflict sensitivity). To determine whether U1 ≤K

U2, we start with the most “expensive” predicate (per ≤P) and determine whether
the number of facts that use this statement in U ′

1 is smaller than the number of facts
that use this statement in U ′

2. If this is so, we return U1 ≤K U2. Notice that in
the (limiting and uninteresting for practical purposes) case where the number of
statements in these sets for the particular predicate is infinite, it could be the case
that U ′P

1 ⊂ U ′P
2 but |U ′P

1 |=|U ′P
2 |; in this case, as U1 ≤K U2 monotonicity still

holds, because of the “or” clause in the first bullet of the definition.
If the opposite is true, i.e., the number of facts that use this statement in U ′

2 is
smaller than the number of facts that use this statement in U ′

1 (or it is its proper
subset), it holds U2 ≤K U1. Note that a characteristic of this property is that a
single ground fact may be more expensive than a great number (in effect infinite)
of other ground facts. For example, adding a single CS(A) fact to our RDF graph is
more expensive than adding an infinite number of C_IsA statements. The Intuition
behind this choice is that due to transitivity it should be “cheap” to add cascading
subsumption or instance relations triggered by a single such addition. On the other

83

Table 5.6: Our Ordering
Predicate Order Ground Fact Order

PI Use the distance (Dist function) of the first parameter from the top; if comparing
finite distances the larger the distance, the cheaper the ground fact, if one of
the distances is infinite then the smaller the distance, the cheaper the ground
fact. If this distance is identical, compare, using exactly the same algorithm,
the second parameters. If again that distance is identical use the distance of the
third parameter (the property) from the top; in this case the smaller the distance,
the cheaper the groundfact at any occasion. If again this distance is the same
use lexicographic ordering (≤lex) on the first parameter, and subsequently on
the second and the third parameter until you find a winner; when comparing
lexicographically the winner is (by convention) the “smallest”.

DTPI Same as PI
C_Inst Same as C_IsA
M_Inst Same as C_IsA
P _IsA Same as C_IsA
DTP _IsA Same as C_IsA
C_IsA Use the distance (Dist function) of the first parameter from the top; if comparing

finite distances the larger the distance, the cheaper the ground fact, if one of
the distances is infinite then the smaller the distance, the cheaper the ground
fact. If this distance is identical, use the distance (Dist function) of the second
parameter from the top; the smaller the distance, the cheaper the ground fact.
If both distances are identical, use lexicographic ordering (≤lex) on the first
parameter. If both distances are identical and the first parameter is also identical,
use lexicographic ordering (≤lex) on the second parameter.

M_IsA Same as C_IsA
¬PI Same as PI
¬DTPI Same as PI
¬C_Inst Same as C_IsA
¬M_Inst Same as C_IsA
¬P _IsA Same as C_IsA
¬DTP _IsA Same as C_IsA
¬C_IsA Same as C_IsA
¬M_IsA Same as C_IsA
¬Domain Same as Domain
¬DTP _Domain Same as Domain
¬Range Same as Domain
¬CI Same as CI
¬PS Same as CI
¬PL Same as CI
¬CS Same as CI
¬MCS Same as CI
Domain Use the distance (Dist function) of the first parameter from the top; if comparing

finite distances the larger the distance, the cheaper the ground fact, if one of the
distances is infinite then the smaller the distance, the cheaper the ground fact. If
this distance is identical, compare, using exactly the same algorithm, the second
parameters.If both distances are identical, use lexicographic ordering (≤lex) on
the first parameter. If both distances are identical and the first parameter is also
identical, use lexicographic ordering (≤lex) on the second parameter.

DTP _Domain Same as Domain
Range Same as Domain
CI Use the distance (Dist function) of the only parameter from the top; if comparing

finite distances the larger the distance, the cheaper the ground fact, if one of the
distances is infinite then the smaller the distance, the cheaper the ground fact.
If this distance is identical, use lexicographic ordering (≤lex) on the second
parameter.

PS Same as CI
PL Same as CI
CS Same as CI
MCS Same as CI

84

hand addition of a new concept to our graph should be avoided if possible as it
would seem rather awkward.

If none of the above is true, i.e., the number of ground facts that use the most
expensive predicate is equal in each of U ′

1, U ′
2 and none is a proper subset of the

other, then we can’t determine the result just yet, so we repeat the process with the
second most “expensive” predicate (per ≤P). We continue until the result is deter-
mined, or we run out of predicates. If we run out of predicates, then all predicates
appear an equal number of times in both updates and they are not related with the
(proper) subclass relation (taken per predicate); however, this does not necessarily
mean that U ′

1 and U ′
2 are equal, because the parameters of the predicates might be

different. To determine whether U1 ≤K U2 (or vice-versa) in this case we need to
consider the ground facts that appear in U ′

1 and U ′
2, i.e., the arguments (constants)

of the predicates.
In this case, the “cheapest” update is the one that contains the “cheapest”

ground fact (per ≤G) out of all the ground facts that appear in only one of the
two updates (U ′

1, U ′
2). That is, we seek the cheapest (per ≤G) ground fact in the

set (U ′
1 \ U ′

2) ∪ (U ′
2 \ U ′

1); if this appears in (U ′
1 \ U ′

2) then U1 ≤K U2; if this
appears in (U ′

2 \ U ′
1) then U2 ≤K U1. Notice that we can always find a minimum

in (U ′
1 \U ′

2) ∪ (U ′
2 \U ′

1), unless (U ′
1 \U ′

2) ∪ (U ′
2 \U ′

1) = ∅ in which case U ′
1 = U ′

2;
in this case, both U1 ≤K U2 and U2 ≤K U1 (this satisfies conflict sensitivity and
reflexivity).

Below we verify that the above ordering is update-generating:

Prop. 2. The ordering ≤K as defined is an update-generating order for all KBs
K.

Proof: Consider any KB K and any updates U1, U2, U3. Set U ′
i = Cost(K,Ui),

for i = 1, 2, 3. Conflict sensitivity is an immediate consequence of lemma 3:
since Cost(K, Ui) = Cost(K,Cost(K,Ui)) for all i = 1, 2, 3, we conclude that
U ′

i = Cost(K, U ′
i) for all i = 1, 2, 3. The rest is obvious by the fact that, in

order to determine whether U1 ≤K U2, we consider the sets U ′
1, U ′

2. For Cost
antisymmetry suppose that U1 ≤K U2 and U2 ≤K U1 and that U ′

1 6= U ′
2. Since

U1 ≤K U2, either the first or the second bullet of the definition is true. If the first
bullet is true, then it cannot be the case that U2 ≤K U1, a contradiction. So the
second bullet is true for U1, U2. Thus, there is some ground fact G1 ∈ U ′

1 \ U ′
2

with the required properties, so U ′
1 \ U ′

2 6= ∅.
Using similar arguments we can show that the second bullet is true for U2,

U1, there is some ground fact G2 ∈ U ′
2 \ U ′

1 with the required properties and
U ′

2 \ U ′
1 6= ∅. Thus, (U ′

1 \ U ′
2) ∪ (U ′

2 \ U ′
1) 6= ∅, so it has a minimum (see above);

set G the minimum of the set (U ′
1 \ U ′

2) ∪ (U ′
2 \ U ′

1). Since U1 ≤K U2 and

85

U2 ≤K U1, using the above remarks we are forced to conclude that G ∈ U ′
1 \ U ′

2

and G ∈ U ′
2 \ U ′

1, which is obviously a contradiction.
For Monotonicity, suppose that U1 ⊆ U2; then by the definition of Cost, U ′

1 ⊆
U ′

2. Set U = U ′
2 \ U ′

1. If U = ∅ then U ′
1 = U ′

2 so U1 ≤K U2. If U 6= ∅ then there
is some minimum for U (per ≤G), say P (x1, ..., xn). Then, obviously, U ′P

1 ⊂ U ′P
2

and for all predicates Q such that P ≤P Q, Q 6= P it holds that UQ = ∅, so
U ′Q

1 = U ′Q
2 ; thus |U ′Q

1 | = |U ′Q
2 |, U ′P

2 (U ′P
1 . We conclude that U1 ≤K U2.

For Totality: Set S={P |P : predicate for which |U ′P
1 | 6= |U ′P

2 | or U ′P
1 ⊂ U ′P

2

or U ′P
2 ⊂ U ′P

1 }. If S 6= ∅, then S is obviously finite (since there is a finite number
of predicates) so we can find the “most expensive” (per≤P) predicate that appears
in S (say Q ∈ S). If, for Q, it holds that |U ′Q

1 | < |U ′Q
2 | or U ′P

1 ⊂ U ′P
2 then

U1 ≤K U2; if it holds that|U ′P
2 | < |U ′P

1 | or U ′P
2 ⊂ U ′P

1 then U2 ≤K U1.
So, let us suppose that S = ∅. Set S′ = (U ′

1 \U ′
2) ∪ (U ′

2 \U ′
1). If U ′

1 \U ′
2 = ∅

then U ′
1 ⊆ U ′

2; by monotonicity: U ′
1 ≤K U ′

2; by conflict sensitivity: U1 ≤K U2.
Similarly, if U ′

2 \U ′
1 = ∅ then U2 ≤K U1. So, let us suppose that U ′

1 \U ′
2 6= ∅ and

U ′
2 \ U ′

1 6= ∅. Take the minimum of U ′
1 \ U ′

2, say G1 and the minimum of U ′
2 \ U ′

1,
say G2. If G1 ≤G G2 then the bullet and our assumptions imply that U1 ≤K U2.
If G2 ≤G G1 then the second bullet and our assumptions imply that U2 ≤K U1.
Since ≤G is total, there is no other possibility and we are done.

For Transitivity: If U ′
1 = U ′

2 or U ′
2 = U ′

3 then the proof follows from conflict
sensitivity. If the first bullet is true for either U1, U2 or U2, U3, then the proof is
obvious. If the second bullet is true for both U1, U2 and U2, U3, then, similar to the
totality proof we can show that the sets (U ′

1\U ′
2), (U

′
2\U ′

1), (U
′
2\U ′

3), (U
′
3\U ′

2) are
nonempty. Suppose that U ′

1 \ U ′
3 = ∅; then U ′

1 ⊆ U ′
3, so combining monotonicity

and conflict sensitivity we get that U1 ≤K U3 and we are done.
Suppose that U ′

3 \ U ′
1 = ∅; then U ′

3 ⊆ U ′
1, so combining monotonicity and

conflict sensitivity we get that U3 ≤K U1; using the proof of monotonicity, we
conclude that the relation U3 ≤K U1 can be shown using the first bullet of the
definition. But transitivity has been shown to hold when one of the two inequalities
are based on the first bullet, so U3 ≤K U1 and U1 ≤K U2 imply U3 ≤K U2. In
addition, U2 ≤K U3; using Cost antisymmetry, we conclude that U ′

2 = U ′
3, which

leads us to the case we studied in the first line of this proof.
So, let us suppose that U ′

1 \ U ′
3 6= ∅, U ′

3 \ U ′
1 6= ∅. By our results, each of

these sets has a minimum per ≤G. Set Gij = min(U ′
i \ U ′

j) for i, j = 1, 2, 3, our
assumptions: G12 ≤G G21 and G23 ≤G G32. It remains to show that G13 ≤G G31.
We will use a tree-like structure to cover all the different cases for Gij (see fig 5.3.
First, consider some triple i, j, k ∈ 1, 2, 3 such that i, j, k are mutually disjoint.
Then: If Gij ∈ U ′

k, it follows that Gij ∈ U ′
k \ U ′

j , so Gki ≤G Gij . If Gij /∈ U ′
k, it

follows that Gij ∈ U ′
i \ U ′

k, so Gik ≤G Gij . In addition, it cannot be the case that
Gij = Gji because Gij ∈ U ′

i , Gji /∈ U ′
i by definition.

86

Figure 5.1: Ordering is update generating

87

Using these remarks, we can create the tree of possibilities shown in the Fig. 5.3;
this tree is described as a flowchart. The facts with which we start are shown in
a box in the upper left corner. As we move down the tree, we encounter boxes
which contain ground facts (Gij) which are successively “smaller” (per ≤G). We
start with G31; the process stops when we reach G13 (in which case, by the tran-
sitivity of ≤G, G13 ≤G G31 so U1 ≤K U3) or if we reach a Gij twice, with an
intermediate ground fact Gji (in which case Gij ≤G Gji and Gji ≤G Gij , so by
the antisymmetry of ≤G, implies Gij = Gji, i.e., a contradiction).

At each step, we add a new ground fact implied either by the facts in the upper
left corner, or by a particular assumption made (described by rhombus in the dia-
gram) and the observations above. As shown in the diagram, for all possible sets of
assumptions, we either reach a contradiction (i.e., the particular set of assumptions
is not possible) or we reach a position where G13 ≤G G31 (i.e., U1 ≤K U3) can be
shown. This Completes the proof. Thus ≤K is update-generating.¥

5.4 Termination

In the 4th step of our algorithm, we try to find a rule c and a special set of constants
u, which violate the specific instance of this rule. Most of the rules are a set of a
finite number of sets, except those with an existential quantifier. All rule families
Comp(c, ~u) except R11 and R33 although having finite size, they have an infinite
number of instances, one for each of the possible set of constants ~u. In this section
we emphasize that during the 4th step of the Update function we can constrain the
available constants to a finite size, in effect we can implement Select to consider
only the existing constants in K ∪ U at that particular run, plus the “cheapest”
auxiliary non-existing constant.

As also explained in the previous chapter, when selecting a rule instance that
contains a specific ground fact, we bound some of this rule instance’s variables
(with the constants existing in the ground fact) leaving a number of free variables.
With infinite constants in our language these free variables might lead to an infinite
number of rule instantiations, or to rule instantiations with an infinite size.

Below we solve the infinite instances/sizes problem by examining our spe-
cific set of rules and showing that the free variables in the rules suffering from
this problem, can be bounded to a finite set. Bounding the free variables to non-
existing constants (in the ontology or update) is shown to be fruitless and can be
avoided. For those rules that contain an existential quantifier we also consider one,
the “cheapest” per our ≤lex to be considered.

Prop. 3. Suppose a run of the Update function with initial inputs U,K, ∅. For the
set of rules presented in Table 5.3, constraining Select function of the algorithm to

88

search over the finite space of all existing constants in U or K, plus the cheapest
per ≤lex, “auxiliary” constant, will detect all possible rule instances violations.

Proof:
The rules R1, R13, R15, R22, R23, R28, R35 have no free variables. When

adding or removing a ground fact P (~x), there is being created only one instance
Comp(c, ~y) of those rules, the one having ~u = ~x. Therefore there is no point in
examining in Select function any constants other than ~x.

R2 is a special rule. There are no free variables here and the rule does not
break. Trying to remove the top class, the only update which could violate this
rule, is an infeasible update.

