
Relational Separation Logic

Hongseok Yang

Department of Computer Science, Queen Mary, University of London, Mile End
Road, London, UK

To John C. Reynolds for his 70th birthday.

Abstract

In this paper, we present a Hoare-style logic for specifying and verifying how two
pointer programs are related. Our logic lifts the main features of separation logic,
from an assertion to a relation, and from a property about a single program to a
relationship between two programs. We show the strength of the logic, by proving
that the Schorr-Waite graph marking algorithm is equivalent to the depth-first
traversal.

Key words: Separation Logic, Program Verification, Relational Reasoning,
Schorr-Waite Graph Marking Algorithm

1 Introduction

Finding a proper verification formalism for pointers is a long-standing problem
in program verification research. The main challenge is to develop an effective
formalism, which does not produce an unnecessarily complicated proof. Ideally,
a formal proof about pointers should be only as complicated as an informal
correctness argument.

Recently, with Reynolds, O’Hearn and others, we have developed separation
logic to attack this problem [1–4]. The main feature of separation logic is that

∗ This work was done while the author was associated with Seoul National Univer-
sity. It was supported by grant No. R08-2003-000-10370-0 from the Basic Research
Program of the Korea Science & Engineering Foundation.

Email address: hyang@dcs.qmul.ac.uk (Hongseok Yang).
URL: www.dcs.qmul.ac.uk/~ hyang (Hongseok Yang).

Preprint submitted to Theoretical Computer Science 5 December 2006

the logic supports local reasoning, a style of formal reasoning where speci-
fication and verification of a program focus on what the program accesses;
since the accessed portion of memory is usually much smaller than the whole
storage, we argued, local reasoning can simplify formal verification. Indeed,
local reasoning in separation logic led to relatively simple proofs for several
programs [5–7], including the Schorr-Waite graph marking algorithm [8].

The work in this paper is motivated by Uday Reddy’s remark on our proof
of the Schorr-Waite algorithm in separation logic [8]. When seeing our proof,
Reddy remarked that our specification did not match up with a common un-
derstanding of the algorithm. The algorithm is usually understood as an opti-
mized version of the depth-first traversal. Thus, the equivalence between the
algorithm and the depth-first traversal is what a verification should focus on.
However, our specification expresses full correctness of the algorithm, and thus
the specification as well as the verification became unnecessarily complicated.

In fact, it is common to specify a program by its relationship with another
program. When a compiler optimizes an input program, the optimized pro-
gram and the original program must be equivalent [9]. Another example is a
client of an abstract data type which has two different implementations. In
this case, we often want to specify that a client is insensitive to the choice of
the implementation; the client with one implementation is (observationally)
equivalent to the client with the other implementation [10–13].

Unfortunately, separation logic is not appropriate for reasoning about such
specifications. Separation logic does not provide a language for specifying how
two programs are related, not to mention proof rules for such a specification.
Specifications in the logic are given by a Hoare triple {P}C{Q}, which is good
for specifying the input and output relation of a single command, but not for
the equivalence between two programs.

In this paper, we propose a Hoare-style logic for specifying and verifying how
two pointer programs are related. We call this logic relational separation logic,
because first, most features of our logic are the liftings of the corresponding
features of separation logic, and second, our logic includes separation logic: it
contains all the proof rules for total-correctness triples in separation logic, and
provides a new rule that takes a pair of such Hoare triples, and concludes a
relationship between programs. Our logic is based on separation logic in this
way, in order to be effective for reasoning about pointers.

The central ideas of our logic are Hoare quadruples and separating conjunc-
tion ∗ for relations. A Hoare quadruple {R}C1

C2
{S} consists of relations R and S

between states, and commands C1 and C2. Intuitively, it means that when C1

and C2 are started at R-related states, they end in S-related states, and, more-
over, during execution, both C1 and C2 access only those memory cells that

2

the “pre-relation” R guarantees to exist. The common examples of quadruple
specifications include the equivalence of two programs where R and S are the
equality relation, and the simulation between two programs where R and S
denote the same simulation relation. However, R and S are not restricted to
only these two cases. For instance, when a quadruple is derived directly from
a pair of Hoare triples, the pre- and post-relations of the quadruple are usu-
ally different from the equality relation, and they are also different from each
other. Note that a quadruple constrains the accessible memory cells to those
“mentioned” in the pre-relation R. Because of this constraint, the logic has a
proof rule, called the frame rule, that supports local reasoning for quadruples.

The separating conjunction R ∗ S of relation R and S relates two states,
when each state can be split into two parts, so that the first parts of these two
splittings are related by R and the second parts by S. This ∗ connective allows
a “smooth” inclusion of separation logic. When a quadruple is derived from
a pair of Hoare triples, the pre- and post-relations of the quadruple usually
contain assertions with separating connectives. The ∗ connective for relations
facilitates the manipulations of these separating connectives. The ∗ connective
also plays an essential role in the formulation of the frame rule for quadruples.

We start the paper by explaining the setup; we present our storage model
in Section 2, and the language for expressions, assertions, and commands
in Section 3. Then, we develop relational separation logic. We first define a
language for relations in Section 4. Using this relation language, we define the
syntax and semantics of Hoare quadruples, illustrate their use for specifying
a relationship between programs, and provide proof rules for deriving correct
quadruples in Section 5. In Section 6, we test the effectiveness of our logic
by specifying and proving that the Schorr-Waite graph traversal algorithm is
equivalent to the depth-first traversal. In Section 7, we discuss a problem with
a nondeterministic allocator; when programs use nondeterministic memory
allocator, a naive interpretation of a quadruple leads to the unsoundness of
the frame rule for quadruples. After discussing the problem, we present a
solution. Finally, we discuss related work and explain the shortcomings of our
logic with possible solutions in Section 8.

2 Storage Model

In this paper, we make two assumptions about storage: first, a store holds not
only integer values, but also set and list values; second, pointers are simply
positive natural numbers, so that arithmetic operations can be applied to
pointers. In this section, we will make clear these assumptions by defining
semantic domains for storage.

3

To model three different kinds of variables, we assume countably infinite, mu-
tually disjoint sets IntVars, SetVars, and ListVars of variables. Variables x, y in
IntVars denote integers, and X, Y in SetVars finite sets of integers, and α, β in
ListVars finite sequences of integers. The value of each variable is given by a
store:

Stores
def
= {s : (IntVars ∪ SetVars ∪ ListVars) → (Ints ∪ Pfin(Ints) ∪ Ints∗)

| ∀xXα. s(x) ∈ Ints ∧ s(X) ∈ Pfin(Ints) ∧ s(α) ∈ Ints∗}

A state in our model consists of the store and heap components. While the
store component gives the values of variables, the heap component determines
which cells are currently allocated, and what their contents are. The formal
definitions of heaps and states are given below:

PosNats
def
= {1, 2, . . .}

Heaps
def
= PosNats ⇀fin Ints

States
def
= Stores× Heaps

Note that the pointer arithmetic is allowed in this model, because the addresses
of heap cells are simply positive natural numbers.

In this paper, we frequently use a heap-disjointness predicate # and a heap-
combining operator ∗. Let h1 and h2 be heaps.

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
= if (h1#h2) then (h1 ∪ h2) else undefined

The predicate h1#h2 means that h1 and h2 do not share any active cells, so
they describe the disjoint areas of heap storage. When heaps h1 and h2 are
such disjoint heaps, h1 ∗ h2 denotes the combined heap of h1 and h2; in the
other case, h1 ∗ h2 is not defined.

3 Language for Assertions and Programs

We use a version of the language for assertions and programs in separation
logic [7,3], where variables can contain not just integers, but also finite sets
and finite lists. The syntax of our language is shown in Figure 1.

The language has four different types of expressions: integers, booleans, fi-
nite sets, and finite lists. All these expressions denote heap-independent state

4

Integer Expressions E ::= x | 0 | 1 | E + E | E × E | E − E | hd L

Boolean Expressions B ::= false | B ⇒ B | E = E | E < E | E ∈ G | G⊆G

Set Expressions G ::= X | G ∪G | {E, . . . , E} | toSet(L)

List Expressions L ::= α | ε | E::L | tl L

Commands C ::= x := cons(E, . . . , E) | x := [E] | [E] := E

| free(E) | x := E | X := G | α := L

| C; C | if B then C else C | while B do C od

Assertions P ::= B | false | P ⇒ Q | ∀x.P | ∀X.P | ∀α.P

| E 7→ E | emp | P ∗Q | ∀∗x ∈ G.P

Fig. 1. Syntax of Expressions, Commands and Assertions

readers. That is, they mean mappings from stores, not states, to values of ap-
propriate types. The reason for considering only heap-independent expressions
is that such expressions allow simpler proof rules. For instance, if an expres-
sion E reads the heap, then assertion P ∧ x = E does not imply P [E/x] in
general; on the other hand, the implication always holds if E does not access
the heap. 1 The semantics of most of the expressions is standard. The only
exceptions are the meaning of hd and tl for the “error” cases.

[[hd L]]s =

i if [[L]]s = i:a

0 otherwise
[[tl L]]s =

a if [[L]]s = i:a

ε otherwise

Here we choose 0 and the empty list ε for the error cases of hd and tl, re-
spectively. Choosing different values for the error cases will not affect any of
our examples in this paper, because we will always make sure that these error
cases never arise in the examples.

The assertions include all the boolean expressions, the usual connectives from
classical logic, the points-to relation E 7→E ′, and separating connectives emp,
∗ and ∀∗. 2 The meaning of these assertions is given by a forcing relation
|=, and appears in Figure 2. We note the clauses for E 7→ E ′, separating
conjunction ∗ and its iterated version ∀∗. The points-to predicate E 7→ E ′

means that the heap has a cell E, the content of this cell is E ′, and the cell E

1 Reynolds gave a counterexample, which is similar to ((x = 1) ∗ (x = 1)∧x = [y]).
This assertion is satisfiable, but ([y] = 1) ∗ ([y] = 1) is not satisfiable.
2 The assertion language in separation logic also includes separating implication
−∗ . We will not consider −∗ in this paper because it does not raise any new issues.

5

For a state (s, h) in States,

(s, h) |= B iff [[B]]s = true

(s, h) |= false never

(s, h) |= P ⇒ Q iff if (s, h) |= P , then (s, h) |= Q

(s, h) |= ∀x. P iff for all i ∈ Ints, (s[x 7→ i], h) |= P

(s, h) |= ∀X. P iff for all V ∈ Pfin(Ints), (s[X 7→V], h) |= P

(s, h) |= ∀α. P iff for all a ∈ Ints∗, (s[α 7→a], h) |= P

(s, h) |= E 7→E ′ iff dom(h) = {[[E]]s}, and h([[E]]s) = ([[E ′]]s)

(s, h) |= emp iff dom(h) = ∅
(s, h) |= P ∗Q iff there exist h0, h1 s.t.

h0 ∗ h1 = h, (s, h0) |= P, and (s, h1) |= Q

(s, h) |= ∀∗x ∈ G. P iff if [[G]]s6=∅ ∧ [[G]]s={i1, .., in} for some i1, .., in ∈ Ints

then (s, h) |= P [i1/x] ∗ . . . ∗ P [in/x]

else (s, h) |= emp

Fig. 2. Semantics of Assertions

is the only active cell in the heap. The other cases, ∗ and ∀∗, express properties
about heap splitting. The separating conjunction P ∗Q says that the current
heap can be split into two disjoint subheaps such that P holds for the one
subheap, and Q holds for the other. This binary splitting is generalized in the
iterated separating conjunction ∀∗. For a state (s, h), the iterated separating
conjunction ∀∗x ∈ G.P means that the current heap h is split into |[[G]]s|-
many subheaps, so that P [i/x] holds for the i-th subheap. Note that we can
express all the other classical connectives using the connectives in Figure 2:

¬P
def
= P ⇒ false, true

def
= ¬false, P ∨ Q

def
= ¬P ⇒ Q, P ∧ Q

def
= ¬(¬P ∨ ¬Q),

∃x. P
def
= ¬∀x.¬P , ∃X. P

def
= ¬∀X.¬P , and ∃α. P

def
= ¬∀α.¬P .

