
Ontology Evolution: A Framework
and its Application to RDF

George Konstantinidis
Department of Computer

Science, University of Crete
and Institute of Computer

Science, FO.R.T.H., Heraklion,
Greece

gconstan@csd.uoc.gr

Giorgos Flouris
Institute of Computer Science,
FO.R.T.H., Heraklion, Greece

fgeo@ics.forth.gr

Grigoris Antoniou
Vassilis Christophides

Institute of Computer Science,
FO.R.T.H. and Department of
Computer Science, University
of Crete, Heraklion, Greece

{antoniou,christop}@ics.forth.gr

ABSTRACT
The algorithms dealing with the incorporation of new knowl-
edge in an ontology often share a rather standard process
of dealing with changes. This process consists of the de-
termination of the allowed change operations, the identifi-
cation of the inconsistencies that could be caused by each
such operation as well as the various alternatives to deal
with each such inconsistency, and, finally, some (manual
or automatic) selection mechanism that allows the deter-
mination of the “best” of these alternatives. Unfortunately,
most ontology evolution algorithms implement these steps
using a case-based, ad-hoc methodology, which is cumber-
some and error-prone. In this paper we propose a general
framework for ontology change management that general-
izes the methodology employed by existing tools. The intro-
duction of this framework allows us to devise a whole class
of ontology evolution algorithms, which, due to their for-
mal underpinnings, avoid many of the problems exhibited
by ad-hoc frameworks. We exploit this framework by im-
plementing a specific ontology evolution algorithm for RDF
ontologies.

1. INTRODUCTION
Change management is a key component of any knowledge-

intensive application. The same is true for the Semantic
Web, where knowledge is usually expressed in terms of on-
tologies and refined through various methodologies using on-
tology evolution techniques. The most critical part of an on-
tology evolution algorithm is the determination of what can
be changed and how each change should be implemented.
The main argument of this paper is that this determina-
tion can be split into the following 5 steps, which, although
unrecognized, are shared by many evolution frameworks:

1. Model Selection. The allowed changes are constrained
by the expressive power of the ontology representation

.

model. Thus, the selection of the model may have pro-
found effects on what can be changed and constitutes
an important parameter of the evolution algorithm.

2. Supported Operations. In step 2, the allowed change
operations upon the ontology are specified.

3. Consistency Model. Problems related to the consis-
tency of the resulting ontology may arise whenever a
change operation is executed; such problems depend
on the consistency model assumed for ontologies.

4. Inconsistency Resolution. This step determines, for
each supported operation and inconsistency problem,
the different (alternative) actions that can be performed
to restore the consistency of the ontology.

5. Action Selection. In step 5, a selection process deter-
mining the most preferable among the various poten-
tial actions identified in the previous step is devised.

The first two steps determine what can be changed and
correspond to the change capturing phase introduced in [9];
the last three steps correspond to the semantics of change
phase of [9] and indicate how changes should be imple-
mented. Unfortunately, most of the existing frameworks
(e.g., [4, 1, 7, 10]) address ontology evolution issues related
to the above 5 steps in an ad-hoc way. As we will see in
section 2, this approach causes a number of problems (e.g.,
reduced flexibility, limited evolution primitives etc), so evo-
lution algorithms could benefit a lot from the formalization
of the aforementioned change management process.

In section 3, we introduce a general framework that mod-
els the various steps of this process. We exhibit the merits
of our framework via the development of a general-purpose
algorithm for RDF [8] ontology updates. Our framework
allows us to deal with arbitrary change operations (rather
than a predetermined set). In addition, it considers all the
inconsistencies related to each change and all the possible
ways to deal with them. Finally, it provides a parameter-
izable method to select the “best” option to deal with an
inconsistency, according to some metric. The formal nature
of the process allows us to avoid resorting to the tedious
and error-prone case-based reasoning that is necessary in
other frameworks for determining inconsistencies and solu-
tions to them, and provides a uniform way to select the
“best” option out of the list of available ones, using some
total ordering. We propose one specific ordering for our



A

B

C

A

(a) (b)

A

C
(c)

A

C
(d)

Figure 1: Three alternatives for deleting a class

RDF algorithm and demonstrate how we can devise certain
special purpose algorithms (similar to the existing ad-hoc
frameworks) for coping with RDF changes, which, due to
their formal underpinnings and their compatibility with the
general framework, enjoy the interesting properties of the
framework described above.

