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The accurate and efficient treatment of mutable data structures is one of the outstanding problem

areas in automatic program verification and analysis. Shape analysis is a form of program analysis

that attempts to infer descriptions of the data structures in a program, and to prove that these
structures are not misused or corrupted. It is one of the more challenging and expensive forms

of program analysis, due to the complexity of aliasing and the need to look arbitrarily deeply
into the program heap. This paper describes a method of boosting shape analyses by defining a

compositional method, where each procedure is analyzed independently of its callers. The analysis

algorithm uses a restricted fragment of separation logic, and assigns a collection of Hoare triples
to each procedure; the triples provide an over-approximation of data structure usage. Our method

brings the usual benefits of compositionality – increased potential to scale, ability to deal with

incomplete programs, graceful way to deal with imprecision – to shape analysis, for the first time.
The analysis rests on a generalized form of abduction (inference of explanatory hypotheses)

which we call bi-abduction. Bi-abduction displays abduction as a kind of inverse to the frame

problem: it jointly infers anti-frames (missing portions of state) and frames (portions of state not
touched by an operation), and is the basis of a new analysis algorithm. We have implemented

our analysis and we report case studies on smaller programs to evaluate the quality of discovered

specifications, and larger code bases (e.g. sendmail, an imap server, a Linux distribution) to
illustrate the level of automation and scalability that we obtain from our compositional method.

The paper makes number of specific technical contributions on proof procedures and analy-
sis algorithms, but in a sense its more important contribution is holistic: the explanation and

demonstration of how a massive increase in automation is possible using abductive inference.
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1. INTRODUCTION

Abductive inference – inference of explanatory hypotheses – was introduced by
Charles Peirce in his writings on the scientific process [Peirce 1958]. Abduction
was formulated to distinguish the creation of new hypotheses from deductive and
inductive (generalization) inference patterns. Abductive inference has been widely
studied in philosophy, and it has been used in a number of ways in artificial intelli-
gence, such as in diagnosis and in planning. (The survey articles [Kakas et al. 1992;
Paul 1993] point to many formalizations and applications in the AI literature.)

This paper is about the use of abductive inference in reasoning about computer
programs. Just as abduction considered philosophically is thought of as a mecha-
nism to create hypotheses, we propose that in reasoning about computer programs
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it can be used to generate preconditions, in the sense of pre/post specifications of
program components. We state right away that the goal of abduction used in this
way is not necessarily to supplant the human in the writing of specifications, but
rather to complement him or her: we suggest that generated preconditions could
be useful in program understanding or as a helpful guide during interactive proof
efforts, and we demonstrate that they can be used to raise the scalability and level
of automation in mechanized tools for program verification and analysis.

1.1 Context and Motivating Question

The context in which this research arose is verification of programs that access and
mutate data structures in computer memory. We are interested in particular in the
use of techniques from static program analysis to perform automatic verification.
Program analyses can relieve the user of the burden of stating loop invariants and
other annotations, and can in principle be applied more easily to existing code bases
than can more manual techniques.

The last decade has seen a surge of interest in verification-by-static-analysis,
with prominent success stories such as SLAM’s application of proof technology
to Microsoft device drivers [Ball et al. 2006] and ASTRÉE’s proof of the absence
of run-time errors in Airbus code [Cousot et al. 2005]. But, most practical tools
for verification-oriented static analysis ignore pointer-based data structures, or use
coarse models that are insufficient to prove basic properties of them; for example,
SLAM assumes memory safety and ASTRÉE works only on input programs that
do not use dynamic allocation. Data structures present one of the most pressing
open problems in verification-oriented program analysis, progress on which would
extend the reach of automatic program verification tools.

Although the general problem is not solved, there has been substantial prior work
under the heading ‘shape analysis’1, a kind of pointer analysis which looks deeply
into the heap in an attempt to discover invariants that describe the data structures
in a program (e.g., [Sagiv et al. 1998; Balaban et al. 2005; Podelski and Wies 2005;
Guo et al. 2007; Berdine et al. 2007]). A shape analysis can in principle prove that
programs do not commit pointer-safety errors (dereferencing a null or dangling
pointer, or leaking memory), without the user having to write loop invariants or
even pre/post specifications for procedures; these are inferred during analysis. To
do this the analysis typically has to accurately identify (or distinguish) cyclic and
acyclic linked structures, nested lists, and so on.

There are, though, some fundamental problems holding back the wider use of
shape analyses in verification-by-static-analysis tools. First of all, shape analyses
are notoriously expensive, and had mostly been applied to verification of codes in
the tens or hundreds of LOC and, only recently, after much effort, to a restricted
family of similar programs up to 10k LOC [Yang et al. 2008]. Second, in our
prior work on SpaceInvader attempting to apply shape analysis techniques to
verification [Calcagno et al. 2006; Berdine et al. 2007; Yang et al. 2008], we were
frustrated not only by the issue of scaling in terms of LOC, but even more by the

1The data structure verification problem is broader and can concern more than shape, but we will

persist with the term ‘shape analysis’ in this paper for backwards compatibility.
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amount of effort we had to put in before our analysis was run. We would have to
write preconditions, or the verification analogue of a test harness, and this meant
studying a program for days or weeks before ‘pushing the button’. We speak of our
personal experience with SpaceInvader here, but believe that the same issue of
‘human time spent before pushing button’ arises as well when attempting to apply
any other existing shape analysis tools to verification problems. The final problem
is that shape analyses have been formulated as whole-program analyses, meaning
that it is difficult to apply them to a program as it is being written, before there
is a complete program to analyze; this limits their potential to be used during the
program-development process.

These ‘problems’ all motivate the central question of this paper, which is whether
a compositional shape analysis can be formulated, which will help existing tech-
niques be more easily applied to a greater variety of code.2

The term ‘compositionality’ is used in different ways by different people, so we
should be precise about our usage. We first recall Frege’s original notion for lan-
guage semantics: a semantic definition of a language is compositional if the meaning
of a composite expression is defined in terms of the meanings of its parts. So, we
say that a program analysis is compositional if the analysis result of a composite
program (or program fragment) is computed from the analysis results of its parts.
We can understand this definition at the level of granularity of procedures or groups
of recursive procedures.

The most important feature of this definition of compositionality is that it pre-
supposes that you can do the analysis of a part of a program without knowing
the complete program.3 If we can achieve compositionality, we are immediately in
a position of being able to analyze incomplete programs. Further, compositional
analysis, by its nature, easily yields an incremental algorithm. When an analysis
is first run its results can be stored to disk. Then, if a procedure (or recursive
procedure group) is changed, only it has to be re-analyzed; the old analysis results
for independent procedures remain unchanged.

A second feature of compositionality is what we term graceful imprecision. There
is no single existing shape domain that has yet been proposed which is appropriate
to all of the kinds of data structures found in a large program (such as Linux):
any known shape domain will deliver uselessly imprecise results at some point,
after which (in a whole program analysis) meaningful results cease to be obtained
even for portions of code which could be well treated, were a suitable precondition
known. However, if a compositional analysis is unable to get precise results for
one procedure, due to limitations of its abstract domain, it can still obtain precise
results for other procedures.

So one could apply a compositional analysis partially, without waiting for the
discovery of the ‘magical abstract domain’ that covers all structures in all the large

2Note that we are not claiming that compositionality will ‘solve’ the data structure verification

problem. It can boost existing techniques, but is still limited by the limitations of the abstract
domains in these techniques; e.g., it remains difficult to precisely and efficiently analyze graph

structures with significant internal sharing.
3Thus, in contrast to the usage in some papers that have appeared in the literature, a whole-
program analysis which (say) uses procedure summaries to reduce work is not necessarily compo-

sitional in the sense we are using (or in Frege’s original sense).
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programs one might ever encounter. The human might then be brought into the
loop by changing the domain, by supplying manual proofs for difficult parts of the
code, etc. But, with compositionality, we are not prevented from getting started
just because the magical domain doesn’t yet exist.

Finally, compositional analyses are interesting for their potential to scale. With
a compositional analysis it becomes relatively easy to get meaningful (if partial)
results for large code bases, as long as the analyses of the program parts are not
prohibitive.

It is all well and good to wish for a compositional analysis with very many
remarkable properties, but how might we go about obtaining one? Before we suggest
our own approach, we must clarify what such an analysis should be aiming to do.

1.2 Compositionality, Overapproximation, Footprints

In formulating the compositional analysis we take our lead from denotational se-
mantics. For sequential programs, denotational semantics established that the
meaning of a procedure can be taken to be a mathematical function from states to
states which abstracts away from intermediate states of the code: e.g., a function
of type

ConcreteProcs
def
= States→ P(States)

where the states can include input parameters as well as return values. What we
would like to do in a compositional analysis is to over-approximate such a function
space (what the Cousots call a ‘relational’ analysis [Cousot and Cousot 2002]).

If we have a set of abstract states AbstractStates which overapproximate the
concrete states (so that one abstract state may correspond to several concrete),
then a naive way of overapproximating ConcreteProcs would be to use the function
type

BadAbstractProcs
def
= AbstractStates→ P(AbstractStates).

This would be impractical because BadAbstractProcs is far too large, especially in
the case of shape analysis when there are very many abstract states. Something
similarly unrealistic is obtained if one attempts to use the ‘most general client’ for a
procedure as a way to generate ‘procedure summaries’, as that involves enumerating
a great many abstract states. To be practical we need to abstract the procedures
more directly, without using a (total) function on the entirety of the abstract states,
to get a more parsimonious abstraction.

Instead of an entire function table, we will use a collection of Hoare triples as our
abstract domain. Although at first glance it looks like this choice could be as bad
as BadAbstractProcs, it is actually possible to get very compact representations of
procedure meanings. The key to this is the ‘principle of local reasoning [O’Hearn
et al. 2001]’, which allows program specifications to concentrate on the footprint,
the cells accessed by a procedure, and this allows for compact representations of
procedure meanings . For example, a single Hoare triple

{the heap is an acyclic list rooted at x} disposelist(x) {the heap is empty}

is enough to specify a procedure to free all the elements in a linked list; a consid-
erably smaller representation of the meaning than an element of BadAbstractProcs.
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(It might seem at first that this spec is not enough, because it does not talk heaps
bigger than the one containing only the list x, but an inference rule of separation
logic, the frame rule, allows such specifications to be applied in wider contexts.)

In this example spec, the precondition describes exactly the cells accessed by the
procedure (the footprint). This will be the aim of our compositional analysis: fol-
lowing on from the local reasoning idea, the analysis will aim to discover pre/post
specs that talk about the footprint of a procedure only. Because of computability
reasons, we know that we cannot make an algorithm that computes static descrip-
tions of footprints perfectly, but we will use the footprint idea as a guide, to attempt
to obtain compact over-approximations of procedure meanings.

Is this wishful thinking again? It is all well and good to wish for the footprint,
but (quite apart from computability considerations) what might be an algorithmic
technique to attempt to approximate it? Our answer is abduction, or rather a
variant on the notion of abduction, and a program analysis algorithm which uses
it in a new way.

1.3 Approach and Contributions

The basic idea of how our method works is this. We begin by trying to prove a
program (either manually or automatically). During the proof attempt we might
find that we do not have a strong enough precondition to perform an operation –
a procedure call, or a dereferencing. For example: we might need to know that a
pointer is allocated, not dangling, before we attempt to free it; or, we might need to
know that a variable points to an acyclic linked list, before we attempt to traverse
it. We then perform abductive inference to infer what is missing, and hypothesize
that this is part of the precondition that you need to describe the memory that the
program uses. We abduce preconditions describing allocatedness of cells, or even
entire linked lists, from the free operation or the code in a traversal procedure.

In fact, to treat procedure calls properly we will deal with a more general problem,
which we call bi-abduction, that infers ‘frames’ describing extra, unneeded portions
of state (those cells that automatically remain unchanged) as well as the needed,
missing portions (the ‘anti-frames’).

We make two specific technical contributions which give us a way to leverage the
above ideas in an automated tool: (i) we define an abductive proof procedure for
separated heap abstractions, certain restricted separation logic formulae which have
been used previously in automatic program analysis [Berdine et al. 2005b; Diste-
fano et al. 2006]; (ii) we present a new heuristic algorithm, PreGen, which uses
bi-abduction to guide search for preconditions. After precondition generation, we
use an existing forwards program analysis algorithm, PostGen, to generate post-
conditions (and to remove preconditions erroneously hypothesized by our heuristic
search). The overall result is a compositional algorithm which finds pre/post specs
approximating a procedure’s memory usage, without knowledge or even existence
of the procedure’s calling context within a larger program.

Although these are new specific technical contributions of the paper, the more
significant contribution concerns how these ideas can be used together to increase
automation in program verification. We have implemented our analysis algorithm
in prototype tool, abductor. We have done a case study on a number of small
programs to examine the quality of synthesized specifications. To probe implica-
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tions for scalability of automatic program verification techniques we have also run
abductor on larger code-bases and open-source projects. The results we obtain
there are partial (we are unable to prove anything about some procedures), but the
significant point is that we are able to apply the analysis immediately, and get the
partial information in the form of specs of some procedures without going through
the weeks or months of prep work that was necessary previously. The larger code
bases include a number of open-source projects in the hundreds of thousands of
LOC, and one of over three million LOC.

2. PRELIMINARY CONCEPTS AND EXAMPLES

The presentation in the paper will consist of a gradual movement from logic towards
program analysis. As we go along we will use particular programs, and speak
about program proofs or analysis in a semi-formal way, as a means to motivate and
illustrate our techniques.

2.1 Abductive Inference

In standard logic, abduction can be set up as follows.

Given: assumption A and goal G.

To find: ‘missing’ assumptions M making the entailment

A ∧ M ` G

true.

Constraints are often placed on what counts as a solution: that it be consistent,
that it be expressed using a restricted collection of ‘abducible’ facts, and sometimes
that it be minimal in some sense. For example, in artificial intelligence it is often
required that M be a conjunction of literals, rather than a general logical formula,
thus ruling out the trivial M = A⇒ G solution. Minimality requirements rule out
another trivial solution, M = G. In any case, the intuition of abduction is that,
ideally, M should contain ‘just enough’ information to conclude G, and even when
this ideal cannot be reached perfectly the basic intuition can serve as a guide in the
search for solutions.

In this paper we will be solving a similar problem, but for separation logic
[Reynolds ; Ishtiaq and O’Hearn 2001] rather than classical logic.

Given: assumption A and goal G.

To find: ‘missing’ assumptions M making the entailment

A ∗M ` G

true.

Here, formulae describe sets of states, and the separating conjunction A∗M is true
of a memory state just if A and M are true for disjoint partitions of the state:
in words, A ‘and separately’ M . (The formal semantics of our separation logic
formulae will be given in Section 3.1.2.)

In separation logic, the abduction question takes on a spatial connotation: In
A ∗M ` G we think of M as describing a missing portion of memory, which is in
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G but not in A. As in classical logic, there are immediate solutions to the question
if expressive-enough logical machinery is present, such as by taking M to be the
separating implication formula A−∗G. Motivated by program analysis, we will later
constrain our solutions to be selected from certain special formulae called symbolic
heaps, which will have the effect of ruling out such immediate solutions.

2.2 Generating Preconditions using Abduction

Suppose that during an attempted program verification we have an assertion A at
a call site for a procedure, and the procedure has a precondition G. For example,

Procedure precondition: G
def
= list(x) ∗ list(y),

Assertion at call site: A
def
= x7→nil

Here the precondition says that x and y point to acyclic linked lists occupying
separate memory, while the assertion A says that x is a pointer variable containing
nil (so a list of length 1).

The difficulty we face in our attempted program proof is that the assertion A
does not imply G; the call site and given precondition do not match up. One thing
we can do is to give up on our verification, or our program analysis, at this point.
But we might also realize

if only we had the assertion list(y) as well, separately conjoined, then we
would be able to meet the precondition.

The informal inference step expressed here is abductive in nature: it is about
inferring an hypothesis concerning what is missing. Formally, it involves solving a
question of the form

A ∗ ?? ` G.

We can see the relevance of this question more clearly using a specific program.
Suppose we are given a pre/post spec of a procedure foo(x,y). This spec might
have been computed previously in an automatic program analysis (where the jargon
‘procedure summary’ is sometimes used for the spec), or it might have been supplied
manually by a user. The list(·) predicate describes acyclic, nil-terminated singly-
linked lists. We have an enclosing procedure p(y) which calls foo as follows.

0 struct node {struct node* tl; };

1 struct node* p(struct node *y) { // Inferred Pre: list(y)

2 struct node *x;

3 x=malloc(sizeof(struct node)); x->tail = 0;

4 foo(x,y); // Obtained Post: list(x)

5 return(x);

6 } // Inferred Post: list(ret)

7

8 void foo(struct node *x,struct node *y){//SUMMARY ONLY

9 // Given Pre: list(x) * list(y)

10 } // Given Post: list(x)
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Here is how we can synthesize the pre and post described at lines 1 and 6. We
begin by executing p() with starting symbolic heap emp, an assertion describing
the empty memory. Just after line 3 we obtain the assertion A = x 7→nil which
says that x is an allocated cell pointing to nil 4, and for the following procedure call
foo(x,y) we ask the abduction question

x 7→nil ∗ ?? ` list(x) ∗ list(y).

A sensible answer is ?? = list(y), so we infer that we should have started execution
with list(y) rather than emp, and record list(y) as a missing precondition. We
pretend that the analysis of the call at line 4 was successful, and continue the
analysis of p() with the postcondition list(x) of foo(x,y). At the end of procedure
p() we obtain list(ret) as the computed post, where ret is the value returned by
the procedure.

Notice that the specification synthesized for p() is not at all random: the pre-
condition describes the set of states on which the procedure can be safely run,
presuming the given spec of foo().

2.3 Bi-Abduction

Abduction gives us a way to synthesize missing portions of state. We also have
to synthesize additional, leftover portions of state (the frame) by solving a more
general problem which we term bi-abduction:

A ∗ ?anti-frame ` G ∗ ?frame.

We illustrate the use of bi-abduction with the following variation on the example
above, using the same procedure summary as before for foo().

1 struct node* q(struct node *y) { // Inferred Pre: list(y)

2 struct node *x, *z;

3 x=malloc(sizeof(struct node)); x->tail=0;

4 z=malloc(sizeof(struct node)); z->tail=0;

5 // Abduced: list(y), Framed: z|->0

6 foo(x,y); // Obtained Post: list(x)*z|->0

7 // Abduced:emp, Framed: emp

8 foo(x,z); // Obtained Post: list(x)

9 return(x);

10 } // Inferred Post: list(ret)

This time we infer anti-frame list(y) as before, but using bi-abduction we also infer
z 7→nil as the frame axiom that won’t be needed by procedure call at line 6. That
is, we obtain a solution to the bi-abduction question

x 7→nil ∗ z 7→nil ∗ ?anti-frame ` list(x) ∗ list(y) ∗ ?frame

where ?anti-frame = list(y), ?frame = z 7→nil. We tack the frame on to the post-
condition list(x) obtained from the procedure summary, continue execution at line
7, and this eventually gives us the indicated pre/post pair at lines 1 and 10.

4For simplicity, in this example we have ignored the possibility that malloc() might fail (returning

0); we will treat the failure case later (see Section 4.1).
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Again, the inferred pre/post spec talks about only those cells that the procedure
accesses. Such ‘small specifications’ are useful to aim for when synthesizing pre-
and postconditions, because (1) shape domains usually have an enormous number
of states that might be used and (2) ‘small specifications’ describe more general
facts about procedures than ‘big specifications’, so that they lead to a more precise
analysis of callers of those procedures.

The more general point we wish to make is that bi-abduction gives us an inference
technique to realize the principle of local reasoning stated earlier. Synthesis of
frames allows us to use small specifications of memory portions by slotting them
into larger states found at call sites, whereas abduction of anti-frames helps us to
find the small specs.

2.4 Abstraction and Loops

Consider the simple program for freeing the elements of an acyclic linked list.

// start state: x=X /\ emp

// Inferred pre: list(x)

1 void free_list(struct node *x) {

2 while (x!=0) {

3 t=x;

4 x=x->tl;

5 free(t);

6 }

If we start symbolically executing the program from a starting state x=X ∧ emp
then we will discover at line 4 that we cannot proceed without the assertion x 7→X ′
that x is allocated, for some X ′. It is convenient to express this fact using the
additional variable X instead of x: the variable X does not appear in the program
and will not be altered, where x will eventually be altered, so it is easier to use X to
talk about pre-states. So we could update our precondition so that it changes from
x=X ∧ emp to become to be x=X ∧X 7→X ′, and this gives us enough information
to avoid memory faulting on the first iteration of the loop.

Then, on the second iteration we run into the same problem again. Let us assume
that our program analysis technique is smart enough to guess that x=X∧(X 7→X ′∗
X ′ 7→X ′′), for another new variable X ′′, rules out the memory faulting in either of
the first or the second iteration of the loop. If we continue in this way, we get ever
longer formulae to cover successive iterates

x=X ∧X 7→X ′
x=X ∧ (X 7→X ′ ∗X ′ 7→X ′′)
x=X ∧ (X 7→X ′ ∗X ′ 7→X ′′ ∗X ′′ 7→X ′′′)

...

and if we do not do something we will obtain an infinite regress.
We can interrupt this regress using abstraction. At the second step we can

simplify our assertion by using the operation

replace x=X ∧X 7→X ′ ∗X ′ 7→X ′′ with x = X ∧ ls(X,X ′′)
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where ls(X,X ′′) is a predicate which says that there is a linked list segment of
indeterminate length from X to X ′′ (Our previous predicate list(x) is equivalent
to ls(x, nil).) A similar step in the third iterate shows that our infinite regress has
stopped (up to the names of non-program variables X ′′, X ′′′, etc.).

before abstraction after abstraction

x=X ∧X 7→X ′ ∗X ′ 7→X ′′ x=X ∧ ls(X,X ′′)
x=X ∧ ls(X,X ′′) ∗X ′′ 7→X ′′′ x=X ∧ ls(X,X ′′′)

Quite apart from the technicalities concerning the additional variables X ′, X ′′ and
so on, and the details of symbolic execution, it should be clear how abstraction can
be used on candidate preconditions in this way.