We will often use the following abbreviations for assertions:

E 7→ -
def
= ∃y. E 7→y (where y 6∈ FV(E))

E 7→E1, . . . , En
def
= (E 7→E1) ∗ . . . ∗ (E + n− 1 7→En)

E
.
= E ′ def

= E = E ′ ∧ emp

The first abbreviation means that cell E is the only active cell in heap storage,
and the second means that the n consecutive cells E, . . . , E + n − 1 are the

6

only active cells in the heap, and the contents of these cells are E1, . . . , En.
The last abbreviation E

.
= E ′ expresses the equality of E and E ′ without

using any heap cells: E must be equal to E ′, and the heap must be empty.
This last abbreviation E

.
= E ′ will frequently be used in our proof, especially

when we need to transform normal conjunction to separating conjunction. We
does such a transformation using the following equivalence:

P ∧ (E = E ′) ⇐⇒ P ∗ (E
.
= E ′).

The language for commands is a simple imperative language extended with
heap operations, and set and list variables. It has four heap operations x :=
cons(E1, . . . , En), x := [E], [E] := E ′, and free(E). The command x :=
cons(E1, . . . , En) allocates n consecutive cells, initializes them by E1 . . . En,
and stores the address of the first cell in variable x. The command is nonde-
terministic, because it chooses any n consecutive inactive cells. The content
of a heap cell E is read by x := [E], and updated to E ′ by [E] := E ′. A cell
E is freed when free(E) is called.

The commands can have set or list variables. They can contain assignments to
such variables, and include a conditional statement whose boolean condition
has set or list expressions. These set or list variables are mainly used for
verification purposes, especially for writing an “abstract” program that serves
as a specification for a “concrete” program.

We interpret commands using a small-step operational semantics. A configu-
ration is a triple consisting of a store, a heap, and a command. The semantics
defines a relation ; from configurations to configurations, states or fault.
When (s, h, C) ; (s1, h1, C1), it means that the state is transformed from
(s, h) to (s1, h1) by C, and the remaining computation is C1. When C1 is
omitted, the transition means that this computation of C has been finished.
The faulting result, fault, indicates that C tries to dereference a dangling
pointer. The full operational semantics is in Appendix A.

An important property of this semantics is that all commands satisfy locality
properties. Let’s say that configuration (s, h, C) is safe when (s, h, C) 6;∗

fault, and that (s, h, C) can diverge when there is an infinite path from
(s, h, C) following the relation ;. Intuitively, the safety of (s, h, C) means
that h contains all the cells that C will only access, except newly allocated
cells. The locality properties of a command are given below [14]:

(1) Safety monotonicity: for all states (s, h) and heaps h0, if h#h0 and
(s, h, C) is safe, then (s, h ∗ h0, C) is safe.

(2) Termination monotonicity: for all states (s, h) and heaps h0, if h#h0,
(s, h, C) is safe, and (s, h, C) cannot diverge, then (s, h ∗ h0, C) cannot
diverge.

7

(3) Frame property: for all states (s, h) and heaps h0, if h#h0, (s, h, C) is
safe, and (s, h ∗ h0, C) ;∗ (s1, h1), then there exists a heap h2 such that

h2#h0, h1 = h2 ∗ h0, and (s, h, C) ;∗ (s1, h2).

Intuitively, these properties say that when C only accesses cells in h, every
computation of C from a bigger heap h∗h0 can be tracked to some computation
from h.

In this paper, we use the total-correctness Hoare triples in separation logic. In
separation logic, the interpretation of a total-correctness triple [P]C[Q] has an
additional requirement about memory access; in addition to the usual total-
correctness requirement, the triple asks that C should access only those cells
“mentioned” in P , except newly allocated ones. More precisely, [P]C[Q] holds
if and only if for all states (s, h) satisfying the precondition P (i.e., (s, h) |= P),

(1) (s, h, C) is safe,
(2) (s, h, C) cannot diverge, and
(3) if (s, h, C) ;∗ (s1, h1), then the final state (s1, h1) satisfies Q.

In the definition, the first additional condition on safety prevents C from
accessing cells not mentioned in P .

4 Relation Language

The goal of this work is to obtain a good language for specifying how two
pointer programs are related, and effective rules for proving such specifications.
In this section, we present a first step for reaching this goal; we design a
language for relations between states, by extending the main features of the
assertion language.

Intuitively, each term R in the relation language considers two computers that
use disjoint sets of variables, and expresses how the states of the computers are
related. Formally, we interpret R as a set of triples consisting of a store and two
heaps, and write (s, h, h′) |= R to mean that (s, h, h′) belongs to this set. Note
that this interpretation exploits the assumption that the two computers use
disjoint sets of variables. It represents the stores of both computers by a single
s, so that each triple (s, h, h′) in R denotes related states of the computers.
The semantics of R can alternatively be read as a relation between heaps
parameterized by a store: given a store for both computers, R relates the
heaps of the computers. We will use this alternative reading of R when we
focus on heap storage.

Figure 3 shows the syntax and semantics of the relation language. The lan-

8

(s, h, h′) |= Same iff h = h′

(s, h, h′) |= Emp iff h = h′ = []

(s, h, h′) |=

P

P ′

 iff (s, h) |= P and (s, h′) |= P ′

(s, h, h′) |= R1 ∗R2 iff there exist h1, h2, h
′
1, h

′
2 s.t. h = h1 ∗ h2, h′ = h′1 ∗ h′2,

(s, h1, h
′
1) |= R1, and (s, h2, h

′
2) |= R2

(s, h, h′) |= B iff [[B]]s = true

(s, h, h′) |= False Never

(s, h, h′) |= R1 ⇒ R2 iff if (s, h, h′) |= R1, then (s, h, h′) |= R2

(s, h, h′) |= ∀x. R iff for all v ∈ Ints, (s[x 7→v], h, h′) |= R

(s, h, h′) |= ∀X. R iff for all V ∈ Pfin(Ints), (s[x 7→V], h, h′) |= R

(s, h, h′) |= ∀α. R iff for all F ∈ Ints∗, (s[x 7→F], h, h′) |= R

Fig. 3. Relation Language

guage has three new atomic formulas Same, Emp and
(

P

P ′

)
. Given a store, the

first two atomic formulas ignore this store; the diagonal relation Same, then,
relates identical heaps, and Emp relates empty heaps. The last atomic formula(

P

P ′

)
, called assertion pair, constructs a relation from assertions P and P ′.

The constructed relation means the cartesian product of P and P ′: for each
store s, it relates all the heaps h and h′ if (s, h) and (s, h′) satisfy P and P ′,
respectively.

The main feature of the relation language is the separating conjunction R∗S of
relations. Given the values s of variables, separating conjunction R ∗S relates
heaps h and h′ if and only if each heap can be split into two subheaps, i.e.,
h = h1 ∗h2 and h′ = h′1 ∗h′2, so that the first parts h1 and h′1 of these splittings
are related by R, and the second parts h2 and h′2 by S. For instance,

Same ∗

1 7→2

1 7→−2

relates heaps h and h′ if and only if the heaps are the same except the content
of cell 1: in h, the cell contains 2, and in h′, it contains −2.

The remaining constructs in the relation language are the usual connectives

9

from classical logic. 3 These classical connectives have the standard meaning,
and as in the assertion language, they can express all the missing connectives

of classical logic: ¬R
def
= R ⇒ False, True

def
= ¬False, R∨S

def
= ¬R ⇒ S, R∧S

def
=

¬(¬R ∨ ¬S), ∃x.R
def
= ¬∀x.¬R, ∃X. R

def
= ¬∀X.¬R, and ∃α. R

def
= ¬∀α.¬R.

We use an abbreviation E
..
= E ′ for E = E ′ ∧ Emp. Here we put two dots

above the equality symbol in order to distinguish this abbreviation from the
assertion E

.
= E ′.

Example 1 The first example is an assertion pair, and shows that variables
can be used to link locations in two heaps:

x 7→ -

x + 1 7→ -

This relation relates h and h′, if heap h is a singleton heap with cell x, and
similarly, h′ a singleton heap with cell x + 1. Note that variable x is used here
to say that the address of the cell in h is one smaller than that of the cell in
h′. 2

Example 2 The second example is an instance of a common use of the ∗
connective. In this usage, the ∗ connective splits out the common parts of
heaps h and h′, and allows us to focus on the difference between h and h′.

Same ∗

x0 7→x1 ∗ x1 7→x2 ∗ x2 7→nil

x0 7→nil ∗ x1 7→x0 ∗ x2 7→x1

This relation relates h and h′ if h and h′ are identical except the three cells
x0, x1 and x2: in h, these three cells form a linked list starting from x0 and
ending with x2; and in h′, the list is reversed, so that the three cells form a
linked list starting from x2 and ending with x0. 2

The proof system for relations consists of the four groups of proof rules: the
usual proof rules from classical logic, the rules from the logic of Bunched
Implications [15], the rules about assertion pairs, and the rules specific to
relational separation logic. Figure 4 shows the most-frequently used proof
rules for relations, except the ones from classical logic. The first seven rules
in the figure come from the logic of Bunched Implications. They express that
the ∗ connective is a commutative, associative and monotone operator having
Emp as a unit, and that it is distributive over finite disjunction or existential
quantification. The next eight rules are about the assertion pair. They say

3 The relation language can include separating implication and iterated separating
conjunction for relations. However, we do not consider them to simplify presentation.

10

that the assertion pair is a monotone operator that preserves the separating
connectives, conjunction, disjunction and the falsity. The remaining rules are
specific to relational separation logic in this paper. They express that the
diagonal relation Same denotes the equality of heaps; the boolean expression
B is independent of heaps, so it can move into and out of spatial conjunction
and assertion pair; the abbreviation E

..
= E ′ is convertible into E

.
= E ′.

All these rules are sound, but they are not complete; this incompleteness
cannot be avoided, because the set of all true implications between relations
is not recursively enumerable, so there are no complete proof systems for such
implications [16].

5 Relational Separation Logic

Relational separation logic consists of Hoare quadruples, by which we specify
how two programs are related, and inference rules for deriving valid quadru-
ples. In this section, we present these two components of the logic. We only
consider deterministic commands in this presentation, and thus disregard com-
mands that call cons. This is because when a program can call the nondeter-
ministic allocator cons, a simple interpretation of quadruples does not validate
the frame rule for quadruples. This problem about cons and our solution will
be discussed in Section 7.