The rest of our rule’s instances, except R11 and R33, are Comp(c, ~u) of the
form {{¬A1(~u1)}, {¬A2(~u2)},..., {¬An(~un)}, {B00(~uB00),B01(~uB01) ,...,B0l(~uB0l

)
}, {B10(~uB10),B11(~uB11),..., B1l(~uB0l

) }, {Bm0(~uBm0),Bm1(~uBm1),..., Bml(~uB0l
)

}} for some m ≥ 0, l depending on m, n ≥ 1, c a specific Integrity Constraint, Ai

and Bij positive ground facts and ~u =
⋃i=n

i=1 ~ui ∪
⋃i=Bml

i=B00
~ui

An important notice is that in our case and for all integrity constraints of ours
that can be written in the above form it holds that

⋃i=Bml
i=B00

~ui ⊆
⋃i=n

i=1 ~ui. Therefore
~u =

⋃i=n
i=1 ~ui.

Now consider that we bound a part of the set of tuples ~u of the above rule, when
adding one or more Ai(~ui) and/or removing one or more Bij(~uBij). Rule instances
of c are violated if either some Ai(~ui) is present in the update or the ontology, or a
Bij(~uBij) is absent. When trying to see whether a ¬Ai(~ui) holds, there is no point
examining any tuple of constants ~v which does not exist in the initial ontology
or the update as for this tuple, ¬Ai(~v) holds for sure. Therefore if there are free
variables in any set {Ai(~ui)} of the above rule, there’s no point examining non
existing constants, as all the rule instances these constants construct are satisfied.

Suppose on the other hand, that there are not any free variables in Ai(~ui), so
the c’s instances that are violated are those who have at least one Bij(~uBij), not
satisfied, i.e., not present in the ontology. However, as we stated, when all the
variables appearing in Ais are all the variables of the rule: ~u =

⋃i=n
i=1 ~ui. So any

~uBij is immediately bounded.
Therefore there are not any instances of rules R3-R10, R12, R14, R16-R21,

24-R27, 29-R32, R34, R36-R38, violated for non-existing constants in the update
or the ontology.

Actually, the above arguments are subject to one exception for the rules that
have an existential quantifier, i.e., R11 and R33. In these cases we don’t face
an “infinite” rule instance problem but a single’s rule’s instance “infinite width”
problem.. When one tries to bound the variables of these rules to constants, each of
R11, R33 generates only one instance of the rule with infinite number of sets, one

89

for each of the infinite number of pairs of ~(y, z). The instance that these rules have,
takes the form Comp(c, ~u) = {{A(x)}, {B(x, y1),C(x, z1)}, {B(x, y2),C(x, z2)},
..., {B(x, yn),C(x, zn)}} , where, x, yi, zi are constants and n → ∞. Because of
the constraint “∃y, z” in these rules, only x can be bounded to a constant.

However notice that for {B(x, yi),C(x, zi)}, choosing among auxiliary non
existing constants c1, c2 to restore this rule by bounding yi, zi both to c1 or to
c2 will lead to two almost identical solutions (Deltas). The only difference will
be that one result will contain {B(x, c1),C(x, c1)} where the other will contain
{B(x, c2),C(x, c2)}. We now based on our ordering that the “cheapest” result will
be the one containing the “cheapest” (per ≤lex) of c1,c2

Concluding when searching rule violations of the above rules including the
first “cheapest”, non-existing in K or U , auxiliary tuple of constants in our search
space, should be enough. This “cheapest” is depending on the ordering used, so
any ordering following the properties we defined here should have one.

Therefore termination of our algorithm is independent of the ordering used and
depends only on the rules of the language. In our case termination is guaranteed,
by defining Select function to be searching over the finite set of all existing in U
or K, constants plus the cheapest per ≤lex auxiliary constant.¥

5.5 Example and Optimizations

Let K be our initial KB and suppose U = {¬CS(A)} is an update to be applied
upon K. Next we elaborate on the algorithm’s behavior. In STEP2, we check if the
requested update, is already implemented in K. If K∪|U 0 {¬CS(A)}, (i.e., class
A is in K), we continue to STEP4 (STEP3 is trivial),where we try to identify the
integrity constraints that might be violated. These are the (instances of the)rules
that contain ¬(¬CS(A)), i.e., CS(A), in at least one element of their component
set.

For example, consider rule R3 with Comp(R3,(x, A)) = {{¬Domain(x,A)},
{PS(x) , CS(A)}}. If we instantiate this rule for a constant P it states that when
information Domain(P, C) exists in our KB, then property P and class C, should
also exist. As STEP4 demands, ¬(¬CS(A)) = CS(A) ∈ V ={PS(x),CS(A)},
while V ∈ Comp(R3, (x,A)). R3 will be violated if there is no other component
of Comp(R3, (x, a)) implied by K. Suppose for start that K doesn’t contain any
property, which has A as its domain. Therefore the rule is not violated. Thus, the
update ¬CS(A) can be returned as an output for raw application on K.

Notice here that, if not restricting the Select function as discussed in the pre-
vious section, instead of returning immediately the result, the algorithm makes
“another round of calls”, in case our update contained more than one ground facts;

90

∀x ∈ L (which are infinite) the algorithm would do the following: It proceeds to
STEP6, where it re-calls Update function with input {¬CS(A),¬Domain(x,A)}
(we avoid explaining B for the moment). It reaches again STEP3 (where it can-
not select ¬Domain(x, A), as this is implied by K (there’s no Domain(x,A) in
K) and so it reselects ¬CS(A). In STEP4 it re-examines R3, but now there’s a
V ′ 6= V ∈ Comp(R3, (x,A)), for which it holds V ′ ⊆ U ∪ ESE (U contains
¬Domain(x,A)). Hence it goes in STEP5 and returns {¬CS(A)} ∪ O, where
O is the result of a last call to the update function (after adding ¬CS(A) to ESE)
that will evaluated to ∅ in STEP2. Therefore, for the infinite number of x that are
absent from our KB and Update, the algorithm would for sure, check and find no
violations, returning its input ({¬CS(A)}) unharmed.

On the other hand, if the class A, we are removing, is a domain of some prop-
erty say P ,and R3 is violated, then in STEP6 we unify each side-effect with the
update set and recall the update function for each one of them. We keep always (in
B) the minimum result, comparing them with the use of min (which implements
our ≤), and return the minimum solution. In our example, Comp(R3, (P, A)) has
only two elements (V ′), and therefore there is left only one of them to be applied
as a side-effect.This is the ¬Domain(P,A). Thus STEP6 returns the result of
Update({¬ CS(A) , ¬ Domain(P, A)}, K , ∅). In subsequent calls for this prop-
erty P, R3 will not be violated again due to the existence of {¬Domain(P,A)}
in the update, but it could be violated again if class A was also a domain of some
other property, R. Now, during the algorithm’s execution {¬Domain(P,A)} will
also be examined for causing side-effects.

For presentation purposes, we don’t set out in detail, the procedure that the
addition of {¬Domain(P, A)} will cause. We just state that when removing
Domain(P, A), R11 suggests that either a new Domain should be inserted for
P , or the property P should be completely deleted. Our ordering favors the second
solution, despite its side-effects (remove P and the information of its range,remove
all property subsumption relations that contain P , and remove all instantiation links
of P) as we have placed Domain(x, y) high in our ordering, instating it more “ex-
pensive” than all these actions.

An entirely symmetrical, to the above, procedure is materialized in case the
under deletion class, A, has the role of some property’s range, in K (rule R4).
Integrity Constraint R5 is also affected by a class removal if there is an IsA to or
from this class. Thereupon, R5 yields the removal of any such IsA. In addition, R7
dictates the removal of any instantiation link of this class (C_Inst(x,C)). Lastly,
if the class we try to remove is the Top Class, i.e., A = >, R2 is being violated
having not any possibility to be restored and leading this way to INFEASIBLE.

The analysis of this section leads to a simpler form of the algorithm following
in table 5.7,that is specific for the discussed operation. Similarly, following the

91

Table 5.7: Remove Class
If CS(A) isn’t already absent from K:

Remove all class IsA relationships deriving from A.
Remove all class IsA relationships arriving in A.
Remove all instantiation links between a resource and A.
For every property P whose range/domain is A:

Remove all property IsA relationships deriving from P.
Remove all property IsA relationships arriving in P.
Remove all instantiation links of P.
Remove P and the information on its range/domain.

Remove A.

execution of the algorithm we can develop simpler, special-purpose algorithms, for
the particular application that we are interested at (e.g., RDF in our case). These
“instantiations” are much faster than the general algorithm, but can still be proven
equivalent to it, i.e., formally sustained.

Thus, we can guarantee that they exhibit the expected/desired behavior, by ver-
ifying them against the general-purpose algorithm above. Notice that they are sim-
ilar to ad-hoc methodologies applied by other systems but without resorting to the
tedious and error-prone case-based reasoning usually employed for this purpose.
Moreover, the general algorithm could still be used to implement any possible op-
eration, beyond these specific solutions. Below we pose a number of common oper-
ations that could be implemented this way. Yet, the general algorithm could always
be used to implement any possible operation, these specific operations haven’t cov-
ered. We have developed such special case algorithms for 32 singular operations,
in effect for all the singular sets (sets that have only one ground fact) we can form
with all our 32 positive and negative ground facts. These algorithms are given in
Appendix A.

5.6 Necessity of our algorithm

Before moving on to implementation details we would like to elaborate on the
necessity of our general algorithm. As we have already pointed out, one interesting
advantage of the formal foundation upon which we establish our methodology is
the ability to support arbitrary in size, and in form, composite updates without
resting this effort on the existence of elementary ones. In fact, and while remaining
in the space of standard RDF semantics, we can argue that there is not a finite
number of pre-determined operations upon which any composite update can be

92

decomposed.
Let’s consider as an update the set {¬C_IsA(A,C)} applied upon an ontology

O = C_IsA(A, B), C_IsA(B, C), C_IsA(A,C). Rule R11 (which also belongs
to the standard RDF semantics), captures the intuition that in order to remove an
implicit IsA one needs to remove an explicit that “stands in the way”. There-
fore, for the sake of this example (and without loss of generality), suppose that
C_IsA(A, B) is preferable to be removed together with C_IsA(A, C), in order
for the update to be “rational”.

Let an update U = {¬C_IsA(A,C), C_IsA(A,B)}. In this case, the exis-
tence of the explicit requirement that C_IsA(A, B) should be “added”, forces us
to select¬C_IsA(B, C) as a side-effect of¬C_IsA(A,C) (which is not what we,
and also other implemented systems, would normally chose, e.g. ¬C_IsA(A, B)).

Now suppose that we decomposed this update into its two elementary con-
stituents and executed them in some order. It is easy to see that any such decompo-
sition would give us a different result, as the effects of the first action would disap-
pear by the time the second was executed. For example, removing C_IsA(A,C)
(¬C_IsA(A,C)) first, as an isolated operation, would remove C_IsA(A,B).
Then adding the second part of the update (C_IsA(A, B)) would revert the effects
of the previous change and in fact re-construct the implicit IsA C_IsA(A,C) (due
to R11). On the other hand, if we first added C_IsA(A,B), this would be a void
change as this IsA already exists, leaving the ontology O unaltered. Thereinafter,
removal of C_IsA(A,C), would remove C_IsA(A,B), leading to a wrong result.

Hence, there are operations which cannot be decomposed to their elementary
constituents so as to be executed in a serialized way. A sceptical counterpoint to
the above testimony would dictate to replace U with the removal of C_IsA(B, C)
followed by the removal of C_IsA(A,C), thus giving the same results as U . How-
ever, we cannot determine this decomposition automatically. Furthermore, if we
generalize this example so that the number of successive IsAs that form the implicit
C_IsA(A, C) are n, we can see that while one can invent a number of heuristics
capturing these circumstances, it is pointless to try to do so while n grows bigger.
This means, that unless a sophisticated algorithm like ours handles the problem,
storing operations into a library will never provide full support of composite up-
dates. This is an intrinsic peculiarity of ad-hoc approaches.

93

Chapter 6

Implementation

Change does not roll in on the wheels of inevitability
but comes through continuous struggle.

Martin Luther King, Jr

6.1 General Setting: The SWKM

The Semantic Web Knowledge Middleware (a.k.a Manager) platform is a seman-
tic management server-side stack, implemented in Java and C++. SWKM’s pur-
pose is to provide its users scalable middleware services for managing voluminous
representations of Semantic Web data (schemata and data expressed in RDF/S).
SWKM1 is developed by ICS-FORTH institute, and partially supported by EU
projects KP-Lab2 and CASPAR3. The results of the current research have been
implemented in the Evolution Service of the SWKM. Note that Evolution Service
is also sometimes referred to as the Change Impact service in order to emphasize
on the fact that in reality it doesn’t apply the requested changes but just computes
their side-effects (impacts) handing them to another service for implementation.
The architecture of the SWKM is shown in Fig. 6.1.

For the purpose of giving the platform the maximum interoperability, it was
chosen to offer all services as an array of SOAP-enabled4 Web Services. All ser-
vices depend directly or indirectly to the internal components shown in Fig. 6.1,

1http://athena.ics.forth.gr:9090/SWKM
2http://www.kp-lab.org//
3http://www.casparpreserves.eu/
4http://www.w3.org/TR/soap/

94

but a description of the SWKM framework goes out of the scope of this work. For
a thorough discussion on SWKM as well as comparison to other Semantic Web
middlewares and main memory RDF/S management systems refer to [4]. However
since our service is relating upon the main memory model of SKWM we should
mention a few things.

Figure 6.1: An architectural overview of the SWKM services

SWKM’s model is the only main memory RDF/S management system that sup-
ports a fully-fledged object based view of RDF/S. This view allows typing informa-
tion to be carried along with the objects themselves while provides object methods
for storing and accessing RDF/S schemas and instances. Additionally, it offers
higher abstractions to Semantic Web developers such as Namespaces (viewed as
a container of classes and properties defined in a schema) and Graphspaces [12]

95

(viewed as a container of edges relating objects through various kinds of proper-
ties). In a nutshell, the subject, predicate or object of a triple in SWKM are Java
objects whose state and type information is determined by the triples of an RDF/S
model. Thus, SWKM supports seamlessly both triple and object views allowing to
construct the latter from the former in a transparent to the user way.

6.2 The Evolution Service

The Evolution Service of the SWKM (shown in Fig. 6.1 under the name ChangeIm-
pact service) is published as a webservice exposing a single service which is the
one that applies the update request upon an RDF/S ontology. In effect, as men-
tioned the evolution service does not implement the changes, this is left to another
service (which, by the time this document was written was the Exporter Service,
although this choice is subject to change). The result of the evolution service is
the estimation and report of the side-effects a given change produces on a specific
ontology; not the materialization of these side-effects.