Next, when we exit the loop we add the negation of the loop condition to the
candidate precondition, as well as to the state being used in forwards symbolic
execution. At that point it happens that x=X ′′ just before the loop condition
on line 2, so the exit condition X ′′=0 and a bit of logic gives us precondition
x=X ∧ ls(X, 0).

The key steps in this narrative involved abstraction, from two cells to a list
segment or from a cell and a segment into one segment. Steps of this variety
are commonly used in shape analyses in the calculation of loop invariants during
forwards analysis, where they are deductively sound. In contrast, here our use of
abstraction is tantamount to weakening a precondition, and so for the purpose of
guessing preconditions is a potentially unsound step.5 For this reason we will use
a standard forwards analysis to check our work after the fact.

The important point, though, is that in shape analyses for data structures it can
often be the case that a reasonably general and sound assertion can be obtained from
a specific concrete heap using an abstraction function. An informal explanation of
why this sort of abstraction is not a completely unreasonable tactic is that it is
unusual for a program to work safely on uninterrupted lists of length two or three,
but not four or five. This explanation will be probed in experimental work in
Section 5.

The description in this section has been oriented to showing the basic idea of
how abductive and bi-abductive inference, and abstraction, can help generate pre-
conditions for procedures. Extending the ideas to a whole programming language
will involve some further heuristic choices, where we use abduction to guide guesses
as to what good preconditions might be. The remainder of the paper is devoted
to filling out this basic idea, by working out theoretical and practical aspects of
the inference questions, how they can be used within a synthesis algorithm that
deals with standard programming constructs such as conditionals and loops, and
by describing our experience with a tool implementing the ideas.

5We think of what is happening here as an analogue of (scientific) induction: We have an hypoth-
esis that the program works (does not commit a memory fault) for linked lists of length two as

input, and we hazard a guess that it works for lists of arbitrary size.
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3. ABDUCTION AND BI-ABDUCTION FOR SEPARATED HEAP ABSTRACTIONS

In this section we develop our theories of abduction and bi-abduction. After defining
symbolic heaps, which are certain separation logic formulae, we describe a particular
abductive procedure. The procedure is heuristic, in that it selects one out of a
multitude of possible solutions. While limited by necessity, the heuristics are chosen
based on programming examples, and by the requirement to apply the ideas to large
code bases.

We then move on to investigate a concept of quality of solutions, and also explore
the possibility of systematic (if expensive) algorithms in certain situations. Finally,
we describe how to solve the bi-abductive inference question by pairing abduction
with frame inference.

The reader most interested in applications to program analysis could read Sec-
tions 3.1 and 3.2 and then jump forward to the program analysis-oriented proof
rules for programs in Section 3.5. Sections 3.3 and 3.4 contain more theoretical
material on abduction itself, about the notion of quality of solutions, and should be
relevant to readers interested in foundational questions surrounding the abduction
notion.

3.1 Symbolic Heaps

3.1.1 Syntax. In this section we define the special separation logic formulae
that our abduction algorithm will work with. Symbolic heaps [Berdine et al. 2005b;
Distefano et al. 2006] are formulae of the form

∃ ~X.(P1 ∧ · · ·Pn) ∧ (S1 ∗ · · · ∗ Sm)

where the Pi and Sj are primitive pure and spatial predicates, and ~X is a vector
of logical variables (variables not used in programs). The special form of sym-
bolic heaps does not allow, for instance, nesting of ∗ and ∧, or boolean negation
¬ around ∗, or the separating implication −∗. This special form was chosen, orig-
inally, to match the idiomatic usage of separation logic in a number of by-hand
proofs that had been done. Technically, it makes the problem of abduction and
bi-abduction easier than it might otherwise be. For the purposes of this work, the
restriction determines the collection of ‘abducible facts’ that abduction must aim
for: additively and separately conjoined collections of atomic predicates.

More formally, we assume two disjoint sets of variables: a finite set of program
variables Var (ranged over by x, y, z, . . .) and a countable set of logical variables
LVar (ranged over by X,Y, Z, . . .). We assume a collection of constants (e.g., 0, 1, ...)
ranged over by κ. The grammar for symbolic heaps H is as follows.

E ::= x | X | κ Expressions
P ::= . . . Basic pure predicates
Π ::= P | true | Π ∧Π Pure formulae
S ::= . . . Basic spatial predicates
Σ ::= S | true | emp | Σ ∗Σ Spatial formulae
∆ ::= Π ∧ Σ Quantifier-free symb. heaps

H ::= ∃ ~X.∆ Symbolic heaps

The grammar for symbolic heaps has undetermined collections of basic pure and
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spatial predicates. Pure formulae are heap-independent, and describe properties
of variables only, where the spatial formulae specify properties of the heap. One
instantiation of these predicates is as follows

Simple Lists Instantiation

P ::= E=E | E 6=E
S ::= E 7→E | ls(E,E)

Expressions E include program variables x, logical variables a, or constants κ (e.g.,
nil). Here, the points-to predicate x 7→y denotes a heap with a single allocated cell
at address x with content y, and ls(x, y) denotes a list segment from x to y (not
included).

A more involved instantiation keeps P the same and replaces simple linked-lists
by higher-order lists that are possibly empty or known to be non-empty [Berdine
et al. 2007; Yang et al. 2008].

Higher-order Lists Instantiation

k ::= PE | NE S ::= (e 7→~f:~e) | hls k φ e e

Here, the points-to predicate (e 7→~f:~e) is for records with fields ~f, and φ is a binary
predicate that describes each node in a list. The definition of the nonempty list
segment is

hls NEφx y ⇐⇒ φ(x, y) ∨ (∃y′. φ(x, y′) ∗ hls NEφ y′ y)

and the φ predicate gives us a way to describe composite structures. The formula
for possibly empty lists just replaces the left φ(e, f) disjunct by emp.

For examples of the higher-order predicates, let φf(x, y) be the predicate x 7→f: y.
Then using φf as φ, the formula hls NEφxx describes lists linked by the f field.
The formula

(x7→ next: y′, tail: z′) ∗ hls PEφnext y
′ x ∗ hls PEφtail z

′ x

describes two circular linked lists sharing a common header, where one list uses next
for linking and the other uses tail. Finally, if φ itself describes lists, such as when
φ(x, y) is ∃x′. (x 7→ down:x′, next: y) ∗ hls PEφdown x

′ 0, then hls NEφx y describes a
nonempty linked list where each node points to a possibly empty sublist, and where
the sublists are disjoint. Combinations of these kinds of structures, nested lists
and multiple lists with a common header node, are common in systems programs
[Berdine et al. 2007].

The experiments in this paper are done using a generalization of this second,
more complex, instantiation, a generalization that accounts for doubly- as well
as singly-linked higher-order lists. For simplicity, we describe our algorithms and
results mainly using the Simple Lists Instantiation, although they work equally
well for many more sophisticated instantiations after slight or no modifications.
Many other instantiations are possible, including predicates for various forms of
tree [Chang et al. 2007].

The predicate emp holds in the empty heap where nothing is allocated. The
formula Σ1 ∗ Σ2 uses the separating conjunction of separation logic and holds in a
heap h which can be split into two disjoint parts h1 and h2 such that Σ1 holds in
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h1 and Σ2 in h2. Symbolic heaps H have the form ∃ ~X.Π ∧ Σ, where only some
(not necessarily all) logical variables in Π ∧ Σ are existentially quantified. The set
of all symbolic heaps is denoted by SH.

Logical variables are typically used to express limited forms of input-output re-
lationships in procedure summaries. Typically, they are bound to initial values of
input parameters or addresses of shared heap cells in a precondition. A postcondi-
tion, then, uses those variables to relate final states with values from initial states.
For example, the pre/post spec {x 7→X ∗ y 7→Y } − −{x 7→Y ∗ y 7→X} would be true
of a procedure that exchanged the values of two pointers.

We overload the ∗ operator, so that it also works for ∆ and H. For i = 1, 2, let
∆i = Πi ∧Σi and Hi = ∃ ~Xi.∆i where all bound variables are distinct and they are
different from free variables. We define ∆1 ∗∆2 and H1 ∗H2 as follows:

∆1 ∗∆2
def
= (Π1 ∧Π2) ∧ (Σ1 ∗ Σ2), H1 ∗H2

def
= ∃ ~X1

~X2. ∆1 ∗∆2.

We overload − ∗ Σ and Π ∧ − similarly:

∆i ∗ Σ
def
= Πi ∧ (Σ ∗ Σi), Hi ∗ Σ

def
= ∃ ~Xi.∆i ∗ Σ,

Π ∧∆i
def
= (Π ∧Πi) ∧ Σi, Π ∧Hi

def
= ∃ ~Xi.Π ∧∆i.

A convention. Sometimes, when writing symbolic heaps, we elide either the pure
part or the spatial part when it is true; that is, we regard true ∧ Σ as the same
as Σ and Π as equivalent to Π ∧ true. For example, in the next section we write
an entailment x 7→x′ ∗ y 7→y′ |= x 6= y, which would more literally be rendered
true ∧ (x 7→x′ ∗ y 7→y′) |= x 6= y ∧ true without this convention.

3.1.2 Semantics. We give a semantics whereby each symbolic heap determines
a set of concrete states, those that satisfy it. Let Loc be a countably infinite set
of locations, and let Val be a set of values that includes Loc. We use the following
storage model:

Heap
def
= Loc ⇀fin Val

Stack
def
= (Var ∪ LVar)→ Val

States
def
= Stack× Heap

Heaps are finite partial functions mapping locations to values, and stacks are func-
tions from both program and logical variables to values. States are pairs of stacks
and heaps. Variations on this model are possible by adjusting the set Val: for
instance, it could include records (tuples) that themselves could contain locations.

The semantics is given by a forcing relation s, h |= A where s ∈ Stack, h ∈ Heap,
and A is a pure assertion, spatial assertion, or symbolic heap. The partial binary
operator h0 ] h1 on symbolic heaps is defined only if the domains of h0 and h1 are
disjoint, and in that case the resulting partial function is their graph union. When
we write h = h0 ] h1 this implies that h0 ] h1 is defined. We assume a semantics

[[E]]s ∈ Val of pure expressions is given, where [[x]]s
def
= s(x). Here are the generic

semantic clauses, followed by those for the basic predicates in the instantiation of
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symbolic heaps that we focus on in this paper.

Generic Semantics

s, h |= true always
s, h |= Π0 ∧Π1 iff s, h |= Π0 and s, h |= Π1

s, h |= emp iff h = ∅
s, h |= Σ0 ∗ Σ1 iff ∃h0h1. h = h0 ] h1 and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= Π ∧ Σ iff s, h |= Π and s, h |= Σ

s, h |= ∃ ~X.∆ iff there is ~v where (s| ~X := ~v), h |= ∆

Basic Predicates

s, h |= E 7→E′ iff h = [[[E]]s7→[[E′]]s]
s, h |= E = E′ iff [[E]]s = [[E′]]s
s, h |= E 6= E′ iff [[E]]s 6= [[E′]]s

The list segment predicate is the least satisfying

ls(E,E′) ⇐⇒ emp ∨ ∃y.E 7→y ∗ ls(y,E′) .

Although ∨ is not officially in our fragment of symbolic heaps, the meaning should
be clear. Note that this list segment predicate allows for cycles, so that ls(x, x) can
describe either an empty heap, or a nonempty cyclic heap.

As bi-abduction is related to entailment, we set down the semantic notion of
entailment, which will be used to judge the soundness of our inference techniques.

Definition 3.1 Semantic Entailment between Symbolic Heaps. Given symbolic heaps
H1 and H2, we define

H1 |= H2 iff ∀s, h. s, h |= H1 ⇒ s, h |= H2.

The reader might find it helpful to convince himself or herself of several example
entailment questions.

Sample True and False Entailments

x 7→x′ ∗ y 7→y′ |= x 6= y ls(x, x′) ∗ ls(y, y′) 6|= x 6= y

x 7→x′ ∗ x 7→y′ |= false ls(x, x′) ∗ ls(y, y′) 6|= false

emp |= ls(x, x) ls(x, x) 6|= emp

x7→x′ ∗ ls(x′, y) |= ls(x, y) ls(x, y) 6|= ∃X.x7→X ∗ true

3.1.3 Abstraction. Generally, for whatever the primitive predicates in the sym-
bolic heaps we expect to have a function

abstract# : SH→ SH.

Typically, such a function is like a syntactic analogue of the abstraction function
in abstract interpretation. An essential property is

H |= abstract#H.

This entailment is needed for the soundness of deductive analysis, and it also con-
veys a sense of generalization. In fact, for any concrete heap h we can define a
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16 · Compositional Shape Analysis by means of Bi-Abduction

canonical symbolic heap Hh that identifies h up to isomorphism, and then the
abstraction function abstract#(Hh) can be seen as generalizing from a particular
concrete heap.

A useful, though not essential, property is that the range of abstract# be finite.
We will not set down an abstraction function here in detail, but we give two

rewriting rules that have been used previously in the definition of particular such
functions.

(ρ, ρ′ range over ls, 7→)

∃ ~X.∆ ∗ ρ(x, Y ) ∗ ρ′(Y,Z) −→ ∃ ~X.∆ ∗ ls(x, Z) where Y not free in ∆

∃ ~X.∆ ∗ ρ(Y,Z) −→ ∃ ~X.∆ ∗ true where Y not provably reachable
from program vars

The first rule says to forget about the length of uninterrupted list segments, where
there are no outside pointers (from ∆) into the internal point. Our abstraction
‘gobbles up’ logical variables appearing in internal points of lists, by swallowing
them into list segments, as long as these internal points are unshared. This is true
of either free or bound logical variables. The requirement that they not be shared
is an accuracy rather than soundness consideration; we stop the rules from firing
too often, so as not to lose too much information [Distefano et al. 2006].

The second rule says to forget about the specifics of unreachable cells, and there
it is significant that we use true rather than emp in right-hand side of the rule: true
showing up in a symbolic heap is an indicator of a potential memory leak.

As an example of the first rule, if we have a concrete heap of size 4 corresponding
to the following formula

x 7→X1 ∗ y 7→X1 ∗X1 7→X2 ∗X2 7→0

then this is abstracted to

x 7→X1 ∗ y 7→X1 ∗ ls(X1, 0).

This step has generalized from a single (up to isomorphism) concrete heap to an
infinite class of concrete heaps.

3.2 An Heuristic Algorithm for Abduction

We define a proof system for solving the abduction question for symbolic heaps,
and explain how it gives rise to an algorithm. The basic idea is to distinguish a
position in a sequent that holds abduced facts, and to fill in this position using
decisions about matching predicates and instantiations of logical variables. This
basic idea is illustrated in this section using a simple proof system for abduction
that has been designed for use in a program proof tool that runs on large code
bases. The procedure is purposely incomplete, avoiding consideration of expensive
cases which seem not to come up so often in practice: this leads to a very fast
algorithm, as well as a one that is relatively simple to describe.

3.2.1 Proof System for Abductive Inference. The proof system involves judge-
ments of the form

H1 ∗ [M ] . H2 (1)
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H1 ∗ [M ] . H2

(∃X.H1) ∗ [M ] . H2
exists

(where X /∈ FreeLVar(M,H2))

(Π∧Σ) ∗ [M ] . H Π∧Σ ` ∃ ~X.Π′ Π∧Π′ ∧ emp ` Σ′

(Π ∧ Σ) ∗ [M ] . H ∗ (∃ ~X. Π′ ∧ Σ′)
remove

(E0=E1 ∧∆) ∗ [M ] . ∃~Y .∆′

∆ ∗ E 7→E0 ∗ [∃ ~X.E0=E1 ∧M ] . ∃ ~X~Y .∆′ ∗ E 7→E1

7→-match

(where ~Y ∩ FreeLVar(E1) = ∅)

∆ ∗ [M ] . ∃ ~X.∆′ ∗ ls(E0, E1)

∆ ∗B(E,E0) ∗ [M ] . ∃ ~X.∆′ ∗ ls(E,E1)
ls-right

(where B(E,E0) is E 7→E0 or ls(E,E0))

(E 6=E0 ∧∆ ∗ ls(X,E0)) ∗ [M ] . ∃~Y .∆′

∆ ∗ ls(E,E0) ∗ [E 6=E0 ∧M ] . ∃X~Y .∆′ ∗ E 7→X
ls-left

(Π ∧ emp) ∗ [∃ ~X. Π′ ∧ emp] . ∃ ~X. Π′ ∧ emp
base-emp

∆ ∗ [∃ ~X.Π ∧ emp] . ∃ ~X. Π ∧ true
base-true

∆ ∗ [M ] . ∆′ ∆ ∗ ∃ ~X.B(E,E′) 6` false

∆ ∗ [M ∗ ∃ ~X.B(E,E′)] . ∆′ ∗ ∃ ~X.B(E,E′)
missing

(where B(E,E′) is E 7→E′ or ls(E,E′))

Fig. 1. Proof Rules for Abductive Inference

where M and H1 and H2 are symbolic heaps. The M component in this judgement
form is the abduced or ‘missing’ fact, and the proof rules will be organized in such
a way that proof search gives us a way to find M . Note that this is explicitly a
three-place judgement (·) ∗ [·] . (·). The use of the ∗[·] notation is to evoke the
intended soundness requirement, that H1 ∗M |= H2 should be a valid entailment.

The proof rules are presented in Figure 1. They are for the Simple List instan-
tiation of symbolic heaps using E 7→E and a single inductive predicate ls(E,E). In
Section 3.2.3 below we will generalize the treatment to cover a range of inductive
definitions. In Figure 1, and elsewhere in this section, we assume that all the bound
logical variables are different from one another and also from free logical variables.

The rule remove in Figure 1 includes two plain entailment questions (not ab-
duction questions) H0 ` H1 between symbolic heaps. What we require is a sound
theorem prover for such entailments, where when the theorem prover says yes to
H0 ` H1 it follows that H0 |= H1 holds. In this section we do not describe such a
theorem prover for plain entailment, viewing it as a parameter to our proof system.
Theorem proving techniques for symbolic heaps have been described in [Berdine
et al. 2005b; Nguyen and Chin 2008], and implemented in a number of tools includ-
ing Smallfoot, SpaceInvader, Hip/Sleek, Verifast, SLAyer and jStar.

We illustrate the proof rules with a few examples. The first one involves instan-
tiation of a logical variable which, during program analysis, is essential for using
procedure summaries (specs) that themselves contain logical variables.
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Example 3.2. Consider the inference question

x 7→y ∗ [??] . x7→X ∗ ls(X, 0) ∗ true.

In this case, the abduction should infer that y is an instantiation of the logical
variable X, in addition to the fact that the ls(X, 0) predicate is missing in the
assumption. The inference algorithm finds such an instantiation using the 7→-match
rule:

(y=X ∧ emp) ∗ [emp] . true
base-true

(y=X ∧ emp) ∗ [ls(X, 0)] . ls(X, 0) ∗ true
missing

x 7→y ∗ [y=X ∧ ls(X, 0)] . x7→X ∗ ls(X, 0) ∗ true
7→-match

The last step of the derivation uses 7→-match to find an instantiation of X of the
form y=X, and adds it to the assumption, before proceeding with the application
of rule missing. The other two steps simply move the remaining ls(X, 0) predicate
from the conclusion to the anti-frame part.

In relating this derivation to the literal proof rules, note that in the example
we have used our convention, stated at the end of Section 3.1.1, to elide the pure
part of a symbolic heap when it is true. Also, in the application of the missing
we have elided the plain entailment statements (which are properly considered side
conditions rather than premises): they are trivial in this case as both Π′ and Σ′ are
instantiated to true in this application of the rule. 2

This example illustrates how our proof method goes beyond previous work on the-
orem proving with separation logic. It would be possible to obtain a sound theorem
prover for abduction by a simple modification of an existing theorem prover [Berdine
et al. 2005b]: An abduction question H1 ∗ ?? ` H2 would be solved by attempt-
ing to prove the entailment H1 ` H2 and, when this proof attempt fails with one
undischarged assumption emp ` M , one could conclude that the missing heap is
M . However, such a prover would not be powerful enough to find the instantiation
of logical variables we have shown before. For instance, in Example 3.2 it would
fail to find y=X, and instead infer x7→X ∗ ls(X, 0) as a missing anti-frame. As
a consequence, it would generate the symbolic heap x 7→y ∗ x7→X ∗ ls(X, 0) as a
candidate antecedent, even though it is an inconsistent formula; certainly, this is
not a desirable solution.

Example 3.3. Next, we consider a slightly modified version of the motivating
example from Section 2:

x 7→z ∗ [??] . ls(x, z) ∗ ls(y, 0) ∗ true

The following derivation finds a solution to this abduction question:

emp ∗ [emp] . true
base-true

emp ∗ [ls(y, 0)] . ls(y, 0) ∗ true
missing

emp ∗ [ls(y, 0)] . ls(z, z) ∗ ls(y, 0) ∗ true
remove

x 7→z ∗ [ls(y, 0)] . ls(x, z) ∗ ls(y, 0) ∗ true
ls-right

The last step subtracts x 7→z from ls(x, z), and the second last step removes the
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result ls(z, z) of this subtraction, because emp ` ls(z, z). The remaining steps move
the predicate ls(y, 0) from the conclusion to the anti-frame. 2

In the derivation in Example 3.3, the application of the remove rule is crucial
to obtain a better solution. Without using the rule, we could apply missing twice,
once for ls(z, z) and then for ls(y, 0), and this would give us

x 7→z ∗ [ls(z, z) ∗ ls(y, 0)] . ls(x, z) ∗ ls(y, 0) ∗ true.