A Hoare quadruple

{R}C

C ′
{S}

consists of pre-relation R and post-relation S, and commands C and C ′ that
access disjoint sets of variables: FV(C)∩FV(C ′) = ∅. Intuitively, this quadruple
says that when C and C ′ are started from R-related states, either they both
diverge or they terminate in S-related states. For s, t in Stores and a set X of
variables, let s[t|X] be the result of updating s by the value in t for every x in
X:

s[t|X](x)
def
=

t(x) if x ∈ X

s(x) otherwise

The precise meaning of a quadruple is given below:

Definition 3 For deterministic commands C and C ′, a Hoare quadruple

{R}C

C ′
{S}

11

R ∗ S ⇒ S ∗R R ∗ (S ∗ T) ⇒ (R ∗ S) ∗ T
R ⇒ R′ S ⇒ S′
R ∗ S ⇒ R′ ∗ S′

R ∗ Emp ⇔ R R ∗ False ⇔ False

R ∗ (S ∨ T) ⇔ (R ∗ S) ∨ (R ∗ T) R ∗ (∃x.S) ⇔ ∃x.R ∗ S
x 6∈ FV(R)

emp

emp

 ⇔ Emp

P1 ∗ P2

Q1 ∗Q2

 ⇔

P1

Q1

 ∗

P2

Q2

P1 ⇒ P2 Q1 ⇒ Q2
P1

Q1

 ⇒

P2

Q2

P1 ∧ P2

Q

 ⇔

P1

Q

 ∧

P2

Q

P

Q1 ∧Q2

 ⇔

P

Q1

 ∧

P

Q2

P1 ∨ P2

Q

 ⇔

P1

Q

 ∨

P2

Q

P

Q1 ∨Q2

 ⇔

P

Q1

 ∨

P

Q2

P

false

 ⇔

false

Q

 ⇔ False

Emp ⇒ Same Same ∗ Same ⇒ Same

E 7→E1, . . . , En

E 7→E1, . . . , En

 ⇒ Same Same ∧

E 7→E1

E 7→E′
1

 ∗ True

 ⇒ E1 = E′

1

(R ∗Q) ∧B ⇔ R ∗ (Q ∧B)

P ∧B

Q

 ⇔

P

Q ∧B

 ⇔

P

Q

 ∧B

R ∗ E
..=E′ ⇔ R ∧ E=E′

P

Q

 ∗ E

..=E′ ⇔

P ∗ E

.=E′

Q

 ⇔

P

Q ∗ E
.=E′

Fig. 4. Sample Proof Rules for Relations

12

holds if and only if for all stores s and heaps h and h′ that satisfy pre-relation
R (i.e., (s, h, h′) |= R),

(1) (s, h, C) is safe and (s, h′, C ′) is safe;
(2) (s, h, C) can diverge if and only if (s, h′, C) can diverge; and
(3) if (s, h, C) ;∗ (t, h1) and (s, h′, C ′) ;∗ (t′, h′1), then

(s[t|FV(C)][t
′|FV(C′)], h1, h′1) |= S.

Here s[t|FV(C)][t
′|FV(C′)] denotes the final store after running both C and C ′.

Since FV(C)∩FV(C ′) = ∅ by assumption, commands C and C ′ modify disjoint
sets of variables, so the store s[t|FV(C)][t

′|FV(C′)] records, without ambiguity, all
the changes of the store s by C and C ′.

We note two features of this definition of quadruples. First, the definition has
the safety requirement for related states. Intuitively, this condition means that
C and C ′ access only those heap cells which are guaranteed to exist by pre-
relation R, or newly allocated. As in separation logic, this safety requirement
is used in a proof rule for local reasoning, which adds an invariant relation to
the pre- and post-relations of a quadruple; while adding a relation, the rule
uses the safety requirement and the ∗ connective to ensure that the relation
does not depend on cells modified by the commands in the quadruple, so the
relation really becomes an invariant. Second, the definition of quadruples re-
quires that C and C ′ should behave the same with respect to divergence. This
requirement about divergence reflects the basic design decision of a quadru-
ple specification: a quadruple is really about the equivalence of two programs
modulo the different data structures used by the programs. Thus, if one pro-
gram can diverge in a state, then the other program must be able to diverge
in the corresponding state.

A Hoare quadruple is normally used for two kinds of specifications. The first
kind of specifications require that programs C and C ′ be equivalent, but under
some condition about initial states. Consider a specification which says that
commands C and C ′ are equivalent if variables x of C and x′ of C ′ point to cells
initialized to 0. 4 This specification is expressed by the following quadruple:

Same ∗

x 7→0

x′ 7→0

 ∧ x = x′

C

C ′
{Same ∧ x = x′}

The second kind of specifications express that C ′ replaces a high-level “ab-
stract” data structure in C by a low-level “concrete” data structure, but it
preserves the meaning of C modulo the changes in this data structure. Sup-
pose that both C and C ′ are programs that add an element to a finite set;

4 [x] := 0 and skip are such commands.

13

C implements a finite set by a list variable α, and C ′ by a linked list x′. To
relate the different implementations of a finite set by C and C ′, we use an
inductively defined relation Set x′ α:

Set x′ ε def
= x′ ..

= nil

Set x′ E::α
def
= ∃x′1.

emp

x′ 7→E, x′1

 ∗ Set x′1 α

Intuitively, this relation says that the linked list from x′ implements list α.
Using relation Set x′ α, we now express that C and C ′ are equivalent modulo
the different implementations of a finite set, by the following quadruple:

{Same ∗ Set x′ α}C

C ′
{Same ∗ Set x′ α}

Relational separation logic has three proof rules specific to particular language
constructs, and five “structural” rules that are not restricted to any language
constructs. These rules appear in Figure 5.

The construct-specific rules deal with loop, conditional statement, and sequen-
tial composition. The rule for loop says that if the bodies of two while loops
preserve a relation R, then the loops themselves preserve R. Note that this rule
is similar to the while rule for partial correctness in Hoare logic. However, the
additional premise R ⇒ (B ⇔ B′) lets the rule for quadruples to conclude a
stronger statement than the rule for triples: while the rule for triples does not
ensure the termination, the rule for quadruples guarantees that either both
loops diverge, or both terminate. The other two rules for conditional state-
ment and sequential composition are also similar to the corresponding rules in
Hoare logic. The only differences are that the rule for conditional statement
has an additional requirement R ⇒ (B ⇔ B′), which ensures that C and C ′

take the same true or false branch; and that the rule for sequential composition
can be applied when one of C and C ′ is a single atomic command, because
skip can be inserted using the equivalence skip; C = C; skip = C.

The structural rules include embedding rule, frame rule, Consequence, Con-
junction, and Auxiliary Variable Elimination. Among these five rules, the
frame rule and embedding rule play the most prominent roles to simplify
reasoning about quadruples.

The frame rule adds an invariant relation to the pre- and post- relations, if
the invariant does not read cells or variables that programs C and C ′ access.
The merit of the rule is that checking this condition about memory access is
cheap: the rule ensures that C and C ′ do not modify variables in the invariant

14

Loop

R ⇒ (B⇔B′) {R∧B}C

C ′
{R}

{R} while B do C od

while B′ do C ′ od
{R ∧ ¬B}

Conditional Statement

R ⇒ (B⇔B′) {R∧B}C1

C ′
1

{S} {R∧¬B}C2

C ′
2

{S}

{R}if B then C1 else C2

if B′ then C ′
1 else C ′

2

{S}

Sequencing

{R}C1

C ′
1

{S} {S}C2

C ′
2

{T}

{R}C1; C2

C ′
1; C

′
2

{T}

Frame Rule

{R}C

C ′
{S}

{R ∗ T}C

C ′
{S ∗ T}

(Mod(C, C ′) ∩ FV(T) = ∅)

Embedding Rule

[P] C [Q] [P ′] C ′ [Q′]

P

P ′

C

C ′

Q

Q′

Mod(C) ∩ FV(P ′, Q′) = ∅

Mod(C ′) ∩ FV(P, Q) = ∅

Consequence

R ⇒ R1 {R1}
C

C ′
{S1} S1 ⇒ S

{R}C

C ′
{S}

Conjunction

{R1}
C

C ′
{S1} {R2}

C

C ′
{S2}

{R1 ∧R2}
C

C ′
{S1 ∧ S2}

Auxiliary Variable Elimination

{R}C

C ′
{S}

{∃x.R}C

C ′
{∃x. S}

(x 6∈ FV(C, C ′))

Fig. 5. Proof Rules for Hoare Quadruples

15

T , just by checking Mod(C, C ′)∩FV(T) = ∅; and it guarantees that C and C ′

do not access heap cells that T depends on, simply by using the ∗ connective
in the conclusion. This rule is an extension of the frame rule in separation
logic, and just as the frame rule in separation logic, it simplifies specification
and verification of a quadruple, by making them focus on what the compared
programs access.

The embedding rule concludes a quadruple
{(

P

P ′

)}
C

C′

{(
Q

Q′

)}
from two triples

[P]C[Q] and [P ′]C[Q′]. Note that the rule demands total correctness triples,
because a quadruple requires that either both of the compared commands
diverge, or they terminate. This rule often contributes to reduce the complexity
of verification, because it allows the use of existing verification techniques in
separation logic.

Besides being used in a verification of a specific quadruple, the structural rules
are also used to derive useful proof rules for quadruples, especially those that
compare atomic commands. The derivation usually consists of three steps:
first, we embed derivable Hoare triples to get a quadruple; second, we attach
an invariant using the frame rule; finally, we adjust the pre- and post- rela-
tions using Consequence. For example, the below rules for quadruples can be
obtained following this pattern:

Lookup

y 7→x0

P

 ∗R

x := [y]

skip

y 7→x

P

 ∗R ∗ x

..
= x0

(x 6∈ FV(P, R))

Update

y 7→ -

P

 ∗R

[y] := E

skip

y 7→E

P

 ∗R

We show the derivation of the first rule; the second rule can be derived simi-

16

larly.

[y 7→x0] x := [y] [y 7→x ∗ x
.
= x0] [P] skip [P]

y 7→x0

P

x := [y]

skip

y 7→x ∗ x
.
= x0

P

Embedding

y 7→x0

P

 ∗R

x := [y]

skip

y 7→x ∗ x
.
= x0

P

 ∗R

Frame Rule

y 7→x0

P

 ∗R

x := [y]

skip

y 7→x

P

 ∗R ∗ x

..
= x0

Consequence

In this paper, we present a proof of a quadruple in a linear form, using Bornat’s
technique [6]. For instance, a derivation

R ⇒ (R0 ∗ T)

{R0}
C

C ′
{S0}

{R0 ∗ T} C

C ′
{S0 ∗ T}

Frame

(S0 ∗ T) ⇒ S

{R}C

C ′
{S}

Consequence

{∃a0. R}C

C ′
{∃a0. S}

Auxiliary Variable Elimination

is shown as follows:

{∃a0. R}

a0 :

{R}
{R0 ∗ T}

Framed:

{R0}
C C ′

{S0}

{S0 ∗ T}
{S}

{∃a0. S}

17

Example 4 Consider commands C and C ′ that traverse a linked list and set
the value of each node using the value of cell y:

C
def
= while (c 6= nil)

do x := [y];

[c] := −x;

c := [c + 1]

od

C ′ def
= x′ := [y′]

while (c′ 6= nil)

do [c′] := −x′;

c′ := [c′ + 1]

od

The second program optimizes the first, by moving x := [y] outside of the
loop. The rationale for this optimization is that x := [y] assigns the same
value for all iterations of the loop, so it can be executed just once. Such
a correctness argument, however, breaks if cell y is modified by the update
statement [c] := −x in the loop. Thus, our quadruple specification for this
optimization puts a precondition that cell x is not part of a linked list, and
expresses the equivalence between C and C ′ under this condition.