The ChangeImpact Service is internally written in Java. This module is re-
sponsible for determining the changes that should occur on a set of name or graph
spaces in response to a change request. The change request comes in the form of
a Delta, which basically encapsulates a pair of TRIG formatted strings, containing
RDF/S triples. One file corresponds to the to-be-added triples and one to the to-
be-deleted. A diagram showing the connection with the internal implementation of
the ChangeImpact webservice is the one shown in Fig. 6.2.

The RDF/S ontology or KB is specified using any, arbitrarily large, collection
of name and/or graph spaces, and this is the parameter nameGraphSpaceURI of
the service. The update request (delta) can affect any of the triples in this collection.
However, the side-effects could potentially affect triples in other, depended or de-
pending name or graph spaces. Therefore, the RDF/S knowledge base in this case
is the union of all the triples that appear in all the name or graph spaces that are di-
rectly or indirectly depending (or are depended) on the given ones. Letting the side-
effects of the update address the whole name /graph space “dependency” closure
as was explained above corresponds to setting the mode parameter of ChangeIm-
pact to NamespaceClosure.ON . In case NamespaceClosure.OFF is cho-
sen, ChangeImpact ignores side-effects concerning triples/resources with name or
graph spaces out of the given collection.

The output of our service comes in the form of a pair of strings (or files); the
first string represents the collection (set) of RDF/S triples that should be added
to the ontology, whereas the second represents the collection (set) of triples that
should be removed from the ontology, in order for the requested change to be

96

Change Service

Trig files of
insertions &
deletions
(added, deleted)

nameGraphSpaceURI

Construct
update
operations

Export Service

XML/RDF Trig Parser

M.M. RDF APIs

Trig

Internal Change Impact Implementation

Input set
of update
requests

Transform to
Trig files of
insertions &
deletions

Set of update
requests

Output:

Two TRIG files
(effects+side-
effects)

added

deleted
mode

nameGraphSpaceURI

mode

Change Service

Trig files of
insertions &
deletions
(added, deleted)

nameGraphSpaceURI

Construct
update
operations

Export Service

XML/RDF Trig Parser

M.M. RDF APIs

Trig

Internal Change Impact Implementation

Input set
of update
requests

Transform to
Trig files of
insertions &
deletions

Set of update
requests

Output:

Two TRIG files
(effects+side-
effects)

added

deleted
mode

nameGraphSpaceURI

mode

Figure 6.2: The Evolution or ChangeImpact service

applied (according to our algorithms and ordering). Both sets of triples are encoded
into two strings which follow the TRIG syntax, so as to follow a standard, globally
recognizable and re-usable format.

After the successful execution of the service, the output triples (in the form
of another Delta object) include both the effects that were directly dictated by the
original update request and the ones computed by our algorithm as so dictated by
validity considerations, (i.e., the side-effects to be used in order to avoid introduc-
ing invalidities in the original ontology) due to the update request. All these triples
are in fact primitive update operations (i.e., another update request) that captures
all the effects and side-effects of the original change request upon the target KB.
Void additions and removals have been filtered from the output.

Preconditions of the Service:

• The Collection of nameOrGraphspaceURIs at input, contains all the dif-
ferent name or graph spaces that come in the triples contained in the input
delta.

• Format is of the files in Delta is “TRIG”. Triples are fully-qualified.

• In cases that the update contains one of the following triples:

97

1. P rdfs : subPropertyOf R

2. A rdf : type B

3. A rdfs : subClassOf B

(with A,B,P,R fully qualified Uris)

Then at least one resource out of subject or object must have its URI contained
in the update or the initial KB (unless the resources are part of RDF Schema names-
pace). This condition holds in order for the changeImpact mechanism to decide of
the actual operation that is attempted. For example triple (a) could be attributed to
adding an isa to a normal property or adding an isa to a data type property (that
is a property with range = rdfs : Literal). These two operations have different
semantics and therefore have to be distinguished. Similarly in case of triple (b) for
example, the service needs to know if it is about an instantiation link between a
class and a meta-class, or an instantiation link between a class instance and a class.

• The same is true for the triple::

1. P rdfs : domain A

(with P,A fully qualified Uris)

but, in this case, only the subject (P) might be ambiguous, an so is obligatory to
have been specified.

Effects of the Service:

After the successful execution of the operation, the output will be a delta ready for
set-theoretical addition/removal upon the initial sets of triples (if mode is OFF) or
upon the “dependency” closure of these initial sets of triples (if mode is ON).

However in the case that successful execution of an update upon an initial RDF
KB does not guarantee a consistent resulting KB, an InfeasibleUpdateException
is thrown to inform that the change requested cannot be applied to the name or
graph spaces provided.

Changes demanding the addition of triples that already exist (or the deleting of
triples that are already absent) are missing from the output delta, as they are void
changes. Moreover, when an addition of a specific resource is confronted with the
existence of this URI as a different resource, the user is notified by an exception,
modeled with the NameExistsAsDifferentObjectException object.

In addition, if the precondition that delta’s URIs are included in the param-
eter nameOrGraphspaceURIs is violated, the user is notified by the exception

98

named UpdatingIllegalNameSpacesException is thrown. Also another excep-
tion named NotEnoughInfoException is thrown in the violation of the precon-
dition that some triples need to be related to other existing triples so as to disam-
biguate their meaning.

Moreover, one should note that the triples {A type rdfs : Class}, {P type rdf :
Property}, when presented in the update in isolation (i.e., there is neither A nor
P anywhere else in the update), then they are considered to be a normal Class (and
not a meta-class) and a normal Property (with range a class) correspondingly.

In general, normal Classes and Properties are considered different and distinct
from Meta-Classes (subclasses of rdfs:Class) and data type properties (proper-
ties with rdfs:Literal as their range), they have different semantics, treated sep-
arately and should not be confused. For example, an addition of the sole triple
{P type rdf : Property} to an KB is interpreted as the addition of a Property
which can have only classes as range, so if the KB contains the triple {P rdfs :
range rdfs : Literal} then a NameExistsAsDifferentObjectException is
thrown.

Lastly, an InvalidTriplesException is thrown in case a parsed triple falls in
the following cases:

1. {X Y rdfs:Literal}, if Y exists in update and is not comment,label, or prop-
erty

2. {X rdf:type rdfs:Class}, if X exists in update and is not a class

3. {X rdf:type rdf:Property}, if X exists in update and is not property

4. {X rdf:type rdfs:Resource}, if X exists in update and is not class instance

5. {X rdf:type Y}, if Y exists in update and is a class and X exists in update
and is not a class instance

6. {X rdf:type Y}, if Y exists in update and is a metaclass and X exists in update
and is not a class

7. {X rdf:type Y}, if X,Y exist in the update and are not resources (e.g. are
literals)

8. {X rdf:type Y}, if Y exists in update and is a class instance

9. {X rdf:type Y}, if X exists in update and is a meta class

10. {X rdfs:domain A} if X is not property (normall or datatype) or A is not
class (this should never break as X,A are immediately transformed to the
necessary types by the model when we parse the trig files)

99

11. {X rdfs:range A} if X is not property or A is not a class or rdfs:Literal

12. {X rdfs:subclassOf rdfs:Class} if X exists in update and is not a class

13. {X rdfs:subclassOf X}

14. {P rdfs:subPropertyOf R} if P,R are not properties (this should never break as
P,R are immediately transformed to the necessary types by the model when
we parse the trig files)

15. {P rdfs:subPropertyOf P}

16. For any unsupported type of triple (for example rdf:member, list, reifica-
tion;rdf:subject,rdf:object)

Signature of the Service:

The discussion above rounds up to the following signature:

Delta changeImpact(Delta delta, Collection <String>
nameGraphSpaceURI, NamespaceClosure mode) throws
InfeasibleUpdateException,
UpdatingIllegalNameSpacesException,
NotEnoughInfoException, InvalidTripleException,
NameExistsAsDifferentObjectException;

Interconnection of webservice with inner API

When the webservice parses a Delta object in order to apply it as an update (ac-
tually to estimate its side-effects), an AddDelTriples object is constructed for
internal use. The ChangeImpact internal implementation receives in the input
and returns to the output AddDelTriples objects representing the sets of changes.
In summary an AddDelT iples object has two HashSets of TripleWrapper ob-
jects. A TripleWrapper is our representation of an RDF/S triple. Actually the
main memory model already has a representation for RDF/S triples which is the
the class RDF_Triple instantiating the interface IRDF_Triple. However, in our
case the semantics considered for RDF triples were a little bit more sophisticated
than these of the model.

For example, when two main memory model IRDF_Triple objects are com-
pared for equality this is done by reference. On the other hand we considered a
value equality context. Towards this we constructed class TripleWrapper which

100

contains (wraps) an IRDF_Triple object and is equipped with the following
equality condition: Two TripleWrapper objects are equal if the IRDF_Triple
they contain is of the same type and their subject/object are equal using the seman-
tics of ResourceLiteralWrapper. The first notice here is that a TripleWrapper
contains a reference to an IRDF_Triple and by having the latter’s type we have
the predicate of the RDF triple that these structures represent. The second no-
tice is that the subject and object of the RDF triple (which could be accessible
through the reference to the IRDF_Triple) are also contained in the wrapper as
two ResourceLiteralWrapper objects.

Exactly symmetrically to the above rational we substituted the use of an
IRDF_Resource object or IRDF_Literal object (which an IRDF_Triple
could have has as subject and object) with the use of a ResourceLiteralWrapper.
This was done for the same reasons, as while IRDF_Resource and IRDF_Literal
carry by reference equality, our wrapper for both of these objects (which is repre-
sented by the ResourceLiteralWrapper) carries equality by value.

Notice that equality by value is somewhat obvious: in the case the former ob-
jects represent literals two different ResourceLiteralWrapper objects are con-
sidered equal if their contained mm representation of a literal, i.e.,IRDF_Literal
objects, have the same string content; in the case they represent other resources
two any such ResourceLiteralWrapper classes are equal if their underlying
IRDF_Resources (a mm representation of a resource) have the same URI.

An AddDelTriples object contains one set (of TripleWrapper classes) for
the to-be-added triples and one for the to-be-deleted. We excessively say the
AddDelTriples objects keep references to IRDF_Triples although in fact, it
is the sets the former retain that do that. Based on the equality context within which
we placed our objects, our object of representing a RDF triple, i.e., TripleWrapper
can check whether this triple belongs to a IRDF_Model (the main memory rep-
resentation of SWKM for an RDF/S ontology).

This is useful as we want our internal representation of a change, (i.e., an
AddDelTriples object) to keep references to existing IRDF_Triple classes in
the initial model (which is an IRDF_Model); when a user requests the deletion
of a triple and there is a main memory representation of this triple, we would like
to keep a reference there, rather than constructing a second main memory repre-
sentation of a triple which is “equals” to the first.

However sometimes it might be the case that a triple belonging to the up-
date does not belong to the initial model. Therefore when we parse the Delta
object given to the webservice we are faced with the problem of how to create
an AddDelTriples instance. The problem actually is risen because of the fol-
lowing conditions: the AddDelTriples contains collections of TripleWrapper
classes, as already mentioned, and as also already told a TripleWrapper contains

101

an IRDF_Triple, and the fact is that is object is coupled with the existence of
an IRDF_Model. No main memory object representation of a triple can exist
without being associated to a model.

At this point one could ask: why not keeping triads of strings in the memory,
as that is what a RDF/S triple basically is? this is a rational question given that
a lot of main memory RDF management systems keep triples of strings for rep-
resenting ontologies. However, the benefits of an “object-view” representation of
an RDF ontology have been already acknowledged, including among other mem-
ory speedups in answering queries and in reasoning. Yet, arguing in favor of such
choices is out of the scope of this document; for a comparison of main memory
RDF management systems as well as the benefits of an “object-view” representa-
tion refer to [4].

Coming back to our problem, we need to generate an IRDF_Model (which,
considering that models an ontology, is a rather “heavy” construct) in order to have
some unforseen triples referring to it. Instead of building a new IRDF_Model on
demand (i.e., when we want construct a triple) we decided to initialize and keep
throughout the entire life of a ChangeImpact object, two instances of IRDF_Model,
namely the added_model and the deleted_model. Obviously, added_model con-
tains the to-be-added triples that exist in update but not in the initial model, and
deleted_model the to-be-deleted triples for which the same holds.

Therefore, ChangeImpact is initialized with three IRDF_Model objects,
the initial upon which the update will be enforced, the added_model and the
deleted_model. We have already explained how the initial model is constructed
through the arguments of the web service (the nameGraphSpaceURI collec-
tion and the NamespaceClosure mode); as far as the other models, when the
ChangeImpact service transforms the input Delta object to AddDelTriples
it searches for the triples in the initial model, and when not found it adds them
to the corresponding models. Fig. 6.3 depicts the objects introduced so far are
shown. Fig. 6.4 depicts the objects so-far analyzed. It also depicts an object called
URIMap this is basically a map between resources that we should consider as
equal. Note that current version is not taking advantages of this map, but it exists
for future support.

A design choice that should be emphasized here, is the choice of maintenance
of two different auxiliary models, instead of one; due to nature of our update such
a choice is obligatory. As we have seen, sometimes, the existence of two triples to-
gether in the update is interpreted as something different than the existence of only
one of them. With this in mind, suppose we had only one auxiliary main memory
model instead of added_model and deleted_model and consider the example of a
client of the service who might want to add class “A” but delete metaclass “A”.

This is interpreted as an update which contains the triple {[Ardf : typerdfs :

102

class AddDelTriples

ChangeImpact

- added_model: IRDF_Model
- deleted_model: IRDF_Model
~ initial_model: IRDF_Model {readOnly}
- map: URIMap
- top: IRDF_Class
- updates: UpdatesSet
utype: UpdateType

+ ChangeImpact(IRDF_Model, IRDF_Model, IRDF_Model, URIMap)
identifyUpdate(AddDelTriples) : AddDelTriples
+ minChange(AddDelTriples, boolean) : AddDelTriples
+ parseDelta(Delta, Collection<String>, URIMap, IRDF_Model, IRDF_Model, IRDF_Model) : AddDelTriples

ChangeImpact::AddDelTriples

- added: HashSet<TripleWrapper>
- deleted: HashSet<TripleWrapper>

+ equals(Object) : boolean
+ toTrigDelta() : TrigDelta

Triple

ChangeImpact::TripleWrapper

- map: URIMap
- object: ResourceLiteralWrapper
- subject: ResourceLiteralWrapper
- triple: IRDF_Triple

+ equals(Object) : boolean
+ getContainedInModel(IRDF_Model) : TripleWrapper
+ getTriple() : IRDF_Triple
+ TripleWrapper(IRDF_Triple, URIMap)

ChangeImpact::ResourceLiteralWrapper

- code: String
- l i t: IRDF_Literal = null
- map: URIMap
- res: IRDF_Resource = null
- reslit: Object

+ equals(Object) : boolean
+ getContainedInModel(IRDF_Model) : ResourceLiteralWrapper
- isLiteral() : boolean
+ isResource() : boolean

ChangeImpact::
ResourceLiteralWrapper::

URIMap

- map: String ([][])

+ getMap() : String[]
+ setMap(String[][]) : void

-subject
-object

intial izes

contains

returns input

contains

uses

Figure 6.3: ChangeImpact: Building Blocks

Class]} in the added set and (at least) the triple {[Ardfs : subClassOfrdfs :
Class]} in the deleted set. Now if neither of these triples exists in the initial model
and both these triples are added to the same auxiliary main memory model, the
latter is going to end up having an object IRDF_MetaClass to represent concept
“A”, which shouldn’t be the case. Thus, we cannot avoid having at least two
auxiliary main memory models, one for the added and one for the deleted sets
of triples. In other words, the two (added and deleted) sets of the update if unified
onto a model might cause misinterpretations of each other’s elements.