Note that the inferred anti-frame is not as good as ls(y, 0), because it has a bigger
symbolic heap than ls(y, 0).

Example 3.4. Consider the abduction question:

x 7→3 ∗ [??] ` y 7→3 ∗ true

Our proof system finds as a solution y 7→3. However, another solution is (y=x ∧
emp), and (if we had disjunction) another would be y 7→3 ∨ (y=x ∧ emp). 2

Example 3.4 shows an important heuristic choice in the proof system: it does not
explore all aliasing possibilities for solutions to the abduction problem. This choice
is motivated by the fact that we use this proof system in an analyzer that discovers
preconditions as well as the following three concerns. The first is that, to apply
our algorithm to large code bases, we want to avoid creating large disjunctions
that do case analysis on whether two pointers are equal or not (it would involve
comparing the left sides of 7→ or linked list assertions, pairwise). Keeping control of
disjunctions is essential for performance [Yang et al. 2008]. Second, as we discuss in
the following sections, it is nontrivial to see how to compute the best solution at all
(once we lay dow the notion of ‘best’), let alone efficiently. And third, it seems that
in either by-hand or automatic program proofs this aliasing case is rarely needed.
In particular, it will turn out that if a program checks for the aliasing (such as in
traversal of cyclic list), two possibilities (aliased or not) are considered anyway by
our program analysis algorithm: the conditional which checks for aliasing triggers
a case analysis. However, if the program does not check aliasing, the prover doesn’t
either. We will return to this point in Section 5.1.

3.2.2 Reading the Proof System as an Algorithm. The proof system for abduc-
tive inference, when read in the usual premises-to-conclusion way, lets us easily see
that the inferences we are making are sound. When read in the opposite direction,
it can also be thought of as a specification of an algorithm for finding missing hy-
potheses M . The algorithm is obtained by reading the rules bottom-up, and by
viewing the M parts as unknowns. There is also a pragmatically-motivated order to
the application of the rules, which we describe. This reading of the proof rules leads
immediately to a recursive program, which forms the basis of our implementation.

The key point is that our proof rules have a special form

H ′1 ∗ [M ′] . H ′2 Cond

H1 ∗ [M ] . H2

Here Cond is a condition involving parts of H1 and H2. The algorithmic reading of
this rule is the following. In order to answer the entailment question H1 ∗ ?? ` H2,
the side condition Cond is first checked, and if it holds, we make a recursive call to
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Algorithm 1 Finding Abduced Facts by Proof Search

Input: Symbolic heaps H1 and H2.
Output: M where H1 ∗ [M ] . H2 is derivable, or exception fail.

Abduce1(H1, H2)
def
=

If either axiom base-emp or base-true applies,
return the M indicated by the axiom

ElseIf one of the remaining rules from Figure 1 applies,
select the lowest ranking rule currentrule

(in order vertically from top of page),
let M ′ = Abduce1(H ′1, H

′
2), for H ′1, H

′
2 as in currentrule,

compute M from M ′ according to currentrule, return M .
Else return fail.

answer the smaller question H ′1 ∗?? ` H ′2. The solution M ′ of this simpler question
is then used to compute the solution M of the original question. For instance,
the rule 7→-match fires when both the left-hand side and right-hand side have a
points-to-fact involving E:

∆ ∗ E 7→E0 ∗ ?? ` ∃ ~X~Y .∆′ ∗ E 7→E1

The inference engine then cancels out those facts, and continues the search for the
solution with the reduced right-hand side ∃~Y .∆′ and the reduced left-hand side ∆
after adding the equality E0=E1 concerning the contents of cell E. Later, when
this new simplified search gives a result M , we conjoin the assumed equality to
the computed missing anti-frame M and existentially quantify logical variables ~X,
which gives the result of the original search.

Our abduction algorithm tries to apply the rules in Figure 1 in the order in which
they appear in the figure; see Algorithm 1. This algorithm has cubic worst-case
running-time (and better typical case), if we count the calls to the underlying theo-
rem prover ` as having linear complexity. After checking whether an axiom applies,
the algorithm attempts to use remove and eliminates a part of the symbolic heap
on the right-hand side of . that holds for the empty heap. Once this phase is com-
plete, the inference goes through each predicate on the right-hand side and tries
to simplify the predicate using 7→-match, ls-right and ls-left. When this simplifica-
tion process gets stuck, the algorithm applies missing, base-emp and base-true, and
moves the remaining predicates from the right-hand side to the missing anti-frame
part.

By arranging the order of rule applications in this way, our inference tries to
minimize the size of the spatial part of the inferred missing anti-frame M . This
is thought of as desirable according to the definition of the ordering on solutions
- given in Section 3.3. By trying the remove rule before missing, the inference
prefers choosing the empty heap to moving a predicate from the conclusion to the
anti-frame part. For instance, given emp ∗ [??] ` ls(x, x), the remove rule infers emp
as the missing anti-frame whereas the missing rule returns ls(x, x). The inference
algorithm returns emp between the two, because it tries remove before missing. Also,
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the application of the simplification rules (i.e., 7→-match, ls-right and ls-left) before
the missing rule ensures that the common parts between the assumption and the
conclusion are cancelled out as much as possible, before trying to move predicates
from the conclusion to the anti-frame part.

Example 3.5. Algorithm 1 finds the anti-frames discussed in examples so far.
An example of where it fails is abduce(x = 0, x 7→ −). This returns fail, as no rule
applies; in particular, the second premise of ”missing” does not hold.

An example of where inconsistency arises is abduce(x 7→ 2, x 7→ 3). Here, the
algorithm finds 2 = 3 as the anti-frame. Of course, that is alright since for every
A such that x 7→ 2 ∗A |= x 7→ 3 we must have that x 7→ 2 ∗A is inconsistent. 2

Example 3.6. The abduction algorithm in incomplete in the sense that it some-
times fails to find any solution at all when one exists. Consider the question:

x 7→3 ∗ [??] ` y 7→3

There is a solution – (y=x ∧ emp) – but our algorithm does not find it (and our
proof system cannot prove it). The instance abduce(x 7→ 3, y 7→ 3) of our algorithm
returns fail because no rule applies.

This is similar to example 3.4, except that we do not have ∗true in the conse-
quent. In that case, the algorithm does find a solution. As we will see later, it is
abduction questions with ∗true in the consequent that we use in our applications to
program analysis in this paper. But, there are more complicated examples where the
algorithm fails with ∗true in the consequent as well.6 2

3.2.3 A Framework of Abductive Inference for Inductive Predicates. For con-
creteness, in the description of the abductive inference system, we used a specific
inductive predicate for list segments. We now describe a generalization that deals
with different classes of inductive definitions, such as those for doubly-liked lists,
nested lists, trees and skip lists [Reynolds ; Berdine et al. 2007; Chang et al. 2007]
which have been used for different abstract domains. For our generalization we
keep all the components of the abduction inference in the previous section, except
for the four proof rules in Figure 1: 7→-match, ls-left, ls-right and missing.

Suppose that we have an abstract domain whose basic spatial predicates are
ranged over by B(E, ~E). Recall that the abstract domain used throughout the
paper corresponds to a specific instantiation:

B(E,E′) ::= E 7→E′ | ls(E,E′).

The missing rule is generalized in the following way:

∆ ∗ [M ] . ∆′ ∆ ∗ ∃ ~X.B(E, ~E) 6` false

∆ ∗ [M ∗ ∃ ~X.B(E, ~E)] . ∆′ ∗ ∃ ~X.B(E, ~E)
missing-gen

Note that this rule is almost the same as missing, except for the changes required
to reflect the different sets of basic predicates.

6Nikos Gorogiannis, personal commmunication: such examples will be described and analyzed in

forthcoming work of Gorogiannis, Kanovich and O’Hearn.
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To generalize the other rules, we need to make an assumption about the ab-
stract domain: we assume that we are given a set of axioms involving basic special
predicates, all of which have the form

(∃~y. Π(x, ~y, ~z) ∧B(x, ~y) ∗ Σ(~y, ~z)) ` B′(x, ~z), or
Π(x, ~z) ∧B(x, ~z) ` (∃~y. B′(x, ~y) ∗ Σ(~y, ~z)).

For example, the abstract domain of this paper has the axioms below:

(∃y. y = z ∧ x 7→y ∗ emp) ` (x 7→z),
(∃y. ls(x, y) ∗ ls(y, z)) ` ls(x, z),
x 6= z ∧ ls(x, z) ` ∃y.(x 7→y) ∗ ls(y, z).

(2)

Each of these axioms generates proof rules that replace 7→-match, ls-left and
ls-right. For each axiom of the first form

(∃~y. Π(x, ~y, ~z) ∧B(x, ~y) ∗ Σ(~y, ~z)) ` B′(x, ~z),

we define the following rule for abduction:

(Π(E, ~E, ~E′)∧∆) ∗ [M ] . ∃~Y .∆′ ∗ Σ( ~E, ~E′)

∆ ∗B(E, ~E) ∗ [∃ ~X.Π(E, ~E, ~E′)∧M ] . ∃ ~X~Y .∆′ ∗B′(E, ~E′)
For each axiom of the second form

Π(x, ~z) ∧B(x, ~z) ` (∃~y. B′(x, ~y) ∗ Σ(~y, ~z)),

we include the following proof rule for abduction:

(Π(E, ~E′) ∧∆ ∗ Σ( ~X, ~E′)) ∗ [M ] . ∃~Y .∆′

(∆ ∗B(E, ~E′)) ∗ [Π(E, ~E′) ∧M ] . ∃ ~X~Y . ∆′ ∗B′(E, ~X)

The rules 7→-match, ls-left and ls-right presented earlier can be generated by follow-
ing this recipe using the three axioms in (2).

Theorem 3.7. Suppose that the assumed entailment checking is sound, so that
H0 ` H1 implies H0 |= H1. Then the proof system in Figure 1 is sound: if ∆ ∗
[M ] . H is derivable, then ∆ ∗M |= H.

The theorem holds simply because all of the proof rules preserve validity, if validity
of ∆ ∗ [M ] . H is interpreted as the truth of the entailment ∆ ∗M |= H

3.3 On the Quality of Solutions

This subsection and the next contain some more detailed theoretical work on abduc-
tion for separation logic. They can be skipped, if desired, without loss of continuity.

As a general point, it is well known that solutions to abduction questions are not
unique. Often, one looks for solutions that are minimal in some sense. In some
cases there actually is a theoretically best answer, and it becomes a question of
how difficult it is to compute the best answer. Failing that, having an ordering of
‘betterness’ on solutions can prove helpful as a guide in the design of even incomplete
algorithms. This section investigates these issues. We propose an ordering on
solutions, show that a best solution always exists, and give an explicit description
of it (though in infinitary terms that moves beyond symbolic heaps). In the next
section we will do some work on calculating the best solution.
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We should remark at once that the discussion surrounding Example 3.4 already
establishes that the heuristic algorithm given earlier does not always compute the
best solution according to the definition given in this section.

The work in this section will be conducted at a more abstract level than the
previous section. We will work with predicates more general than those described
by symbolic heaps, essentially taking a predicate to be synonymous with a set of
stack-heap pairs. That is, predicates are elements of the powerset P(States), where
States = Stack×Heap. We use F,G to range over such predicates, blurring syntax
and semantics, and use the ∗ and ∧ notation from earlier along with the boolean
algebra structure and residuated monoid structure of P(States). In particular, the
negation and disjunction operators and the separating implication −∗:

s, h |= ¬F iff s, h 6|= F
s, h |= F ∨G iff s, h |= F or s, h |= G
s, h |= F —∗ G iff ∀h′, h ] h′ ↓ and s, h′ |= F implies s, h ] h′ |= G.

To follow this section the reader should be comfortable with the semantic view
of predicates as (essentially) elements of a certain lattice, in this case a boolean
lattice with an additional commutative residuated monoid structure (cf, a Boolean
BI algebra [Pym et al. 2004]).

3.3.1 The Spatial Betterness Ordering. We are interested in solutions M to the
question

F ∗M |= G. (3)

There are many possible solutions, a trivial one of which is the assertion false.
We propose a criterion for judging the quality of solutions to (3). The order

M -M ′, meaning that M is a better solution than M ′, is defined as follows7

M -M ′
def⇐⇒ (M ≤M ′ ∧ M ′ 6≤M) ∨

(M ≤M ′ ∧ M ′ ≤M ∧ M |=M ′)

where ≤ is the following preorder

M ≤M ′ def⇐⇒ M ′ |=M ∗ true.

This definition says that a solution M to an abduction question is better than
another solution M ′ when M is spatially ‘smaller’ (M ≤ M ′) or, if not spatially
smaller it is logically stronger.

Example 3.8. Consider the symbolic heaps

M , ls(y, 0)

M ′ , ls(y, 0) ∗ z 7→0

M ′′ , ls(y,−)

We have that M ′ |= M ∗ true therefore M ≤ M ′. Moreover M 2 M ′ ∗ true,
so M ′ � M : we have that M is strictly spatially smaller than M ′, as we expect
intuitively since M ′ has an extra ∗-conjunct. Therefore M - M ′. On the other
hand, M ′′ ≤M and M �M ′′, and so M ′ -M .

7The definition in [Calcagno et al. 2009] had M ′ |=M in the second disjunct by mistake.
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For an example exercising the second disjunct in the definition of -, consider
M = emp and M ′ = (emp ∨ x 7→0). We have that

emp |= (emp ∨ x7→0) ∗ true and (emp ∨ x 7→0) |= emp ∗ true

moreover, since emp |= (emp ∨ x 7→0), we conclude that emp - (emp ∨ x 7→0).

Ideally, we would like to find the best solution, that is, the minimal solution w.r.t.
-. As a semantic question, the best solution always exists theoretically, and can
be defined using the following notion.

Definition 3.9 Function min. The set of minimal states satisfying F is defined
as follows

min(F ) = { (s, h) |= F | for all subheaps h′ of h, if (s, h′) |= F , then h′ = h }.

The set min(F ) consists of the minimal elements of F only. In other words, a state
L is filtered out if a strictly smaller state is also described by F . The function min(·)
is obviously idempotent, as the minimal elements of F remain minimal in min(F ).
min(·) also interacts nicely with the ≤ relation.

Lemma 3.10 Properties of ≤. The following hold for any M ,M ′:

(1 ) ≤ is a preorder.

(2 ) M ≤ min(M) and min(M) ≤M .

(3 ) (M ≤M ′ and M ′ ≤M) iff min(M) = min(M ′).

Proof. Immediate from the definitions of ≤ and min.

Lemma 3.11 Properties of -. The following hold for any M ,M ′:

(1 ) - is a partial order.

(2 ) M ′ ≤M implies min(M ′) -M ; in particular min(M) -M.

Proof. The fact that - is a preorder follows from the definition of - and the
fact that ≤ (Lemma 3.10) and |= are preorders. Antisymmetry follows from anti-
symmetry of |=.

We now prove that M ′ ≤M implies min(M ′) -M . Assume M ′ ≤M . Then by
Lemma 3.10 we have min(M ′) ≤ M . If M 6≤ min(M ′), then min(M ′) - M follows
immediately by definition of -. If instead M ≤ min(M ′), then Lemma 3.10 gives
min(M) = min(min(M ′)), so min(M) = min(M ′) since min is idempotent. Since
min(M) |= M , we have in particular min(M ′) |= M , therefore the second disjunct
in the definition of - applies, and we can conclude min(M ′) -M .

Lemma 3.12 Minimal Solution w.r.t. ≤. A minimal solution to the abduc-
tion question (3) w.r.t. ≤ is given by F —∗ G.

Proof. Immediate from the definitions, and the fact that —∗ is the right adjunct
of ∗: F ∗M |= G iff M |= F —∗ G.

Since ≤ is a preorder but not a partial order, the minimal solution w.r.t. ≤ need
not be unique. In fact, min(F —∗ G) is another minimal solution w.r.t. ≤.

Theorem 3.13 Unique Minimal Solution w.r.t. -. The minimal solution
to (3) w.r.t. - always exists, and is given by min(F —∗ G).
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Proof. First, we show that min(F —∗ G) is a solution to (3). Since F ∗ (F —∗
G) |= G and min(F —∗ G) |= (F —∗ G) both hold, it immediately follows that
F ∗min(F —∗ G) |= G, as required.

Second, we show that min(F —∗ G) is minimal w.r.t. -. Consider an arbitrary
set of heaps M such that F ∗M |= G. It follows that M |= (F —∗ G) ∗ true, hence
(F —∗ G) ≤M and Lemma 3.11 gives min(F —∗ G) -M , as required.

3.3.2 Characterizing the Minimal Solution. Note that the function min can be
described using separation logic connectives, as

min(F ) = F ∧ ¬(F ∗ ¬emp).

Consequently, from Theorem 3.13 we obtain that the minimal solution to (3) w.r.t.
- can be expressed in separation logic as

(F−∗G) ∧ ¬((F−∗G) ∗ ¬emp). (4)

One might therefore ask why we do not take (4) as the answer to abduction, and
leave it that. The answer is that (4), while perhaps theoretically interesting, begs
the question posed, not giving us any information about the nature of the ‘missing
memory’.

The formula (4) also poses an, on the surface of it, difficult theorem proving
question, which program analysis tools are not (yet) up to. One of the questions,
for example, that an analysis tool must be able to answer easily is whether a formula
is inconsistent: throwing away inconsistent symbolic heaps is essential for pruning
the search space. No existing automatic theorem provers for separation logic can
deal with formulae in the form of (4).

A less formal statement of the limitations of (4) can be given in terms of program
understanding. The special form of symbolic heaps given earlier is used by Abduc-
torto draw ‘pictures of memory’. Such a picture is a ‘partial graph’, or a graph
with dangling links, in which 7→ or ls facts are the edges. These are used to show the
user preconditions and postconditions of procedures that describe perhaps infinite
classes of heaps, but that connect to the intuition of a heap as a graph; see Section
5 for examples. The formula (4) does not furnish enough information to draw these
sorts of pictures, without further simplification or analysis of the formula.

Because of these points, we would like to have more direct solutions to abduc-
tion, when possible, without invoking advanced machinery such as −∗ and ¬ nested
around ∗. Section 3.2.1 gave one way to obtain such solutions, but the solutions
obtained were not best according to -, as Example 3.4 shows.

3.4 A Systematic Algorithm for a Restricted Fragment

Where earlier we described a fast but incomplete heuristic algorithm, now we in-
vestigate the possibility of an algorithm for abduction which computes the best
solution. This is in fact a nontrivial problem, in that abduction is more challeng-
ing than pure entailment, and entailment in the presence of inductive definitions
contains many unknown questions. After much work, decidability results were ob-
tained for symbolic heaps with inductive definitions for just list segments [Berdine
et al. 2004; 2005b], but no decidability results are known for entailment questions
for wider classes of inductive definitions as considered in Section 3.2.3.
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So, to make progress, in this section we restrict our attention to symbolic heaps
with 7→ but not any inductive predicates. This fragment itself could have practical
interest: it could possibly form the foundation for less expressive analysis problems
which do not require full-blown shape analysis (such as typestate-like analyses [De-
Line and Fähndrich 2004; Bierhoff and Aldrich 2005]). Be that as it may, our aim
here is more theoretical, to try to understand some of the issues surrounding the
best solution.

We use a specialization of the generic grammar for symbolic heaps of Section 3.1,
using only one basic spatial predicate

Points-to Instantiation

P ::= E=E | E 6=E
S ::= E 7→E

We will address the abduction question to find D such that

∆ ∗D |= H. (5)

where the quantifier-free symbolic heap ∆ and the symbolic heap H are from the
Points-to Instantiation. D here is a new syntactic category that allows disjunc-
tions of symbolic heaps, which is what will allow us to describe the best solution.

D ::= H1 ∨ . . . ∨Hn Disjunctions of symbolic heaps

The notation ∃X. D will be used as a shorthand for ∃X. H1 ∨ . . . ∨ ∃X. Hn when
D is of the form H1 ∨ . . . ∨Hn.

Computing the best solution directly, even for the limited fragment studied here,
proved to be a nontrivial task. We have broken down the problem into phases, the
first of which uses a notion of compatible solution.

3.4.1 Compatible Solutions

Definition 3.14 Compatible/Incompatible Solutions. We make use of the follow-
ing separation logic idiom:

Elsewhere(F )
def
= ¬(F —∗ false), which says: ‘some separate heap satisfies F ’.

The reading of Elsewhere follows at once from the definition of —∗:
s, h |= F —∗ false iff ∀h′, h ] h′ ↓ and s, h′ |= F implies s, h ] h′ |= false

= ∀h′, ¬(h ] h′ ↓ and s, h′ |= F )
= ¬∃h′, h ] h′ ↓ and s, h′ |= F

We use Elsewhere to express the idea of ‘compatible’ solutions to the abduc-
tion question (5). Let D be a solution to the abduction question (5). Then
¬Elsewhere(∆) describes completely incompatible solutions, those for which there
are no separate heaps satisfying ∆. Conversely, we can consider the compatible
solutions.

—D is called a compatible solution if D |= Elsewhere(∆); that is, D implies that
some separate heap satisfies ∆.

—The compatible preorder ≤c is defined as:

D ≤c D′
def⇐⇒ (D ∧ Elsewhere(∆)) ≤ (D′ ∧ Elsewhere(∆)).
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It is worth reminding that, from the definition of ≤, we then obtain the charac-
terization

D ≤c D′ ⇐⇒ (D′ ∧ Elsewhere(∆)) |= (D ∧ Elsewhere(∆)) ∗ true.