List x
def
= (x

..
= nil) ∨ ∃na.

x 7→a, n

x 7→a, n

 ∗ List n

Same ∗ List c ∗

y 7→x0

y′ 7→x0

 ∧ y = y′ ∧ c = c′

C

C ′
{Same ∧ y = y′ ∧ c = c′}

Note that the ∗ connective in the pre-relation ensures that cells y and y′ do
not belong to linked lists, so their contents are not modified by C and C ′.

The main part of the proof for this quadruple specification is to find a loop-
invariant relation, and to show that the relation is preserved. We pick the
following relation as a candidate for a loop invariant:

Inv
def
= Same ∗ List c ∗

y 7→x0

y′ 7→x0

 ∗ y

..
= y′ ∗ c′ ..

= c ∗ x′ ..
= x0

This relation is almost identical to the pre-relation; it just adds a fact that
the variable x′ currently holds the value of cell y′. We will show that Inv is
preserved, by proving the following quadruple:

{Inv ∧ c 6= nil}x := [y]; [c] := −x; c := [c + 1]

[c′] := −x′; c′ := [c′ + 1]
{Inv}

18

The first step of the Inv-preservation proof is to summarize the local effects
of the loop bodies of C and C ′ by Hoare triples. In this step, we prove the
following Hoare triples for the bodies of C and C ′ in separation logic:

[c0 7→ -, c1 ∗ y 7→x0 ∗ c
.
= c0]

x := [y];

[c0 7→ -, c1 ∗ y 7→x0 ∗ c
.
= c0 ∗ x

.
= x0]

[c] := −x;

[c0 7→−x0, c1 ∗ y 7→x0 ∗ c
.
= c0]

c := [c + 1]

[c0 7→−x0, c1 ∗ y 7→x0 ∗ c
.
= c1]

[c0 7→ -, c1 ∗ c′ .
= c0 ∗ x′ .

= x0]

[c′] := −x′;

[c0 7→−x0, c1 ∗ c′ .
= c0 ∗ x′ .

= x0]

c′ := [c′ + 1]

[c0 7→−x0, c1 ∗ c′ .
= c1 ∗ x′ .

= x0]

The proved triples describe all the changes of memory by the two commands.
Note that the triples and their proofs are local; they mention only those ac-
cessed heap cells and variables by the commands.

The next step converts these triples to a “local” quadruple using the embed-
ding rule:

[c0 7→ -, c1 ∗ y 7→x0 ∗ c
.
= c0]

x:=[y]; [c]:=−x; c:=[c + 1]

[c0 7→−x0, c1 ∗ y 7→x0 ∗ c
.
= c1]

[c0 7→ -, c1 ∗ c′ .
= c0 ∗ x′ .

= x0]

[c′]:=−x′; c′:=[c′ + 1]

[c0 7→−x0, c1 ∗ c′ .
= c1 ∗ x′ .

= x0]

c0 7→ -, c1 ∗ y 7→x0 ∗ c
.
= c0

c0 7→ -, c1 ∗ c′ .
= c0 ∗ x′ .

= x0

x := [y];

[c] := −x;

c := [c + 1]

[c′] := −x′;

c′ := [c′ + 1]

c0 7→−x0, c1 ∗ y 7→x0 ∗ c
.
= c1

c0 7→−x0, c1 ∗ c′ .
= c1 ∗ x′ .

= x0

Embedding

The third step transforms this local quadruple to global one. It uses the frame
rule to extend the pre- and post- relations of the local quadruple with a global

19

fact.

c0 7→ -, c1 ∗ y 7→x0 ∗ c
.
= c0

c0 7→ -, c1 ∗ c′ .
= c0 ∗ x′ .

= x0

x := [y];

[c] := −x;

c := [c + 1]

[c′] := −x′;

c′ := [c′ + 1]

c0 7→−x0, c1 ∗ y 7→x0 ∗ c
.
= c1

c0 7→−x0, c1 ∗ c′ .
= c1 ∗ x′ .

= x0

c0 7→-, c1 ∗ y 7→x0 ∗ c
.
=c0

c0 7→-, c1 ∗ c′ .=c0 ∗ x′ .=x0

 ∗ List c1 ∗ Same ∗ y

..
=y′ ∗

emp

y′ 7→x0

x := [y];

[c] := −x;

c := [c + 1]

[c′] := −x′;

c′ := [c′ + 1]

c0 7→−x0, c1 ∗ y 7→x0 ∗ c
.
=c1

c0 7→−x0, c1 ∗ c′ .=c1 ∗ x′ .=x0

 ∗ List c1 ∗ Same ∗ y

..
=y′ ∗

emp

y′ 7→x0

Frame

Note that after this step, the pre- and post- relations of the quadruple became
closer to the loop invariant; the pre- and post- relations of the global relations
now describe not just the cells and variables that programs access, but also
all the cells and variables that the loop invariant mentions.

The final step of the Inv-preservation proof eliminates auxiliary variables from
the global quadruple, and then, it strengthen the pre-relation and weaken the
post-relation of the resulting quadruple. Figures 6, 7 and 8 shows this step of
the proof.

2

One evident shortcoming of our logic is that the proof rules assume that two
commands have similar control structures. When this assumption breaks, our
new rules for quadruples do not help, and we mostly have to reason about C
and C ′ individually in separation logic. For example, our logic is not effective
for proving the correctness of the loop unrolling, because the loop unrolling
changes the control structure of an input program. In Section 8, we will dis-
cuss how to use the ideas from the work on translation validation or credible
compilation [17,18] to overcome this shortcoming.

20

Same ∗ List c ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c ∗ x′ ..=x0 ∧ c 6= nil

∵ when is shown in Figure 7

∃c0c1. Same ∗

c0 7→ -, c1 ∗ y 7→x0 ∗ c

.= c0

c0 7→ -, c1 ∗ c′ .= c0 ∗ x′ .= x0

 ∗ List c1 ∗

emp

y′ 7→ x0

 ∗ y

..=y′

c0c1:

Same ∗

c0 7→ -, c1 ∗ y 7→x0 ∗ c

.= c0

c0 7→ -, c1 ∗ c′ .= c0 ∗x′ .= x0

 ∗ List c1 ∗

emp

y′ 7→ x0

 ∗ y

..=y′

x := [y];

[c] := −x;

c := [c + 1]

[c′] := −x′;

c′ := [c′ + 1]

Same ∗

c0 7→−x0, c1 ∗ y 7→x0 ∗ c

.= c1

c0 7→−x0, c1 ∗ c′ .= c1 ∗x′ .= x0

 ∗ List c1 ∗

emp

y′ 7→ x0

 ∗ y

..=y′

∃c0c1. Same ∗

c0 7→−x0, c1 ∗ y 7→x0 ∗ c

.= c1

c0 7→−x0, c1 ∗ c′ .= c1 ∗ x′ .= x0

 ∗ List c1 ∗

emp

y′ 7→ x0

 ∗ y

..=y′

∵ what is shown in Figure 8

Same ∗ List c ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c ∗ x′ ..=x0

Fig. 6. Proof of the Invariant Preservation (Proof Outline)

6 Schorr-Waite Graph Marking Algorithm

In this section, we apply our logic to more realistic programs; we show that
the Schorr-Waite graph marking algorithm is equivalent to the depth-first
traversal.

The Schorr-Waite graph marking algorithm is a depth-first traversal of a
graph, except that it uses less space: the Schorr-Waite algorithm runs in con-
stant space, while the depth-first traversal runs in linear space in the worst
case. The depth-first traversal needs linear space, because it uses an additional
stack data structure to record which nodes are currently being traversed and
thus need to be considered again. However, the Schorr-Waite algorithm does
not need this space, because it implements the stack inside the input graph:
the Schorr-Waite algorithm temporarily changes the contents of some nodes
in the input graph, but restores the contents back to their original value when
it terminates.

21

Same ∗ List c ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c ∗ x′ ..=x0 ∧ c 6= nil

∵ the definition of List c

Same ∗

∃c1.

c 7→ -, c1

c 7→ -, c1

 ∗ List c1

 ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c ∗ x′ ..=x0

∵ (R ∗ ∃x. S) ⇒ (∃x. R ∗ S)

∃c1. Same ∗

c 7→ -, c1

c 7→ -, c1

 ∗ List c1 ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c ∗ x′ ..=x0

∵ c0 is fresh

∃c0c1. Same ∗

c0 7→ -, c1

c0 7→ -, c1

 ∗ List c1 ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c0 ∗x′ ..=x0 ∗ c
..=c0

∵

P

Q

 ∗ E

..=E′ ⇔

P ∗ E

.= E′

Q

 ⇔

P

Q ∗E
.= E′

∃c0c1. Same ∗

c0 7→ -, c1 ∗ c

.= c0

c0 7→ -, c1 ∗ c′ .= c0 ∗ x′ .= x0

 ∗ List c1 ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′

∵

P1

Q1

 ∗

P2

Q2

 ⇔

P1 ∗ P2

Q1 ∗Q2

 and P ∗ emp ⇔ P

∃c0c1. Same ∗

c0 7→ -, c1 ∗ y 7→x0 ∗ c

.= c0

c0 7→ -, c1 ∗ c′ .= c0 ∗ x′ .= x0

 ∗ List c1 ∗

emp

y′ 7→ x0

 ∗ y

..=y′

Fig. 7. Proof of the Invariant Preservation (Implication between Preconditions)

The technique for implementing this implicit stack forms the most creative
part of the Schorr-Waite algorithm. For every node in the stack, the Schorr-
Waite algorithm “reverses” one of the links of the node, so that the reversed
link points to the previous node in the stack. For instance, when the stack
contains nodes n3, n2 and n1 in the first graph in Figure 9, the Schorr-Waite
algorithm reverses the right field of n1, and the left fields of n2 and n3, and
gives the second graph in the same figure.

Figure 10 shows the implementation of the Schorr-Waite algorithm, SW, and
Figure 11 the implementation of the depth-first traversal, DFT. The implemen-
tations regard four consecutive cells as a single node. The first two cells store
links to other nodes, and the third and fourth cells contain information about
traversing; the third cell indicates whether the node is visited, and the fourth

22

∃c0c1. Same ∗

c0 7→−x0, c1 ∗ y 7→x0 ∗ c

.= c1

c0 7→−x0, c1 ∗ c′ .= c1 ∗ x′ .= x0

 ∗ List c1 ∗

emp

y′ 7→ x0

 ∗ y

..=y′

∵

P

Q

 ∗ E

..=E′ ⇔

P ∗ E

.= E′

Q

 ⇔

P

Q ∗E
.= E′

, and c = c1

∃c0. Same ∗

c0 7→−x0, c ∗ y 7→x0

c0 7→−x0, c

 ∗ List c ∗

emp

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c ∗ x′ ..=x0

∵

P1

Q1

 ∗

P2

Q2

 ⇔

P1 ∗ P2

Q1 ∗Q2

 and P ∗ emp ⇔ P

∃c0. Same ∗

c0 7→−x0, c

c0 7→−x0, c

 ∗ List c ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c ∗ x′ ..=x0

∵

E 7→ E1, E2

E 7→ E1, E2

 ⇒ Same

Same ∗ Same ∗ List c ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c ∗ x′ ..=x0

∵ Same ∗ Same ⇒ Same

Same ∗ List c ∗

y 7→x0

y′ 7→x0

 ∗ y

..=y′ ∗ c′ ..=c ∗ x′ ..=x0

Fig. 8. Proof of the Invariant Preservation (Implication between Postconditions)

Initial Graph:

n2

nil

n3n1

nil nil

Graph after Pointer Reversal:

n2

nil

n3n1

nilnil

Fig. 9. Example of Pointer Reversal

23

cell which link of the node is currently being traversed. 5 We call the nth cell
in a node “nth field”, and use macros x.Left, x.Right, x.Mark, and x.Current
to denote these four fields of a node x. We also use macros for values in the
last two fields; for the third field, we use Marked and Unmarked, which are ex-
panded to 1 and 0, respectively; for the fourth field, we use Left and Right,
which are expanded to 1 and 0, respectively.