The main memory model has a certain consistency5 context for an IRDF_Model
to be properly functional. For example a constructed consistent model with a prop-
erty P (for example in a triple {[Prdfs : domainrdfs : Literal]} rdf)should
always contain the triple {[Prdfs : subClassOfrdfs : Class]}. Implemen-

5The reader shouldn’t confuse the term consistent here with the consistency nor the validity of
KBs and RDF Graphs as presented in previous chapters

103

tation details of the RDF_Model, which is the only and basic implementation
of the IRDF_Model interface, restrict the functionality of its methods to have
as a precondition the “consistency” (in the terms explained), of the set of triples
it contains. So, as we might use some method of the object IRDF_Property
(corresponding to the above mentioned property P), we have to have the triple
{[Prdfs : subClassOfrdfs : Class]} in the model containing this method, in
order to have guarantees that this method will work.

This additional triple might be included in the update all along or might be
added importing-triples procedure of the model as it would be the case for ex-
ample with property P above. In effect when we parse the triple {[Prdfs :
subClassOfrdfs : Class]} to the deleted_model, the parsing procedure will
generate and add also to the same model the {[Prdfs : subClassOfrdfs : Class]}.
However, the AddDelTriple object should not contain both triples; only one is
part of the update the other is there for main mm model’s own consistency rea-
sons. Fortunately, when adding a statement to a model this is marked with a flag
isInferred = false; every IRDF_Triple not explicitly added (i.e., generated
automatically) is marked with the isInferred flag to be true. This way we dif-
ferentiate the explicit and the inferred triples; the AddDelTriples object contains
only the explicitly added triples, which are not part of the initial model.

Thankfully, we can ourselves set the inferred flag of a triple also; it might
be the case that we want to add extra information to the update to clarify it. For
example, consider that the initial model contains two meta-classes and the update
contains the removal of a non-existing subsumption relation between them. As this
triple doesn’t exist we will build it and add it to the deleted_model. However,
the model would demand the declaration of the subject and object of this triple as
metaclasses through a series (two in this case) of RDF statements; these statements
will declare both subject and object as rdfs : subClassOf of rdfs : Class.
Note that here we should ourselves manually add this kind of information to the
deleted_model; a subsumption triple inserted to the model could be of several
types, like a class or a property IsA. The algorithms dealing with each such case
are, as we saw, different and so we add extra triples to make the model aware of of
the type of the triple. Yet, as we stated although we add these triples explicitly we
will manually set the inferred flag to be true.

There are other cases, where the inferred triple, that is automatically inferred,
is part of the update, or added by our module, is contained also in the initial model.
Although this triple is contained in the initial model for consistency reasons it
should belong also to the added_model or deleted_model, which (although in-
ferred) invalidates the reason we introduced the two auxiliary models all along,
which was to hold non-existing triples.

At this point a detail, intentionally hidden until now for presentation purposes,

104

should be revealed: The two auxiliary models used to hold the references to the
non-existing (in the initial model) triples, are in fact holding all the to be added
or removed triples (even those that do exist in the initial model). Of course an
AddDelTriples object keeps references to the existing triples (i.e., the initial
model) whenever possible, and references to the other models in case of non-
existing triples. The rational on this choice is that as the auxiliary model is con-
demned to contain also existing-triples as described in the previous paragraph, it
would obtain a nice property if we added the complete set of the update triples
to it (actually the complete to-be-added set to the added_model and the complete
to-be-deleted set to the deleted_model).

This nice property regards a method which any IRDF_Model is equipped
with, and which can serialize the content triples of a model to a string (formatted
as TRIG or RDF-XML). Therefore, as the output of the webservice is a Delta
object (more specifically a TrigDelta which is an implementation of a Delta)
containing two Trig formatted strings, it is easy to print the two models directly
to the two strings needed to construct the output. This means these models need
to have all the triples of the update (as also as all the triples generated as side-
effects which they would have anyway). The catch here, is that these models might
contain inferred triples that we wouldn’t want to be printed and returned. The
solution came with a special version of the corresponding serializer of the model,
which serializes to a string only the non-inferred triples.

Notice that through the above functionalities we could entirely bypass the
AddDelTriples object. However this object was kept for interoperability reasons
as other components or services of the SWKM, which need to somehow model a
“change” or a “delta”, make use of this object, and compatibility with these compo-
nents is desirable. In addition AddDelTriples is a helpful structure containing the
equality semantics and other secondary functions we require making very useful
for the rest of the module.

6.3 Implementation Level Details

We will now turn our focus towards the internal implementation of the service
(which is visually represented by the box at the bottom of Fig. 6.2), providing the
architecture of this module, its intra and interconnections and also implementation
details. This section is addressing to anyone interested in lightening the different
implementation spots as also to developers who potentially want to “touch” the
source code.

105

Dispatching the update

Essentially, the ChangeImpact service is equipped with two major components
which can be conceptually categorized as:

(a) The set of tools dealing with singular updates.

(b) The set of tools dealing with bulk updates.

The update operations that we need are singlefflmethod objects. They all im-
plement the RDF_Update interface which has a method a method called execute.
For example, one singular update operation is the AddClass which looks some-
what like this:

Class AddClass implements RDF_Update{

AddDelTriples execute(AddDelTriples update_input,

RDF_Model initial_model) {.. }
..

}

In fact the execute method takes also one more argument which we are not
mentioning yet for simplicity reasons. In every RDF_Update object, the two
seeable arguments of execute correspond to the set with the demanding by the
user changes on an initial model and the initial model itself. The output of execute
is also a set of changes, superset (in the most cases) of the initial.

By now, we can imagine that for an update operation, one could create a new
RDF_Update object. For example AddClass A = new AddClass(); and then
call the execute. A first remark is that actually several RDF_Update objects
call execute methods of other objects and as a result we will be burdened with the
generation of many new objects for each time a certain method is needed. This
can be solved by the introduction of the Class UpdatesSet and the dispatching
technique.

In general the aim of employing dispatching techniques, is to retain a data
structure or an object, containing references (or pointers) to certain pre-stored static
methods. The data structure is usually a map with keys an identifer of the methods
and values the methods themselves (or as in our case, objects which contain the
methods). Plenty of further information on these techniques is available in the
software engineering literature and on the Web.

106

So, the UpdatesSet class basically holds a map of the RDF_Update ob-
jects. Thus, all the RDF_Update objects are generated once and “dropped” on a
hashmap with key an identifier, (for example “ADD_CLASS”) and value the ob-
ject itself. Now, whenever we want to call execute function of the AddClass
RDF_Update object, we simply ask the map (i.e., the UpdateSet) to give us the
object that lies in the entry with key “ADD_CLASS” and hence we don’t need to
regenerate it. The keys of this hashmap are a enumeration named UpdateType.

Thus, an UpdateType value is the “ADD_CLASS”, while another one is
for example the “BULK”, which dispatches the execution of the program to the
algorithms dealing with a bulk (or composite) update. The benefit of the dispatch-
ing methodology that we employ, is that we decouple the process of recognizing
what kind of an update we are dealing with with the process of executing it upon
the initial model. During the translation of the a Delta to maim memory objects,
like IRD_Triple and AddDelTriple we identify a RDF_Update object that the
delta represents but we don’t want to call it yet and thus we can simply set the par-
ticular UpdateType. Later we just automatically call whichever execute method
is stored in the corresponding (to the saved UpdateType) entry in the UpdatesSet.

Therefore, a third argument on execute is the set of updates with which we
work, that is an UpdatesSet with all our RDF_Update objects. So, when execute
of any RDF_Update wants to call, for example, the AddClass execute, it will call
this function on the object with UpdateType = “ADD_CLASS”, taken from the
instance of UpdatesSet that was parsed as an argument to the former. Thus, the
signature of the method is:

AddDelTriples execute(UpdatesSetup set,
AddDelTriples update_input, RDF_Model initial_model)

With the employed technique, when necessary we could change a set of op-
erations. For example, if there was a need to use a different functionality (or se-
mantics) for adding a class, we would use another object (e.g., AddClass1) in-
stead of AddClass, having a different implementation of execute. To do that we
would substitute the value (of the UpdatesSet instance we use) of the entry with
key the UpdateType ′′ADD_CLASS”, placing our new class AddClass1 where
AddClass was lying.

Consequently, we can always call execute on a RDF_Update with a par-
ticular value of enumeration, thus knowing the “type” of the update, and without
caring about the object (i.e., the implementation). Note that this way we could
substitute only the objects holding the implementation of the semantics; plug them
into the same framework, and they will work. Another usage would come up if we
wanted to create a new operation; we would create a new object and put it in the

107

UpdateSet that we are using, with key a new type of enumeration. We would need
only to add code to appropriately setting the type of our update when recognized.
The dispatching to the execute would stay unaltered.

An auxiliary class to construct the UpdatesSet, is the class UpdatesBuilder.
The main functionality of this object is the method:

UpdatesBuilder set(UpdateType ut,RDF_Update up);

This method “fills” the UpdateSet with new types and objects. It returns the
constructed set through another of its method, namely the method build. Example
usage:

UpdatesBuilder upbuild = newUpdatesBuilder();
upbuild.set(UpdateType.ADD_CLASS, new AddClass());

UpdatesSet updates = upbuild.build();

Note that, for coding facility, the method set returns the UpdatesBuilder
object itself, so that we can perform all the “sets” in the same call, as:

UpdatesBuilder upbuild = new UpdatesBuilder();
upbuild.set(UpdateType.ADD_CLASS, new
AddClass()).set(UpdateType.ADD_RANGE,new AddRange());

After the aforementioned analysis, the comprehension of our central class ob-
ject, ChangeImpact, is pretty straightforward: when a new ChangeImpact is
created, an UpdatesBuilder loads all our update operations on the UpdatesSet
which will be used by all the update operations. The class ChangeImpact pro-
vides methods for parsing a Delta object to construct the AddDeltriples which
represents the update and also functionalities for recognizing the type of the up-
date. However, its main functionality is the method minChange which exe-
cutes the update on the initial model. The minChange method is the interface
of update operations with the outer world and calls the execute of the proper
RDF_Update object in order to implement the update operation that the client
needs. Different update operations would simply mean “feeding” these operations
to UpdatesBuilder when initializing ChangeImpact. Fig. 6.4 depicts the ob-
jects so-far analyzed showing two of the singular updates and the bulk update (the
others are similarly participating in the architecture).

Note that the UpdatesSet is is dispatched to every update object, in case
these objects want to use each other (in a lot of occasions as we saw in sec-
tion 5.5 they do). In addition, in Fig. 6.4 you can notice a field of UpdatesSet

108

class RDF_Update

AddCInstance

+ execute(UpdatesSet, AddDelTriples, RDF_Model) : AddDelTriples

BulkUpdate

~ rules: RulesSet

+ BulkUpdate(RulesSet)
+ execute(UpdatesSet, AddDelTriples, RDF_Model) : AddDelTriples

Remov eCInstance

+ execute(UpdatesSet, AddDelTriples, RDF_Model) : AddDelTriples

«interface»

RDF_Update

+ execute(UpdatesSet, AddDelTriples, RDF_Model) : AddDelTriples

UpdatesSet

- top: IRDF_Class
- updatesSetMap: HashMap <UpdateType,RDF_Update>

+ getTop() : IRDF_Class
getUpdate(UpdateType) : RDF_Update
~ setTop(IRDF_Class) : void

UpdatesBuilder

- updatesSetMap: HashMap <UpdateType, RDF_Update>

build(IRDF_Class, IRDF_Model, IRDF_Model, URIMap) : UpdatesSet
set(UpdateType, RDF_Update) : UpdatesBuilder
UpdatesBuilder()

ChangeImpact

- added_model: IRDF_Model
- deleted_model: IRDF_Model
~ initial_model: IRDF_Model {readOnly}
- map: URIMap
- top: IRDF_Class
- updates: UpdatesSet
utype: UpdateType

+ ChangeImpact(IRDF_Model, IRDF_Model, IRDF_Model, URIMap)
identifyUpdate(AddDelTriples) : AddDelTriples
+ minChange(AddDelTriples, boolean) : AddDelTriples
+ parseDelta(Delta, Collection<String>, URIMap, IRDF_Model, IRDF_Model, IRDF_Model) : AddDelTriples

RdfSuiteException

exceptions::
BranchTooExpensiv eException::

ChangeImpactException

+ ChangeImpactException()
+ ChangeImpactException(Exception)
+ ChangeImpactException(String)

exceptions::InfeasibleUpdateException

+ InfeasibleUpdateException()
+ InfeasibleUpdateException(String)
+ InfeasibleUpdateException(Exception)

exceptions::Inv alidTripleException

+ InvalidTripleException()
+ InvalidTripleException(String)
+ InvalidTripleException(Exception)

exceptions::NameExistsAsDifferentObjectException

+ NameExistsAsDifferentObjectException()
+ NameExistsAsDifferentObjectException(String)
+ NameExistsAsDifferentObjectException(Exception)

exceptions::NotEnoughInfoException

+ NotEnoughInfoException()
+ NotEnoughInfoException(String)
+ NotEnoughInfoException(Exception)

exceptions::UpdatingIllegalNameSpacesException

+ UpdatingIl legalNameSpacesException()
+ UpdatingIl legalNameSpacesException(String)
+ UpdatingIl legalNameSpacesException(Exception)

-updates

throws

uses

initial izes

selects

calls

input

input

input
is contained

is contained

is contained

throws

throws

throws
throws

throws

throws

throws

throws

throws

throws

Figure 6.4: Dispatching the updates

named Top, that is an IRD_Class set by ChangeImpact to represent the Top
class of our algorithms, and propagate them to the update objects with the use of
UpdatesSet. ChangeImpcat passes this class to UpdatesBuilder and in the
case no class is set, the default top class is set to be the “rdfs:Resource”. Fig. 6.4
also depicts the emergence of the several exceptions; these are the ones thrown ei-
ther by the RDF_Update objects, in reaction to the operation attempted or by
the ChangeImpact object while parsing and identifying the update. The ex-
ceptions of our module, those which we have already explained and also some
that are used only internally, are depicted in Fig. 6.5. The internal exception
BranchTooExpensiveException is used only by the implementation of our al-
gorithm during the bulk update, in the process of pruning expensive branches. The
other unmentioned exception ComparingDifferentTriplesException shown
in the figure, also used internally by the groundfact comparators for which we talk
below.