Example 3.15. Consider the abduction question

y 7→3 ∗D |= y 7→3 ∗ x 7→2

Then D1
def
= y 6= x ∧ x 7→2 is a compatible solution. We have that y 6= x ∧ x 7→2 |=

¬(y 7→3 —∗ false) because when y 6= x ∧ x 7→2 holds there is some separate heap

satisfying y 7→3. On the other hand, D2
def
= (x = y ∧ y 7→4) ∨ (y 6= x ∧ x 7→2) is not a

compatible solution, because the disjunct (x = y∧y 7→4) conflicts with y 7→3: it is not
the case that any state satisfying D2 guarantees that some separate heap satisfies
y 7→3. Note as well that, although D2 is not compatible, neither is it completely
incompatible: we do not have D2 |= y 7→3 —∗ false, which is to say that D2 does not
imply that no separate heap satisfies y 7→3. Finally, disjunctions are not the only

source of failure of compatibility. D3
def
= x 7→2 is a solution, but it is not compatible

because there are models where x = y holds, which stops us from concluding that
(in all models) some separate heap satisfies y 7→3.

As far as the compatible preorder is concerned, we have that D1 ≤c D2 and that
D1 and D3 are equivalent modulo ≤c and both are minimal.

Notice that, if we go beyond the language of symbolic heaps, it is always pos-
sible to strengthen a solution D to a compatible solution D ∧ Elsewhere(∆). The
compatible preorder ≤c is a modification of the ≤ order to ignore the incompatible
portions of solutions.

The algorithm for computing the best solution to (5) consists of three phases:

i) derivation of a minimal solution D1 w.r.t. the ≤c preorder using a proof system;

ii) computation of the set of incompatible solutions ¬Elsewhere(∆) expressed as a
disjunction D2;

iii) computation of min(D1 ∨D2) using a minimization algorithm.

Before describing these three steps in detail, we show that they indeed compute a
minimal solution.

Lemma 3.16 Computing a Minimal Solution. Let D be a minimal solution
to (5) w.r.t. ≤c. Then min(D ∨¬Elsewhere(∆)) is a minimal solution to (5) w.r.t.
-.

Proof. We will show that (D ∨ ¬Elsewhere(∆)) is a minimal solution w.r.t. ≤.
Then Lemma 3.11 implies that min(D ∨ ¬Elsewhere(∆)) is the minimal solution
w.r.t. -.

To prove that (D ∨ ¬Elsewhere(∆)) is a minimal solution w.r.t. ≤, let D′ be an
arbitrary solution. We need to show that (D ∨ ¬Elsewhere(∆)) ≤c D′. Since D′ is
a solution, it follows that D ≤c D′ by minimality of D, i.e. (D′ ∧ Elsewhere(∆)) |=
(D ∧ Elsewhere(∆)) ∗ true holds. Therefore, D′ |= ((D ∧ Elsewhere(∆)) ∗ true) ∨
¬Elsewhere(∆) holds by boolean logic (standard, rule for ¬), and so D′ |= (D ∗
true)∨¬Elsewhere(∆) holds by monotonicity of ∗ wrt |= and projection for ∧. Hence
D′ |= (D ∨¬Elsewhere(∆)) ∗ true also holds by the fact that ∨ preserves ∗ and that
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(Π ∧ E 7→E′ ∗ Σ) ∗ [false] . Π′ ∧ emp
false

(Π ∧ emp) ∗ [Π′ ∧ emp] . Π′ ∧ emp
emp

(Π ∧ Σ) ∗ [Π′ ∧ emp] . Π′ ∧ true
true

[
(Π ∧ Σ−j) ∗ [Dj ] . Π′ ∧ Σ′

]
j=1..n

(Π ∧ Σ) ∗ [D] . Π′ ∧ Σ′

(Π ∧ Σ) ∗ [
∨

j=1..n(Lj=L′ ∧Rj=R′ ∧Dj) ∨ (D ∗ L′ 7→R′)] . Π′ ∧ L′ 7→R′ ∗ Σ′
psto

(where Σ ≡ ∗i=1..nLi 7→Ri and Σ−j ≡ ∗i=1..n,i 6=jLi 7→Ri)

∆ ∗ [D] . ∆′

∆ ∗ [∃ ~X. D] . (∃ ~X. ∆′)
exists

Fig. 2. Proof Rules for Perfect Abductive Inference Modulo ≤c

¬Elsewhere(∆) |= ¬Elsewhere(∆))∗true. We have shown (D∨¬Elsewhere(∆)) ≤ D′,
as required.

3.4.2 Proof system for perfect solution w.r.t. ≤c. In this section we introduce
a proof system for deriving judgments of the form

∆ ∗ [D] . H

where ∆, D,H are just as in (5). The proof system is described in Figure 2. Its
proof rules derive a solution D to the abduction question which is minimal w.r.t.
the ≤c preorder. Recall that in the ≤c preorder the incompatible solutions are
ignored. This simplifies the definition of the proof system. For example, consider
the emp rule: if we had required minimality w.r.t. ≤, then the solution (Π′ ∧ emp)
would not have been the minimal one, since the minimal solution w.r.t. ≤ includes
all the incompatible solutions as well. The same observation applies to the other
rules.

In the rule psto we are using the letters L and R as a reading aide, to give the
connotations ‘l-value’ and ‘r-value’. A crucial point is that this rule considers all
aliasing possibilities, in contrast to the heuristic algorithm earlier, and as illustrated
in the following example.

Example 3.17. An instance of the psto rule

emp ∗ [emp] . true
true

x 7→3 ∗ [emp] . true
true

x7→3 ∗ [(x = y ∧ emp) ∨ (emp ∗ y 7→3)] . y 7→3 ∗ true
psto

computes the best solution to the abduction question from Example 3.4, where the
heuristic algorithm got only one of the disjuncts. (In this rule note that emp on the
top left of this derivation is Σ−j in the inference rule, using the convention that
emp is the 0-ary ∗-conjunction. Also, we have elided true∧ on several occasions,
where true would bind to Π and Π′ in a more literal depiction.)

A different instance finds a solution when the heuristic algorithm found none at
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all (Example 3.6):

emp ∗ [emp] . emp
emp

x 7→3 ∗ [false] . emp
false

x 7→3 ∗ [(x = y ∧ emp) ∨ (false ∗ y 7→3)] . y 7→3
psto

After obtaining this solution, using the identities P ∨ false = P and false ∗Q = false
we end up with the expected solution x = y ∧ emp.

The role of 7→ to the left in the false rule is worth remarking on here. Reading the
rule downwards, this E 7→F is unnecessary for soundness. But, reading the rules
upwards, as a way of finding solutions, it is useful in saying that E 7→F cannot
imply emp, on the upper right of this last derivation.

Lemma 3.18 Termination. Given any ∆ and H, there exists D such that ∆ ∗
[D] . H is derivable, and the proof search is terminating.

Proof Sketch. You read the rules upwards, as a way of finding solutions,
similarly to the discussion in Section 3.2.2 above. First, the exists rule is applied to
strip all existentials, remembering their names in a partially-constructed solution.
Then, the psto rule is applied repeatedly to remove 7→ facts from the right-hand
side. At this point we are left with a (partial) derivation in which there are no 7→
assertions on the right at the leaves. We can then match these assertions with the
three axioms false, emp and true. In each leaf, if the rhs has true in the spatial part,
we match with the true rule (and generate Π′ ∧ emp as this part of the answer to
the overall abduction question). If the rhs has emp as the spatial part then we use
axiom false or emp, depending on whether or not 7→ is present in the lhs.

Lemma 3.19 Minimal Solution w.r.t. ≤c. If ∆ ∗ [D] . H is derivable and
∆ ∗ F |= H then D ≤c F .

We remark that the definition of ≤c refers to a symbolic heap ∆, and the statement
of this lemma also refers to a ∆: in the statement of the lemma it is intended that
they are one and the same. Also, in the lemma the metavariable D ranges over
disjunctions of symbolic heaps, while F ranges over arbitrary semantic predicates
(sets of states), and we can use —∗ and other constructs not available in symbolic
heaps to describe the F ’s.

Proof. The proof proceeds by induction on the derivation of ∆ ∗ [D] .H. Note
that in applying the induction hypothesis, the relation ≤c varies: it can be different
when the ∆ part in the lemma varies; that is the case only in the psto rule.

For the axiom false, let ∆
def
= Π ∧ E 7→F ∗ Σ, and suppose ∆ ∗ F |= Π′ ∧ emp.

To show false ≤c F , as required, boils down to showing that F ∧ Elsewhere(∆) |=
(false∧¬I)∗true, which is the same as saying that F ∧Elsewhere(∆) is unsatisfiable.
To see why this is the case suppose, towards contradiction, that F ∧Elsewhere(∆) is
satisfiable. If we are given a model of F ∧Elsewhere(∆) we can immediately obtain
a model s, h of ∆ ∗ F , and then h is the empty heap because we have presumed
the entailment ∆ ∗ F |= Π′ ∧ emp. But, h cannot be empty if is satisfies ∆ ∗ F ,
as ∆ contains a 7→: we have a contradiction, and so F ∧ Elsewhere(∆) must be
unsatisfiable.

The arguments for the case of the other axioms true and emp are trivial.
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For the case of the psto rule, let ∆
def
= Π ∧ Σ, ∆′

def
= Π′ ∧ Σ′ and ∆−j

def
= Π ∧ Σ−j .

We must prove

(req) F ∧ Elsewhere(∆)
|= (

(∨
j=1..n(Lj=L

′ ∧Rj=R′ ∧Dj) ∨ (D ∗ L′ 7→R′)
)
∧ Elsewhere(∆)) ∗ true

And we get to use

(a) ∆ ∗ F |= Π′ ∧ L′ 7→R′ ∗ Σ′

(b) (∆ —∗ ∆′) ∧ Elsewhere(∆) |= (D ∧ Elsewhere(∆)) ∗ true

(c) (∆−j—∗ ∆′)∧Elsewhere(∆−j) |= (Lj=L
′ ∧Rj=R′ ∧Dj ∧Elsewhere(∆−j)) ∗ true

(d) ∆ is strictly exact [Yang 2001]. For all s, there is at most one h∆ with s, h∆ |=
∆. (This holds of all contexts, incluidng ∆−j in this lemma.)

Here, (a) says that F is a solution to the abduction question, (b) follows from the
induction hypothesis for D and the fact that (∆ —∗ ∆′) is a solution to ∆∗?? .∆′.
(c) similarly uses the induction hypothesis for Dj , but note that it is stated using
∆−j ; this is the one place where ≤c changes (reflecting remark just prior to the
proof) in an inductive case. (d) is true because ∆ is quantifier free and contains
only 7→ heap assertions.

To begin proving (req), assume s, h |= F ∧ Elsewhere(∆). We at once obtain
that there is h∆ where h ] h∆ is defined and s, h∆ |= ∆. By (a) we obtain that
s, h]h∆ |= Π′ ∧L′ 7→R′ ∗Σ′. The rest of the proof goes by case analysis, according
to whether or not L′ is allocated in h.

If L′ is allocated in h, let h− be h with the denotation of L′ removed. If we can
show s, h− |= (D ∧ Elsewhere(∆)) ∗ true then we will obtain s, h |= ((D ∗ L′ 7→R′) ∧
Elsewhere(∆)) ∗ true, which will give us the rhs of (req). Since s, h |= Elsewhere(∆),
we obtain immediately that s, h− |= Elsewhere(∆). Next, we claim that s, h− |=
∆ —∗ ∆′. To see why, consider an arbitrary separate heap satisfying ∆ with s. It can
only be h∆ because of (d), and we already know that s, h] h∆ |= Π′ ∧L′ 7→R′ ∗Σ′:
it follows that s, h− ] h∆ |= Π′ ∧ Σ′. By the semantics of —∗ this establishes
s, h− |= ∆ —∗ ∆′. Now, using (b) we get s, h− |= (D ∧ Elsewhere(∆)) ∗ true, which
is what we wanted to show.

In the other case, if L′ is not allocated in h then it must correspond to one 7→
fact within ∆, and we consider the corresponding l-value amongst the L1, .., Ln,
call it Lj (now j is fixed). It should be clear that that j is chosen here in such a
way that, if we define h∆−j to be h∆ with the denotation of L′ removed from its
domain, then s, h∆−j |= ∆−j .

If we can show s, h |= (∆−j —∗ ∆′) ∧ Elsewhere(∆−j), satisfaction of the lhs of
(c), then we will get satisfaction of the rhs of (c) and, hence, the rhs of (req). For
the Elsewhere(∆−j) conjunct, because we have assumed s, h |= Elsewhere(∆) we
obviously have s, h |= Elsewhere(∆−j). For the ∆−j —∗ ∆′ conjunct, we know that
there is one and only one separate h′ where s, h′ |= ∆−j , because ∆−j is strictly
exact and because s, h |= Elsewhere(∆−j); and, as we remarked above, this h′ is
h∆−j . So if s, h ] h∆−j |= ∆′ then we will have shown s, h |= (∆−j —∗ ∆′). Earlier
in the proof (before case analysis on L′ being allocated) we obtained s, h ] h∆ |=
Π′∧L′ 7→R′ ∗Σ′ from (a), and this obviously implies s, h]h∆−j |= Π′∧Σ′(≡ ∆′) by
the definition of h∆−j as h∆ with the denotation of L′ removed, and this establishes
satisfaction of the —∗ conjunct. This completes the proof of the psto case.
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The case exists can be proven using the following general principle, which holds
for arbitrary separation logic formulae F,G:

F —∗ ∃x. G |= ∃x. (F —∗ G) [provided F is strictly exact]

with the observation that any quantifier-free symbolic heap ∆ is strictly exact (as
defined in (d) in the psto case).

Consider a derivation of ∆ ∗ [∃ ~X. D ~X ] . (∃ ~X. ∆′~X) from ∆ ∗ [D ~X ] .∆′~X using the

exists rule, where for clarity we use subscripts ~X for formulae where ~X can occur
free. Consider an arbitrary F such that ∆ ∗F |= ∃ ~X. ∆′~X holds. We need to prove

that ∃ ~X. D ~X ≤c F holds.

Define F ~X
def
= F ∧ (∆ —∗ ∆′~X). By semantic considerations, ∆ ∗ F ~X |= ∆′~X holds,

therefore D ~X ≤c F ~X holds by induction hypothesis, hence ∃ ~X. D ~X ≤c ∃ ~X. F ~X
also holds. By the above principle we have ∃ ~X. F ~X = F ∧ (∆ —∗ ∃ ~X. ∆′~X), and

since F |= ∆ —∗ ∃ ~X. ∆′~X holds by hypothesis on F , we have ∃ ~X. F ~X = F . So we

can conclude ∃ ~X. D ~X ≤c F , as required.

A delicacy. We note a delicate point in the proof system of Figure 2. The exists
rule is complete, as well as sound, for the fragment we consider, but it is incomplete
when one adds predicates for linked lists. To see why, consider that

x 6= 0 ∧ ls(x, 0) ∗ ??? ` ∃x′.x 7→x′ ∗ true

has solution emp, but

x 6= 0 ∧ ls(x, 0) ∗ ??? ` x 7→x′ ∗ true

has no solution (except false). Generally, the rule depends on ∆ being ‘strictly
exact’, which is to say that for all s there is at most one h making s, h |= ∆ true.
Lists break exactness, where 7→ does not. This is only one of the obstacles that
would need to be overcome to extend the approach of this section to inductive
predicates.

3.4.3 Incompatible solutions. The second phase of our algorithm is the compu-
tation of the incompatible solutions to (5) using a disjunction of symbolic heaps.
(Strictly speaking, these do not take the rhs of the abduction into account, so are
the candidate solutions for any abduction question with Delta on the left.) Recall
that the incompatible solutions are described by ¬Elsewhere(∆) (or, equivalently,
∆ —∗ false). Let

∆ ≡
(
∧i=1..nAi

)
∧
(
∗j=1..mEj 7→E′j

)
where each Ai is either an equality or a disequality. Then the following disjunction,
which we call Incompat(∆), describes the incompatible solutions:(
∨i=1..n¬Ai

)
∨
(
∨j=1..mEj=0

)
∨
(
∨i,j=1..m,i6=jEi=Ej

)
∨
(
∨j=1..m∃X.Ej 7→X ∗ true

)
This definition captures all the states which cannot be combined with ∆, based on
four reasons: the pure parts are inconsistent; the left-hand side of 7→ cannot be 0;
all the left-hand sides of 7→ in ∆ must be distinct; a 7→ in ∆ cannot be consistently
∗-conjoined with another 7→ with the same left-hand side. It is a straightforward
exercise to verify that this definition correctly captures incompatibility.
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Lemma 3.20. Incompat(∆) and ¬Elsewhere(∆) are semantically equivalent.

Example 3.21. Consider the symbolic heap

H , x = y ∧ x 7→0 ∗ w 7→0

According to our definition, all incompatible solutions are given by the formula

x 6= y ∨ x = 0 ∨ w = 0 ∨ x = w ∨ ∃X.x7→X ∗ true ∨ ∃Y.w 7→Y ∗ true

The disjuncts each capture a straightforward intuition: if x 6= y in s state, then
H cannot hold elsewhere because H requires x = y; if x or y is zero, then this
precludes H holding elsewhere, because H requires x and y to be allocated (which
implies non-0); if either x or y is allocated in a given state (‘here’), then H cannot
hold in a separate heap (‘elsewhere’) because that precludes x and y being allocated
in the separate heap.

3.4.4 Computing min. The third phase of our algorithm consists in applying
min to the result of the first two phases. In this section we show how the result of
applying min can be described as a disjunction of symbolic heaps.

The min is constructed using a formula F −G for subtraction.

Definition 3.22 Subtraction. Let F andG be arbitrary predicates (sets of states).

The operator − is defined as F −G def
= F ∧¬((¬emp) ∗G). In words, F −G consists

of those states satisfying F for which no strictly smaller substate satisfies G.

When talking about semantic predicates, we say that ‘X is not free in F ’ to mean
that s, h ∈ F iff s′, h ∈ F for all s′ like s except taking a possibly different value at
X. The following lemma records properties of subtraction.

Lemma 3.23 Properties of subtraction.

(1 ) min(F ) = F − F .

(2 ) (F ∨G)−H = (F −H) ∨ (G−H).

(3 ) (∃X.F )−G = ∃X.(F −G), provided X not free in G.

(4 ) F − (G ∨H) = (F −G) ∧ (F −H).

(5 ) F − (∃X.G) = ∀X.(F −G), provided X not free in F .

(6 ) min(F1 ∨ . . . ∨ Fn) = G1 ∨ . . . ∨Gn
where Gi = ((Fi − F1) · · · − Fn)

The proof of each of these properties is straightforward. The crucial point, (6), is a
direct statement of the following idea: a state is in min(F1 ∨ . . .∨Fn) just if it is in
one of the Fi’s, and not in a smaller state for any other disjunct (else it would not
be minimal). Our algorithm for computing min consists of applying directly point
(6) above, which only depends on an algorithm for computing binary subtraction
H −H ′.

Quantifier-free subtraction. Suppose we are given quantifier-free symbolic heaps
∆ and ∆′, and we want to compute ∆ − ∆′. A saturation Π is a collection of
equalities and disequalities such that for any two expressions E1 and E2 (amongst
those in ∆ and ∆′), we have E1=E2 ∈ Π or E1 6=E2 ∈ Π. As a result, both (Π∧∆)
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and (Π∧∆′) will denote essentially unique heaps (modulo renaming), and they are
amenable to a syntactic form of subtraction.

We define a syntactic check ∆ ⊆Π ∆′ to capture the intuition that, under a
saturated Π, the heap described by ∆ is a subheap of the one described by ∆′.
Formally, let ∆ ≡ (Π1 ∧ Σ1) and ∆′ ≡ (Π2 ∧ Σ2), and define ∆ ⊆Π ∆′ if for each
E1 7→E′1 in Σ1 there exists E2 7→E′2 in Σ2 such that E1=E2 ∈ Π and E′1=E′2 ∈ Π.
The strict inclusion ∆ ⊂Π ∆′ is defined as ∆ ⊆Π ∆′ and ∆′ 6⊆Π ∆.

To compute ∆−∆′, consider all the saturations Π1, . . . ,Πn such that ∆′ ⊂Πi
∆.

Those are all the saturations under which ∆ is removed by the subtraction of ∆′,
so we obtain the result by negating them:

∆−∆′ = ((¬Π1) ∨ . . . ∨ (¬Πn)) ∧∆

By pushing negations inside and using de-Morgan duality we actually get a dis-
junction of Π’s. So the solution has the following shape:

(Π′1 ∨ . . . ∨Π′k) ∧∆

and we can then use distribution of ∨ over ∧ to obtain

(Π′1 ∧∆) ∨ . . . ∨ (Π′k ∧∆)

and this is a disjunction of symbolic heaps with the same meaning as ∆−∆′.

Quantifier-removal for pure formulae. To extend the previous subtraction case
to handle quantifiers we first establish a quantifier-removal result for the special
case of a pure formula ∃X.Π. Note that this makes essential use of the restricted
nature of Π as only equalities and disequalities of variables or constants. To convert
such a formula to an equivalent quantifier-free formula, first repeatedly replace
∃X.(X=E ∧ Π) by ∃X.Π[E/X] until no equalities remain involving X. Second,
repeatedly replace ∃X.(X 6=E ∧ Π) by 0 6=0 if E ≡ X, or by ∃X.Π if E 6≡ X. This
second step is an equivalence because, at this stage, there are no equalities involving
X in Π: X can be chosen to be not equal to E iff it can be chosen at all to satisfy
Π. We are left with a formula ∃X.Π′ equivalent to the ∃X.Π we started with, where
X is not free in Π′, so it is equivalent to the quantifier-free formula Π′.