2. EVOLUTION PROCESS

2.1 Model and Operations
The first step towards developing an evolution algorithm

is to determine the underlying representation model for the
evolving ontology (step 1). Most systems assume a language
supporting the basic constructs used in ontology develop-
ment, like class and property IsAs, instantiation relation-
ships and domain and range restrictions for properties. The
selection of the representation model obviously affects the
operations that can be supported; for example, OntoStu-
dio (formerly OntoEdit [10]) does not support property sub-
sumption relations so all related changes are similarly over-
ruled.

Further restrictions to the allowable changes may appear
in step 2, where various design decisions may disallow cer-
tain operations, despite the fact that they could, potentially,
be supported by the underlying ontology model. For exam-
ple, OntoStudio does not allow the manipulation of implicit
knowledge, whereas OilED [1] does not support any oper-
ation that would render the ontology inconsistent (i.e., it
does not take any actions to restore consistency, but rejects
the entire operation instead).

In general, change operations can be either elementary
(involving a change in a single ontology construct) or com-
posite ones (involving changes in multiple constructs). Since
composite operations can involve changes in an arbitrary
number of constructs, there is an infinite number of them
[5]. Although there are conditions under which composite
operations can be decomposed into a series of elementary
ones [5], for ad-hoc systems this is not of much help, as the
decomposition of a non-supported operation into a series of
supported ones (even if possible) should be done manually
by the ontology engineer.

The above observations indicate an important inherent
problem with ad-hoc algorithms, which can only deal with
a predefined (and finite) set of supported operations, de-
termined at design time. Therefore, any such algorithm is
limited, because it can only support some of the potential
changes upon an ontology, namely the ones that are consid-
ered more useful for practical purposes.

2.2 Inconsistencies and Solutions
One of the basic requirements for a change operation is

that the result of its application should be a consistent on-
tology, according to the consistency model defined in step

3; this principle is necessary in order for the resulting on-
tology to make sense. On the other hand, we require that
the resulting ontology implements the change operation re-
quested; the latter requirement will be called success and
implies that the change request should be satisfied (if pos-
sible). Both principles are motivated by research on the
related field of belief revision [2].

These two requirements are, in some cases, conflicting:
the naive raw application of a change operation upon an on-
tology (which is the minimum requirement for success) may
result to an inconsistent ontology, thus violating the consis-
tency principle. This problem can be overcome by initiating
additional actions, in the form of additional change oper-
ations (side-effects) upon the ontology, that would restore
consistency (step 4). It can be shown that, for certain up-
dates, no additional actions could restore consistency. For
such updates it is not possible for both principles (success,
consistency) to be satisfied, so these operations are rejected;
such updates are called infeasible.

As a case study, let us consider the change operation de-
picted in Fig. 1(a), where the ontology engineer expresses
the desire to delete a class (B) which happens to subsume
another class (C). It is obvious that, once class B is deleted,
the IsAs relating B with A and C would refer to a non-
existent class (B), so they should be removed; the consis-
tency model should capture this case, and attempt to resolve
it. One possible result of this process, employed by Protégé
[7], is shown in Fig. 1(b); in that evolution context, a class
deletion causes the deletion of its subclasses as well. This is
not the only possibility though; figures 1 (c) and (d), present
other potential results of this operation, where in (c), B’s
subclasses are re-connected to its father, while in (d), the
implicit IsA from C to A is not taken into account. KAON
[4], for example, would give either of the three as a result,
depending on a user-selected parameter.

In this particular example, both systems detect the in-
consistency caused by the operation and actively take ac-
tion against it; however, the consistency model employed
by different systems may be different in general. Moreover,
notice that an inconsistency is not caused by the operation
itself, but by the combination of the current ontology state
and the operation (e.g., if B was not in any way connected
to A and C, its deletion would cause no problems). There-
fore, in order for a mechanism to propose solutions against
inconsistencies, both should be taken into account. Notice
that the mechanism employed by Protégé, in Fig. 1, identi-
fies only a single set of side-effects, while KAON identifies
three different reactions. This is not a peculiarity of this
example; the inconsistency resolution mechanism employed
by Protégé identifies only a single solution per inconsistency;
this is not true for KAON and OntoStudio.