6.3.1 Bulk Update

When the bulk update is executed (i.e., the execute method of the RDF_Update
object BULK), it takes use of an object called GeneralUpdateFunction which
models the logic of our main algorithm presented in section 4.3. Its main func-
tion is the recursive update. In the current version and the update function we

109

class exceptions

UpdatingIllegalNameSpacesException

- serialVersionUID: long = 5566919046424212641L {readOnly}

+ UpdatingIllegalNameSpacesException()
+ UpdatingIllegalNameSpacesException(String)
+ UpdatingIllegalNameSpacesException(Exception)

BranchTooExpensiv eException

- serialVersionUID: long = 1L {readOnly}

+ BranchTooExpensiveException()
+ BranchTooExpensiveException(String)
+ BranchTooExpensiveException(Exception)

RdfSuiteException

ChangeImpactException

+ ChangeImpactException()
+ ChangeImpactException(Exception)
+ ChangeImpactException(String)

ComparingDifferentTriplesException

+ ComparingDifferentTriplesException()
+ ComparingDifferentTriplesException(Exception)
+ ComparingDifferentTriplesException(String)

InfeasibleUpdateException

- message: String = "The update for... {readOnly}
- serialVersionUID: long = -70014938525058... {readOnly}

+ InfeasibleUpdateException()
+ InfeasibleUpdateException(String)
+ InfeasibleUpdateException(Exception)

Inv alidTripleException

- message: String = "A triple you p...
- serialVersionUID: long = 1L {readOnly}

+ InvalidTripleException()
+ InvalidTripleException(String)
+ InvalidTripleException(Exception)

NameExistsAsDifferentObjectException

- serialVersionUID: long = -38889371480190... {readOnly}

+ NameExistsAsDifferentObjectException()
+ NameExistsAsDifferentObjectException(String)
+ NameExistsAsDifferentObjectException(Exception)

NotEnoughInfoException

- serialVersionUID: long = 1L {readOnly}

+ NotEnoughInfoException()
+ NotEnoughInfoException(String)
+ NotEnoughInfoException(Exception)

Figure 6.5: Exceptions

chose to use Delta objects, instead of AddDelTriples; as the recursion goes into
a respectable depth (as we have already discussed), and in order to lighten up the
execution we chose to avoid the generation of a lot of “heavy” objects (such as
TripleWrapper) in the large amount of branches that are going to end in in-
feasible. The price we pay for such a convention is that we are translating the
AddDelTriples input of the update function back to Delta (which was the orig-
inal form in the input of the web service). After the execution is returned we
also transform the Delta result of update to AddDelTriples, as this what every
RDF_Update must return, and therefore, also Bulk update. Actually the next
enhancement we are planning is to bypass entirely the translation of the input form
Delta to AddDelTriples when it is about a bulk update. Note however that we
can not get entirely rid of AddDelTriples as our module is not only designed
to serve the web service but possible also other inner modules of SWKM, which
“speak” in AddDelTriples terms. GeneralUpdateFunction uses a number of
auxiliary interfaces and classes, upon which we will elaborate in the following.

The variable B of the algorithm is being modeled with the BestResultSoFar
object. This object is set to keep the minimum (w.r.t to our ordering) delta (out-
put) currently produced by the recursion. Bulk update initializes an instance of this
object giving at as an argument to the constructor of GeneralUpdateFunction.
This constructor takes also a URISet instance, which is a multi-set of different
sets of URIs. The latter hold all the URIs of the initial and auxiliary models, di-
vided into several conceptual sets; URIs maintains six hash sets of strings, namely
classes,properties,datatypeproperties, metaclasses,classinstances,literals. As we

110

have discussed in step 4 our algorithm would not necessarily iterate over all the
constants of our language (i.e., all the URIs) but only the existing ones. In addition
when we look for instance for an existing class we shouldn’t iterate over the whole
set of URIs of our ontology but only the classes’ URIs. Thus, URISet help us op-
timizing this search (and step of the algorithm) keeping the existing URIs of each
category.

Selection of the predicates

Recall that during the second step our algorithm arbitrarily selects a predicate out of
the update. Practically, we chose to implement a somewhat parameterizable mech-
anism for choosing the predicate. We provided the interface PredicateSelector
which offers methods that sort that update set, put and take predicates from it.
While the implementation of the PredicateSelector we made for the particular
version of our framework, namely the RDFSuite_PredicateSelector (the name
is a leftover of the predecessor of SWKM suite), materializes “dummy” implemen-
tations of the methods of PredicateSelector, one is able to provide any alternative
implementation. The naive implementation we provided simply picks up the next
predicate from the update (it does not sort it nor uses any particular preference
when inserting predicates to it). How to initialize our algorithms with a specific
PredicateSelector implementation will be discussed subsequently. Figure 6.6
shows the interactions of Bulk update within our framework.

Looking closer to the bulk update in the diagram of Fig. 6.4 one could notice
that the Bulk update instance actually has a constructor, which is initiated with a
RulesSet object. Similar to UpdatesBuilder in our module, there exists a class
by the name RulesBuilder. This class helps ChangeImpact build a map holding
an implementation of the Rule interface in entries where the keys are again values
of the UpdateType enumeration. The map constructed is the RulesSet.

Each Rule object (i.e., implementation of the Rule interface) corresponds to
the set of integrity constraints, that should be counter examined for invalidation in
reaction to the addition of removal of a single predicate. They are single-method
objects implementing method checkInvalidities containing the reasoning that
needs to be done, in reaction to a predicate’s addition or removal in step 4 of our
main algorithm.

The dispatching technique is similarly used. When selecting a predicate in
step 4 of update function in GeneralUpdateFunction, we identify it to be of
an UpdateType, e.g., ADD_CIsA; then the method checkInvalidities is called
upon any object is stored in the RulesSet with key ADD_CIsA. This methods
implements all the checks that are needed in step 4 when CIsA(x, y) is the object
selected in step 3. Given the predicate and the U ∪ ESE , checkInvalidities of

111

class Bulk

BestResultSoFar

~ delta: Delta = null
~ INFEASIBLE: boolean

~ BestResultSoFar(Delta)
~ isInfeasible() : boolean

ChangeImpact

~ initial_model: IRDF_Model {readOnly}
- top: IRDF_Class
- updates: UpdatesSet

+ ChangeImpact(IRDF_Model, IRDF_Model, IRDF_Model, URIMap)
+ minChange(AddDelTriples, boolean) : AddDelTriples
+ parseDelta(Delta, Collection<String>, URIMap, IRDF_Model, IRDF_Model, IRDF_Model) : AddDelTriples

GeneralUpdateFunction

- mfunc: MinFunction
- ps: PredicateSelector
- rules: RulesSet
- uris: URIsSet

- checkImplication(IRDF_Model, Delta, Delta) : boolean
+ GeneralUpdateFunction(RulesSet, URIsSet)
identify(TripleValue, boolean, RulesSet) : UpdateType
+ update(IRDF_Model, Delta, Delta, BestResultSoFar) : Delta

RDFSuite_PredicateSelector

+ put(TripleValue, Delta, boolean) : void
+ sort(Delta) : Delta
+ take(Delta, Delta, IRDF_Model) : Object[]

URIsSet

- classes: HashSet <String>
- classinstances: HashSet <String>
- datatypeproperties: HashSet <String>
- l i terals: HashSet <String>
- metaclasses: HashSet <String>
- properties: HashSet <String>

«interface»

PredicateSelector

+ put(TripleValue, Delta, boolean) : void
+ sort(Delta) : Delta
+ take(Delta, Delta, IRDF_Model) : Object[]

BulkUpdate

~ rules: RulesSet

+ BulkUpdate(RulesSet)
+ execute(UpdatesSet, AddDelTriples, RDF_Model) : AddDelTriples

-ps

uses

-uris

initial izes

construcs

calls

initial izes

Figure 6.6: Bulk Update

the appropriate Rule returns a set of side-effects for the specified action. If the
side-effects are empty we proceed to step 5, else we go to step 6.

RulesBuilder is called by ChangeImpact to construct a RulesSet, which
will be subsequently “feeded” to the constructor of the Bulk instance. There-
fore that point and RulesSet are a suitable opportunity to encapsulate additional
information from the ChangeImpact that Rule instances may need. For ex-
ample ChangeImpact initializes a particular PredicateSelector, namely the
RDFSuite_PredicateSelector, and hands it over to RulesBuilder in order to
be maintained in the RulesSet. The Top class, the URIMap, and the two auxil-
iary models are also kept in RulesSet. Having all this information the RulesSet
is parsed as an argument to the checkInvalidities method of each Rule object
making these information available to the implementations of the rules.

In addition to the above, RulesSet keeps a reference to the implementation of
“min” function that we use. Interface MinFunction provides the generic under
which one can implement his own “min”. Fig. 6.7 shows a diagram of the objects
involved in the implementation of the GeneralUpdateFunction (in effect, our
algorithm’s) steps. The dispatching technique that was used here also, offers the
same advances that have already been discussed. One could easily implement a
different reasoning (rule violation) for all (or any) predicate addition or removal.

112

class GeneralUpdateFunction

AddCInstanceRule

+ checkInvalidities(RulesSet, TripleValue, TripleDelta, URIsSet) : Set<TripleDelta>

AddCInstantiationRule

+ checkInvalidities(RulesSet, TripleValue, TripleDelta, URIsSet) : Set<TripleDelta>

GeneralUpdateFunction

- mfunc: MinFunction
- ps: PredicateSelector
- rules: RulesSet
- uris: URIsSet

- checkImplication(IRDF_Model, Delta, Delta) : boolean
+ GeneralUpdateFunction(RulesSet, URIsSet)
identify(TripleValue, boolean, RulesSet) : UpdateType
+ update(IRDF_Model, Delta, Delta, BestResultSoFar) : Delta

RDFSuite_PredicateSelector

+ put(TripleValue, Delta, boolean) : void
+ sort(Delta) : Delta
+ take(Delta, Delta, IRDF_Model) : Object[]RemoveCInstanceRule

+ checkInvalidities(RulesSet, TripleValue, TripleDelta, URIsSet) : Set<TripleDelta>
RemoveCInstantiationRule

+ checkInvalidities(RulesSet, TripleValue, TripleDelta, URIsSet) : Set<TripleDelta>

RulesBuilder

- rulesSetMap: HashMap <UpdateType, Rule>

build(IRDF_Class, IRDF_Model, IRDF_Model, URIMap, MinFunction, IRDF_Model, PredicateSelector, ChangeImpact) : RulesSet
RulesBuilder()
set(UpdateType, Rule) : RulesBuilder

RulesSet

- added_model: IRDF_Model
- changeImpact: ChangeImpact = null
- deleted_model: IRDF_Model
- initial_model: IRDF_Model
- map: URIMap
- minFunction: MinFunction
- ps: PredicateSelector
- rulesSetMap: HashMap <UpdateType,Rule>
- top: IRDF_Class

+ getAddedModel() : IRDF_Model
+ getDeletedModel() : IRDF_Model
+ getInitialModel() : IRDF_Model
+ getMap() : URIMap
+ getMinFunction() : MinFunction
+ getPredicateSelector() : PredicateSelector
getRefToChangeImpact() : ChangeImpact
getRule(UpdateType) : Rule
+ getTop() : IRDF_Class
RulesSet()
RulesSet(HashMap<UpdateType,Rule>)
~ setAddedModel(IRDF_Model) : void
~ setDeletedModel(IRDF_Model) : void
+ setInitialModel(IRDF_Model) : void
+ setMap(URIMap) : void
+ setMinFunction(MinFunction) : void
+ setPredicateSelector(PredicateSelector) : void
setRefToChangeImpact(ChangeImpact) : void
~ setTop(IRDF_Class) : void

«interface»

MinFunction

+ min(Delta, Delta) : Delta

«interface»

PredicateSelector

+ put(TripleValue, Delta, boolean) : void
+ sort(Delta) : Delta
+ take(Delta, Delta, IRDF_Model) : Object[]

«interface»

Rule

+ checkInvalidities(RulesSet, TripleValue, TripleDelta, URIsSet) : Set<TripleDelta>

-rules

-mfunc

-minFunction
-ps

-ps

selects

uses

uses (step4)

is contained

is contained

is contained

is contained

input

input

input

input

initial izes

Figure 6.7: Update function

Function “min”

As we mentioned, the comparison functionality of our algorihtm’s “min” is pro-
vided through implementations of the MinFunction interface. Our implemen-
tation of MinFunction, namely OurMinFunction is relying upon an ordering
parameterization. At this point we should note that whatever implementation of the
MinFunction would fit in with rest of the framework without problems. How-
ever, using OurMinFunction is not so restricting either as we have designed a
very flexible mechanism. A designer has the ability to use OurMinFunction
with an ordering of his own just implementing the Ordering interface.

The Ordering interface was designed to be used with OurMinFunction,
representing the≤P and≤G ordering. Nevertheless our implementation of Ordering,
that is OurOrdering, encapsulates ≤P ordering and it remains still parameteriz-
able to the ≤G, providing even more flexibility and granularity in order for one to
keep as many mechanisms as she likes and changing only a few things in order to
tune the system otherwise. In addition to the above, the mechanism we constructed
provides a very useful building-dispatching mechanism for somebody to load the
≤G ordering onto OurOrdering. Actually this same mechanism can be used also
autonomously in order to compare two predicates in any context in the application.