Subtraction with quantifiers. We handle symbolic heaps with quantifiers as fol-
lows, using cases of Lemma 3.23 and observing suitable α-renaming.

(∃ ~X.∆)− (∃~Y .∆′) = [by (3)] ∃ ~X.(∆− (∃~Y .∆′))
= [by (5)] ∃ ~X.∀~Y .(∆−∆′)

= ∃ ~X.∀~Y .((Π′1 ∨ . . . ∨Π′k) ∧∆)

where the final step uses the result of quantifier-free subtraction ∆−∆′ described
above. To represent the result as a symbolic heap we just need to remove quantifiers
from the pure part: ∀~Y .(Π′1 ∨ . . . ∨Π′k) = Π′′1 ∨ . . . ∨Π′′j for some j.

This final step can be done as follows. First, replace ∀~Y .(Π′1 ∨ . . . ∨ Π′k) by

¬∃~Y .¬(Π′1 ∨ . . . ∨ Π′k). Second, use de-Morgan and distribution laws to convert
¬(Π′1∨ . . .∨Π′k) into disjunctive normal form in the usual way, giving A1∨ . . .∨Am
where each Ai is a conjunction of equalities and disequalities. Fourth, drive ∃
inwards to convert ¬∃~Y .(A1 ∨ . . . ∨ Am) to ¬((∃~Y .A1) ∨ . . . ∨ (∃~Y Am)). Fifth,
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apply the ∃-removal for pure formulae as described above, giving us an equivalent
quantifier-free formula ¬(B1 ∨ · · · ∨ Bm). Finally, convert to disjunctive normal
form giving us our Π′′1 ∨ . . . ∨Π′′j .

Then, as in the previous case, we can use distribution to obtain a disjunction of
symbolic heaps

(Π′′1 ∧∆) ∨ . . . ∨ (Π′′j ∧∆)

and we have shown how to calculate subtraction of symbolic heaps with quantifiers.

Example 3.24. For an example involving quantifier elimination, consider

(∃Y,Z.Y 7→Z ∗ Z 7→3)− (∃X.X 7→X).

First, as above, we compute

∃Y, Z.∀X.(Y 7→Z ∗ Z 7→3−X 7→X)

The inner subtraction gives ¬(Z = X ∧ X = 3) in the pure part, that is, Z 6=
X ∨X 6= 3. Then quantifier elimination: ∀X.(Z 6= X ∨X 6= 3) = (Z 6= 3). So the
final solution is

∃Y,Z.Z 6= 3 ∧ Y 7→Z ∗ Z 7→3

and one can see that this symbolic heap cannot be validated in a heap where an
allocated pointer points to itself.

Computing multi-nary subtraction. We have just described a binary algorithm
which gives H −H ′ = H1 ∨ . . . ∨Hn for some n, for individual symbolic heaps H
and H ′. To obtain an algorithm which takes a disjunction of symbolic heaps as
input and returns their min, we directly apply Lemma 3.23(6) repeatedly, and use
3.23(2) to re-distribute the resulting disjunction at each nesting step in equation
3.23(6).

Putting everything together. Putting together the results in this section, we can
first compute a minimal solution D wrt ≤c, then calculate the incompatible solu-
tions I, and finally minimize D∨ I using the algorithm just given. By Lemma 3.16,
this gives us the minimal solution wrt -. We conclude by stating our main result
on the systematic algorithm for the Points-to Instantiation of symbolic heaps.

Theorem 3.25 Minimal Solution Algorithm. The minimal solution to the
abduction question (5) is expressible as a disjunction D of symbolic heaps, which
can be effectively computed with an algorithm.

3.5 Bi-Abduction and Framing: Execution-oriented Program-Proof Rules

Now we take a step from the abduction question itself towards program analysis.
Bi-abduction is a combination of the frame inference problem [Berdine et al. 2005b]
and abduction as defined earlier in this paper. We will see that this notion gives us
a way to reason compositionally about the heap, using a form of symbolic execution,
and helps in porting the principle of local reasoning to automatic program analysis.
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Definition 3.26 Bi-Abduction. Given symbolic heaps ∆ and H find symbolic heaps
?anti-frame and ?frame such that

∆ ∗ ?anti-frame ` H ∗ ?frame

It would be possible to consider a mixed proof system for this problem, but it
turns out that there is a way to answer the question by appealing to separate frame
inference and abduction procedures.

Several frame inference procedures have been described in previous papers [Berdine
et al. 2005b; Nguyen and Chin 2008; Distefano and Parkinson 2008]. Here we as-
sume a given procedure Frame, which returns either a symbolic heap or an exception
fail. Frame must satisfy

Frame(H0, H1) = L( 6= fail) =⇒ H0 ` H1 ∗ L

indicating that if frame inference succeeds in finding a ‘leftover’ heap L then the
indicated entailment holds.

A frame inferencing procedure gives us a way to automatically apply the frame
rule of separation logic [Ishtiaq and O’Hearn 2001; O’Hearn et al. 2001]. Normally,
the rule is stated

{A}C{B}
{A ∗ F}C{B ∗ F}

Frame Rule (Usual Version)

By combining the frame rule and the rule of consequence, we obtain a rule which
tells us how to adapt a specification by tacking on the additional resource L found
by a frame inferencing algorithm.

{A}C{B} Frame(P,A) = L

{P}C{B ∗ L}
Frame Rule (Forwards Analysis Version)

In the analysis version of the frame rule we think of {A}C{B} as the given specifica-
tion of C, which might be obtained from a procedure summary, and P as the current
state at the program point where C resides within a larger program. The rule tells
us how to symbolically execute the program on the formulae, by propagating B ∗L
to the post-state.

In Algorithm 2 we define a further procedure Abduce, satisfying the specification

Abduce(∆, H) = M( 6= fail) =⇒ ∆ ∗M ` H

meaning that it soundly finds missing heap portions. The second step of Algorithm
2 relies on an ordinary theorem prover for symbolic heaps.

We can combine these two procedures to obtain the algorithm BiAbd described
in Algorithm 3. The use of ∗ true in the abduction question of the algorithm lets
us ignore the leftover frame when computing the missing heap. By convention, the
algorithm raises exception fail if either of its internal procedure calls does.

Theorem 3.27. BiAbd(∆, H) = (M,F ) =⇒ ∆ ∗M ` H ∗ F.

We can begin to make the link between bi-abduction and program analysis with
a new inference rule.

{A}C{B} BiAbd(P,A) = (M,L)

{P ∗M}C{B ∗ L}
Frame Rule (Bi-Abductive Analysis Version)
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Algorithm 2 Finding a Missing Heap Portion

Abduce(∆, H)
def
=

(1) Find a symbolic heap M such that

∆ ∗ [M ] � H

using the abduction algorithm from Section 3.2. If no such heap can be found,
return fail.

(2) If ∆ ∗M is (provably) inconsistent, return fail. Otherwise, return M .

Algorithm 3 Synthesizing Missing and Leftover Heaps, Jointly

BiAbd(∆, H)
def
=

M := Abduce(∆, H ∗ true);
L := Frame(∆ ∗M,H);
return(M,L)

Logically, the bi-abductive frame rule is just a consequence of the usual frame rule
and the Hoare rule of consequence. The relevance to program analysis comes from
a bottom-up reading in terms of finding missing and leftover heaps: we are given
P , A and B, and we compute M and L which are sufficient to obtain a pre/post
spec of C which includes P as part of the pre.

3.5.1 Comparing Bi-Abductive Solutions. As before, this theoretical material on
the quality of solutions can be skipped without loss of continuity.

The soundness property in Theorem 3.27 can be satisfied trivially. We define an
order v on potential solutions

M ≈M ′ def⇐⇒ M -M ′ ∧ M %M ′

(M,L) v (M ′, L′)
def⇐⇒ (M -M ′) ∨ (M ′ ≈M ∧ L ` L′).

The definition of v is a lexicographic ordering of the order M - M ′ defined for
abduction (see Section 3.3.1), and ordinary implication for leftover heaps. The
bias on the anti-frame part is useful in some application of BiAbd algorithm such
as in program analysis for inferring preconditions of procedures as we will do in
Section 4.2. The missing anti-frame part is used to update the precondition being
discovered by the analysis. The second disjunct means that if two solutions have
equally good missing anti-frames, the better one should have a logically stronger
leftover frame.

Our BiAbd algorithm first attempts to find a good missing anti-frame M , and
then tries to find a good frame L. This order of searching for a solution reflects our
emphasis on the quality of the missing anti-frame part, as in the definition of v.

Example 3.28. We illustrate the intuition behind v using

x 7→0 ∗ M ` ls(x, 0) ∗ ls(y, 0) ∗ L
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Consider the following three solutions to the question:

M
def
= ls(y, 0) L

def
= emp

M ′
def
= ls(y, 0) ∗ z 7→0 L′

def
= z 7→0

M ′
def
= ls(y, 0) L′

def
= true

According to the order we have just defined, the best solution among the above three
is (M,L), and it is what the algorithm BiAbd returns. It is better than (M ′, L′),
because its missing anti-frame M is strictly better than M ′ (i.e., M - M ′ and
M 6≈ M ′) since it describes smaller heaps than M ′. The solution (M,L) is also
better than (M ′, L′) but for a different reason. In this case, the missing anti-frames
M,M ′ have the same quality according to our definition (i.e., M ≈M ′). However,
this time the deciding factor is the comparison of the leftover frames of the solutions;
L is stronger than L′, so (M,L) v (M ′, L′). 2

It is possible to investigate the question of best answer to the bi-abduction ques-
tion, like we did for abduction. One can show, in particular, that a strongest frame
exists when the right-hand side of the frame inference question is precise. But, we
leave a full study of this as a problem for future work.

3.6 Discussion

In this section we have given the first proof procedures for abduction in separation
logic, one which is heuristic in nature and the other which is more systematic. A
tremendous amount more could be attempted, theoretically, in this direction.

Our work on the systematic procedure is along the lines of what is called ‘com-
puting all explanations’ in the AI literature [Eiter and Makino 2002], while our
heuristic algorithm is more reminiscent of the problem of finding one solution when
there might be many possibilities [Paul 1993]. One can also ask whether a solu-
tion must contain a particular literal, and given a candidate solution one can ask
whether it is minimal. For all of these questions one can ask about complexity and
decidability as well. The same goes for frame inference. Note that these questions
are unlikely to be straightforward to answer, as abduction is at least as difficult
as entailment, and relatively little is known about decidability and complexity of
entailment for symbolic heaps beyond very specific fragments based on simple lists.
There has been significant work on the complexity of abduction in propositional
logic (e.g., [Eiter and Gottlob 1995; Creignou and Zanuttini 2006]), but that work
does not immediately carry over to our setting. The substructural nature of sep-
aration logic as well as the use of existential quantifiers and (especially) inductive
definitions in symbolic heaps raise special problems.

There is probably much worthwhile work to be done to increase understanding
in the direction of completeness and complexity of algorithms for abduction and
bi-abduction, and that is a valuable direction for future work. However, rather
than pause to pursue these questions now, we move on to the question of the use of
abduction and bi-abduction: if we assume an algorithm for bi-abduction as given,
to what use might it be put in automatic program analysis?
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4. ALGORITHMS FOR AUTOMATIC PROGRAM ANALYSIS

In this section we show how the previous ideas can be put to work in algorithms
for automatic program analysis. We begin by describing an algorithm PreGen
for generating preconditions, and then we use it in an algorithm for generating
pre/post specs.

4.1 Procedures, Summaries and Control-flow Graphs

We represent a program by a control-flow graph in which the edges are procedure
calls x:=f(~e). Each procedure name f is associated with a summary , a set of Hoare
triples

{P}f(~x){Q1 ∨ · · · ∨Qk}

which determines the meanings of the edges.
This format for the edges and their specifications, while seemingly spare, gives us

considerable expressive power. Typical built-in atomic commands or libraries can
be given initial specification which get an analysis started at the leaves of a call tree
in a system: some examples, based on the ‘small axioms’ from [O’Hearn et al. 2001],
are in Figure 3. In the Figure, [x] := y and free(x) are viewed as procedures that
return no values (or that nondeterministically set the return value ret to anything).
The statement return[y] can be used with our procedure call syntax in the form
y := return[x] to obtain the same effect (and same small axiom) as what is written
y := [x] in [O’Hearn et al. 2001].

In C-language terms [x] in Figure 3 can be thought of as corresponding to a
dereferencing x->tl where x is a pointer to a struct of type

struct node { struct node* tl; };

and we will use examples based on this struct throughout this section. We stress,
though, that the commands and their axioms in Figure 3 are given just as an
illustration: our technical development does not depend at all on this struct or
this unary x 7→y predicate. For records with multiple fields we would need a more
liberal 7→ where a pointer points to a tuple, as in [Berdine et al. 2005b; Berdine
et al. 2007] (see Section 3.1.1). A more liberal 7→ is used in the Abductor tool.

Using assume statements which check for boolean conditions on edges allows us
to model the conditional branching of source-level if and while statements using
the procedure-summary format of control-flow graphs (see Example 4.4). Also,
source statements for objects with multiple fields would map to more complex forms
than the simple heap lookup [x]. We ignore these issues in the technical part of our
work, expecting that it is relatively clear how while programs with a collection of
embedded procedure calls and heap-mutating operations can be modelled within
this format of control-flow graphs with procedure summaries.

Notice the disjunction in the postcondition for malloc in Figure 3: it says that
the return value is either an allocated cell or an error flag indicating that the
allocation was unsuccessful (incidentally illustrating disjunctive posts, which are
essential for nontrivial precision). This allows us to deal with the issue mentioned
at the end of Section 2.2 concerning error values returned from malloc.
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{emp}malloc(){(ret 7→ –) ∨ (ret = nil ∧ emp)} {x 7→ –}free(x){emp}
{x 7→ – ∧ y = Y }[x] := y{x 7→Y ∧ y = Y } {x 7→X}return[x]{x 7→X ∧ ret = X}

Fig. 3. Example Pre-defined Summaries

In representing programs using graphs plus summaries, we assume that the pro-
cedures f do not alter global variables (the x’s appearing to the left of := on
control-flow edges x:=f(~e)), though they might alter global heap cells ([x]); this
assumption will be reflected in the transfer function for processing procedure calls
in our analysis. In practice, when translating a procedure to control-flow-graph
form the variables x in x:=f(~e) can correspond to local variables of the procedure,
as well as additional temporary variables inserted by a compilation step.8

With these preliminary considerations we give our formal definition.

Definition 4.1 Program. A program is a tuple (L, start, finish, T, summary)
of

—finite set of program locations L

—designated program locations start, finish ∈ L
—a set T of transitions (`, x := f(~v), `′), where `, `′ are program locations

—a set summary(f) of procedure specs

{P}f(~x){Q}

for each procedure f appearing amongst the transitions in T . Here, P is a sym-
bolic heap and Q is a set of symbolic heaps. The intended meaning of a spec is
that

{P}f(~x){Q1 ∨ · · · ∨Qk}

is a true Hoare triple, where Q = {Q1, . . . , Qk}.

4.2 Precondition Generation

4.2.1 The PreGen Algorithm. The PreGen algorithm, Algorithm 4, takes a
set of abstract states as an argument (the ‘seeded’ precondition) and returns a set
of abstract states as a result (the ‘generated’ precondition). It is a modification of
a standard worklist or abstract reachability algorithm [Jhala and Majumdar 2009].

The algorithm works as if it is trying to find some postconditions to give a
proof of the program starting from the seeded preconditions. The proof attempt is
done according to the ‘tight interpretation of triples’ in separation logic [O’Hearn
et al. 2001], where a memory fault or failure to satisfy the given precondition of a
procedure call invalidates any proof from the seeded preconditions. Where, usually,
encountering a potential fault invalidates a proof attempt when using tight Hoare
triples, instead of giving up PreGen uses this failure information to guide the
generation of preconditions.

8In case the address &x of a variable is taken, we would explicitly allocate a cell corresponding to
x and replace any assignments to it by assignments to the allocated cell; and for this we usually

use an allocation operation without a disjunctive post (that caters for error).
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In more detail, when a sufficient precondition cannot be found which enables
a program operation, PreGen uses abductive inference to synthesize a candidate
precondition M describing the missing memory (line 13 in the algorithm). An
assertion L describing the leftover memory not needed by the procedure is also
synthesized at this point, and it is combined with one of the procedure’s specified
post-states to obtain a new state for the worklist algorithm to use at program point
`′. The way this is done follows very much the ideas in the examples given in
Section 2, using bi-abduction. But the formalities involve intricate manipulations
concerning logical program variables – the ~e′ and ~Y information in line 13 – which
gets us into the territory of ‘adaptation’ rules in Hoare logic [Hoare 1971; Naumann
2001], with some new twists brought on by the abduction question. We have encap-
sulated these details inside a procedure AbduceAndAdapt, which will be described
in Section 4.2.3 below.

In order to help convergence of the algorithm, abstraction is applied to candidate
preconditions (line 14 in the algorithm) as well as to current abstract states (line
18). Abstraction performs generalization in shape analysis, as we indicated in
Section 2.4. When applied to the current state this generalization constitutes a
sound deductive inference. But, when applied to a precondition, it is inductive
rather than deductive. As is usually the case in scientific reasoning, there is no
guarantee that inductive reasoning steps are deductively valid, and we check our
work in a separate phase (Section 4.3).

A typical way to call the PreGen algorithm is with a single initial seed state of
the form

x1 = X1 ∧ · · ·xn = Xn ∧ emp

where the xi are procedure parameters, which appear freely in a control-flow-graph,
and the Xi are variables that do not appear at all in the program (e.g., the example
in Section 2.4). PreGen can then use the Xi to refer to quantities that existed
at procedure-call time, and it tries to express the precondition in terms of these.
After the computation ends and we have expressed a precondition in terms of the
Xi, we can then turn around and use xi in its place. This is the pattern used in all
the examples in Section 2, and it is the way our implementation works. (Note that,
in case one of the xi is not assigned to in the program, we don’t really need the Xi,
and can use xi at later points in the program to refer back to the pre-state.)

4.2.2 Toy Examples Illustrating the Algorithm. We give several toy examples to
illustrate aspects of the algorithm. We give the examples using C program syntax
rather than the graph form, expecting that no confusion will arise.

Our first example shows a savings in the algorithm based on the idea behind
separation logic’s frame rule.

Example 4.2. Here we have a program that frees two nodes given as input.

void continue_along_path(struct node *x,struct node *y) {

free(x); free(y); }

If we apply the PreGen algorithm with start state x = X ∧ y = Y ∧ emp it finds at
the free(x) statement that there is not enough memory in the precondition, so it
abduces the precondition x7→−. It then continues on to abduce y 7→− at the free(y)
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Algorithm 4 Precondition Generation

Input: A set of symbolic heaps, Seed
Output: A set of symbolic heaps, the candidate preconditions

PreGen(Seed) =

1. ws := {(start, p, p) | p ∈ Seed}; reach := ∅;
2. while ws 6= ∅ do
3. choose (`, pre, curr) ∈ ws and remove it from ws
4. if (`, pre, curr) /∈ reach then reach := reach ∪ {(`, pre, curr)};
5.

6. // Loop over all out-edges from `
7. for all out-edges (`, x := f(~e), `′) from ` in T do

8. Let ∃ ~X.∆ be curr; // strip existentials, prepare to process specs
9.

10. // Loop in order to process all specs of f
11. for all {P}f(~x){Q} ∈ summary(f) do
12. P ′ := P [~e/~x]; Q′ := Q[~e/~x]; // Instantiate Params

13. if AbduceAndAdapt(∆, P ′,Q′, ~X) = (M,L, ~e′, ~Y ) 6= fail then
14. newpre := abstract#(pre ∗M)
15. //Loop over post-states
16. for all Q ∈ Q′ do
17. Pick a fresh Z
18. newpost := abstract#(∃ ~XZ. (Q ∗ L)[Z/x][x/ret, ~e′/~Y ])
19. ws := ws ∪ {(`′, newpre, newpost)}
20. end for
21. end if
22.

23. end for
24. end for
25. end while
26.

27. return {p | ∃c. (finish, p, c) ∈ reach}

statement, which it separately conjoins to the previously abduced fact, giving us
x 7→ − ∗ y 7→− overall.

The pertinent point in this example is how, when symbolic execution encounters
its first error, it continues executing after the statement, and conjoins subsequently
abduced facts to previously conjoined ones. It would have been possible to get
the same overall effect by restarting symbolic execution from the beginning, with a
new precondition, as soon as an error is found, but this would be wasteful: it would
repeat work up until this error. In this example such work is trivial, but suppose
that before the free(x) statement we had a long path of statements, π: then we
would need to re-analyze π were we to immediately start again.

It is separation logic’s frame rule that suggests to us that this re-execution could
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be redundant. If you analyze a path π, obtaining a pre/post pair {H0}π {H1}, and
then for a subsequent statement a we obtain {H1 ∗A} a {H2 ∗L} using bi-abduction
whereA is non-trivial, then the frame rule tells us that {H0∗A}π {H1∗A} holds, and
hence we get {H0 ∗A}π; a {H2 ∗L} using the Hoare rule for sequential composition.

This discussion provides a partial explanation for why we have preferred to con-
tinue symbolic execution after a potential error has been diagnosed and its treat-
ment abduced. However, we are making these remarks mostly to illustrate points in
the PreGen algorithm, rather than to give an ultimate justification (which is not
possible). Indeed, it is possible to find examples where a stop-first-and-re-execute
strategy would work better than our continue-along-path strategy (we invite the
reader to think of such examples, which involve π above having branches rather
than being a straightline path).