2.3 Selection Mechanism
The last component of an evolution algorithm (step 5)

is a selection mechanism that would identify the most ad-
equate inconsistency resolution action out of the possible
ones (identified in step 4). Such a mechanism is not neces-
sary for systems that identify only a single possible action,
like Protégé, but it is critical for other systems. KAON,
for example, provides a set of parameters (called evolution
strategies) which allow the ontology engineer to tune the
system’s behavior and, implicitly, indicate what is the ap-
propriate inconsistency resolution action for implementation



per case. OntoStudio provides a similar customization over
its change strategies.

Notice that our preference among resulting ontologies re-
flects in a preference among side-effects of the corresponding
update operations. For instance if we prefer the result of
Fig. 1(c), we can equivalently say that we prefer the addi-
tion of the subsumption relation shown in (c) together with
the deletion of the two initial IsAs, as a side-effect to this
operation, over the deletion of the two initial IsAs and class
C, shown in (b), or just the deletion of the two relations,
as in (d). Therefore, the evolution process can be tuned
by introducing a preference ordering upon the operation’s
side-effects that would dictate the related choice (evolution
strategy). Given that the determination of the alternative
side-effects depends on both the update and the ontology,
there is an infinite number of different side-effects that may
have to be compared. Thus, we are faced with the challenge
of introducing a preference mechanism that will be able to
compare any imaginable pair of side-effects.

It is worth noting here the connection of this preference or-
dering with the well-known belief revision principle of Min-
imal change [2] which states that the resulting ontology
should be as “close” as possible to the original one. In this
sense, the preference ordering could be viewed as implying
some notion of relative distance between different results and
the original ontology, as identified by the preference between
these results’ corresponding side-effects.

2.4 Discussion
To the best of authors’ knowledge, all currently imple-

mented systems employ ad-hoc mechanisms to resolve the
issues described above. The designers of these systems have
determined, in advance, the possible inconsistencies that
could occur, the various alternatives for handling any such
possible inconsistency, and have already pre-selected the
preferable option (or options, for flexible systems like KAON)
for implementation per case; this selection (or selections) is
hard-coded into the systems’ implementations.

This approach causes a number of problems. First of all,
each inconsistency, as well as each of the possible solutions
to each of them, needs to be considered individually, using
a highly tedious, case-based reasoning which is error-prone
and gives no formal guarantee that the cases and options
considered are exhaustive. Similarly, the nature of the se-
lection mechanisms cannot guarantee that the selections (re-
garding the proper side-effects) that are made for different
operations exhibit a “consistent” overall behavior. This is
necessary in the sense that the side-effect selections made in
different operations (and on different ontologies) should be
based on an operation-independent “global policy” regard-
ing changes. Such a global policy is difficult to implement
and enforce in an ad-hoc system.

Popular systems face a lot of limitations due to the above
problems. For example, OilED deals only with a very small
fraction of the operations that could be defined upon its
modeling as any change operation that would be triggering
side-effects is unsupported; e.g., the operation of Fig. 1 is
rejected. In Protégé, the design choice to support a large
number of operations has forced its designers to limit the
flexibility of the system by offering only one way of realizing
a change; in OntoStudio, they are relieved of dealing with
the complexity of the aforementioned case-based reasoning
as the severe limitations on the expressiveness of the under-

A

B

C

A

C

A

B

C

A

B

C(a) (b)

Figure 2: Implicit knowledge handling in KAON

lying model constrain drastically the number of supported
operations. Finally, in KAON, some possible side-effects are
missing (ignored) for certain operations, while the selection
process implied by KAON’s parameterization may exhibit
inconsistent or non-uniform behavior in some cases. As an
example, consider Fig. 2, in which the same evolution strat-
egy was set in both (a) and (b); despite this, the implicit
IsA from C to A is only considered/retained in case (a).

Table 1 summarizes some of the key features of ontology
evolution systems, categorized according to the 5-step pro-
cess introduced in this paper, and shows how each feature is
realized in each of the four systems discussed here, as well
as in our framework, described in section 3 below.

We argue that many of the problems identified in this sec-
tion could be resolved by introducing an adequate evolution
framework that would allow the description of an algorithm
in more formal terms, as a modular sequence of choices
regarding the model used, the supported operations, the
consistency model, the identification of plausible side-effects
and the selection mechanism. Such a framework would allow
justified reasoning on the system’s behavior, without having
to resort to a case-by-case study of the various possibilities.
To the best of the authors’ knowledge, there is no imple-
mented system that follows this policy. In the next section
we describe such a framework and specialize it to the case
of RDF ontologies.