The mechanism implementing≤G ordering is the class GroundFactOrdering;
this basically holds a map of GroundFactComparator implementations.
GroundFactComparator is an interface allowing single-method implementa-

113

tions that compare two groundfacts. Fig. 6.8 shows the implementations we made
for our≤G of table 5.6. All our groundfact comparisons are supported with the five
implementations shown in the figure. A GroundFactOrderingBuilder is used
by OurOrdering is order to build the GroundFactComparator instances into a
map (GroundFactOrdering). This builder follows the same conventions as the
other builders presented earlier and actually possesses the same advantages; based
on the UpdateType which is used again as key in GroundFactOrdering, the
latter provides dispatched access to GroundFactComparator objects where we
automatically call compareGroundFacts(). Any implementation of Ordering
could use the GroundFactOrderingBuilder, to associate UpdateType values
with comparators.

class Ordering

DataTypePropertyInstanceArgumentGroundFactComparator

+ compareGroundFacts(TripleValue, TripleValue, IRDF_Model, IRDF_Class) : int
DoubleArgumentPropRelationsGroundFactComparator

+ compareGroundFacts(TripleValue, TripleValue, IRDF_Model, IRDF_Class) : int
DoubleArgumentTypingGroundFactComparator

+ compareGroundFacts(TripleValue, TripleValue, IRDF_Model, IRDF_Class) : int

GeneralUpdateFunction

- mfunc: MinFunction
- ps: PredicateSelector
- rules: RulesSet
- uris: URIsSet

- checkImplication(IRDF_Model, Delta, Delta) : boolean
+ GeneralUpdateFunction(RulesSet, URIsSet)
identify(TripleValue, boolean, RulesSet) : UpdateType
+ update(IRDF_Model, Delta, Delta, BestResultSoFar) : Delta

GroundFactOrdering

- groundFactMap: HashMap <UpdateType, GroundFactComparator>

getComparator(UpdateType) : GroundFactComparator
GroundFactOrdering()
GroundFactOrdering(HashMap<UpdateType, GroundFactComparator>)

GroundFactOrderingBuilder

- groundFactMap: HashMap <UpdateType, GroundFactComparator>

build() : GroundFactOrdering
GroundFactOrderingBuilder()
set(UpdateType, GroundFactComparator) : GroundFactOrderingBuilder

V:extends Enum<V> & Ordering<V>

OurMinFunction

- init: boolean = false
- ordering: Class <V>
- rules: RulesSet = null

+ min(Delta, Delta) : Delta
+ OurMinFunction(Class<V>)
+ setRefToRules(RulesSet) : void

«enumeration»
OurOrdering

 map
 init = false
 g_order

«enum»
 PI
 DTPI
 C_Inst
 M_Inst
 P_IsA
 DTP_IsA
 C_IsA
 M_IsA
 NOT_PI
 NOT_DTPI
 NOT_C_Inst
 NOT_M_Inst
 NOT_P_IsA
 NOT_DTP_IsA
 NOT_C_IsA
 NOT_M_IsA
 NOT_Domain
 NOT_DTP_Domain
 NOT_Range
 NOT_CI
 NOT_PS
 NOT_PL
 NOT_CS
 NOT_MCS
 Domain
 DTP_Domain
 Range
 CI
 PS
 PL
 CS
 MCS

- init() : void
- setGroundFactOrdering() : void
+ toBeAdded() : boolean
+ typeOfTriple() : UpdateType
+ getGroundFactComparator(UpdateType) : GroundFactComparator

PropertyInstanceArgumentGroundFactComparator

+ compareGroundFacts(TripleValue, TripleValue, IRDF_Model, IRDF_Class) : int

SingleArgumentGroundFactComp

+ compareGroundFacts(TripleValue, TripleValue, IRDF_Model, IRDF_Class) : int

«interface»

GroundFactComparator

+ compareGroundFacts(TripleValue, TripleValue, IRDF_Model, IRDF_Class) : int

«interface»

MinFunction

+ min(Delta, Delta) : Delta

«interface»

Ordering

+ getGroundFactComparator(UpdateType) : GroundFactComparator
+ toBeAdded() : boolean
+ typeOfTriple() : UpdateType

~g_order

-mfunc

initializes

uses

uses

uses

selects

uses

is contained

is contained

is containedis contained

input

input

input

is contained

input

input

Figure 6.8: Implementing the “min” through Ordering

To sum up until here, OurMinFunction computes the comparison between
two deltas by advising the≤P of Ordering, and for ties uses the appropriate com-
parator for≤G comparisons that Ordering automatically provides (in OurOrdering
implementation this happens through the GroundFactOrdering the latter has
builded). To automate the mechanism even more a “trick” was invented in order
for any implementation of Ordering to be able both tho provide a ≤P compari-
son and to represent an ordering in a “proper” way. The declaration of interface
ordering is as following:

114

public interface Ordering<E extends Enum<E>&Ordering<E>>

With the generic use of Enum in the way showing, we can actually enforce any
implementation of the Ordering to be an enumeration (i.e., a Java “enum”). Thus,
OurOrdering has the following declaration:

public enum OurOrdering implements Ordering<OurOrdering>

Straight after the beginning of the class we can normally write down, the enu-
meration values we want for our ordering. This enumeration is also the ≤P , and it
can be used in a automatic way; we describe this in the following. OurMinFunction
has declaration:

public class OurMinFunction <V extends Enum<V> &
Ordering<V>> implements MinFunction{

Also OurMinFunction has a field

Class <V> ordering

which is initialized through the constructor of OurMinFunction. Therefore
OurMinFunction can take any implementation of Ordering and work with it.
Such implementations will be basically simple enumerations with some obligatory
implementations of some methods. One such method that any enumeration that
implements Ordering should provide is the method:

public GroundFactComparator getGroundFactComparator
(UpdateType type);

Hereafter the things are straightforward. OurMinFunction takes the enum
values of the implementation of the ordering provided to its constructor. This way
it immediately has the ≤P ordering. Iterating over:

for(V o:ordering.getEnumConstants())

It iterates over the predicates of the language in a descending, w.r.t. our ≤P ,
order. The enumeration provided as an implementation of Ordering could be any
arbitrarily, therefore this implementation, the enum should also implement another
method of the Ordering interface:

public UpdateType typeOfTriple();

115

This should be done in order to know which predicate corresponds to every
enumeration value. For instance while iterating over all the enum constants in the
above “for” we have the ability to:

UpdateType type = o.typeOfTriple();

thus having the type of the predicate in the current order of the iterator. Now,
as every enum has also implemented the third method of Ordering, that is:

public GroundFactComparator getGroundFactComparator
(UpdateType type);

(with or without the help of GroundFactOrderingBuilder), we have im-
mediate access to the corresponding comparator, calling automatically its method
compareGroundFacts:

GroundFactComparator comp;
comp = o.getGroundFactComparator(type);
comp.compareGroundFacts(...);

6.3.2 Conclusion

Applicator

The output set of changes is ready to be raw “unified” with the initial model in order
to give a result. The exact raw application of the result is out of the specifications
of our part and we don’t step into it. The only reference we are going to make here
regarding the materialization of the changes is concerning the implementation of
a special component which we constructed and which can serve as a third-party
service between the ChangeImpact service and the one that is going to materialize
the changes.

It a common phenomenon for the ontologies to be held in an “irredundant”
form. We define such an irredundant RDF Graph as a belief set, as discussed
in section 4.1.1, valid to all the rules of Table 5.3 except zero or more of: R12,
R14, R16, R17, R26, R27, R34, R36 which deal with transitive relations and
instance propagation. All these rules are common to most RDF Fragments used,
and so often ignored but implied. Notice that all these rules are straightforwardly
restored. For any combination of ground facts that violates one such rule, there is
exactly one ground fact that could be added to restore it.

116

Although an alternative deletion of a ground fact might restore these rules, it
is commonly accepted, as also encoded by our ordering, that the addition should
be chosen. Consider for example two sequential IsAs; they imply a transitive one
unless you delete one of them. Both common practise and our ordering imply tha
addition of the transitive IsA as a restoration. This third IsA might be absent in
an irredundant graph. Notice that we call a graph irredundant even if it does not
violate all (or any) of these rules. In effect, with this definition any valid KB is
an irredundant graph. Notice that as restoration of these rules is deterministic, we
can eliminate some “information” knowing exactly what it is and how to produce
it back.

We define the closure of an irredundant graph as “minimal” in terms of size
(i.e., amount of predicates) KB which contains the graph (all its ground facts) and
the positive ground facts needed for satisfying all the rules the graph didn’t. This
“transitive” closure is of course a unique valid KB which contains the graph; to
produce it one should examine the rules and add only the necessary positive ground
facts (not choose any alternative removals) in order to satisfy all rules. Notice that
such a valid KB could have also other predicates, but we keep only the necessary
in order for our graphs (the irredundant and the closure), to be “’semantically” or
“transitive” equivalent. We define also an operator Cn which gives us the closure
ginen an irredundant graph.

This special component this section is devoted to is the UpdateApplicator
which basically is a function F () doing the following:

Suppose an update U and an initial ontology (RDF Graph or valid KB) K.
Then for our algorithm, in particular Update function, holds: Update(K, U) =
Update(K ′, U)∪F (K ′, U), where K ′ is any irredundant graph, for which Cn(K ′)
= K. In simpler words, method minChange of ChangeImpact (which is the
interface of the Update function our algorithm) might be called to produce a delta
given an update which is not closed with respect the above definition of closure; in
that case in order to be flexible we don’t reject the update but use F (K ′, U) which
computes the extra information that we would otherwise loose since (K ′, U) is
irredundant. For example let K ′ = {C_IsA(A,B), C_IsA(B, C)} and U =
{¬C_IsA(A,B)}; as ChangeImpact assumes that its initial ontology is a valid
RDF Graph it will just report as delta the set {¬C_IsA(A,B)}. However after the
raw application of this update on K ′ the transitive IsA will be gone for ever, and
none could know it existed.

The output of F, in the above case is {C_IsA(A,C)}, i.e., its work is to ex-
plicitly state the facts that are implied in an irredundant graph but are in danger to
disappear due to an update. Update would have no reason to include this IsA in
its output; as this isa is not affected by any rules, so its deletion is not reported, it
is assumed to continuing being in the graph.

117

The only object we haven’t mentioned so far is the GeneralAlgorithm object,
which in fact is an auxiliary class to the whole project. It maintains several methods
for use by different classes of the model, for example it keeps the dist() functions
or methods common to more than one RDF_Update objects. Concluding, we
have build a fully flexible parameterizable and re-programmable framework for our
algorithms. Part of the future work of this thesis, that is to evaluate our ordering, is
now easier with the provided tool suite of ChangeImpact.

118

Chapter 7

Conclusions

Be the change you want to see in the world.

Mahatma Gandhi

In this work, we studied the problem of updating an ontology (or corpus of
knowledge in general) in the face of new information. We criticized the currently
used paradigm which consists of selecting a number of supported operations and
determining the proper effects of each operation on a per-case basis; such an ap-
proach is tedious, ad-hoc, error-prone, inherently restrictive and unable to formally
guarantee the “faithfulness” and “consistency” of the returned results or the ex-
haustiveness of the cases considered.

As an answer to this problem, we proposed a formal framework to describe
updates and their effects, as well as a general-purpose algorithm to perform those
updates, which is inspired by the general belief revision principles of Validity, Suc-
cess and Minimal Change [34]. Our approach was based on a mapping of facts of
a language (as RDF/S) into FOL ground facts (and KBs) interpreted under CWA.
Two conditions were introduced for a “correct” update: success and validity; these
conditions were formally defined using the standard CWA FOL inference and a set
of FOL rules respectively. Success and validity may be satisfied by many different
update results, so we devised a parameterizable way to determine the result that is
“as close as possible” to the original RDF/S KB, following the principle of minimal
change. Our methodology was based on determining the side-effects of an update
operation onto a KB and then ordering the various possible update results on the
basis of an ordering upon facts (and, consequently, upon sets of facts).

The end result is an algorithm that is highly parameterizable, both in terms of
the language used and in terms of the implementation of the Principle of Minimal
Change (through the ordering relation). We decomposed the process of coping

119

with ontology evolution into 5 discrete steps. This way, devising an ontology evo-
lution algorithm is reduced to the process of instantiating each step in a modular
way. To this end, the formal framework we presented offers a basis, with the aid
of which an evolution algorithm can be materialized can be as a set of adequate
parameterizations which are the following:

1. The model used and its mapping to FOL using the pattern described in [21].

2. The definition of the allowed operations in the model. Notice that this is
not necessary, as the framework is general enough to support any update
operation, but we may, for some reason, disallow certain “dangerous” or
“unwanted” (application specific) operations, if any.

3. The consistency rules that encode the consistency model and allows us to
detect inconsistencies, as well as to determine how the inconsistencies can
be resolved.

4. The ordering that encodes the selection mechanism.

Once these parameters are set, the general algorithm presented in Table 4.1
can be directly used standing as an evolution algorithm. The main advantages
of our method is that it exhibits a “faithful” behavior with respect to the various
choices involved, regardless of the particular ontology or update at hand. It lies
on a formal foundation, issuing a solid, consistent, transparent and customizable
method to handle any type of operation upon any ontology, including unconsidered
at design time operations. In addition, it avoids having to resort to the error-prone
case-based reasoning of other systems, as all the alternatives regarding an update’s
side-effects can be derived from the language’s rules themselves, in an exhaustive
and provably correct manner. Our theory is modular in the sense that it could work
with any language, rule and/or ordering given, (even though the implementation
described in this study is applicable only for the particular setting.)

Exploiting our general algorithm’s applicability to a variety of languages, we
specified a set of parameters, namely the RDF/S language and an ordering of
RDF/S facts, for which we evaluated and presented our framework. This case study
set the proper parameter values for the RDF/S model of [51]; these parameters led
to a number of special-purpose algorithms which provably exhibit behavior iden-
tical to the general-purpose one (so they are rational change operators), but also
enjoy much better computational properties. In general, for efficiency reasons, it
may be useful to generate simpler and more efficient case-special algorithms that
“emulate” the behavior of the general algorithm. However, this can be done only
for specific instantiations of the above parameters, as in the case study of RDF/S
updating presented here.

120

We recently implemented our methodology for the purposes of the EU KP-
Lab and CASPAR projects; our preliminary experimentation results are promising.
Future work includes the incorporation of techniques and heuristics that could fur-
ther speed up our algorithms as well as the verification of the effectiveness of our
proposed ordering, by experiments with real users; we also plan to evaluate the fea-
sibility of applying the same methodology in richer languages, like DLs or OWL.

121

Bibliography

[1] C. Alchourron, P. Gardenfors, and D. Makinson. On the Logic of Theory
Change: Partial Meet Contraction and Revision Functions. The Journal of
Symbolic Logic, 50(2):510–530, 1985.

[2] C. Alchourrón and D. Makinson. On the logic of theory change: Safe con-
traction. Studia Logica, 44(4):405–422, 1985.

[3] C. Alchourrón and D. Makinson. Maps between some different kinds of
contraction function: The finite case. Studia Logica, 45(2):187–198, 1986.

[4] D. Andreou. Semantic Web Middlewares and Versioning Services. Master’s
thesis, University of Crete, 2007.

[5] G. Antoniou. Nonmonotonic Reasoning. MIT Press, 1997.

[6] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A Reason-able
Ontology Editor for the Semantic Web. Ki 2001: Advances in Artificial Intel-
ligence: Joint German/Austrian Conference on AI, Vienna, Austria, Septem-
ber 19-21, 2001: Proceedings, 2001.

[7] S. Benferhat, S. Kaci, D. Le Berre, and M. Williams. Weakening conflicting
information for iterated revision and knowledge integration. Artificial Intelli-
gence, 153(1-2):339–371, 2004.

[8] D. Billington, G. Antoniou, G. Governatori, and M. Maher. Revising Non-
monotonic Theories: The Case of Defeasible Logic. KI-99: Advances in
Artificial Intelligence: 23rd Annual German Conference on Artificial Intelli-
gence, Bonn, Germany, September 13-15, 1999: Proceedings, 1999.