Our second example concerns a difference in the way that procedure summaries
are used, compared to usual interprocedural analysis algorithms. When a procedure
call is considered, PreGen considers all of the procedure preconditions (line 11 in
the algorithm). In a normal interprocedural analysis (like the RHS algorithm [Reps
et al. 1995]), usually, if a call is found to match with one of the specifications in
a procedure summary then that specification is used and others are ignored. The
reason is that, unless the abstract domain supports conjunction (meet), using more
than one spec can only lead to decreased precision and efficiency. In our case,
although our analysis is forwards-running, its primary purpose is to help generate
preconditions: for this purpose, it makes sense to try as many of the specifications
in a procedure summary as possible.

Example 4.3.

1 void safe_reset_wrapper(int *y) {

2 // Inferred Pre1: y=0 && emp

3 // Inferred Pre2: y!=0 && y|->-

4 safe_reset(y);

5 } // Inferred Post1: y=0 && emp

6 // Inferred Post2: y!=0 && y|->0

7 void safe_reset(int *y) {// SUMMARY ONLY

8 // Given Pre1: y=0 && emp

9 // Given Pre2: y!=0 && y|->-

10 } // Given Post1: y=0 && emp

11 // Given Post2: y!=0 && y|->0

The analysis of safe reset wrapper starts with emp, meaning that the heap is
empty. When it hits the call to safe reset, the analysis calls the abduction algo-
rithm, and checks whether emp is abducible to the preconditions of the two specs.
It finds that emp is abducible with the precondition y=0∧ emp of the first spec. In-
stead of ignoring the remaining specs (like a standard forward analysis would), our
analysis considers the abducibility of emp with the precondition y 7→ – of the other
spec. Since the analysis considers both specs, it eventually infers two preconditions:
y=0 ∧ emp, and y 6=0 ∧ y 7→−. If the analysis had searched for only one applicable
spec, it would not have been able to find the second precondition. 2

Our third example concerns path sensitivity, and what we call the ‘assume as
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assert’ heuristic. This heuristic is something that is important to take into account
when building a practical program analyzer for generating preconditions. It allows
one, in a not inconsiderable number of cases, to generate preconditions that cover
more rather than fewer paths through the code, as we now explain.

As preparation for this example, recall that the usual specifications of the ‘as-
sume’ and ‘assert’ statements are

{B ∧ emp}assertB{B ∧ emp} {emp}assumeB{B ∧ emp}

where B is a pure boolean. Using the frame rule, from these specs we obtain the
familiar

{B ∧ P}assertB{B ∧ P} {P}assumeB{B ∧ P}

for any P , indicating that for assert B must be true beforehand, where for assume
it need not be.

The assume statement is important for analyzing paths, because the conditional
statement if B then C1 else C2 can be represented as a nondeterministic choice
(assumeB);C1 + (assume¬B);C2. In control-flow graphs this nondeterminism
is represented by distinct edges out of a node, as in the following example.

Example 4.4. Consider the program

void why_assume_as_assert(struct node *x) {

if (x!=0) { x->tl = 42; } }

As a control-flow graph it is

Start Finish
assume x!=0 x->tl = 42

assume x==0

If we interpret the assume statement in the usual way, as {emp}assumeB{B ∧ emp}
then running PreGen would only give us a single, overly-specific precondition x 7→Z
which (on its own) rules out the x==0 path.

However, if we interpret the assume statement as if it were an assert, using
{B ∧ emp}assumeB{B ∧ emp} then we are forced to record the path-specific infor-
mation in each branch in the precondition, and we will obtain a pair of preconditions

x 7→Z and x=0 ∧ emp

where the second one does not rule out the x==0 path. (Here, in the formula we use
the mathematical x=0 for equality, rather than the C notation x==0; we will assume
that the reader can disambiguate between the C notation = (for assignment) and
the mathematical one (for equality): the latter will be used in assertions, and the
former only in program examples.)

Journal of the ACM, Vol. V, No. N, December 2011.



44 · Compositional Shape Analysis by means of Bi-Abduction

It is not unusual to find procedures that dereference memory only after checking
some conditions, as in this example, in which case we would certainly like to (for
precision reasons) be able to distinguish the cases when the memory is needed from
when it is not. Thus, we see that, for the purpose of precondition rather than
postcondition generation, it can be helpful to interpret the assume statement as
if it were assert by using

{B ∧ emp}assumeB{B ∧ emp}

because this allows us to generate more general preconditions.
This ‘assume as assert’ trick is reminiscent of the situation in symbolic testing,

where one wants accurate path information when generating constraints (precon-
ditions) that, when solved, give test cases that drive a program towards error. Our
implementation first tries this trick, but falls back on ‘assume as assume’ when that
does not work. We stress that ‘assume as assert’ is an heuristic choice, and there
are cases where it does not work well (see, for example, Example 4.6 below); in
those cases, falling back on ‘assume as assume’ can still give useful preconditions.

Our next two examples concern termination and divergence of the input program.
Notice that at line 26 the PreGen algorithm reports those preconditions that have
been carried along (and perhaps altered) all the way up to the final state. The
effect of this is that the analysis result ignores generated preconditions that exist
only at intermediate states, and this makes the analysis tend towards preconditions
that guarantee convergence.

Example 4.5. For the program

void avoid_provable_divergence(int x) {// Inferred Pre: x!=0 && emp

if (x==0) { while (1) {};} }

the analysis finds x 6= 0 ∧ emp as the precondition. This pre is sufficient to avoid
the if branch. However, there is another precondition, x=0, which is still safe: it
leads into the if branch, and then the infinite loop.

What is happening is that the working set and reachable set both get a triple
(`, x = 0, x = 0), where ` is the program point immediately before the while loop,
and inside the if branch, but at the program point `′ after the loop (but still in
the if) no states are reachable. This triple is entered into the working set at line
19 of PreGen (Algorithm 4), after bi-abduction has found x = 0 as both the pre
and post of an assume statement assumex = 0 corresponding to one branch of
the if statement in avoid provable divergence. (Note that the pre is obtained using
the ‘assume as assert’ trick, but even without this trick; ‘assume as assume’ would
give emp as the pre, but we would face the same divergence issue.) Then, after the
PreGen algorithm loops around the same triple can be entered into the reachable set
at line 4. The exit of the loop while (1) {} corresponds to an edge assume false
in a control-flow-graph, this results in no states being propagated to program point
`′ after the loop. That is why the analysis fails to report the precondition x=0 that
leads to divergence.

The phenomenon illustrated in this example shows up not infrequently in natural
programs. Indeed, for the classic linked-list programs considered in Section 5.1 –
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traversing, deleting from, inserting into, etc – our analysis finds preconditions that
guarantee convergence.

On the other hand, it is not the case that the algorithm always finds preconditions
that are sufficient to ensure termination; in particular, that is the case when one
cannot find preconditions that unambiguously prove divergence or convergence.

Example 4.6. For this program

void not_total_correctness() } // Inferred Pre: emp

struct node *y;

y = malloc(sizeof(struct node));

if (y) {while (1) {};} }

the PreGen algorithm finds emp as the precondition. PreGen gets to the triple
(finish, emp,¬y ∧ emp) at the procedure’s end as a result of the condition corre-
sponding to failure of the if test in the program. The while loop filters out the
state (`, emp, y 7→−) at the program point ` just inside the if, and so that does not
lead to any reachable triple at finish. The net effect, then, is that emp is found as
a candidate precondition.

Thus, we have found a precondition for a procedure that is not guaranteed to
terminate. not total correctness() diverges when malloc() succeeds, and con-
verges if malloc() fails in its attempt to allocate. The analysis treats malloc() as
a nondeterministic choice between success and failure, as set down by the axiom in
Figure 3. And independently of algorithmics, in terms of this semantics there exists
no precondition which guarantees termination of not total correctness(). (Of
course, such a pre could exist with a more detailed semantics taking into account
size of memory.)

In this example there is no way to express the loop condition (y) in terms of
variables existing in the pre-state. This is one of the cases where we fall back on
default to ‘assume as assume’ rather than treat ‘assume as assert’.

The choice to use the final state to record our candidate preconditions is in no way
canonical and we could, if we wanted, alter the algorithm to record some of these
safe preconditions that provably lead to divergence. But, there is no canonical such
choice as far as we know, and we gave these examples more to help explain how
the algorithm is working than to defend our use of the final state and the resultant
leaning to preconditions that imply termination.

Remarks on Algorithmic Refinements. The algorithm as given in Algorithm 4
ignores several issues and possible refinements that one would naturally consider
in making a practical algorithm that works on real-world code. The intention
has been to present an idealized algorithm showing the basic idea of how you can
use abduction to do interprocedural analysis, without being distracted by other
(important) issues that are independent of the main new technical contributions of
this work. We briefly mention two of these other issues.

(1) Partial Concretization. In shape analysis it is often important, for precision
reasons, to convert an abstract state to one that has more concrete information.
In [Sagiv et al. 1998] this phenomenon is called ‘materialization of a summary
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node’, and in other shape analyses it involves unrolling inductive definitions or
using other consequences of induction [Berdine et al. 2005b; Distefano et al.
2006].

To see the issue here, consider the abductive entailment question

x 6= nil ∧ ls(x, nil)∗?? ` x 7→X ∗ true

There is no consistent answer to this question using symbolic heaps, because
we cannot match X on the lhs. However, if we unroll the inductive definition
of ls(x, nil) on the left and strip the disjunct made inconsistent by x 6= nil we
obtain ∃Z.x 7→Z ∗ ls(Z, nil). If we then strip the existential (as we can do when
on left of `) we can consider a different abduction question

x 7→Z ∗ ls(Z, nil)∗?? ` x 7→X ∗ true

which can now be solved easily as Z = X ∧ emp.

Because the literal Algorithm 4 does not have partial concretization, it cannot
find a consistent precondition for a statement x := [y] that follows a procedure
that generates a linked list of indeterminate length, or of a run of the algorithm
that starts with x 6= nil∧ ls(x, nil) as the seed state. However, if we insert some
concretization after line 8 of the algorithm, this example can easily be dealt
with. Such concretization is implemented in Abductor and, for the primitive
statements, follows the detailed description in [Calcagno et al. 2007], where we
refer for further information.

(2) Disjunctions. We have assumed in describing the algorithm that Abduction
and Frame Inference each return at most one formula, in which case L and M
would be disjunctions. The systematic abductive procedure from Section 3.4
in fact would return such a disjunction, and in frame inference it can be useful
to perform some case analysis, such as in the question

ls(x, y) ∗ y 7→0 ` x 7→− ∗ ??

where we could obtain

(x 6=y ∧ y 7→0 ∗ true) ∨ (x=y ∧ emp)

as a solution. The issue of whether we let L or M contain multiple answers is a
pragmatic question, but is not theoretically difficult or problematic. Essentially,
this is because of the validity of a disjunctive frame rule

{P} a {∨k∈KQk} H ∗
∨
i∈I Ai ` P ∗

∨
j∈J Fj

{
∨
i∈I H ∗Ai} a {

∨
j∈J,k∈K Qk ∗ Fj}

which is logically equivalent to the ordinary frame rule, using the fact that the
separating conjunction ∗ distributes over disjunction:

P ∗
∨
i∈I

Qi =
∨
i∈I

P ∗Qi.

The Abductor tool allows some extra disjunctions of this form, especially
when it comes to using partial concretization in conjunction with framing.
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AbduceAndAdapt(∆, P,Q, ~X) =

if BiAbd(∆, P ) = (M,L) 6= fail and Rename(∆,M, P,Q, ~X) = (~e, ~Y ,M0) 6= fail then

return (M0, L, ~e, ~Y )

else
return fail

end if

Rename(∆,M, P,Q, ~X) =

Let ~Y be FreeLVar(P,Q);

Pick ~e disjoint from ~Y such that ∆ ∗M ` ~e=~Y ,
but if cannot pick such ~e, return fail;

Pick M0 disjoint from ~Y , ~X and program variables such that

∆ ∗M0 ` ∆ ∗M [~e/~Y ],
but if cannot pick such M0, return fail;

return (~e, ~Y ,M0)

Fig. 4. Adaptation in the presence of Abduction

4.2.3 Bi-Abductive Analysis of Procedure Calls. We describe in detail how pro-
cedure calls are interpreted in PreGen. This involves filling in the step

AbduceAndAdapt(∆, P ′,Q′, ~X) = (M,L, ~e′, ~Y ) 6= fail

at line 13 in Algorithm 4. This finds missing and leftover heaps M and L, and
instantiations of variables.

Conceptually, our work amounts to applying the bi-abductive frame rule

{A}C{B} BiAbd(P,A) = (M,L)

{P ∗M}C{B ∗ L}
Frame Rule (Bi-Abductive Analysis Version)

together with several considerations about disjunctions and variable renaming.
The variable issues arise from the need to adapt a spec at a procedure-call site,

by instantiating procedure parameters and logical variables in a specification. For
example, given a spec

{x7→X ∗ y 7→Y }swap(x, y){ret=nil ∧ x 7→Y ∗ y 7→X}.

we could consider a call with pre-state

{z 7→7 ∗ w 7→11}call swap(z, w){???}

and the task of adaptation is to find the instantiation x := z, y := w,X := 7, Y :=
11 which allows us to infer z 7→11 ∗ w 7→7 as the post.

The issue of adaptation has been well studied in Hoare logic [Hoare 1971; Cook
1978; Kleymann 1999]. Our treatment here has two additions. First, and most
importantly, we will perform adaptation of the missing anti-frame M . Adaptation
will attempt to express the anti-frame in terms of logical variables that could exist
at procedure precondition time, instead of in terms of program variables at a call
site. Second, we will be using abduction to instantiate logical variables, as well as
to find missing heap portions.

The need to express the anti-frame in terms of quantities existing in the pre-state
was already illustrated in the free list example from Section 2.4.
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The definition of the AbduceAndAdapt procedure is in Figure 4. It attempts to do
bi-abduction using the procedure from Algorithm 3. In case bi-abduction succeeds,
the next step massages the anti-frame and finds instantiations of parameters by
a call to the Rename subroutine. Rename performs essential but intricate trickery
with variables, as is usual in Hoare logic treatments of procedures. Generally, the
anti-frame M0 that it finds will be expressed in terms of logical variables that are
fresh or free in ∆. This is to ensure that it is independent of program variables
that might be modified between the start of a procedure and the point of discovery
of M0, allowing it to be used later as a precondition. The vectors ~e and ~Y tell us
how to instantiate logical variables in the specification, as discussed in the swap

example at the beginning of this subsection.
While technical in nature, properly dealing with the issues tackled by Rename

is essential for the precision of specification discovery. Many procedures will have
logical variables in their specifications, and imprecise treatment of them would lead
to an unacceptably imprecise analysis.

Example 4.7. We give a description of the abstract semantics of v := swap(x, y)
with

pre
def
= (x=X ∧ y=Y ∧X 7→Z), curr

def
= (y=Y ∧ x 7→y ∗ z 7→0)

using the specification of swap given earlier in this section. The semantics first
invokes BiAbd( y=Y ∧x 7→y ∗ z 7→0, x 7→X ′ ∗ y 7→Y ′ ) and infers M and L:

M
def
= (X ′=y ∧ Y ′=W ∧ y 7→W ), L

def
= z 7→0.

From this output, the analysis computes the three necessary elements for analyzing
the call v:=swap(x, y), which are a leftover frame z 7→0, a missing anti-frame y 7→W ,
and the instantiation X ′=y ∧Y ′=W of logical variables X ′, Y ′ in the spec of swap.

Rename then computes (~e′, ~Y ,M0), where M0
def
= (Y 7→W ) is expressed in terms of

existing logical variable Y and fresh W , ~e′
def
= (y,W ) and ~Y ′

def
= (X ′, Y ′). These

elements form the result of analyzing the call. The precondition pre is updated by
∗-conjoining the missing anti-frame Y 7→W :

pre ∗ Y 7→W ⇐⇒ x=X ∧ y=Y ∧X 7→Z ∗ Y 7→W.

The current heap curr is mutated according to the instantiated spec of swap with
X ′=y ∧ Y ′=W and the leftover frame z 7→0, and becomes

v=0 ∧ x 7→W ∗ y 7→Z ∗ z 7→0.

Thus, the result of v := swap(x, y) on (`, pre, post) is the singleton set

{ (`′, x=X ∧ y=Y ∧X 7→Z ∗Y 7→W, v=0∧x 7→W ∗ y 7→Z ∗ z 7→0) }.2

Example 4.8. This is an example of when the attempt to rename an abduced
assertion in terms of quantities available at the precondition is not possible.

1 void cannot_verify(int x) {

2 int y = f(x);

3 g(y); // Abduced: y!=0, but cannot express at pre-state

4 }

5
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6 int f(int x){//SUMMARY ONLY

7 // Given Pre: emp

8 } // Given Post: emp

9

10 int g(int x){//SUMMARY ONLY

11 // Given Pre: x!=0

12 } // Given Post: emp

The procedure cannot verify here calls other procedures f and g. We are given
specs for f and g, but not their code. Procedure f has a spec which is non-committal
about the value of f(x); logically, it can be any integer, so that the spec views f as
essentially a non-deterministic selection of integers. Procedure g expects an integer
argument that is non-zero.

At line 3 when we call g, we will not know the value of y. Abduction will then tell
us that we should have y!=0. However, it is not possible to express the assumption
y!=0 at line 3 in terms of the value X of x at the initial state: there is no assertion
at the pre-state which implies that y!=0 at line 3.

Note that it might or might not be that the case that the code of f (which we
are not given) in this example is non-deterministic. If f is, say, a memory-safe
function that is difficult to analyze for full correctness (it might involve hashing or
cryptography), then a program analysis will treat it as if it was nondeterministic.

There is a similarity between this example and Example 4.6, where we also en-
countered an assertion that could not be pushed back to the pre-state. But there
we had a get-out clause, falling back on ‘assume as assert’, where here the failure
to re-express the assertion leads to a failed verification.

4.2.4 Bi-Abduction and Footprints. We said earlier that our program analysis
would ‘shoot for’ footprints, descriptions of the cells used by a program. We give
a theoretical account of some issues surrounding this idea. This section may be
omitted without loss of continuity.

There is little we can say about entire programs because, as mentioned earlier, an
abduced precondition got from a proof attempt that follows one path in a program
is not necessarily relevant to other paths (though we heuristically hope that it will
be). So we concentrate on sequential compositions of two actions in this subsection,
ignoring parameters, to focus on the essence of the analysis of paths.

Intuitively, the safe states of a command C are those states on which C will not
cause a memory error (such as dereferencing a dangling pointer), and the footprint
consists of the minimal such states. To describe footprints logically we will call
upon the concept of a precise predicate, which is one that, for any state, there is at
most one substate (think of it as the ‘accessed cells’) beneath it that satisfies the
predicate.

Definition 4.9 [Precise Predicate]. A predicate P is precise if, for every s, h
there is at most one hf ⊆ h where s, hf |= P .

Definition 4.10 [Safe States and Footprints]. Let C be a sequence of actions,
where spec(α) = {Pα}α{Qα} and each Pα is precise.

(1) The safe states safe(C) are defined by induction as follows:

Journal of the ACM, Vol. V, No. N, December 2011.



50 · Compositional Shape Analysis by means of Bi-Abduction

(a) safe(α)
def
= Pα ∗ true.

(b) safe(α;C)
def
= Pα ∗ (Qα —∗ (safe(C))).

(2) The footprint of C, written foot(C), is defined as

foot(C)
def
= min(safe(C)).

We have defined the safe states of sequential composition using a particular for-
mula, rather than referring to an independent semantics of programs as state trans-
formers. However, this definition can be seen to agree with ‘the set of states on
which C1;C2 is not >’, using the semantic framework of abstract separation logic
[Calcagno et al. 2007].9

Recall from Lemma 3.13 that the best solution to the abduction question P ∗
??? |= Q is given by min(P —∗ Q). The next theorem shows that the canonical spec
of a sequential composition of two actions describes the footprint, if we assume that
the bi-abductive theorem prover computes the best antiframe.

Theorem 4.11 [Deriving Footprint]. Suppose spec(α) = {Pα}α{Qα} and each
Pα is precise, and C is a sequence of actions. Suppose further that each call to the bi-
abductive prover in the definition of the canonical spec spec(C) delivers the best an-
tiframe, and let PC be the precondition of the canonical spec. Then foot(C) = PC .

Proof. The case of a single action is trivial.
For a;C we claim that

foot(α;C) = Pα ∗M

where M is the best solution to the abduction question Qα ∗ ??? |= PC ∗ true. If we
can establish this, we are done.

By induction, we know that foot(C) = PC , and therefore that safe(C) = PC∗true.
By Theorem 3.13 we know that M ≡ min(Qα —∗ (PC ∗ true)). We can then derive

foot(α;C) = min(Pα ∗ (Qα —∗ (PC ∗ true)))

= min(Pα) ∗min(Qα —∗ (PC ∗ true))

= Pα ∗M

where the last two steps follow from precision of Pα.

This result gives some indication that using bi-abduction to analyze paths can
lead to accurate results. Further theoretical work in this direction could prove
useful in future work.