The control structures of SW and DFT are the same. In both cases, the body
of the loop consists of three branches. The first branch handles the “push”
case, where the traversing algorithm hits an unmarked node so it pushes the
node into the stack; the second branch handles the “swing” case, where the
algorithm stops traversing the left link of the top node in the stack and starts
to look at the right link, because it has visited all the reachable nodes from
the left link; finally, the third branch deals with the “pop” case, where the
algorithm pops the top node from the stack, because it has marked all the
nodes reachable from the top node.

Note that in DFT, we use a list variable α′, as opposed to a linked list, for a
stack data structure. Using a list variable makes code for a depth-first traversal
simpler, thus more likely to be correct.

6.1 Specification

Let’s define an assertion noDangling G which means that no links in the input
graph are dangling and G is the set of all the nodes in the graph.

noDangling G
def
= ∀∗x ∈ G. ∃lr. (x 7→ l, r, -, -) ∧ l ∈ G∪{nil} ∧ r ∈ G∪{nil}.

We specify the equivalence of SW and DFT by the following quadruple:

Same ∧ c = c′ ∧

noDangling G ∧ c ∈ G ∪ {nil}
noDangling G ∧ c′ ∈ G ∪ {nil}

SW

DFT
{Same}

The pre-relation in the quadruple requires that all the inputs to SW and DFT be
the same; the input graphs and the given roots c and c′ should be the same.
Moreover, it also puts a condition to ensure that SW and DFT run without
memory errors; the links in the input graph should not be dangling, and c and
c′ should point to the first cells of some nodes, not the middle of nodes. Then,

5 The actual implementation of the Schorr-Waite graph marking algorithm uses two
single bits, instead of two whole cells, to record these informations about traversing.
We ignore this optimization here because first, this optimization does not raise any
new verification issues, and second, by ignoring the optimization, we can focus on
the main part of the Schorr-Waite algorithm, that is, pointer reversal.

24

if (c 6= nil) then p := c.Left;
c.Mark := Marked;
c.Current := Left;
c.Left := nil

else p := nil;
while (c 6= nil)

do if (p 6= nil) then m := p.Mark else m := Marked;
if (p 6= nil ∧m 6= Marked)
then t := p.Left; // SWPush

p.Left := c;
c := p;
p := t;
c.Mark := Marked;
c.Current := Left

else d := c.Current;
if (d = Left)
then t := c.Left; // SWSwing

c.Left := p;
p := c.Right;
c.Right := t;
c.Current := Right

else t := p; // SWPop

p := c;
c := p.Right;
p.Right := t

Fig. 10. Schorr-Waite Graph Marking Algorithm

the post-relation guarantees that the output graphs for SW and DFT are the
same.

6.2 Verification

The complete verification consists of four proofs about an invariant relation.
The first proof shows that the invariant is established before the loops of SW
and DFT first get executed; the second shows that the invariant is preserved by
the bodies of the loops; the third that the invariant relation implies the post-
relation. Note that these three conditions are the usual proof steps in Hoare
logic. Our logic, however, requires one more proof; we need to show that if an
invariant relation holds, then the condition of the loop in SW is equivalent to
that in DFT. Among these four proofs, we will focus on the preservation of the
invariant and the equivalence of the loop conditions.

Let’s define a relation Stack p c α′ which expresses that (1) c is the top node of

25

if (c′ 6= nil) then p′ := c′.Left;
c′.Mark := Marked;
c′.Current := Left;
α′ := c′::ε

else α′ := ε;
p′ := nil;

while (α′ 6= ε)
do if (p′ 6= nil) then m′ := p′.Mark else m′ := Marked;

if (p′ 6= nil ∧m′ 6= Marked)
then α′ := p′::α′; // DFTPush

p′.Mark := Marked;
p′.Current := Left;
p′ := p′.Left

else d′ := (hd α′).Current;
if (d′ = Left)
then (hd α′).Current := Right; // DFTSwing

p′ := (hd α′).Right
else p′ := hd α′; // DFTPop

α′ := tl α′

Fig. 11. Depth-First Traversal

stack α′, (2) all the nodes in the stack are marked, (3) stack α′ is implemented
by reversing pointers from c, and (4) the original value of the reversed link of
c is p:

Stack p c ε
def
= c

..
= nil

Stack p c (x′::α′) def
=

∃n0r. c

..
=x′ ∗

c 7→n0, r, Marked, Left

c 7→p, r, Marked, Left

 ∗ Stack c n0 α′

∨

∃n0l. c

..
=x′ ∗

c 7→ l, n0, Marked, Right

c 7→ l, p, Marked, Right

∗ Stack c n0 α′

In the second clause, c and x′ denote the top node in the stack, and n0 the
second node. Thus, this clause says that the left or right link of node x′ is
reversed in the first heap, so that it points to the previous node n0 in the
stack. The original value of the reversed link, the clause also says, is stored in
variable p.

Using Stack p c α, we define a candidate for a loop invariant:

Inv
def
= Same∗Stack p c α∧p=p′ ∧

noDangling G ∧ {p, c}⊆G∪{nil}
noDangling G ∧ {p′}∪toSet(α)⊆G∪{nil}

.

The first conjunct Same ∗ Stack p c α explains the main difference between SW

26

and DFT. It says that the heaps h for SW and h′ for DFT are identical except
the nodes in stack α; in h, one of the link fields of these nodes is reversed,
but in h′, these link fields have their initial values. The meaning of the other
two conjuncts are straightforward. The second conjunct means that SW and
DFT are currently looking at the same node, and the third conjunct says that
neither variables nor the link fields of the nodes in the graph contain dangling
pointers.

We first prove that when Inv holds, the loop condition for SW is equivalent to
the loop condition for DFT.

Lemma 5 Relation Inv implies that c 6= nil is equivalent to α′ 6= ε.

PROOF. We will show that when Inv holds, α′ = ε is equivalent to c = nil.
We first derive (Inv ∧ α′ = ε) ⇒ c = nil:

Inv ∧ α′ = ε
=⇒ ∵ R ∧ S ⇒ R

(Same ∗ Stack p c α′) ∧ α′ = ε
=⇒ ∵ ((R ∗ S) ∧B) ⇔ (R ∗ (S ∧B))

Same ∗ (Stack p c α′ ∧ α′ = ε)
=⇒ ∵ the definition of Stack p c α′

Same ∗ (Emp ∧ c = nil)
=⇒ ∵ ((R ∗ S) ∧B) ⇔ (R ∗ (S ∧B))

(Same ∗ Emp) ∧ c = nil

=⇒ ∵ R ∧ S ⇒ R
c = nil

For the other implication, we derive (Inv ∧ c = nil ∧ α′ 6= ε) ⇒ False:

Inv ∧ c = nil ∧ α′ 6= ε
=⇒ ∵ R ∧ S ⇒ R

(Same ∗ Stack p c α′) ∧ c = nil ∧ α′ 6= ε
=⇒ ∵ ((R ∗ S) ∧B) ⇔ (R ∗ (S ∧B))

Same ∗ (Stack p c α′ ∧ c = nil ∧ α′ 6= ε)
=⇒ ∵ the definition of Stack p c α′

Same ∗

c 7→ -

c 7→ -

 ∗ True ∧ c = nil

=⇒ ∵ c 7→ - ⇒ c 6= nil

Same ∗

c 7→ - ∧ c 6= nil

c 7→ -

 ∗ True ∧ c = nil

27

=⇒ ∵

P ∧B

Q

 ⇔

P

Q

 ∧B

 and (R ∗ (S ∧B) ⇔ R ∗ S ∧B)

Same ∗

c 7→ -

c 7→ -

 ∗ True ∧ c 6= nil ∧ c = nil

=⇒
Same ∗ False

=⇒ ∵ R ∗ False ⇒ False
False

2

We now consider the preservation of Inv. As in Hoare logic, the proof of invari-
ant preservation forms the most important part of the verification. We will
explain the common pattern in the preservation proof for Inv, by outlining the
proof of the push branch. In particular, we will show the following quadruple:

Same ∗

p 7→ l0, r0, Unmarked, -

p′ 7→ l0, r0, Unmarked, -

 ∗ Stack p c α

 ∧ p = p′

SWPush DFTPush

{(Same ∗ Stack p c α) ∧ p = p′}

where SWPush and DFTPush, respectively, denote the code in the push branches
of SW and DFT. Note that this quadruple does not fully express that the push
branch preserves the invariant. It is because in addition to Inv, the pre-relation
requires that p and p′ denote an unvisited node that is not in the stack, and
the post-relation ensures only the first two conjuncts of Inv. However, proving
this restricted quadruple illustrates the key idea.

The proof for the push branch consists of five steps. First, we reason about
local effects of SWPush and DFTPush in separation logic, and obtain two “local”
Hoare triples. Second, we embed these triples in our logic and obtain a “local
quadruple.” Third, we change this local quadruple to “global” one, using the
frame rule. Fourth, we eliminate auxiliary variables that are used to denote the
initial values of variables. Finally, we strengthen the pre-relation and weaken
the post-relation, and obtain the required quadruple.

For the first step of the proof, we summarize what SWPush and DFTPush do
for nodes p and p′, and variables p, c, p′ and α′. For this purpose, we use proof

28

Proof of a triple for SWPush:
[(p0 7→ l0, r0, -, -) ∗ c

.
= c0 ∗ p

.
= p0]

t := p.Left;
[(p0 7→ l0, r0, -, -) ∗ c

.
= c0 ∗ p

.
= p0 ∗ t

.
= l0]

p.Left := c;
[(p0 7→c, r0, -, -) ∗ c

.
= c0 ∗ p

.
= p0 ∗ t

.
= l0]

[(p0 7→c0, r0, -, -) ∗ p
.
= p0 ∗ t

.
= l0]

c := p;
[(p0 7→c0, r0, -, -) ∗ c

.
= p0 ∗ t

.
= l0]

p := t;
[(p0 7→c0, r0, -, -) ∗ c

.
= p0 ∗ p

.
= l0]

c.Mark := Marked;
[(p0 7→c0, r0, Marked, -) ∗ c

.
= p0 ∗ p

.
= l0]

c.Current := Left

[(p0 7→c0, r0, Marked, Left) ∗ c
.
= p0 ∗ p

.
= l0]

Proof of a triple for DFTPush:
[(p0 7→ l0, r0, -, -) ∗ α′ .

= α0 ∗ p′ .
= p0]

[(p0 7→ l0, r0, -, -) ∗ (p′::α′ .
= p0::α0) ∗ p′ .

= p0]
α′ := p′::α′;

[(p0 7→ l0, r0, -, -) ∗ (α′ .
= p0::α0) ∗ p′ .