3. A FORMAL FRAMEWORK
Our evolution framework consists of a fine-grained model-

ing of ontologies (step 1), a description of how both elemen-
tary and composite operations can be handled in a unifying
way (step 2), a consistency model formalized using integrity
rules (step 3) which also allow us to document how side-
effects are generated (step 4), and, finally, a selection mech-
anism based on an ordering of the side-effects in terms of
some metric of “minimality” according to the principle of
minimal change (step 5). This framework will be instanti-
ated to refer to RDF updating, but can be used essentially
for any language, by tuning the various parameters involved.

3.1 Model, Operations and Consistency
The representation model we use in this paper is the RDF

language, in particular the model described in [8]. For ease
of representation, RDF constructs will not be represented in
the standard way, but we will use an alternative represen-
tation, which in short amounts to mapping each statement
of RDF to a FOL predicate (see Table 2); this way, a class
IsA between A and B, for example, would be mapped to the
predicate: C IsA(A, B), while the domain of a property P ,
say C, would be denoted by Domain(P, C). Note that the
standard alternative mapping of RDF to FOL (e.g., for IsA:
∀xA(x) → B(x)) does not allow us to map assertions of the
form “C is a class”, and, consequently, does not allow us



Table 1: Ontology Evolution in Systems

Protégé KAON OntoStudio OilED Our Framework

Fine-grained Model X X × X X
Change
Representation

Supported
Operations

Elementary (consistent w.r.t its model) X X X × X
Composite × × × × X

Consistency Transparent consistency context × × X X X
Total set of possible inconsistencies × × X × X

Semantics of
Change

Solutions to
Inconsistencies

None X
One X
More than one alternatives X
All possible X X

Selection
mechanism

None (fixed) X X
Per-case parameterizable X X
Globally parameterizable X

Table 2: RDF facts to FOL predicates

Predicates Intuitive meaning

CS(C) C is a class in the RDF graph
PS(P ) P is a property in the RDF graph
CI(x) x is a class instance in the RDF graph
Domain(P, C) The domain of P is C
Range(P, C) The range of P is C
C IsA(C1, C2) C1 is a direct/indirect subclass of C2
P IsA(P1, P2) P1 is a direct/indirect subproperty of P2
C Inst(x, C) x is a direct/indirect class instance of C
PI(x, y, P ) Pair(x,y) is a property instantiation of P

to handle operations like the addition or removal of a class,
property, or instance (see [3] for more details on this issue).
Notice that the same representation pattern can be used for
other ontological languages as well [3].

We equip our FOL with closed semantics, i.e., admit the
closed world assumption (CWA). This means that, for two
formulas p, q, if p 0 q, then p ` ¬q. An ontology is repre-
sented as a set of positive ground facts only, so, given CWA,
it holds that: (a) an ontology is always consistent, (b) a
positive ground fact is implied by an ontology iff it is con-
tained in it, and, (c) a negative ground fact is implied by an
ontology iff its positive counterpart is not contained in it.

An update is any set of positive and/or negative ground
facts. By the principle of success and the properties (b),
(c) above, we conclude that after executing an update, all
positive ground facts in U will be included in the ontology,
while all the positive counterparts of the negative ground
facts in U will not be included in the ontology (unless the
update is infeasible). Thus, positive ground facts in an up-
date correspond to additions, while negative ones correspond
to removals. This way of viewing updates allows us to han-
dle essentially any operation, because any operation can be
expressed as a set of additions and/or removals of ground
facts in our model.