[9] A. Bochman. Entrenchment versus Dependence: Coherence and Foundations
in Belief Change. Journal of Logic, Language and Information, 11(1):3–27,
2002.

122

[10] A. Bochman. Two Representations for Iterative Non-prioritized Change.
Proceedings of the 9th International Workshop on Non-Monotonic
Reasoning(NMR-02), 2002.

[11] S. Burris. Logic for mathematics and computer science. Prentice Hall Upper
Saddle River, NJ, 1998.

[12] J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and
trust. Proceedings of the 14th international conference on World Wide Web,
pages 613–622, 2005.

[13] M. Dalal. Investigations into a theory of knowledge base revision: Prelim-
inary report. Proceedings of the Seventh National Conference on Artificial
Intelligence (AAAI-88), 2:475–479, 1988.

[14] M. Dalal. Updates in propositional databases. Technical Report DCS-TR-
222, Department of Computer Science, Rutgers University, 1988.

[15] A. Darwiche and J. Pearl. On the logic of iterated belief revision. Artificial
Intelligence, 89(1-2):1–29, 1997.

[16] J. Delgrande and T. Schaub. A consistency-based approach for belief change.
Artificial Intelligence, 151(1-2):1–41, 2003.

[17] J. Doyle. Rational belief revision (preliminary report). Proceedings of the
Second Conference on Principles of Knowledge Representation and Reason-
ing, pages 163–174, 1991.

[18] H. Enderton. A mathematical introduction to logic. Academic Press New
York, 1972.

[19] R. Fagin, J. Ullman, and M. Vardi. On the semantics of updates in databases.
Proceedings of the 2nd ACM SIGACT-SIGMOD symposium on Principles of
database systems, pages 352–365, 1983.

[20] G. Flouris. On belief change and ontology evolution. PhD thesis, University
of Crete,Greece, 2006.

[21] G. Flouris. On the Evolution of Ontological Signatures. Proceedings of the
Workshop on Ontology Evolution, 2007.

[22] G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, and G. Anto-
niou. Ontology change: Classification and survey. Knowledge Engineering
Review (KER) , to appear.

123

[23] G. Flouris and D. Plexousakis. Belief Revision Using Table Transformation.
Technical report, Technical Report FORTH-ICS, TR-290, July 2001.

[24] G. Flouris and D. Plexousakis. Belief Revision in Propositional Knowl-
edge Bases. Proceedings of The 8th Panhellenic Conference on Informatics,
Nicosia, Cyprus, 2001.

[25] G. Flouris and D. Plexousakis. On the Use of Matrices for Belief Revision.
Advances in Informatics: Post-proceedings of the 8th Panhellenic Conference
in Informatics, 2003.

[26] G. Flouris and D. Plexousakis. Handling Ontology Change: Survey and Pro-
posal for a Future Research Direction. Technical report, Technical Report,
ICS-FORTH, TR-362, 2005.

[27] G. Flouris and D. Plexousakis. Bridging Ontology Evolution and Belief
Change. Proceedings of the 4th Hellenic Conference on Artificial Intelligence
(SETN-06), 2006.

[28] G. Flouris, D. Plexousakis, and G. Antoniou. AGM Postulates in Arbitrary
Logics: Initial Results and Applications. Technical report, Technical Report
FORTH-ICS/TR-336, April 2004.

[29] G. Flouris, D. Plexousakis, and G. Antoniou. Generalizing the AGM Postu-
lates: Preliminary Results and Applications. Proceedings of the 10th Inter-
national Workshop on Non-Monotonic Reasoning, pages 171–179, 2004.

[30] N. Foo. Ontology Revision. Conceptual Structures: Applications, Implemen-
tation, and Theory: Third International Conference on Conceptual Struc-
tures, ICCS’95, Santa Cruz, CA, USA, August 14-18, 1995: Proceedings,
1995.

[31] A. Fuhrmann. Theory contraction through base contraction. Journal of Philo-
sophical Logic, 20(2):175–203, 1991.

[32] A. Fuhrmann and S. Hansson. A survey of multiple contractions. Journal of
Logic, Language and Information, 3(1):39–75, 1994.

[33] T. Gabel, Y. Sure, and J. Voelker. KAON–ontology management infrastruc-
ture. SEKT informal deliverable, 3(1).

[34] P. Gärdenfors. Belief Revision: An Introduction. Belief Revision, 29:1–28,
1992.

124

[35] P. Gärdenfors. The dynamics of belief systems: Foundations versus coher-
ence theories. Knowledge, Belief, and Strategic Interaction, 1992.

[36] P. Gärdenfors and D. Makinson. Revisions of knowledge systems using epis-
temic entrenchment. Proceedings of the 2nd conference on Theoretical as-
pects of reasoning about knowledge, pages 83–95, 1988.

[37] A. Grove. Two modellings for theory change. Journal of Philosophical Logic,
17(2):157–170, 1988.

[38] T. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199–220, 1993.

[39] P. Haase and L. Stojanovic. Consistent Evolution of OWL Ontologies. The
Semantic Web: Research and Applications: Second European Semantic Web
Conference, ESWC 2005, Heraklion, Crete, Greece, May 29-June 1, 2005:
Proceedings, 2005.

[40] P. Haase and Y. Sure. D3.1.1.b state of the art on ontology evolution. Tech-
nical report, 2004.

[41] C. Halaschek-Wiener and Y. Katz. Belief base revision for expressive de-
scription logics. In Proceedings of OWL: Experiences and Directions 2006
(OWLED-06), 2006.

[42] S. Hansson. In defense of base contraction. Synthese, 91(3):239–245, 1992.

[43] S. Hansson. Theory Contraction and Base Contraction Unified. The Journal
of Symbolic Logic, 58(2):602–625, 1993.

[44] S. Hansson. Knowledge-level analysis of belief base operations. Artificial
Intelligence, 82(1-2):215–235, 1996.

[45] S. Hansson. Revision of Belief Sets and Belief Bases. Handbook of Defeasi-
ble Reasoning and Uncertainty Management Systems, pages 17–25, 1998.

[46] S. Hansson. A Survey of non-Prioritized Belief Revision. Erkenntnis,
50(2):413–427, 1999.

[47] J. Heflin, J. Hendler, and S. Luke. Coping with Changing Ontologies in a Dis-
tributed Environment. AAAI Conference Ontology Management Workshop,
pages 74–79, 1999.

125

[48] Z. Huang and H. Stuckenschmidt. Reasoning with multi-version ontologies:
A temporal logic approach. The Semantic Web-ISWC 2005: 4th Int’l Seman-
tic Web Conf.

[49] A. Hunter and J. Delgrande. Iterated Belief Change: A Transition System Ap-
proach. Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI-05), 2005.

[50] S. Kang and S. Lau. Ontology Revision Using the Concept of Belief Revision.
Proceedings of the 8 thInternational Conference on Knowledge-Based Intel-
ligent Information and Engineering Systems (KES-04), part, 3:8–15, 2004.

[51] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plex-
ousakis, M. Scholl, and K. Tolle. RQL: A Functional Query Language for
RDF. The Functional Approach to Data Management, 2004.

[52] H. Katsuno and A. Mendelzon. Propositional knowledge base revision and
minimal change. Artificial Intelligence, 52(3):263–294, 1991.

[53] H. Katsuno, A. Mendelzon, J. Allen, R. Fikes, and E. Sandewall. On the Dif-
ference Between Updating a Knowledge Base and Revising It. KR’91: Prin-
ciples of Knowledge Representation and Reasoning, pages 387–394, 1991.

[54] K. Kelly. The learning power of belief revision. Proceedings of the 7th
conference on Theoretical aspects of rationality and knowledge, pages 111–
124, 1998.

[55] M. Klein and D. Fensel. Ontology Versioning on the Semantic Web. Proceed-
ings of the International Semantic Web Working Symposium (SWWS), pages
75–91, 2001.

[56] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology versioning and
change detection on the web. 13th International Conference on Knowledge
Engineering and Knowledge Management (EKAW02), pages 197–212, 2002.

[57] M. Klein and N. Noy. A component-based framework for ontology evolution.
Workshop on Ontologies and Distributed Systems at IJCAI, 2003.

[58] S. Konieczny. On the difference between merging knowledge bases and com-
bining them. Proceedings of the Seventh International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR’00), pages 135–144,
2000.

126

[59] S. Konieczny and R. Pino Pérez. Propositional belief base merging or how to
merge beliefs/goals coming from several sources and some links with social
choice theory. European Journal of Operational Research, 160(3):785–802,
2005.

[60] G. Konstantinidis, G. Flouris, G. Antoniou, and V. Christophides. On rdf/s
ontology evolution. In To appear In LNCS Post-Proceedings of the Joint
ODBIS & SWDB Workshop on Semantic Web, Ontologies, Databases, 2007.

[61] G. Konstantinidis, G. Flouris, G. Antoniou, and V. Christophides. Ontology
evolution: A framework and its application to rdf. In Proceedings of the
Joint ODBIS & SWDB Workshop on Semantic Web, Ontologies, Databases
(SWDB-ODBIS-07), 2007.

[62] K. Lee and T. Meyer. A Classification of Ontology Modification. Proceed-
ings of the 17th Australian Joint Conference on Artificial Intelligence (AI-04),
pages 248–258, 2004.

[63] P. Liberatore. The Complexity of Iterated Belief Revision. Database Theory–
ICDT’97: 6th International Conference, Delphi, Greece, January 8-10, 1997:
Proceedings, 1997.

[64] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. An infrastruc-
ture for searching, reusing and evolving distributed ontologies. Proceedings
of the 12th international conference on World Wide Web, pages 439–448,
2003.

[65] D. Makinson. How to give it up: A survey of some formal aspects of the logic
of theory change. Synthese, 62(3):347–363, 1985.

[66] E. Mendelson. Introduction to Mathematical Logic. Wadsworth & Brooks.
Cole, Monterey, 1987.

[67] T. Meyer, K. Lee, and R. Booth. Knowledge Integration for Description Log-
ics. Proceedings of the 7th International Symposium on Logical Formaliza-
tions of Commonsense Reasoning, 2005.

[68] S. Munoz, J. Perez, and C. Gutierrez. Minimal deductive systems for rdf. In
Proceedings of the 4th European Semantic Web Conference, 2007.

[69] A. Nayak. Iterated belief change based on epistemic entrenchment. Erkennt-
nis, 41(3):353–390, 1994.

127

[70] B. Nebel. A knowledge level analysis of belief revision. Proceedings of the
first international conference on Principles of knowledge representation and
reasoning table of contents, pages 301–311, 1989.

[71] N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-
2000: Combining interoperability and flexibility. Lecture Notes in Artificial
Intelligence (LNAI), 1937:17–32.

[72] N. Noy and M. Klein. Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems, 6(4):428–440, 2004.

[73] N. Noy and M. Musen. An Algorithm for Merging and Aligning Ontologies:
Automation and Tool Support. Proceedings of the Workshop on Ontology
Management at the Sixteenth National Conference on Artificial Intelligence
(AAAI-99), pages 1999–0799, 1999.

[74] J. Pan and I. Horrocks. Metamodeling Architecture of Web Ontology Lan-
guages. Proceedings of the Semantic Web Working Symposium, 149, 2001.

[75] H. Pinto, A. Gomez-Perez, and J. Martins. Some issues on ontology inte-
gration. IJCAI-99 workshop on Ontologies and Problem-Solving Methods
(KRR5), 1999.

[76] P. Plessers and O. De Troyer. Ontology change detection using a version log.
Lecture notes in computer science, pages 578–592.

[77] G. Qi, W. Liu, and D. Bell. Knowledge base revision in description logics. In
Proceedings of the 10th European Conference on Logics in Artificial Intelli-
gence (JELIA-06), 2006.

[78] G. Serfiotis, I. Koffina, V. Christophides, and V. Tannen. Containment and
minimization of rdf/s query patterns. In Proceedings of the 4th International
Semantic Web Conference (ISWC-05), 2005.

[79] E. Sosa. The raft and the Pyramid: Coherence Versus Foundations in Theory
of Knowledge. Midwest Studies in Philosophy, 1980.

[80] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven ontol-
ogy evolution management. Proceedings of the 13th European Conference
on Knowledge Engineering and Knowledge Management EKAW, 2002.

[81] L. Stojanovic, A. Maedche, N. Stojanovic, and R. Studer. Ontology evolution
as reconfiguration-design problem solving. Proceedings of the 2nd interna-
tional conference on Knowledge capture, pages 162–171, 2003.

128

[82] L. Stojanovic and B. Motik. Ontology Evolution within Ontology Editors.
Proceedings of OntoWeb-SIG3 Workshop, pages 53–62, 2002.

[83] H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies.
Proceedings of the International Joint Conference on Artificial Intelligence-
IJCAI”03, pages 900–905.

[84] G. Stumme and A. Maedche. Ontology Merging for Federated Ontologies
on the Semantic Web. Proceedings of the International Workshop for Foun-
dations of Models for Information Integration (FMII-2001), pages 413–418,
2001.

[85] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
Collaborative ontology development for the semantic web. In Proceedings of
the first International Semantic Web Conference 2002 (ISWC 2002), June 9-
12 2002, Sardinia, Italia. Springer, LNCS 2342, 2002.

[86] R. Wassermann. Revising concepts. Proceedings of the Fifth Workshop
on Logic, Language, Information and Comunication (WoL-LIC), Sao Paulo,
1998.

[87] A. Weber. Updating propositional formulas. Proceedings First Conference
on Expert Database Systems, pages 487–500, 1986.

[88] M. Williams. Applications of Belief Revision. Transactions and Change in
Logic Databases, Lecture Notes in Artificial Intelligence (LNAI), 1472.

[89] D. Zeginis, Y. Tzitzikas, and V. Christophides. On the Foundations of Com-
puting Deltas Between RDF Models. Proceedings of the sixth International
Semantic Web Conference 2007 (ISWC 2007), November 11-15 2007, Busan,
Korea.

129

APPENDIX A:

 ALGORITHMS FOR SINGULAR
UPDATES

F1: Add a Class: U={CS(A)}
If name A already exists not as a class:

Return INFEASIBLE
If Class A doesn’t exist

Make it a subclass of ⊤

F2: Add a Property: U={PS(P)}
If name P already exists not as a property:

Return INFEASIBLE
If property P doesn’t exist

Insert a new Property P, with domain and range ⊤.

F3: Add a New Class Instance: U={CI(x)}
If name x exists as some other object

Return INFEASIBLE
If CI(x) doesn’t exist:

Insert it as an instance of ⊤.