= p0]
p′.Mark := Marked;

[(p0 7→ l0, r0, Marked, -) ∗ (α′ .
= p0::α0) ∗ p′ .

= p0]
p′.Current := Left;

[(p0 7→ l0, r0, Marked, Left) ∗ (α′ .
= p0::α0) ∗ p′ .

= p0]
p′ := p′.Left;

[(p0 7→ l0, r0, Marked, Left) ∗ (α′ .
= p0::α0) ∗ p′ .

= l0]

Fig. 12. Proofs of Triples for SWPush and DFTPush in Separation Logic

rules in separation logic, and derive the following triples:

[p0 7→l0, r0, -, - ∗ c
.=c0 ∗ p

.=p0] SWPush [p0 7→c0, r0, Marked, Left ∗ c
.=p0 ∗ p

.=l0]

[p0 7→l0, r0, -, - ∗ α
.=α0 ∗ p′ .=p0] DFTPush [p0 7→l0, r0, Marked, Left ∗ α

.=p0::α0 ∗ p′ .=l0]

Note that both of these triples only describe the local effects of SWPush and
DFTPush: they specify how a node p0 and variables are updated. The deriva-
tions of these triples in separation logic are given in Figure 12.

29

Then, we use the embedding rule to derive a local quadruple from these triples:

[p0 7→l0, r0, -, - ∗ c
.=c0 ∗ p

.=p0]

SWPush

[p0 7→c0, r0, Marked, Left ∗ c
.=p0 ∗ p

.=l0]

[p0 7→l0, r0, -, - ∗α′ .=α0 ∗ p′ .=p0]

DFTPush

[p0 7→l0, r0, Marked, Left ∗α′ .=p0::α0 ∗ p′ .=l0]

p0 7→ l0, r0, -, - ∗ c

.=c0 ∗ p
.=p0

p0 7→ l0, r0, -, - ∗α′ .=α0 ∗ p′ .=p0

SWPush DFTPush

p0 7→c0, r0, Marked, Left ∗ c

.=p0 ∗ p
.=l0

p0 7→ l0, r0, Marked, Left ∗α′ .=p0::α0 ∗ p′ .=l0

Finally, we apply the frame rule, auxiliary variable elimination, and Conse-
quence. Using these rules, we transform the local quadruple to global one,
eliminate auxiliary variables, and obtain the required quadruple:

Same ∗

p 7→ l0, r0, Unmarked, -

p′ 7→ l0, r0, Unmarked, -

 ∗ Stack p cα′

 ∧ p = p′

∃α0p0c0. Same ∗Stack p0 c0 α0 ∗

p0 7→ l0, r0, -, - ∗ c

.=c0 ∗ p
.=p0

p0 7→ l0, r0, -, - ∗α′ .=α0 ∗ p′ .=p0

 ∵ Lemma 6

α0p0c0:

Same ∗ Stack p0 c0 α0 ∗

(p0 7→ l0, r0, -, -) ∗ c

.=c0 ∗ p
.=p0

(p0 7→ l0, r0, -, -) ∗ α′ .=α0 ∗ p′ .=p0

Framed:

(p0 7→ l0, r0, -, -) ∗ c

.=c0 ∗ p
.=p0

(p0 7→ l0, r0, -, -) ∗ α′ .=α0 ∗ p′ .=p0

SWPush DFTPush

(p0 7→c0, r0, Marked, Left) ∗ c

.=p0 ∗ p
.=l0

(p0 7→ l0, r0, Marked, Left) ∗ α′ .=p0::α0 ∗ p′ .=l0

Same ∗Stack p0 c0 α0 ∗

p0 7→c0, r0, Marked, Left ∗ c

.=p0 ∗ p
.=l0

p0 7→l0, r0, Marked, Left ∗α′ .=p0::α0 ∗ p′ .=l0

30

∃α0p0c0. Same ∗ Stack p0 c0 α0 ∗

p0 7→c0, r0, Marked, Left ∗ c

.=p0 ∗ p
.=l0

p0 7→l0, r0, Marked, Left ∗ α′ .=p0::α0 ∗ p′ .=l0

{(Same ∗ Stack p c α′) ∧ p = p′} ∵ Lemma 6

Note that the above proof has a gap; when we apply Consequence, we use
two implications between relations without proofs. We fill this gap by proving
these implications.

Lemma 6 The following implications hold:

1.

Same ∗

p 7→ l0, r0, Unmarked, -

p′ 7→ l0, r0, Unmarked, -

 ∗ Stack p c α′

 ∧ p=p′

=⇒

∃α0p0c0. Same ∗ Stack p0 c0 α0 ∗

p0 7→ l0, r0, -, - ∗ c
.
=c0 ∗ p

.
=p0

p0 7→ l0, r0, -, - ∗ α′ .
= α0 ∗ p′ .=p0

2.∃α0p0c0. Same ∗ Stack p0 c0 α0 ∗

p0 7→c0, r0, Marked, Left ∗ c
.
=p0 ∗ p

.
=l0

p0 7→l0, r0, Marked, Left ∗α′ .=p0::α0 ∗ p′ .=l0

=⇒
(Same ∗ Stack p c α′) ∧ p=p′

PROOF. The following derivation shows the first implication:

Same ∗

p 7→ l0, r0, Unmarked, -

p′ 7→ l0, r0, Unmarked, -

 ∗ Stack p c α′

 ∧ p = p′

=⇒ ∵ p = p′
Same ∗

p 7→ l0, r0, Unmarked, -

p 7→ l0, r0, Unmarked, -

 ∗ Stack p c α′

 ∧ p=p′

=⇒ ∵ (E0 7→E1) ⇒ (E0 7→ -)
Same ∗

p 7→ l0, r0, -, -

p 7→ l0, r0, -, -

 ∗ Stack p c α′

 ∧ p=p′

=⇒ ∵ (R ∧ E1 = E2) ⇔ (R ∗ E1
..
= E2)

Same ∗

p 7→ l0, r0, -, -

p 7→ l0, r0, -, -

 ∗ Stack p c α′ ∗ p

..
=p′

31

=⇒

∃α0p0c0. Same ∗

p 7→ l0, r0, -, -

p 7→ l0, r0, -, -

 ∗ Stack p c α′ ∗ p

..
=p′ ∗ c

..
=c0 ∗ α′ ..

=α0 ∗ p
..
=p0

=⇒ ∵ c = c0, α′ = α0, and p = p0

∃α0p0c0. Same ∗

p0 7→l0, r0, -, -

p0 7→l0, r0, -, -

∗ Stack p0 c0 α0 ∗ p0

..
=p′ ∗ c

..
=c0 ∗α′ ..

=α0 ∗ p
..
=p0

=⇒ ∵

P

Q ∗ E
.
=E ′

 ⇔

P

Q

 ∗ E

..
= E ′

 ⇔

P ∗ E
.
=E ′

Q

∃α0p0c0. Same ∗ Stack p0 c0 α0 ∗

p0 7→ l0, r0, -, - ∗ c
.
=c0 ∗ p

.
=p0

p0 7→ l0, r0, -, - ∗ α′ .=α0 ∗ p′ .=p0

The following derivation shows the second implication:

∃α0p0c0. Same ∗ Stack p0 c0 α0 ∗

p0 7→c0, r0, Marked, Left ∗ c
.
=p0 ∗ p

.
=l0

p0 7→ l0, r0, Marked, Left ∗ α′ .=p0::α0 ∗ p′ .=l0

=⇒ ∵ c = p0 and p = l0

∃α0c0. Same ∗ Stack c c0 α0 ∗

c 7→c0, r0, Marked, Left

c 7→p, r0, Marked, Left ∗ α′ .=c::α0 ∗ p′ .=p

=⇒ ∵

P

Q ∗ E
.
= E ′

 ⇔

P

Q

 ∗ E

..
= E ′

∃α0c0. Same ∗

Stack c c0 α0 ∗

c 7→c0, r0, Marked, Left

c 7→p, r0, Marked, Left

 ∗ α′ ..

=c::α0 ∗ p′ ..
=p

=⇒ ∵ the definition of Stack p c (c::α0)
∃α0. Same ∗ Stack p c (c::α0) ∗ α′ ..

= c::α0 ∗ p′ ..
= p

=⇒ ∵ α′ = c::α
Same ∗ Stack p c α′ ∗ p′ ..

= p
=⇒ ∵ (R ∧ E1 = E2) ⇔ (R ∗ E1

..
= E2)

(Same ∗ Stack p c α′) ∧ p′ = p

2

7 Nondeterministic Allocator and Hoare Quadruples

Separation logic assumes a completely nondeterministic allocator, in order to
ensure that a proof in separation logic is valid no matter how the allocator

32

cons is implemented. However, this seemingly innocent assumption makes it
difficult to find a proper definition of quadruples when programs can call cons.
In particular, our current definition invalidates the frame rule. In this section,
we explain this difficulty in details, and present a definition of quadruples for
nondeterministic programs that conservatively extends the old definition of
quadruples in Section 5 and validates all the rules in our logic.

When the allocator cons is completely nondeterministic, a program can use
cons to detect that a variable y stores a dangling pointer. For instance, con-
sider the following command:

x := cons(0); free(x); if (x = y) then div else skip

This command behaves differently depending on whether the variable y stores
a dangling pointer. If a pointer y is dangling initially, x := cons(0) can allocate
a cell at this location y. Thus, the following test x = y can succeed or fail,
so the command can diverge or terminate. On the other hand, if a pointer
y is not dangling initially, the command cannot diverge. All the cells that
x := cons(0) can pick are different from the already allocated cell y. Thus,
the following test x = y fails, and the command always terminates.

Unfortunately, this ability of detecting a dangling pointer makes a naive def-
inition of a quadruple fail to validate the frame rule. Suppose that we use
Definition 3 even for programs that can call cons. Then, the frame rule is not
sound any more. Consider a quadruple:

{Emp∧Pt(y, y′)} x:=cons(0); free(x); if x=y then div else skip

x′:=cons(0); free(x′); if x′=y′ then div else skip
{Emp}

where Pt(y, y′) is an abbreviation of y > 0 ∧ y′ > 0, which means that y and
y′ contain pointer values. Under the current definition, this quadruple holds,
because when the first and second commands are started in the empty heap,
both of them can diverge or terminate. Now, we add an invariant

y 7→ -

emp

33

to this quadruple, using the frame rule:

(Emp ∧ Pt(y, y′)) ∗

y 7→ -

emp

x := cons(0);

free(x);

if (x = y) then div

else skip

x′ := cons(0);

free(x′);

if (x′ = y′) then div

else skip

Emp ∗

y 7→ -

emp

The resulting quadruple is not valid. The pre-relation of this quadruple relates
a heap h to the empty heap [] if h is a singleton heap containing cell y. However,
for such a heap h and the empty heap [], the first and second commands
behave differently. When the first command is started from such h, it always
terminates, but when the second command is started from [], it can diverge or
terminate. This disagreement in the behaviors of the two commands violates
the second “equal divergence” condition in Definition 3, and shows that the
quadruple does not hold. Thus, this example illustrates that the frame rule is
not sound when we interpret a quadruple naively.