Our framework needs also to define its consistency model
in a formal way. Consistency can in general be formalized
using a set of integrity constraints (rules) upon the ontol-
ogy. Notice that these constraints should: (a) capture the
notion of consistency in the standard sense (e.g., that every
class is a subclass of the top class for the RDF case) and (b)
encode the semantics of the various constructs of the under-
lying language (RDF in our case), which are not carried over
during the transition to FOL (e.g., IsA transitivity) [3]. The

Table 3: Indicative Consistency Rules

Rule ID/Name Integrity Constraint Intuitive Meaning

R5 C IsA
Applicability

∀x, y: C IsA(x, y) →
CS(x) ∧ CS(y)

Class IsA applies be-
tween classes

R6 P IsA
Applicability

∀x, y: P IsA(x, y) →
PS(x) ∧ PS(y)

Property IsA applies
between properties

R12 C IsA
Transitivity

∀x, y, z:
C IsA(x, y) ∧
C IsA(y, z) →
C IsA(x, z)

Class IsA is Transitive

R14 P IsA
Transitivity

∀x, y, z:
P IsA(x, y) ∧
P IsA(y, z) →
P IsA(x, z)

Property IsA is Tran-
sitive

R22 Class IsAs
and Top

∀x : CS(x) →
C IsA(x,>)

All classes are sub-
classes of the top node

latter type of constraints is very important, in the sense that
it forces an ontology to contain all its implicit knowledge as
well in order to be consistent.

Table 3 contains an indicative list of the rules we use for
the case of RDF; these rules are based on the model de-
scribed in [8] (see also [6] for a similar effort). Notice that
the constraints presented are only a parameter of the model;
our framework does not assume any particular set of con-
straints (in the same sense that it does not assume any par-
ticular ontology representation language).

3.2 Inconsistency Resolution and Ordering
As already mentioned, the raw application of an update

would guarantee success but could often violate consistency
(i.e., it could violate an integrity constraint). For example,
under the consistency context of Table 3, the class deletion
in Fig. 1 would violate rule R5. In such cases, we need
to determine the various options that we have in order to
resolve the inconsistency.

The formalization of the consistency model using rules has
the important property that, apart from detecting inconsis-
tencies, it also provides a straightforward methodology to
determine the various available options for resolving them.
In effect, the rules themselves and the FOL semantics indi-
cate the appropriate side-effects to be taken when an incon-
sistency is detected. In the above case, rule R5 implies that,
in order to restore consistency after the removal of class B
(per the update and the principle of success), we have to
delete the IsAs that involve B.



Table 4: Ordering of predicates

PI < C Inst < P IsA < C IsA < ¬PI < ¬C Inst <
¬P IsA < ¬C IsA < ¬Domain < ¬Range < ¬CI < ¬PS <
¬CS < Domain < Range < CI < PS < CS

OR

A

B

C

?
Add 
C_IsA(C,B)

C_IsA(C,B) ≤
¬C_IsA(B,A)

A

B

C

A

B

C

A

B

C

Figure 3: Adding an IsA

Notice that the detected side-effects are updates them-
selves, so they are enforced upon the ontology by being exe-
cuted along with the original update; moreover, they could,
just like any update, cause additional side-effects of their
own. Another important remark is that, in the above case,
the inconsistency resolution mechanism gave a straightfor-
ward result, in the sense that we only had one option to
break the inconsistency (i.e., remove the IsAs); however, in
certain cases, we may have more than one alternative op-
tions.

In the cases where we have different alternative sets of
side-effects to select among, a mechanism to determine the
“best” option, according to some metric, should be in place.
In section 2.3, we showed that our “preference” among the
side-effects can be encoded using an ordering; given such
an ordering (say <), all we need to do is find the minimal
set of side-effects (with respect to <) and implement it. As
usual, our framework does not depend on any particular
ordering; however, the ordering employed should be total
and should always have a minimum. These requirements
guarantee that, for any set of potential reactions (i.e., for
any collection of sets of side-effects), we can always find a
minimum element (i.e., a set of side-effects that is minimal
with respect to <).

For our RDF case the ordering is based on the ordering
shown in Table 4 among the 18 positive and negative pred-
icates. This ordering is expanded to refer to updates (i.e.,
sets of ground facts) using the general idea that an update
U1 is “preferable” or “better” than U2 (denoted by U1 < U2)
iff the “worst” predicate used in update U1, is “better” than
the “worst” predicate used in update U2 where the predi-
cates’ relative preference is determined by the order shown
in Table 4. Ties are resolved using cardinality considerations
and/or the relative importance of the predicate’s arguments
in the original ontology. Further details are omitted due to
space limitations.

3.3 Evolution Algorithm
We will now show how one can use the above framework in

order to develop an evolution algorithm (cf. table 5). Let us
consider the update example of Fig. 3. Our original update
is U = {C IsA(C, B)}, denoting that an IsA between C
and B should be added. We first need to check whether this
update will violate any rule (line 2.1); this can be easily done
by checking against all rules in which C IsA (or ¬C IsA)
is involved.