F4: Insert (Change) Domain U={Domain(P,A)}
If the relationship doesn’t already exist:

Do what the F2 function does for PS(P)
o (DO NOT CALL F2 – DON’T ARRANGE ‘T’ AS DOMAIN)

Call the F1 function for CS(A)
o If the F1 function returns INFEASIBLE, return INFEASIBLE

Remove the old Domain WITHOUT calling the corresponding
function (you don’t want to erase the property instances for
example)
Add the new Domain.
If P is a subproperty/superproperty of another property (say Q),
verify that the new Domain is a subclass a subclass/superclass
(respectively) of the Domain of Q.

o If not, attempt to add an IsA between the respective
Domains

 may not always be possible using only a single
addition of an IsA because maybe it would
cause cyclic IsAs. If this is the case don’t call
the F6 but remove the subsumption relation
between P and Q instead, (NOT by calling the
F23 which might destroy an implicit IsA in way
different than it might already being destroyed,
by execution of this very bullet several times).

 Else add the IsA through F6 (will not exploit all
its functionality as we know we don’t have a
cycle)

If P has an instance of a property instance (say Q), verify that the
new Domain has as its instance the source of Q.

o If not, add an instance relationship to A by calling F8

F5: Insert(Change) Range U={Range(P,A)}
If the relationship doesn’t exist:

If PS(P) doesn’t exist:
o Add it calling the F2 function.
o If the F2 function returns INFEASIBLE, return INFEASIBLE

If CS(A) doesn’t exist:
o Add it calling the F1 function.
o If the F1 function returns INFEASIBLE, return INFEASIBLE

Remove the old Range WITHOUT calling the corresponding
function (you don’t want to erase the property instances for
example)
Add the new range.
If P is a subproperty/superproperty of another property (say Q),
verify that the new range is a subclass a subclass/superclass
(respectively) of the range of Q.

o If not, attempt to add an IsA between the respective
ranges

 may not always be possible using only a single
addition of an IsA because maybe it would
cause cyclic IsAs. If this is the case don’t call
the F6 but remove the subsumption relation
between P and Q instead, not by calling the
F23

 Else add the Isa through F6.
If P has an instance a property instance (say Q), verify that the
new range has as its instance the target of Q.

o If not, add an instance relationship to A by calling F8. (will
not use all functionality of F8).

F6: Add Class Subsumption U={C_IsA(A,B)}
If there is not an IsA between A and B:

If CS(A) doesn’t exist:
o Add it calling the F1 function.
o If the F1 function returns INFEASIBLE, return INFEASIBLE

If CS(B) doesn’t exist:
o Add it calling the F1 function.
o If the F1 function returns INFEASIBLE, return INFEASIBLE

Remove C_IsA (B, A) through F22
Add the class subsumption relation between A and B.
Make every subclass of A, a subclass of B
Make every superclass of B, a superclass of A
Make every instance of A, an instance of B

F7: Add Property Subsumption (i.e., U={P_IsA(P,Q)})
If there is not an IsA between P and Q:

If PS(P) doesn’t exist:
o Add it calling the F2 function.
o If the F2 function returns INFEASIBLE, return INFEASIBLE

If PS(Q) doesn’t exist:
o Add it calling the F2 function.
o If the F2 function returns INFEASIBLE, return INFEASIBLE

Remove P_IsA (Q, P) through F23:
Add the property subsumption relation between P and Q.
Add a class IsA relationship between the domain of P and the
domain of Q through F6 (return infeasible if F6 returns infeasible)
Add a class IsA relationship between the range of P and the
range of Q through F6 (return infeasible if F6 returns infeasible)
Make every subproperty of P, a subproperty of Q
Make every superproperty of Q, a superproperty P
Make every property instance of B, a property instance of Q.

F8: Add Class Instantiation: U={C_Inst(x,A)}
If the relationship doesn’t exist:

If CI(x) doesn’t exist:
o Add it calling the F3 function.
o If the F3 function returns INFEASIBLE, return INFEASIBLE

If CS(A) doesn’t exist:
o Add it calling the F1 function.
o If the F1 function returns INFEASIBLE, return INFEASIBLE

Add the class instantiation relation between x and A
Add any instantiations that follow from this due to transitivity
(∀x,y,z for which it holds C_Inst(x,y) AND C_IsA(y,z) add C_Inst(x,z))

F9: Add Property Instantiation U={PI(x,y,P)}
If there is not a P_Inst relation between p and P:

If CI(x) doesn’t exist:
o Add it calling the F3 function.
o If the F3 function returns INFEASIBLE, return INFEASIBLE

If CI(y) doesn’t exist:
o Add it calling the F3 function.
o If the F3 function returns INFEASIBLE, return INFEASIBLE

If PS(P) doesn’t exist:
o Add it calling the F2 function.
o If the F2 function returns INFEASIBLE, return INFEASIBLE

Add the property Instance relation PI(x,y,P).
Add a Class Instance relationship between the source, x, and the
domain of P through F8 (return infeasible if F8 returns infeasible)
Add a Class Instance relationship between the target, y, and the
range of P through F8 (return infeasible if F8 returns infeasible)
Add a property Instance to every one of P’s superpoperties

F10: Add a DatatypeProperty: U={PL(P)} (this means a property with range
Literal)
If name P already exists not as a datatype property:

Return INFEASIBLE
If property P doesn’t exist

Insert a new Property P, with domain ⊤, and range the
‘rdfs:Literal’

F11: Insert (Change) Domain of a DataType Property U ={DataTypeDomain(P,A)}
If the relationship doesn’t already exist:

Do what the F10 function does for PL(P)
Call the F1 function for CS(A)

o If the F1 function returns INFEASIBLE, return INFEASIBLE
Remove the old DTDomain WITHOUT calling the corresponding
function (you don’t want to erase the property instances for
example)
Add the new DTDomain.
If P is a subproperty/superproperty of another data type property
(say Q), verify that the new DTDomain is a subclass a
subclass/superclass (respectively) of the DTDomain of Q.

o If not, attempt to add an IsA between the respective
DTDomains

 may not always be possible using only a single
addition of an IsA because maybe it would
cause cyclic IsAs. If this is the case don’t call
the F6 but remove the subsumption relation
between P and Q instead, (NOT by calling the
F23 which might destroy an implicit IsA in way
different than it might already being destroyed,
by execution of this very bullet several times).

 Else add the IsA through F6 (will not exploit all
its functionality as we know we don’t have a
cycle)

If P has a datatypeproperty instance (say Q), verify that the new
DTDomain has as its instance the source of Q.

o If not, add an instance relationship to A by calling F8

F12: Add Datatype Property Subsumption (i.e., U={DataP_IsA(P,Q)})
If there is not an IsA between P and Q:

If PL(P) doesn’t exist:
o Add it calling the F10 function.
o If the F10 function returns INFEASIBLE, return INFEASIBLE

If PL(Q) doesn’t exist:
o Add it calling the F10 function.
o If the F10 function returns INFEASIBLE, return INFEASIBLE

Remove DataP_IsA (Q, P) through F23:
Add the dtproperty subsumption relation between P and Q.
Add a class IsA relationship between the domain of P and the
domain of Q through F6 (return infeasible if F6 returns infeasible)
Make every subproperty of P, a subproperty of Q
Make every superproperty of Q, a superproperty P
Make every property instance of P, a property instance of Q.

F13: Add a DatatypePropertyInstance: U={ DataP_Inst (x,y,P)}
If there is not a DataP_Inst relation between p and P:

If CI(x) doesn’t exist:
o Add it calling the F3 function.
o If the F3 function returns INFEASIBLE, return INFEASIBLE

If PL(P) doesn’t exist:
o Add it calling the F10 function.
o If the F10 function returns INFEASIBLE, return INFEASIBLE

Add the property Instance relation PI(x,y,P).
Add a Class Instance relationship between the source, x, and the
domain of P through F8 (return infeasible if F8 returns infeasible)
Add a datatype property Instance to every one of P’s
superpoperties

F14: Add a MetaClass: U={MCS(A)}
If name A already exists not as a class:

Return INFEASIBLE
If Class A doesn’t exist

Add it

F15: Add MetaClass Subsumption U={M_IsA(A,B)}
If there is not an IsA between A and B:

If MCS(A) doesn’t exist:
o Add it calling the F14 function.
o If the F14 function returns INFEASIBLE, return INFEASIBLE

If MCS(B) doesn’t exist:
o Add it calling the F14 function.
o If the F14 function returns INFEASIBLE, return INFEASIBLE

Remove M_IsA (B, A) through F31
Add the class subsumption relation between A and B.
Make every subclass of A, a subclass of B
Make every superclass of B, a superclass of A
Make every instance of A which are classes, an instance of B

F16: Add MetaClass Instantiation: U={M_Inst(x,A)}
If the relationship doesn’t exist:

If CS(x) doesn’t exist:
o Add it calling the F1 function.
o If the F1 function returns INFEASIBLE, return INFEASIBLE

If MCS(A) doesn’t exist:
o Add it calling the F14 function.
o If the F14 function returns INFEASIBLE, return INFEASIBLE

Add the meta class instantiation relation between x and A
Add any instantiations that follow from this due to transitivity
(∀x,y,z for which it holds M_Inst(x,y) AND M_IsA(y,z) add M_Inst(x,z))

F17: Remove Class U={¬CS(A)}
If there exists CS(A)

Remove all IsAs starting from A.
Remove all IsAs ending in A.
Remove all instantiation links ending in A.
Remove all properties (including datatype) whose range/domain
is A by calling F18 or F26.
Remove A.

F18: Remove Property U={¬PS(P)}
If there exists PS(P)

Remove all IsAs starting from P.
Remove all IsAs ending in P.
Remove all instantiation links ending in P.
Remove P and the information on its range/domain.

F19: Remove Class Instance x U={¬CI(x)}
 If there exists CI(x)

Remove all classification links starting from x.

Remove all property instances (including datatype) whose
target/source is x.
Remove x.

F20: Delete Domain U={¬Domain(P,A)}
Equivalent to removing the relevant property

F21: Delete Range U={¬Range(P,A)}
Equivalent to removing the relevant property

F22: Remove Class Subsumption (i.e., U={¬C_IsA(A,B)})
If IsA from A to B exists:

If B=⊤, call F17 to remove class A.
Remove the direct class subsumption relation (IsA) between A
and B:
Find all sequences of IsA that start from A and end in B. Select
one IsA from each sequence for removal. The selection should be
made so as to select the fewest IsAs possible; in the case of ties,
we choose the solution which includes the IsAs that are furthest
from the top. If again we have ties, favour the solution that has the
“cheapest” IsA among all.
To determine the cheapest we use the distance (Dist function) of
the first parameter from the top; the larger the distance, the
cheaper the ground fact. If this distance is identical, use the
distance (Dist function) of the second parameter from the top;
the smaller the distance, thecheaper the ground fact. If both
distances are identical, use lexicographic ordering (≤lex) on the
first parameter. If both distances are identical and the first
parameter is also identical, use lexicographic ordering (≤lex) on
the second parameter.
In addition, for each of the IsAs selected for removal in the above
steps (for each direct and for each of the indirect IsAs that were
removed due to the above process and for the initial IsA from A
to B that we were asked to remove) do the following:

o Determine whether there is any property (including
datatype properties) (say P) whose range/domain (only
domain for datatype properties) is the source of the IsA
and P is subsumed by a property (say Q) whose
range/domain (respectively) is the target of the IsA;

o For each such property, remove the subsumption link
between P and Q.

F23: Remove Property Subsumption (i.e., U={¬P_IsA(P,Q)})
If IsA from P to Q exists:

Remove the direct subsumption relation (IsA) between P and Q:

Find all sequences of IsA that start from P and end in Q. Select
one IsA from each sequence for removal. The selection should be
made so as to select the fewest IsAs possible; in the case of ties,
we choose the solution which includes the IsAs that are furthest
from the top class. . If again we have ties, favour the solution that has
the “cheapest” IsA among all, as explained in F22.

F24: Remove Class Instantiation (i.e., U={¬C_Inst(x,A)})
If there is an Instantiation link between x and A

If A=⊤, remove of the class instance x, calling F19
Remove the instantiation link between x and A:

o Remove every C_Inst from x to a subclass of A.
Check if there is any property instance ((including datatype
property instances) containing P such that:

o The source/target (respectively) is x
o The range/domain (respectively) of P is A or another

subclass of A, which until the previous step was
instantiated by x.

If there are such properties, remove the property instantiation
containing them.

F25: Remove Property Instantiation U={¬PI(x,y,P)}
If there is an Instantiation link containing P

Remove the property instantiation
Remove every PI containing a subproperty of P (and x,y)

F26: Remove DataTypeProperty U={¬PL(P)}
If there exists PL(P)

Remove all IsAs starting from P.
Remove all IsAs ending in P.
Remove all instantiation links ending in P.
Remove P and the information on its domain.

F27: Remove DTDomain U={¬DataTypeDomain(P,A)}
Equivalent to removing the relevant datatype property

F28: Remove DataTypeProperty Subsumption (i.e., U={¬DataP_IsA(P,Q)})
If IsA from P to Q exists:

Remove the direct subsumption relation (IsA) between P and Q:
Find all sequences of IsA that start from P and end in Q. Select
one IsA from each sequence for removal. The selection should be
made so as to select the fewest IsAs possible; in the case of ties,
we choose the solution which includes the IsAs that are furthest

from the top class. . If again we have ties, favour the solution that has
the “cheapest” IsA among all, as explained in F22.

F29: Remove DatatypeProperty Instantiation U={¬DataP_Inst(x,y,P)}
If there is an Instantiation link containing P

Remove the property instantiation
Remove every DataP_Inst containing a subproperty of P (and x,y)

F30: Remove MetaClass U={¬MCS(A)}
If there exists MCS(A)

Remove all IsAs starting from A.
Remove all IsAs ending in A.
Remove all instantiation links ending in A.
Remove A.

F31: Remove MetaClass Subsumption (i.e., U={¬M_IsA(A,B)})
If IsA from A to B exists:

Remove the direct meta class subsumption relation (IsA)
between A and B:
Find all sequences of IsA that start from A and end in B. Select
one IsA from each sequence for removal. The selection should be
made so as to select the fewest IsAs possible; in the case of ties,
we choose the solution which includes the IsAs that are furthest
from the top. If again we have ties, favour the solution that has the
“cheapest” IsA among all.
To determine the cheapest we use the distance (Dist function) of
the first parameter from the top; the larger the distance, the
cheaper the ground fact. If this distance is identical, use the
distance (Dist function) of the second parameter from the top;
the smaller the distance, thecheaper the ground fact. If both
distances are identical, use lexicographic ordering (≤lex) on the
first parameter. If both distances are identical and the first
parameter is also identical, use lexicographic ordering (≤lex) on
the second parameter.

F32: Remove MetaClass Instantiation (i.e., U={¬M_Inst(x,A)})
If there is an Instantiation link between x and A

Remove the instantiation link between x and A:
Remove every M_Inst from x to a subclass of A.

	master
	appendix