Our solution is to add to Definition 3 a requirement that the relationship
between two programs should not depend on which pointers are dangling.
The new definition of a quadruple is given below:

Definition 7 For commands C and C ′, a quadruple

{R}C

C ′
{S}

holds if and only if for all stores s and heaps h and h′ such that (s, h, h′) |= R,

(1) (s, h, C) is safe and (s, h′, C ′) is safe; and
(2) for all heaps h0 and h′0 such that h#h0 and h′#h′0, (s, h ∗ h0, C) can

diverge if and only if (s, h′ ∗ h′0, C
′) can diverge; and

(3) for all heaps h0 and h′0 such that h#h0 and h′#h′0, if (s, h ∗ h0, C) ;∗

(t, h1) and (s, h ∗ h′0, C
′) ;∗ (t′, h′1), then there exist h2, h

′
2 ∈ Heaps such

that

h2 ∗ h0 = h1 ∧ h′2 ∗ h′0 = h′1 ∧ (s[t|FV(C)][t
′|FV(C′)], h2, h′2) |= S.

34

In this definition of quadruples, the second and third conditions are strength-
ened. The conditions compare computations of C and C ′, not just from R-
related heaps, but also from all possible extensions of them. The second con-
dition requires that the computations of C and C ′ from these extended heaps
have the same divergence behavior, and the third condition that such computa-
tions of C and C ′ produce heaps with S-related subparts. Note that extending
a heap makes some dangling pointers nondangling. Thus, by considering all
the extended heaps, the conditions ask that C and C ′ should transform R-
related heaps to S-related heaps or divergence, no matter how many dangling
pointers become nondangling. In this way, they ensure that the relationship
of C and C ′ does not depend on dangling pointers.

Note that the strengthened conditions in the new definition of quadruples
exclude the previous counterexample for the frame rule. The reason is that
the problematic quadruple

{Emp∧Pt(y, y′)} x:=cons(0); free(x); if x=y then div else skip

x′:=cons(0); free(x′); if x′=y′ then div else skip
{Emp}

does not hold according to the new definition. When s maps y and y′ to 1
and both h and h′ are the empty heap, (s, h, h′) satisfies the pre-relation Emp.
However, the second “equal divergence” condition in Definition 7 does not
hold for the extensions [1 7→ 0] and [] of h and h′: when the two commands are
executed, respectively, from (s, [1 7→ 0]) and (s, []), only the second command
can diverge.

The new definition of quadruples, indeed, solves the problem about cons and
the frame rule, which is discussed in the beginning of this section. That is, as
long as quadruples are interpreted by this new definition, the frame rule and
all the other proof rules for the quadruples in our logic are sound, even when
commands call cons. Before proving this main property of the definition, we
simplify the new definition of quadruples slightly using the locality properties
of commands.

Lemma 8 For all commands C and C ′, a quadruple

{R}C

C ′
{S}

holds according to Definition 7 if and only if for all stores s and heaps h and
h′ such that (s, h, h′) |= R,

(1) (s, h, C) is safe and (s, h′, C ′) is safe; and
(2) for all heaps h0 and h′0 such that h#h0 and h′#h′0, (s, h ∗ h0, C) can

diverge if and only if (s, h′ ∗ h′0, C
′) can diverge; and

35

(3) if (s, h, C) ;∗ (t, h1) and (s, h′, C ′) ;∗ (t′, h′1), then

(s[t|FV(C)][t
′|FV(C′)], h1, h′1) |= S.

Note that the lemma simplifies the third condition in Definition 7; the new
third condition in the lemma does not quantify over all heap extensions, and
just considers the R-related heaps h and h′.

PROOF. Since the third condition in this lemma is weaker than the third
condition in Definition 7, it suffices to show that the characterization of
quadruples in the lemma implies Definition 7. We will show that if (s, h, C)
and (s, h′, C ′) are safe, then the third condition in the lemma implies the
third condition in Definition 7. Consider safe configurations (s, h, C) and
(s, h′, C ′), and heaps h0 and h′0 such that h#h0 and h′#h′0. Suppose that
(s, h ∗ h0, C) ;∗ (t, h1) and (s, h′ ∗ h′0, C

′) ;∗ (t′, h′1). Then, by the frame
property of commands, there exist h2 and h′2 such that

h1 = h2 ∗ h0, h′1 = h′2 ∗ h′0, (s, h, C) ;∗ (t, h2), and (s, h′, C ′) ;∗ (t′, h′2).

Now, the condition in the lemma implies that

(s[t|FV(C)][t
′|FV(C′)], h2, h′2) |= S.

Thus, the heaps h2 and h′2 are what the third condition in Definition 7 requires.
2

We now prove the main theorem of this section.

Theorem 9 (Soundness) Suppose that quadruples are interpreted by Defi-
nition 7. Then, all the proof rules in Figure 5 are sound, even when commands
call the nondeterministic allocator cons.

Note that this theorem does not require any changes in the semantics of re-
lations R, S in Section 4. Thus, this theorem also ensures that we can use all
the proof rules for relations in Section 4 while proving a quadruple.

PROOF. We will consider the embedding rule, the frame rule and Con-
sequence only. Suppose that triples [P]C[Q] and [P ′]C ′[Q′] hold, and that
commands C, C ′ and assertions P, P ′, Q, Q′ satisfy the side condition for the
embedding rule. We will show that the quadruple

P

P ′

C

C ′

Q

Q′

36

holds. Consider a store s and heaps h, h′ such that (s, h, h′) |=
(

P

P ′

)
. Then,

(s, h) |= P and (s, h′) |= P ′. Since [P]C[Q] and [P ′]C ′[Q′] hold, (s, h, C)
and (s, h′, C ′) are safe. To show the second condition in Definition 7, con-
sider heaps h0 and h′0 such that h0#h and h′0#h′. Because of termination
monotonicity, neither (s, h ∗ h0, C) nor (s, h′ ∗ h′0, C

′) can diverge, and thus,
the second condition holds. For the third condition in Definition 7, suppose
that (s, h, C) ;∗ (t, h1) and (s, h′, C ′) ;∗ (t′, h′1). Then, since [P]C[Q] and
[P ′]C ′[Q′] hold, (s, h) |= P , and (s, h′) |= P ′, we have that (t, h1) |= Q and
(t′, h′1) |= Q′. Now, because Mod(C ′) ∩ FV(Q) = ∅ and Mod(C) ∩ FV(Q′) = ∅,
we have

(s[t|FV(C)][t
′|FV(C′)], h1, h′1) |=

Q

Q′

.

For the frame rule, suppose that a quadruple

{R}C

C ′
{S}

holds and that FV(R1) ∩Mod(C, C ′) = ∅. Consider a store s and heaps h, h′

such that (s, h, h′) |= R ∗ R1. Then, there exist splittings m ∗ n = h and
m′ ∗ n′ = h′ such that (s,m, m′) |= R and (s, n, n′) |= R1. Because of safety
monotonicity, the first condition about the safety of (s, h, C) and (s, h′, C ′)
follows from the safety of (s,m,C) and (s,m′, C ′). For the second condition,
consider heaps h0 and h′0 such that h0#h and h′0#h′. Then, h0 ∗ n and h′0 ∗
n′ are, respectively, disjoint from m and m′. Thus, the second condition in
the definition of {R}C

C′
{S} implies that (s, h0 ∗ n ∗ m,C) can diverge if and

only if (s, h′0 ∗ n′ ∗m′, C ′) can diverge. For the third condition, suppose that
(s, h, C) ;∗ (t, h1) and (s, h′, C ′) ;∗ (t′, h′1). Then, by the frame property,
there exist heaps h2 and h′2 such that

h1 = h2 ∗n, h′1 = h′2 ∗n′, (s,m, C) ;∗ (t, h2), and (s,m′, C ′) ;∗ (t′, h′2).

Moreover, since {R}C

C′
{S} and (s,m, m′) |= R, we have that

(s[t|FV(C)][t
′|FV(C′)], h2, h′2) |= S.

Note that the side condition about the modified variables ensures that R1 is
satisfied by (s[t|FV(C)][t

′|FV(C′)], n, n′). Thus,

(s[t|FV(C)][t
′|FV(C′)], h2 ∗ n, h′2 ∗ n′) |= S ∗R1.

37

Finally, we consider the soundness of Consequence. Suppose that a quadruple

{R1}
C

C ′
{S1}

holds, and that R ⇒ R1 and S1 ⇒ S. In this case, we need show the validity
of the quadruple:

{R}C

C ′
{S}

Consider a store s and heaps h, h′ such that (s, h, h′) |= R. Since R ⇒
R1, (s, h, h′) also satisfies the pre-relation R1 of the quadruple {R1}C

C′
{S1}.

Since the quadruple {R1}C

C′
{S1} is valid, we have the following three facts by

Lemma 8:

(1) Both (s, h, C) and (s, h, C ′) are safe.
(2) For all heaps h1 and h′1 such that h1#h and h′1#h′, (s, h ∗ h1, C) can

diverge if and only if (s, h′ ∗ h′1, C
′) can diverge.

(3) If (s, h, C) ;∗ (t, h2) and (s, h′, C ′) ;∗ (t′, h′2), then

(s[t|FV(C)][t
′|FV(C′)], h2, h′2) |= S1.

The first two facts show that (s, h, h′) satisfies the first and second condi-

tions for {R}C

C′
{S}, and the third fact implies that (s, h, h′) satisfies the third

condition for {R}C

C′
{S} in Lemma 8, because S1 ⇒ S. 2

Before ending this section, we provide two justifications of the new definition
of quadruples. First, we prove that the new definition of quadruples is a con-
servative extension of the old one: for deterministic commands, the old and
new definitions of quadruples are equivalent, so the strengthened parts in the
new definition — the quantifications over extended heaps — play a role only
for nondeterministic programs. Second, we show that the new definition of
quadruples is the “weakest” definition that validates the frame rule.

Proposition 10 For deterministic commands, the definition of quadruples in
Definition 7 coincides with the definition of quadruples in Definition 3.

PROOF. Since Definition 7 is stronger than the other definition, it suffices
to show that Definition 3 implies Definition 7. Moreover, since the first condi-
tions in the two definitions are identical and the third conditions are equivalent

38

(Lemma 8), we can focus on the second condition in Definition 7. Pick deter-

ministic commands C and C ′, a Hoare quadruple {R}C

C′
{S}, and (s, h, h′) such

that

(1) (s, h, h′) |= R, and

(2) the quadruple {R}C

C′
{S} holds according to Definition 3.

Consider heaps h0 and h′0 such that h0#h and h′0#h′. We will show that
(s, h∗h0, C) can diverge if and only if (s, h′ ∗h′0, C

′) can diverge. Suppose that
(s, h ∗ h0, C) can diverge. Then, by termination monotonicity, (s, h, C) can
also diverge. Now, the second condition in Definition 3 implies that (s, h′, C ′)
can diverge, too. This divergence of (s, h′, C ′) forces (s, h′ ∗ h′0, C

′) to diverge;
if (s, h′ ∗ h′0, C

′) cannot diverge, and thus terminates in some state, the frame
property implies that (s, h′, C ′) also terminates, but this means that a de-
terministic command can behave nondeterministically. The other implication
about divergence can be proved similarly. 2

Proposition 11 Suppose that we are given some interpretation of a quadruple
{R}C

C′
{S} that validates the frame rule, and implies the following: for all stores

s and heaps h and h′ that satisfy pre-relation R (i.e., (s, h, h′) |= R),

(1) (s, h, C) is safe and (s, h′, C ′) is safe;
(2) (s, h, C) can diverge if and only if (s, h′, C) can diverge; and
(3) if (s, h, C) ;∗ (t, h1) and (s, h′, C ′) ;∗ (t′, h′1), then

(s[t|FV(C)][t
′|FV(C′)], h1, h′1) |= S.