In general, more than one rules may be violated, in which
case we process them in arbitrary order (line 2.2). In this

Table 5: General Algorithm

Input: Model, Rules, Ordering <, Update U, Ontology K
REPEAT
(1) Select (arbitrarily) an unprocessed predicate in U , say P
(2.1) IF there is no rule violated by P, THEN mark P as processed,
add P to the side-effects of U and return
(2.2) ELSE select (arbitrarily) one violated rule, say R
(2.2.1) FOR each possible way to resolve the violation of R, add
the respective predicates as side-effects in U and recursively call
the algorithm using the new U
(2.2.2) When recursion returns compare (using <) the returned
side-effects and return the “best” to the caller
UNTIL no unprocessed predicates exist
Output: Update U enriched with its side-effects

case, it can be verified that the addition of C IsA(C, B)
will only violate rule R12 (IsA transitivity), for x = C, y =
B, z = A. This is true because the addition of that IsA fires
the transitivity rule so the implicit knowledge (C IsA(C, A))
should be added as well. This option is the standard way of
satisfying transitivity, but rule R12 also gives us the alterna-
tive to remove the old IsA between B and A (this alternative
simply prevents the transitivity rule from firing).

In order to explore all alternatives regarding the possi-
ble side-effects, the comparison (using <) between the first
and the second option is postponed until the full set of side-
effects has been computed. Therefore, at this point, the al-
gorithm suggests two different alternative updates, one per
side-effect, namely U1 = {C IsA(C, B), C IsA(C, A)} and
U2 = {C IsA(C, B),¬C IsA(B, A)} (line 2.2.1). Then, the
algorithm recursively calls itself twice (once for U1 and once
for U2). Both calls will indicate no further side-effects, as
there are no further rules violated; in the general case, the
side-effects could have side-effects of their own, so the re-
cursion should continue until no further side-effects exist.
Once all recursions stop, the returned sets of side-effects
are compared using < and the minimal is selected for imple-
mentation (line 2.2.2). In this case, the first option (i.e., U1)
is the “best” option according to < (see table 4), i.e., the
IsA between C and A should be added; this indeed sounds
like the most natural result, but it could be different if the
ordering was different.

Notice that the general algorithm (table 5) is applicable
for any language (i.e., ontology model), consistency model
and ordering and that several details of the algorithm have
been brushed out. One such detail, for example, is the recog-
nition and rejection of an infeasible update. Our algorithm’s
complexity depends on its parameters, namely the language,
consistency model and ordering; for the particular parame-
ters used for RDF, termination can be guaranteed.

A downside of the generality enjoyed by this algorithm
is that it is not efficient. To remedy this problem, we can
develop simpler, special-purpose algorithms, for the partic-
ular application that we are interested at (RDF in our case).
These “instantiations” are much faster than the general al-
gorithm, but can still be proven equivalent to it, i.e., for-
mally sustained. Thus, we can guarantee that they exhibit
the expected/desired behavior, by verifying them against
the general-purpose algorithm above. Notice that these special-
purpose algorithms are similar to ad-hoc methodologies em-
ployed by other systems but without resorting to the tedious
and error-prone case-based reasoning usually employed for
this purpose. Moreover, the general algorithm could still
be used to implement any possible operation, beyond these



Table 6: Special Purpose Algorithm: Remove Class

Remove class A:
(1) If class A is in K THEN
(1.1) Remove all class IsA relationships deriving from A.
(1.2) Remove all class IsA relationships arriving in A.
(1.3) Remove all instantiation links between a resource and A.
(1.4) FOR every property P whose range/domain is A
(1.4.1) Remove all property IsA relationships deriving from P.
(1.4.2) Remove all property IsA relationships arriving in P.
(1.4.3) Remove all instantiation links of P.
(1.4.4) Remove P and the information on its range/domain.
(1.5) Remove A.

specific solutions.
Table 6 shows, as an example, one such special purpose

algorithm used for removing a class A from an ontology
K. Notice that some lines in this algorithm ((1.4.1)-(1.4.4))
would spawn another special purpose algorithm for execut-
ing each removal (thus, possibly, incurring further side-effects).
Similar algorithms have been developed for other operations,
but are omitted due to space limitations.