4.3 Pre/Post Synthesis: Revising our Work after Induction and Abduction

Now that we have a way to generate candidate preconditions, we can generate
pre/post specs for a code fragment (and specs of procedures that it calls) by em-
ploying a standard, non-abductive forwards analysis. The InferSpecs algorithm,
Algorithm 5, does this. It first uses PreGen to generate a number of candidate
preconditions. Then, for each candidate precondition, it uses a forwards analysis

9We remark that this correspondence breaks down for some imprecise assertions. This is not
a problem because here footprints should be precise, and so we are justified in the precision

requirement.
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Algorithm 5 InferSpecs Algorithm

Input: A set of symbolic heaps, Seed
Output: A set of pre/post pairs

InferSpecs(Seed) =

Specs := ∅
Candidate Preconditions := PreGen(Seed)
for all P ∈ Candidate Preconditions do
if PostGen(P ) = Q 6= fail then

Specs := Specs ∪ (P,Q)
end if

end for
return Specs

PostGen to attempt to generate postconditions. In cases where the forwards anal-
ysis fails to find a proof, the candidate precondition is filtered from the output. (the
PostGen(P ) = Q 6= fail check). Here is an example showing the need for filtering.

Example 4.12. When PreGen is run on the following program

void nondet-example(struct node *x,*y) {

if (nondet()) {x->tl = 0;} else {y->tl = 0;} }

where nondet() is a boolean whose value we do not know at precondition time (e.g.,
it can be generated by malloc()). The abduction question asked when PreGen
encounters statement x→ tl = 0 is x = X ∧ y = Y ∗?? |= x 7→ – ∗ true, and this
results in x 7→ – being generated as a precondition. Similarly, y→ tl = 0 leads to
precondition y 7→ –. In the end, PreGen discovers two preconditions, x 7→ – and
y 7→ –, neither of which is safe.

When PostGen is run on these preconditions it returns fail for each, and this
causes InferSpecs to filter both of them out. The failure in PostGen occurs
at line 12 of the algorithm. When x 7→ – is the beginning preconditon, the failure
happens when analyzing the statement y→ tl = 0 in nondet-example, the reason
being that x 7→ – does not entail y 7→ – ∗ true. The reason for the failure for the y 7→ –
pecondition is the mirror image.

What is happening here is that an abduced precondition can rule out an error for
one path, but it might not be enough to rule out errors on other paths.10

Another example concerns abstraction rather than path sensitivity.

Example 4.13. When PreGen is run on the following program

void needs_even_list(struct node *x) {

while (x!=0) { x=x->tl; x=x->tl; } }

10This is similar to what happens in abstraction refinement, where synthesizing a new predicate

from a path might say nothing about other paths.
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using the abstract domain from Section 3.1, it generates two preconditions,

x=0 ∧ emp and x 7→X ∗ ls(X, 0).

The left-hand precondition is safe, where the right-hand precondition is unsafe and
filtered-out by InferSpecs.

The problem in this example is that the program fools the abstraction function
abstract# from Section 3.1.3. When PreGen uses abstract# to generalize the pre-
condition, it forgets about whether the list under consideration was of odd or even
length, where this program is safe for only even-length lists given as input: that is,
abstract# introduces a list segment predicate into the precondition, and the predi-
cate we are using is oblivious to the distinction between oddness and evenness.

We could address the problem just shown for needs even list() by using a
different abstract domain than in Section 3.1.3, a domain that distinguishes lists
of odd and even lengths. But, that fix would be scuppered by other examples: no
matter what abstract domain we consider, there will always be a program that fools
the analysis, by general computability considerations.

Given that PreGen discovers some unsafe preconditions, there are several ways
to react. One would be to record the postconditions as well as preconditions of
PreGen and place it in an iterative loop, that calls the algorithm again on gener-
ated preconditions, until abduction always returns emp (so that we have a proof,
modulo several other considerations). Iteration would be a good way to deal with
nondet-example, were we could discover the safe precondition x 7→− ∗ y 7→− by run-
ning PreGen twice. While iteration is a fundamentally interesting possibility, we
would eventually want to run a standard forwards analysis because PreGen makes
several choices (assume-as-assert, trying all procedure specs) which are oriented to
precondition generation rather than accurate postcondition generation.

Thus, to infer pre/post specs we also employ the PostGen algorithm(Algorithm
6), which is itself a standard forwards analysis algorithm. One pertinent point is the
exit from the for loop at line 19; as soon as we find one spec that matches the current
abstract state, we do not try other specs. Another point is the return statement in
line 23: in case no match is found for a procedure call, we know that our proof at-
tempt has failed and we give up. Finally, we have a procedure FrameAndAdapt (line
12) which must apply the frame rule of separation logic, the rule of consequence,
and variable adaptation. It does less work that the corresponding AbduceAndAdapt
used in PreGen, and we omit its formal definition.

Again, PostGen and InferSpecs are idealized algoritms, and there are prag-
matic variants of them. One variant would be to have InferSpecs call PreGen
several times before PostGen. Another would be to use a partial join operator in
various places, in order to speed up the analysis [Yang et al. 2008]. You could use
join on the current heap component of PostGen to keep the number of abstract
states from growing too rapidly; the same can in fact be done for PreGen. An-
other is to use join on the preconditions in InferSpecs, after PreGen is called
and before PostGen: thinking of the output of InferSpecs as a procedure sum-
mary, for use subsequently in an analysis of a larger system, this is an attempt
to shrink the summary. Mixed strategies are also possible: attempt to use join in
creating a summary, and if that does not work, fall back on the unjoined candidate
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Algorithm 6 Standard Forwards Analysis Algorithm

Input: A symbolic heap, seed
Output: A set of symbolic heaps, the postconditions, or fail

PostGen(seed) =

1. ws := {(start, seed)}; reach := ∅;
2. while ws 6= ∅ do
3. choose (`, curr) ∈ ws and remove it from ws
4. if (`, curr) /∈ reach then reach := reach ∪ {(`, curr)};
5. for all out-edges (`, x := f(~e), `′) from ` in T do
6.

7. Let ∃ ~X.∆ be curr; // strip existentials, prepare to process specs
8. found good spec := false
9. // Loop in order to process specs of f

10. for all {P}f(~x){Q} ∈ summary(f) do
11. P ′ := P [~e/~x]; Q′ := Q[~e/~x]; // Instantiate Params

12. if FrameAndAdapt(∆, P ′,Q′) = (L, ~e′, ~Y ) 6= fail then
13. //Loop over post-states
14. for all Q ∈ Q′ do
15. Pick a fresh Z
16. newpost := abstract#(∃ ~XZ. (Q ∗ L)[Z/x][x/ret, ~e′/~Y ])
17. ws := ws ∪ {(`′, newpost)}
18. end for
19. found good spec := true; goto line 22

20. end if
21. end for
22. if not found good spec then
23. return fail
24. end if
25. end for
26. end while
27. return {post | (finish, post) ∈ reach}

preconditions. The Abductor tool implements a number of these possibilities (as
usual, there is no single best configuration amongst these options).

4.3.1 Recipe for Compositional Analysis. A compositional method of program
analysis is an immediate consequence of the ability to generate pre/post specs for
a program fragment without relying on the program’s calling context.

Suppose, first, that the program under consideration has no recursion, and can
be represented accurately in the model of programs of this section. We are talking
about sequential, possibly non-deterministic programs, without concurrency and
without code pointers. Then, the compositional analysis algorithm proceeds as
follows, given a codebase (even an incomplete codebase without a ‘main’ program).
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(1) Start at the leaves of the call-tree, and compute pre/post specs for the proce-
dures there.

(2) Go up in the tree computing pre/post specs for procedures using specs previ-
ously obtained for procedures lower in the call tree.

For programs with recursion an alteration to this scheme is necessary, where one
groups collections of mutually recursive procedures together. This is possible using
a bottom-up version of the classic RHS interprocedural analysis algorithm.

There is nothing novel about the general points just made, and we avoid a formal
description of them here (the POPL version of this paper [Calcagno et al. 2009]
contains a partial formalization). So we take it as given in the next section that
a compositional bottom-up program analysis follows at once from the ideas in this
section.

4.4 The Soundness Property

When applied to an entire codebase, our analysis can generate a collection of pre/-
post specs for each procedure. In this section we describe the soundness property
that the analysis satisfies. The purpose is to make clear what is computed by our
analysis, rather than to take an extended detour into program semantics, and this
section is therefore kept brief.

We think of a program according to Definition 4.1 as a representation of an
individual procedure, where the free variables are the parameters. Accordingly, we
expect a program to determine a state transformation which, when given values for
the parameters, produces a nondeterministic function that takes an initial heap to
a final heap, or an indication > of potential memory fault.

ConcreteProcs
def
= Stack→ Heap→ P(Heap)>

Note that, by this definition, ConcreteProcs ordered pointwise is a complete lattice,
and we will use its meet operation

d
.

For example, the meaning of a program that deletes all the elements in a linked
list pointed to by x will take a heap h and return > if x does not point to a
nil-terminated list in h, and otherwise it will return {h′} where h′ is the heap
obtained from h by deleting this linked list. The use of a set of output heaps rather
than a single one allows from nondeterminism (e.g., malloc nondeterministically
returns an unused cell). The reason for putting fault on the top is related to partial
correctness (safety but not liveness), and is explained further in [Calcagno et al.
2007].

In whole-program analysis, one often mimics the function in a concrete semantics
with a function between abstract states, and one gets a typical inequational diagram
saying that if the abstract transfer function maps one abstract state to another, then
a certain simulation relation holds when we concretize abstract values. But, our
analysis over-approximates the entire functional meaning of a procedure, without
explicitly using a function on the entire abstract domain (such a function is just
too big). This is what is sometimes referred to as a relational analysis [Cousot
and Cousot 2002]. The abstract domain AbstractProcs avoids the function space,
and instead follows the procedure summary idea, where an element of the abstract
domain is a collection of pre/post specs. Although in the worst case this collection
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could be large, the intention is that it can often be very small in practice, and in
any case for the domain to allow for small specifications rather than only entire
tables involving the entire abstract domain.

AbstractProcs
def
= P(Specs)

Specs
def
= AbstractStates× P(AbstractStates)

To show the sense in which an element of the abstract domain over-approximates
an entire procedure meaning we connect the abstract and concrete domains with a
function

γ : AbstractProcs −→ ConcreteProcs

We first define a subsidiary function

µ : Specs −→ ConcreteProcs

and then use it to define γ.
So, suppose we have a single spec (p, (q1, ..., qn)) ∈ Specs. As preparation for

this definition of µ, if s is a stack and ~v is an assignment of values to (all) logical
variables, then s+~v is s altered so that the logical variables are updated according
to ~v. We will use a meet indexed by assignments ~v to model the idea that logical
variables are universally quantified outside of Hoare triples. The definition is

µ(p, (q1, ..., qn))s h
def
=

d
~v proj

(d{
(∪i[[qi]]) ∗ {(s+ ~v, h1)} | h = h0 • h1 and (s+ ~v, h0) ∈ [[p]]

})
where proj : P(Stack×Heap)> → P(Heap)> is the evident projection function that
picks out the heap, and [[p]], [[qi]] ∈ P(Stack × Heap) are denotations of assertions.
In this formula the expression (∪i[[qi]]) ∗ {(s, h1)} is like a postcondition using a
disjunction and a singleton assertion {(s, h1)} as the frame using the frame rule.

We then define γ again using the meet in ConcreteProcs:

γ(D)
def
=

l
{µd | d ∈ D}.

In caseD is empty, this is the greatest element> (= λs.>) of the lattice ConcreteProcs.
Thus, our analysis always finds an over-approximation. When it to find a pre/post
spec for a procedure the over-approximation is, for trivial reasons, >.

With this connection between the abstract and concrete domains we are in a
position to state the soundness property. To do this we assume that a program
Prog determines a function

[[Prog]] ∈ ConcreteProcs

which works by assuming a sequential runtime model and the greatest state trans-
formation which satisfies the Hoare triples associated with each edge [Calcagno
et al. 2007]11

11It makes sense to use the greatest such state transformer, as it over-approximates any functions

satisfying the specs and can be seen as what the specs denote.

Journal of the ACM, Vol. V, No. N, December 2011.



56 · Compositional Shape Analysis by means of Bi-Abduction

Theorem 4.14 Soundness of Program Analysis. Suppose InferSpecs(Seed)
terminates and returns D, where Seed = x1 = X1∧· · ·xn = Xn∧emp and x1, ..., xn
contains all the free variables in the program prog under consideration.

(1 ) (Soundness stated in Abstract Interpretation style)

γD w [[Prog]]

(2 ) (Soundness stated in Hoare Logic style)
If (P, {Q1, ..., Qk}) ∈ D then

{P}prog{Q1 ∨ · · · ∨Qk}

is a true Hoare triple according to the tight (fault-avoiding) interpretation of
triples in separation logic (cf. [Ishtiaq and O’Hearn 2001; Reynolds ; Calcagno
et al. 2007]).

We have stated this theorem in a somewhat informal manner. Filling in the details
mainly involves an exercise in the semantics of programs used in [Calcagno et al.
2007]. Once this is done, the argument for soundness used that PostGen works
by using sound proof rules. For instance, the treatment of each procedure call by
the analysis can be justified by a valid Hoare triple for the call, and the worklist
algorithm used in the analysis can be explained by the disjunction rule, the rule for
loops and other rules for compound commands in Hoare logic.

5. CASE STUDIES

Abductor is a prototype program analysis tool we have developed implementing
the ideas in the previous sections. In this section we report on case studies applying
Abductor.

5.1 Small Examples: Simple Linked-List Programs

We first consider examples which probe the question of the quality of the specifi-
cations inferred by the compositional algorithm. Our intention here is to test the
algorithm itself, and not the underlying abstract domain. For this we concentrate
on simple linked-list programs for which accurate abstract domains are known for
computing postconditions, if the human supplies a precondition. The purpose of
our work here is to see whether good preconditions can be inferred by our PreGen
algorithm, in some cases, where an abstract domain is known to work well (for
forwards analysis).

Table I shows the results of applying the Abductor analysis to a set of typical
list programs. The Candidate Pre column reports the number of the (initially) com-
puted preconditions. Amongst all these candidates, some can be unsafe and there
can be redundancy in that one can imply another. The Unsafe Pre column indicates
the preconditions filtered out when we re-execute the analysis. In the Discovered
Precondition column we have dropped the redundant cases and used implication to
obtain a compact representation that could be displayed in the table. For the same
program, the table shows different preconditions on different lines. For all tests
except one (merge.c, discussed below) our analysis produced a precondition from
which the program can run safely, without generating a memory fault, obtaining a
true Hoare triple. We comment on a few representative examples.
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Program
Candidate
Pre

Uns
Pre

Discovered Preconditions

append.c 4 0 ls(x,0)

append-dispose.c 17 0 ls(x,0)*ls(y,0)

copy.c 4 0 ls(c,0)

create.c 1 0 emp

del-doublestar.c 10 0
listP7→x *ls(x ,x1 ) *x1 7→elmt:value,
listP7→x *ls(x ,0)

del-all.c 4 0 ls(c,0)

del-all-circular.c 3 0 c7→c *ls(c ,c)

del-lseg.c 48 0

z6=0∧ls(c,z)*ls(z,0),
z6=w∧ls(c,z)*ls(z,w)*w 7→0,

z6=w∧w 6=0∧ls(c,z)*ls(z,w)*w 7→w ,

z6=c∧c7→0,
z6=c∧z6=c ∧c7→c *ls(c ,0),

c=0∧emp

find.c 12 0

ls(c,b)*b7→0,

b 6=0∧ls(c,b)*b7→b ,
b6=c∧b6=c ∧c7→c *lseg(c ,0),

b6=c∧c7→0,

c=0∧emp

insert.c 10 0

e16=0∧e26=0∧c 6=d ∧
c7→c *ls(c ,d )*d7→dta:e3,

e16=0∧e26=0∧c 6=0∧c7→c *ls(c ,0),

e16=0∧c7→0,
e16=0∧e2=0∧c7→c *c 7→-,

e1=0∧c7→-,

c=0∧emp
merge.c 30 30 —

reverse.c 4 0 ls(c,0)

traverse-circ.c 3 0 c7→c *ls(c ,c)

Table I. Running Abductor on simple list programs.

del-doublestar uses the usual C trick of double indirection to avoid unnecessary
checking for the first element, when deleting an element from a list.

void del-doublestar(nodeT **listP, elementT value)

{ nodeT *currP, *prevP;

prevP=0;

for (currP=*listP; currP!=0; prevP=currP, currP=currP->next) {

if (currP->elmt==value) { /* Found it. */

if (prevP==0) *listP=currP->next;

else prevP->next=currP->next;

free(currP);

} } }

The first discovered precondition is

listP|->x_ * ls(x_,x1_) * x1_|->elmt:value

This shows the cells that are accessed when the element being searched for happens
to be in the list. Note that it does not record list items which might follow the
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value: they are not accessed.12 A postcondition for this precondition has just a list
segment running to x1 :

listP|->x_ * ls(x_,x1_)

The other precondition

listP|->x_ * ls(x_,0)

corresponds to when the element being searched for is not in the list.
The algorithm fails to discover a circular list in the precondition

listP|->x_ * ls(x_,x_)

The program infinitely loops on this circular input, but does not commit a memory
safety violation, so that would be a safe precondition. This is a further instance of
the phenomenon highlighted in Example 4.5, where the analysis tends to exclude
preconditions that lead to guaranteed divergence.

In contrast, for the procedure that explicitly traverses a circular list

void traverse-circ(struct node *c) {

struct node *h;

h=c; c=c->tl;

while (c!=h) { c=c->tl;}

}

the analysis does find a circular list as the pre. An important point is that the
boolean guard of the loop (c!=h) here essentially covers the alias check that is
ignored by our abduction algorithm. Before exiting the loop, the algorithm will
have discovered as precondition a list segment from h to (the current) c. At this
point, the assume-as-assert interpretation of conditionals illustrated in Example 4.4,
when applied to the condition c=h at loop exit, turns the list segment into a circular
list.

Further issues can be seen by contrasting append.c and append-dispose.c.
The former is the typical algorithm for appending two lists x and y. The computed
precondition is

ls(x_,0)

Again, notice that nothing reachable from y is included, as the appended list is not
traversed by the algorithm: it just swings a pointer from the end of the first list.
However, when we post-compose appending with code to delete all elements in the
acyclic list rooted at x, which is what append-dispose.c does, then the footprint
requires an acyclic list from y as well

ls(x,0) * ls(y,0)

The only program for which we failed to find a safe precondition was merge.c,
the usual program to merge two sorted lists: instead, Abductor returned all

12This point could be relevant to interprocedural analysis, where [Rinetzky et al. 2005; Gotsman
et al. 2006] pass a useful but coarse over-approximation of the footprint to a procedure, consisting

of all abstract nodes reachable from certain roots.
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unsafe candidates (which were pruned at re-execution time). To see the reason of
this failure, consider the case that merge.c traverses only one of the two input
sorted lists until the end. This case happens when the other partially-traversed
list contains values larger than those stored in the full-traversed list. Abductor
correctly finds that only one list is traversed completely, but it does not know that
this partial traversal is due to the values stored in the list. As a result, it freely
generalises its finding using the abstraction, and suggests candidate preconditions
which say that there are two disjoint lists, one terminating with null but the other
ending with any values. These candidate do not guarantee the memory safety of
merge.c, hence being discarded at re-execution time.

The few number of unsafe preconditions encountered indicates that the inferences
performed to generate preconditions, while unsound in general, can nonetheless be
reasonably effective, at least in certain circumstances. Of course, this is a highly
controlled case study, and the programs are extremely simple. But, it is significant
that only a few years ago performing a forwards analysis with a user-supplied
precondition for such programs was considered enough of a research contribution
to merit publication [Balaban et al. 2005; Manevich et al. 2005; Bouajjani et al.
2005; Distefano et al. 2006]; the work in this subsection represents an advance in
the state of the art, in that it shows that such preconditions can often be inferred.

5.2 Medium Example: IEEE (1394) Firewire Device Driver.

We do not mean to imply that the results of Abductor are always as rosy as the
picture painted in the application to simple list programs. We ran Abductor as
well on the IEEE 1394 (firewire) Device Driver for Windows, code of around 10K
LOC containing 121 procedures, and there our results were more mixed. The driver
was analyzed in a top-down fashion in our previous work on SpaceInvader [Yang
et al. 2008]. SpaceInvader implements a whole-program analysis which, after
supplying environment code which nondeterministically called the dispatch routines
with appropriately-initialized data structures, proved the absence of pointer-safety
faults in a version of the driver where the faults our analysis had found were fixed.
We applied Abductor to the same driver, but without the environment code.

Abductor was able to find consistent specifications (where the precondition is
not inconsistent) for all 121 of the procedures. Note that many of these procedures
have to ‘fit together’ with one another. If we found a completely imprecise spec
of one procedure, then this might be inconsistent with another procedure’s calling
expectations. Put another way, our analysis has found proofs of the Hoare triples for
higher-level procedures, which would have been impossible if the specs discovered
for sub-procedures were too imprecise for the relevant call sites.

More anecdotally, looking at top-level procedures we find that the specifications
describe complex, nested structures (not necessarily weakest liberal preconditions),
which could only be found if the analysis was tracking traversals of these structures
with some degree of precision. To take one example, the analysis of top-level proce-
dure t1394Diag Pnp discovers preconditions with several circular linked lists, some
of which have nested acyclic sub-lists. This is as expected from [Yang et al. 2008].
But, some of the preconditions are unexpected. Usually, the firewire driver collabo-
rates with other lower-level drivers, and this collaboration involves the dereference
of certain fields of these lower-level drivers. So, if a human (as in our previous work)

Journal of the ACM, Vol. V, No. N, December 2011.



60 · Compositional Shape Analysis by means of Bi-Abduction

writes preconditions for the driver, he or she normally specifies that the collaborat-
ing lower-level drivers are allocated, because otherwise, the preconditions cannot
ensure pointer safety. What the bottom-up analysis finds is that these lower-level
drivers are not necessarily dereferenced; dereferencing depends on the values of pa-
rameters. The preconditions discovered by Abductor thus clarify this dependency
relation between the values of parameters and the dereference of lower-level drivers.