Then, if a quadruple holds in this interpretation, then it holds in Definition 7.

PROOF. Suppose that we are given an interpretation of quadruples that
satisfies the requirements in this proposition, and that a quadruple {R}C

C′
{S}

holds in this given interpretation. We need to show that {R}C

C′
{S} holds in

Definition 7. By Lemma 8, it suffices to show that for all stores s and heaps
h, h′, if (s, h, h′) |= R, the second condition in Definition 7 holds. Consider
a store s and heaps h, h′, h1, h

′
1 such that (s, h, h′) |= R, h#h1, and h′#h′1.

We first construct assertion P and P ′ that precisely describe the heaps h1

and h2: (s0, h0) |= P if and only if h0 = h1; and (s0, h0) |= P ′ if and only if
h0 = h′1. The assertion P is the separating conjunction of (n 7→ h1(n)) for all
n in dom(h1), and P ′ the separating conjunction of (n 7→ h′1(n)) for all n in

39

dom(h′1). We now add
(

P

P ′

)
to the quadruple {R}C

C′
{S}, and obtain

R ∗

P

P ′

C

C ′

S ∗

P

P ′

.

This quadruple holds in the given interpretation, because the frame rule is
sound in the interpretation. The pre-relation of this quadruple is satisfied by

(s, h ∗ h1, h
′ ∗ h′1) because (s, h, h′) |= R and (s, h1, h

′
1) |=

(
P

P ′

)
. Thus, by

the requirement in the proposition, (s, h ∗ h1, C) can diverge if and only if
(s, h′ ∗ h′1, C

′) can diverge. This equivalence is precisely what we are required
to show. 2

8 Conclusion

In this paper, we developed a Hoare-style logic for verifying a relationship
between two programs, and applied the resulting logic to show the equiva-
lence between the Schorr-Waite graph marking algorithm and the depth-first
traversal. The main features of our logic are Hoare quadruples, separating
conjunction for relations, and the frame rule for quadruples. Hoare quadru-
ples simplify formal specification, by allowing the equivalence specification;
and separating conjunction and the frame rule simplify formal verification,
by supporting local reasoning about quadruples, and allowing the “smooth”
inclusion of separation logic. Indeed, our verification of the Schorr-Waite al-
gorithm fully used all these features, and resulted in a formal proof simpler
than the other existing proofs of the algorithm, including the one in separation
logic [8].

Our work is closely related to Necula’s translation validation [17,19], Rinard’s
credible compilation [20,18], and Zuck et al’s “VOC” [21]. The goal of these
three is to ensure the correctness of compiler optimization by showing the
equivalence between source code and optimized code. To achieve this goal, all
these approaches provide methods for specifying a relationship between two
flowchart programs, and for showing a specified relationship. The basic ideas of
these methods are similar to those of our logic. However, because of a different
motivation, all of the three approaches consider very limited languages for
relations, and use complicated methods to handle pointers. Thus, they are
not appropriate for comparing two programs which use very different data
structures with pointers, such as the depth-first traversal and the Schorr-
Waite algorithm. On the other hand, they can handle programs with very
different control structures. They allow relations between any two points of
flowchart programs, and provide a proof rule for verifying these relations.

40

We are considering to adopt their proof rule in our logic, in order to handle
programs with different control structures.

Benton independently developed almost the same logic as ours [22], which he
called relational Hoare logic. For deterministic commands, his typing judgment
means the same thing as our Hoare quadruple except that his judgment does
not require the safety. His proof rules for loops, conditional statements, and
sequential composition also coincide with ours. The main difference is that he
does not consider pointers seriously. Thus, the relationship between his work
and ours is similar to that of Hoare logic and separation logic. In fact, the
name of our logic comes from this comparison.

The work on data refinement is also closely related [10–13,23]. Especially, we
are influenced by Reynolds’s refinement proofs of graph algorithms in [13]. Our
work can be seen as a first step to extend Reynolds’s idea to pointer programs.
However, to explain data refinement properly, we need to change the logic in
two aspects. First, we should treat nondeterminism differently, so that we can
explain refinement rather than equivalence in our logic. Second, we should
find a proof rule for showing the equivalence of the two implementations of an
abstract data type, not the equivalence of specific clients of them.

Acknowledgments. When I was a PhD student, my thesis advisor suggested me
to read John Reynolds’s book, “The Craft of Programming”, and formalize
the last chapter of the book. It is this reading of Reynolds’s book that started
the work presented in this paper. Reynolds also gave me insightful comments
about the verification of the Schorr-Waite graph marking algorithm and the
problem of nondeterministic allocator, which played a crucial role for obtain-
ing the results in this paper. I have benefited greatly from discussions with
Peter O’Hearn, Uday Reddy, David Naumann, Josh Berdine, Richard Bornat,
Cristiano Calcagno, Noah Torp-Smith, and Ivana Mijajlović. The anonymous
referees made helpful suggestions.

References

[1] J. C. Reynolds, Intuitionistic reasoning about shared mutable data structure,
in: Millennial Perspectives in Computer Science, Palgrave, 2000.

[2] S. Ishtiaq, P. W. O’Hearn, BI as an assertion language for mutable data
structures, in: Proceedings of the 28th ACM Symposium on Principles of
Programming Languages, ACM, 2001, pp. 14–26.

[3] J. C. Reynolds, Separation logic: A logic for shared mutable data structures,
in: Proceedings of the 17th IEEE Symposium on Logic in Computer Science,
IEEE, 2002, pp. 55–74.

41

[4] P. W. O’Hearn, J. C. Reynolds, H. Yang, Local reasoning about programs
that alter data structures, in: L. Fribourg (Ed.), Proceedings of 15th Annual
Conference of the European Association for Computer Science Logic, Vol. 2142
of Lecture Notes in Computer Science, Springer-Verlag, 2001, pp. 1–19.

[5] J. C. Reynolds, Lectures on reasoning about shared mutable data structure,
IFIP Working Group 2.3 School/Seminar on State-of-the-Art Program Design
Using Logic, Tandil, Argentina, September 6-13 (2000).

[6] R. Bornat, C. Calcagno, P. W. O’Hearn, Local reasoning, separation and
aliasing, in: Proceedings of the 2nd Workshop on Semantics, Program Analysis,
and Computing Environments for Memory Management, Venice, 2004.

[7] L. Birkedal, N. Torp-Smith, J. C. Reynolds, Local reasoning about a copying
garbage collector, in: Proceedings of the 31th ACM Symposium on Principles
of Programming Languages, ACM, Venice, 2004, pp. 220–231.

[8] H. Yang, Local reasoning for stateful programs, Ph.D. thesis, University
of Illinois at Urbana-Champaign, (Technical Report UIUCDCS-R-2001-2227)
(2001).

[9] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: principles, techniques, and tools,
Addison-Welsley, 1988.

[10] J. He, C. A. R. Hoare, J. W. Sanders, Data refinement refined, in: European
Symposium on Programming, Vol. 213 of Lecture Notes in Computer Science,
Springer-Verlag, 1986, pp. 187–196.

[11] C. A. R. Hoare, J. He, J. W. Sanders, Prespecification in data refinement,
Information Processing Letter 25 (2) (1987) 71–76.

[12] P. H. B. Gardiner, C. C. Morgan, A single complete rule for data refinement,
Formal Aspects of Computing 5 (1993) 367–382, (Reprinted in [24]).

[13] J. C. Reynolds, The Craft of Programming, Prentice-Hall International,
London, 1981.

[14] H. Yang, P. W. O’Hearn, A semantic basis for local reasoning, in: Proceedings
of the 5th Conference on Foundations of Software Science and Computation
Structures, Vol. 2303 of Lecture Notes in Computer Science, Springer-Verlag,
2002, pp. 402–416.

[15] P. W. O’Hearn, D. J. Pym, The logic of bunched implications, Bulletin of
Symbolic Logic 5 (2) (99) 215–244.

[16] C. Calcagno, H. Yang, P. W. O’Hearn, Computability and complexity results
for a spatial assertion language for data structures, in: Proceedings of the 22nd
Conference on Foundations of Software Technology and Theoretical Computer
Science, Vol. 2245 of Lecture Notes in Computer Science, Springer-Verlag, 2001,
pp. 108–119.

[17] G. Necula, Translation validation, in: ACM SIGPLAN Conference on
Programming Language Design and Implementation, ACM, 2000.

42

[18] M. Rinard, Credible compilation, Technical Report MIT-LCS-TR-776, MIT
Laboratory for Computer Science (Mar. 1999).

[19] C. Colby, P. Lee, G. Necula, F. Blau, K. Cline, M. Plesko, Certifying compiler
for java, in: ACM SIGPLAN Conference on Programming Language Design and
Implementation, ACM, 2000.

[20] M. Rinard, D. Marinov, Credible Compilation with Pointers, in: Proceedings of
the FLoC Workshop on Run-Time Result Verification, Trento, Italy, 1999.

[21] L. Zuck, A. Pnueli, F. Yi, B. Goldberg, Voc: A translation validator for
optimizing compilers, Electronic Notes in Theoretical Computer Science 65 (2).

[22] N. Benton, Simple relational correctness proofs for static analyses and program
transformations, in: Proceedings of the 31th ACM Symposium on Principles of
Programming Languages, ACM, Venice, 2004, pp. 14–25.

[23] J.-R. Abrial, FME 2003: Formal methods, international symposium of formal
methods europe, in: Event Based Sequential Program Development: Application
to Constructing a Pointer Program, Vol. 2805 of Lecture Notes in Computer
Science, Springer, 2003, pp. 51–74.

[24] C. Morgan, T. Vickers (Eds.), On the Refinement Calculus, Springer-Verlag,
1992.

43

A Operational Semantics

x := E, s, h ; (s | x 7→ [[E]]s), h

X := G, s, h ; (s | X 7→ [[G]]s), h α := L, s, h ; (s | α 7→ [[L]]s), h

[[E]]s = n

free(E), s, h ∗ [n 7→ m] ; s, h

[[E]]s = n n 6∈ dom(h)

free(E), s, h ; fault

[[E]]s = n ∈ dom(h) h(n) = m

x := [E], s, h ; (s | x 7→ m), h

[[E]]s 6∈ dom(h)

x := [E], s, h ; fault

[[E1]]s = n ∈ dom(h)

[E1] := E2, s, h ; s, (h | n 7→ [[E2]]s)

[[E1]]s 6∈ dom(h)

[E1] := E2, s, h ; fault

m, ..., n + m− 1 6∈ dom(h) v1 = [[E1]]s, ..., vn = [[En]]s

x := cons(E1, ..., En), s, h ; (s | x 7→ m), (h ∗ [m 7→ v1, ..., n + m− 1 7→vn])

C1, s, h ; C ′
1, s

′, h′

C1; C2, s, h ; C ′
1; C2, s

′, h′
C1, s, h ; s′, h′

C1; C2, s, h ; C2, s
′, h′

C1, s, h ; fault

C1; C2, s, h ; fault

[[B]]s = true

if B then C else C ′ , s, h ; C, s, h

[[B]]s = false

if B then C else C ′ , s, h ; C ′, s, h

[[B]]s = false

while B do C od, s, h ; s, h

[[B]]s = true (C; while B do C od), s, h ; K

while B do C od, s, h ; K

44