4. SUMMARY
In this paper, we identified several difficulties associated

with the development of ad-hoc ontology evolution algo-
rithms. We decomposed the process of coping with ontol-
ogy evolution into 5 discrete steps. This way, devising an
ontology evolution algorithm is reduced to the process of
instantiating each step in a modular way. To this end, we
presented a formal framework with the aid of which an evo-
lution algorithm can be materialized as a set of adequate
parameterizations which are the following:

1. The ontology representation model and its mapping to
FOL.

2. The definition of the allowed change operations in the
model. Notice that this is not necessary, as the frame-
work is general enough to support any update, but we
may, for some reason, want to disallow certain opera-
tions for some application.

3. The consistency rules that allow us to detect inconsis-
tencies as well as to determine how the inconsistencies
can be resolved.

4. The preference ordering among side-effects that en-
codes the selection mechanism.

Parameters 1,2 and 4 of our framework correspond to
steps 1,2 and 5 respectively. The third parameter corre-
sponds to the consistency context, based on which our frame-
work instantiates steps 3 and 4. Once these parameters are
set, we can apply the general algorithm presented in Ta-
ble 5 to perform any change. For efficiency reasons, it may
be useful to generate simpler and more efficient special pur-
pose algorithms based on the general one. This can be done
only for specific instantiations of the above parameters, as
in the case study of RDF updating presented here. This
case study set the proper parameter values for the RDF
model, allowing us to propose a particular special purpose
algorithm for RDF updating which evidently features the
desired properties.

Our method exhibits a consistent behavior with respect
to the various choices involved, regardless of the particu-
lar ontology or update operation at hand. It has a formal
foundation, issuing a solid, consistent, transparent and cus-
tomizable method to handle any type of change operation,
including updates that have not been considered at design
time. Our framework is modular in the sense that it could
work with any language, rules and/or ordering given.

We are currently implementing our RDF change algorithm
in the context of the FORTH-ICS Semantic Web Knowledge
Middleware (SWKM), which provides generic services for
acquiring, refining, developing, accessing and distributing
community knowledge. In the future, we plan to incorpo-
rate optimization techniques that could speed up the most
common change operations applied upon an RDF KB, as
well as to verify the effectiveness of our proposed ordering
using experiments with real users.

5. ACKNOWLEDGEMENTS
This work was partially supported by the EU projects

CASPAR (FP6-2005-IST-033572) and KP-Lab (FP6-2004-
IST-4).

6. REFERENCES
[1] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens.

OilEd: A Reason-able Ontology Editor for the
Semantic Web. Ki 2001: Advances in Artificial
Intelligence: Joint German/Austrian Conference on
AI, Vienna, Austria, September 19-21, 2001:
Proceedings, 2001.

[2] M. Dalal. Updates in propositional databases.
Technical Report DCS-TR-222, Department of
Computer Science, Rutgers University, 1988.

[3] G. Flouris. On the Evolution of Ontological
Signatures. Proceedings of the Workshop on Ontology
Evolution, 2007.

[4] T. Gabel, Y. Sure, and J. Voelker. KAON–ontology
management infrastructure. SEKT informal
deliverable, 3(1).

[5] M. Klein and N. Noy. A component-based framework
for ontology evolution. Workshop on Ontologies and
Distributed Systems at IJCAI, 2003.

[6] S. Munoz, J. Perez, and C. Gutierrez. Minimal
deductive systems for rdf. In Proceedings of the 4th

European Semantic Web Conference, 2007.

[7] N. Noy, R. Fergerson, and M. Musen. The knowledge
model of Protégé-2000: Combining interoperability
and flexibility. Lecture Notes in Artificial Intelligence
(LNAI), 1937:17–32.

[8] G. Serfiotis, I. Koffina, V. Christophides, and
V. Tannen. Containment and minimization of rdf/s
query patterns. In Proceedings of the 4th International
Semantic Web Conference (ISWC-05), 2005.

[9] L. Stojanovic, A. Maedche, B. Motik, and
N. Stojanovic. User-driven ontology evolution
management. Proceedings of the 13th European
Conference on Knowledge Engineering and Knowledge
Management EKAW, 2002.

[10] Y. Sure, J. Angele, and S. Staab. OntoEdit:
Multifaceted Inferencing for Ontology Engineering.
Journal on Data Semantics, 1(1):128–152, 2003.