However, for one of the routines, t1394Diag PnpRemoveDevice, Abductor found
an ‘overly specific’ precondition which rules out many of the paths in the code. The
specification would not fit together with the environment code if we were to have
included it, and we cannot thereby claim that Abductor has verified the driver as
thoroughly as the top-down analysis. This kind of incompleteness is not completely
unexpected in compositional analyses, which do not have the benefit of the context
of a program to help the analysis along. As said above, the abstract domain used
in the experiments has been designed with a whole-program analysis in mind. It
might be that a more expressive abstract domain could assist the compositional
analysis to overcome these difficulties in synthesizing a more general precondition
for t1394Diag PnpRemoveDevice.

One might speculate that a compositional analysis technique could help the user
to formulate environment code when one seeks to ‘close the system’ in a verifi-
cation effort, without expecting that the automatic compositional method will be
sufficient to close the system in a satisfactory way, without human intervention, in
all circumstances.

5.3 Large Programs and Complete Open Source Projects.

In Table II we report case studies running Abductor on larger open source projects
(e.g. a complete Linux Kernel distribution). The purpose of these examples is not
to test precision: rather, they probe scalability and graceful imprecision. The case
studies were run on a machine with a 3.33GHz Intel Core i5 processor with 4GB
memory. The number of lines of C code (LOC) was measured by instrumenting
gcc so that only code actually compiled was counted. The table reports for each
test: the number of lines of code with unit one thousand (KLOC); the number
of procedures analyzed (Num. Procs); the number of procedures with at least
one consistent spec (Proven Procs); the percentage of procedures with at least one
consistent spec (Procs Coverage %); and the execution time in seconds (Time) with
one core.

Running with a timeout of one second for each procedure, we observed that only
a very low percentage of procedures timed out. More often our analysis failed to
find a nontrivial spec (a spec with a consistent precondition). The percentage of
procedures analyzed is somewhat encouraging, and might be improved by using
better base abstract domains or human intervention.

For the great majority of the procedures relatively simple specifications were
found, which did not involve linked list predicates. This is because a minority of
procedures actually traverse data structures. (The analysis did many times find
linked list structure, e.g., in procedure ap find linked module in Apache or in the
Cyrus imapd’s procedures freeentryatts and freeattvalues discussed below.)
The point, for analysis, is that by combining abduction and frame inference we
obtain specifications that (nearly) describe only the cells accessed by a procedure.
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Program KLOC Num. Proven Proven Time
Procs Procs %

Linux kernel 2.6.30 3032 143768 86268 60.0 9617.44
Gimp 2.4.6 705 16087 8624 53.6 8422.03
Gtk 2.18.9 511 18084 9657 53.4 5242.23
Emacs 23.2 252 3800 1630 42.9 1802.24
Glib 2.24.0 236 6293 3020 48.0 3240.81
Cyrus imapd 2.3.13 225 1654 1150 68.2 1131.72
OpenSSL 0.9.8g 224 4982 3353 67.3 1449.61
Bind 9.5.0 167 4384 1740 39.7 1196.47
Sendmail 8.14.3 108 820 430 52.4 405.39
Apache 2.2.8 102 2032 1066 52.5 557.48
Mailutils 1.2 94 2273 1533 67.4 753.91
OpenSSH 5.0 73 1329 594 44.7 217.81
Squid 3.1.4 26 419 281 67.1 107.85

Table II. Case Studies with Large Programs (timeout=1s).

This modularity means that linked lists do not have to be threaded throughout the
specifications of all procedures.

There is no deep reason for our scalability, except perhaps that we attempt to
discover small specs (hence reducing the number as well). We can easily employ
a timeout strategy because of compositionality: if one procedure times out, we
can still get results for others. Even more importantly, we can analyze each file
independently of others: we do not have to load the entire source program into
memory to analyze it, which would quickly overspill the RAM and cause the analysis
to thrash. Beside the experiments reported in Table II, we ran the analysis of Linux
in a 8 core machine, trying with both one core and 8 cores and we observed a 4x
speed-up. Compositionality gives a easy and natural way to exploit parallelism in
multi-core machines.

Our compositional algorithm is parametrized by the base abstract domain, and
so an instantiation of it will inherit any limitations of the base domain. For our
experiments we used the domain introduced in [Berdine et al. 2007]. Our symbolic
heaps have pure and spatial part; non pointer variables involve the pure part, and
for the pure part we have a simple domain with constants, equalities and inequali-
ties; better domains could be plugged in. We remark also that this domain does not
deal well with arrays and pointer arithmetic. These are treated as non-deterministic
operations that are imprecise but sound for the goal of proving pointer safety.

5.3.1 Focussing on the Cyrus imapd example. Currently, Abductor provides
little support for interpreting the data resulting from the analysis. Given this
current user support and the huge quantity of results we decided to look closely
only at the data related to Cyrus imapd.13 Here we briefly summarize the outcomes.
As indicated above consistent specifications were found for 68.2% of the procedures.

13We used cyrus-imapd-2.3.13 downloaded from http://cyrusimap.web.cmu.edu.
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Fig. 5. A specification automatically synthesized by Abductor for the procedure freeentryatts

of the Cyrus imapd example.
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Fig. 6. A specification for the procedure freeattvalues called by freeentryatts.

Among the discovered specifications, we observed that 18 procedures (i.e., 1% of
the total and 1.5% of the successfully analyzed procedures) reported preconditions
involving complex data structures (e.g., different kinds of nested and non-nested
lists). This indicates that a minority of procedures actually traverse data structures.

Figure 5 reports (in a pictorial form) one of the three (heap) specifications discov-
ered for the procedure freeentryatts. The precondition is given by the box on the
top labelled by ‘PRE1”. On the bottom there are two post-conditions labelled by
‘POST1” and ‘POST2”, respectively. The intuitive meaning is that when running
the procedure freeentryatts starting from a state satisfying PRE1, the proce-
dure does not commit any pointer errors, and if it terminates it will reach a state
satisfying either POST1 or POST2. A pre (or a post) displays a heap structure.
A small rectangle with a label denotes an allocated cell, a dashed small rectangle
stands for a possibly dangling pointer or nil. A long filled rectangle is a graphical
representation of a higher-order list predicate hls k φ e e introduced in Section 3.1.1.
The parameter k denoting whether the list is surely not empty or not is written at
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the top of the box (lsPE/lsNE). The parameter φ describing the internal structure
of the elements of the higher-order list is depicted by a large dashed box. Hence we
can observe that the footprint of freeentryatts consists of a non-circular singly
linked-list whose elements are struct with fields attvalues, next, and entry. The
field attvalues points to a list of struct with fields value, next, and attrib. In
other words, the footprint of freeentryatts consists of a nested non-circular singly
linked-list.

Figure 6 shows one specification of the function freeattvalues. It deallo-
cates the fields in the list pointed to by its formal parameter l. The procedure
freeentryatts calls freeattvalues(l->attvalues) asking to free the elements
of the inner list. Notice how the bottom-up analysis composes these specifica-
tions. In freeentryatts the elements of the inner list pointed to by attvalues

are deallocated by using (composing) the specification found for freeattvalues

which acts on a smaller footprint14. The field entry is instead deallocated directly
inside freeentryatts.

This relation between freeentryatts and freeattvalues illustrates, in mi-
crocosm, the modularizing effect of bi-abductive inference. The specification of
freeattvalues does not need to mention the enclosing list from freeentryatts,
because of the principle of local reasoning. In a similar way, if a procedure touches
only two or three cells, there will be no need to add any predicates describing entire
linked structures through its verification. In general, analysis of a procedure does
not need to be concerned with tracking an explicit description of the entire global
state of a system, which would be prohibitively expensive.

Only 4 procedures timed out (that is 0.4% of the total). Among the procedures
for which the analysis was unable to synthesize specifications, 84 potential memory
leaks were reported. A potential leak is reported when a spatial predicate in a sym-
bolic heap is not provably reachable from program variables. A quick inspection of
these possible errors revealed that 19 cases (22.6%) were clearly real leaks, whereas
26 cases (30.9%) were false bugs. For the remaining 39 cases (46.4%), it was not
easy to establish whether or not they were genuine bugs. This would require a
good knowledge of the source code and/or better user support in reporting possible
errors, a feature that is currently lacking in Abductor. Nevertheless, given that
Abductor was not designed as a bug catcher, but rather as a proof tool, we found
the unveiling of several real bugs a pleasant surprising feature of our technology.

In this context, we add a final consideration. We emphasize that Abductor
computes a genuine over-approximation (with respect to an idealized model) in
the sense of abstract interpretation [Cousot and Cousot 1977]. Thus, in contrast
to several unsound bug-catching tools that can detect some heap errors, when Ab-
ductor finds a specification it has constructed a proof which shows that no pointer
errors can occur (when the precondition is satisfied). For instance, from Figure 5

14The reader may wonder why in the postcondition of freeattvalues we have a non-empty lists

case whereas in the freeentryatts we have a case for possibly-empty lists. The reason can
be explained as follows. Using the two postconditions of freeattvalues (one describing the

case for non-empty lists and the other for the empty list) will result in two postconditions for

freeentryatts in the case of lists. However, these two cases are then joined together [Yang
et al. 2008] producing a single post-condition for possibly empty lists in the freeentryatts’s

postconditions.
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we can infer that freeentryatts does not leak memory, does not dereference a
null/dangling pointer, and does not double-free memory.

5.3.2 Caveats. The work in this section applies a sound algorithm (Infer-
Specs) to large code, but it does so in a way that sometimes goes beyond the
assumptions of its model, or by using a model that does not completely match
C’s runtime in all its detail. A first limitation in this respect is that the analysis
ignores concurrency.15 Based on concurrent separation logic [O’Hearn 2007], one
might expect that the results of a sequential analysis could in some circumstances
be sound in a concurrent model [Berdine et al. 2005a], but we do not wish to make
strong claims in this regard. Second we have treated unknown library procedures
as non-deterministic assignments without side effects. In many cases this is a sound
interpretation, for the purposes of pointer safety. However, we simply did not have
the time to manually inspect all of the C libraries to provide specs for them. (Of
course, we would be interested in combining our work with techniques designed to
deal with libraries in binary [Gopan and Reps 2007].) Third, our method does not
deal well with code pointers, a longstanding open problem. We have treated code
pointers as if they are unknown procedures. This, in effect, assumes that a code
pointer is part of an ‘object’ with a different footprint than the current procedure.
One often sees this idiom, for example in the relation between the Linux kernel and
device drivers. Our position also calls to mind the hypothetical frame rule from
[O’Hearn et al. 2009]. However, significant further work is needed in this direction.
Fourth, the abstract domain used in our case studies does not treat arrays and
other non-pointer values precisely. Our symbolic heaps have pure and spatial part:
non pointer variables involve the pure part, and for the pure part we have a simple
domain with constants, equalities and inequalities. Better domains for analyzing
non-pointer values could be plugged in in place of the particular domain used in
our case studies. A fifth caveat is that we apply InferSpecs to large projects on
a by-procedure basis by intercepting calls to gcc scheduled by a makefile for the
projects. This has the result of treating some procedures as unknown when they
needn’t be, and between-file cycles in the call graph are not detected.

We make these remarks to be clear about limitations of our implementation.
Some of these ‘problems’ are fundamental (e.g., concurrency), and others are straight-
forward (e.g., makefile). But they are all independent of the scientific contributions
of this paper, which concern bi-abduction and automation of program analyses:
the case studies in this section were done to illustrate the automation, scalability
and graceful imprecision, but the above applications on the large code bases have
admitted limitations as regards accuracy. Of course, the caveats listed and others
are ones that should be addressed in mature industrial-strength tools, going beyond
a scientific prototype like reported here.

5.4 Discussion

At the beginning of the paper we made the case for examining a compositional shape
analysis. We do not claim that compositional analyses are fundamentally superior

15However, initial results have shown that the compositional analysis may be used to obtain new

methods in shape analysis for concurrency [Calcagno et al. 2009].
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to non-compositional ones. They present several interesting properties, particularly
as regards scalability, automation and the ability to deal with incomplete programs.
However, they can have limitations as regards precision, as some of our case studies
confirmed. It is reasonable to envisage that, ultimately, effective and accurate
analysis of large software will be done by considering a mix of techniques. An
analysis might work compositionally most of the time, choosing where to employ
more precise and perhaps non-compositional methods. For instance, we might run
an analysis bottom-up, interpreting callees before callers, but then employ a top-
down narrowing phase afterwards to improve precision on certain needed parts
of the code. One could also use a compositional analysis in concert with other
techniques (e.g., interactive proof), to reduce the overall human effort.

6. RELATED WORK

As we mentioned in the Introduction, we are interested in accurate heap analyses
that can be used to prove pointer safety. We use the term ‘analysis’ to refer to
methods that discover loop invariants and pre- and postconditions, and confine our
attention to such verification methods in this section. Of course, our method might
be used in concert with static verifiers that use user-supplied annotations.

The kind of shape analysis done here is one that attempts to be accurate in the
presence of deep heap update, where a heap mutation is made some undetermined
length down a linked structure. The first such analysis was presented in the funda-
mental [Sagiv et al. 1998], and there have been many subsequent works in search
of ever better shape domains (e.g., [Podelski and Wies 2005; Bouajjani et al. 2006;
Lev-Ami et al. 2006; Magill et al. 2007; Manevich et al. 2007; Berdine et al. 2007;
Chang and Rival 2008]). Scalability is a significant problem for these precise anal-
yses. Several papers on deep update have reported whole-program analyses with
experimental results on programs in the thousands of lines of code [Guo et al. 2007;
Yang et al. 2008; Marron et al. 2008]. Other analyses sacrifice precision in order to
gain scalability [Ghiya and Hendren 1996; Hackett and Rugina 2005]; they cannot,
for example, prove absence of pointer-safety faults in many circumstances.

We emphasize that the work in this paper is not aimed at supplanting existing
shape analyses, but in finding ways to boost them by making them compositional.
In our formulation and our experiments, we naturally built on our own prior work
on SpaceInvader. But it is likely that the ideas could be used similarly with other
forms of shape analysis, such as based on automata [Bouajjani et al. 2006], graphs
[Marron et al. 2008], or 3-valued logic [Sagiv et al. 2002].

Thus, this paper might be viewed as providing techniques whereby we take an
abstract domain A for shape analysis, and turn it into a compositional analysis
technique C[A]. The contribution is in the passage A 7→ C[A]. But we are still left
with the question of which domains A to choose from. We have chosen one domain
in our experiments, but the question of what the good (precise and efficient and
expressive) domains A are remains a significant problem, on which further research
is needed.

While we showed one way to effect this passage A 7→ C[A], we do not claim that
bi-abductive inference is the only possible way one might obtain a compositional
shape analysis. Indeed, other approaches might occur more immediately to the
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reader: particularly, under-approximating backwards program analysis.

Defining a backwards shape analysis with acceptable precision and efficiency is,
as far as we are aware, an open problem. Prior to our precursor paper [Calcagno
et al. 2007], we formulated and implemented a backwards shape analysis of our
own. It created an enormous number of abstract states, and when it took several
seconds to analyze a trivial list traversal program we abandoned the approach.

Subsequently, several groups described ways to obtain preconditions in shape
analysis by going backwards [Lev-Ami et al. 2007; Podelski et al. 2008; Abdulla
et al. 2008]. None is formulated in an interprocedural manner, and they report
experimental results only for programs in the tens of lines of code. Further research
is needed to develop or evaluate the ideas in these works.

Previous works in shape analysis have treated procedure calls in a local way, by
passing only the reachable part of the abstract heap to a procedure [Rinetzky et al.
2005; Gotsman et al. 2006; Marron et al. 2008]. The method here is more strongly
local; by using the idea of finding/using ‘small specifications’ that only mention
the footprints of procedures, we are able to be more aggressive and sometimes pass
fewer than the reachable cells.

The general issues regarding compositional program analysis are well known
[Cousot and Cousot 2001], and for non-shape domains or bug-catching applica-
tions, a number of compositional analyses have appeared (e.g. [Whaley and Rinard
2006; Nystrom et al. 2004; Dor et al. 2003; Gulwani and Tiwari 2007; Jung and Yi
2008; Moy 2008]). They all use different techniques to those here.

Giacobazzi has previously used abductive inference in the analysis of logic pro-
grams [Giacobazzi 1994]. The problem he solves is dual to that here. Given a
specification of a logic programming module and an implementation, the method
of [Giacobazzi 1994] infers constraints on undefined literals in the module: it is top-
down synthesis of constraints on literals referred to in open code. In a procedural
language the corresponding problem is to start with a Hoare triple for an ‘outer’
procedure, whose body refers to another unknown procedure, and to infer a con-
straint on the unknown procedure. Here, we infer the spec for the ‘outer’ procedure,
relying on previously-computed specs for procedures called in its body. It would be
interesting to attempt to apply abduction in Giacobazzi’s way to procedural code,
to infer constraints from open code.

Gulwani et al. [Gulwani et al. 2008] have used abduction to under-approximate
logical operators such as conjunction and disjunction in their work on program
analysis for abstract domains with quantification. Their application of abduction
is completely different to that here.

The PreGen algorithm can be considered as part of a wider trend, whereby
the verification method is guided by using the information in failed proofs. In this
it is somewhat reminiscent of counterexample-guided abstraction refinement (or
CEGAR, [Jhala and Majumdar 2009]). The difference with CEGAR is that we use
abduction to find new information to put into a precondition, without changing
the abstract domain, where CEGAR attempts to refine the abstraction used in a
developing proof (or the abstract domain), without changing the precondition. Like
in CEGAR, once a proof has failed there is no theoretical reason to think that an
abduced precondition will be sound for the entire program: it works only for a path
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up to a given point. It is necessary to do more work, in an interactive loop or in
re-execution as we have done here, to find a proof.

Other analogies with and comparisons to CEGAR can be made. E.g., the dis-
cussion after Example 4.2 of the stop-first-and-re-execute strategy with -continue-
along-path partially calls to mind some aspects of the algorithm in SLAM [Ball
et al. 2006] versus other algorithms such as BLAST [Henzinger et al. 2002] which
attempt to avoid repeating work; the analogy is not exact, however. Perhaps the
larger issue, though, is not about detailed similarities and differences, but the possi-
bility of finding a generalized method which might extend the reach of compositional
analysis techniques to a broader range of verification problems.

Since the first version of this work was published in POPL’09, there have been
further developments that build on the work there. The paper [Gulavani et al. 2009]
introduces a bottom-up shape analysis which does not need to use a re-execution
phase as we have. They achieve this using an abstract domain that does not need
the canonicalization or abstraction phase that is usually present in shape analysis.
This method has produced detailed specs of some programs approaching functional
correctness, and provides interesting possibilities for future shape analyses (the
main question being the extent to which the avoidance of abstraction step can
be maintained). Another paper [Luo et al. 2010] tackles the problem of inferring
specs of unknown procedures, analogous to the problem in the above-mentioned
work of Giacobazzi, and also defines an alternate algorithm for abduction, and an
alternate order for comparing quality of solutions. Other papers study memory
leaks [Distefano and I.Filipovic 2010] and concurrency analysis [Calcagno et al.
2009].

7. CONCLUSIONS

The major new technical contributions of this paper are the following.

(1) The definition of proof techniques and algorithms for abduction and bi-abduction
for separated heap abstractions.

(2) A novel method for generating preconditions of heap manipulating programs
using bi-abduction.

(3) A compositional algorithm for generating summaries of programs (procedure
specs) using bi-abduction.

(4) The first analysis of its kind (a shape analysis) that can scale to large programs.

We did case studies ranging from small and medium-sized examples to test pre-
cision, to larger code bases, including Linux, OpenSSL and Apache. No previous
shape analysis for deep update has approached code bases of comparable size. How-
ever, the precision level of our analysis is no greater than the abstract domain it
is based on. So, our method should be viewed as a way of boosting existing shape
analyses, rather than as competitors to them.

The analysis results we obtain on the large programs are partial, but this is an-
other benefit of our method. The analysis is able to obtain non-trivial Hoare triples
for collections of procedures, even when for other procedures it obtains imprecise
results or takes too long. For the procedures we did not successfully analyze we
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could in principle consider using other methods such as manually-supplied asser-
tions to help the analysis along, interactive proofs, or even other abstract domains.
In fact, for the eventual aim of proving non-trivial properties (e.g., memory safety)
of entire large code bases, it seems likely that a mixture of techniques, with differ-
ent degrees of automation, will be needed, and it is in easing their blending that
compositional methods have much to offer.

We acknowledge that the paper has left a number of theoretical stones unturned.
For example, in introducing abduction for resource logics, we have given two par-
ticular algorithms, but these are by no means definitive. It would be interesting to
understand complexity and completeness questions for general classes of assertion
logics. Similarly, we have shown one way to obtain a compositional program anal-
ysis, but one can entertain many variants of the algorithm. Also, new questions
(such as concerning abduction and adaptation of Hoare logic specs) are arising.
In making these remarks we emphasize that soundness has not been compromised:
when the analysis says ‘yes’ it means that the inferred Hoare triple is true, and that
a class of bugs is excluded, according to a well-defined model: unanswered technical
questions concern completeness or precision or complexity, rather than soundness.

In a general sense, the most important contribution of this work is the explanation
and demonstration of how an increase in automation and scalability is possible using
abductive inference. In doing the work we aimed to get to the demonstration point
without pausing (for perhaps years) on some of the natural and nontrivial technical
problems that arose, some of which we have just mentioned. But we hope that
this paper will trigger work on new questions and applications: there appear to
be rich directions for further research and deeper understanding surrounding the
use of abduction in program analysis, as well as, we hope, increased potential for
applications of automatic program verification technology.
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