
Description Logics with Transitive Roles

Ian Horrocks and Graham Gough

Department of Computer Science

University of Manchester

email: {horrocks—graham}@cs.man.ac.uk

Abstract

This paper describes the logic ALCHR+ , which
extends ALCR+ with a primitive role hier-
archy, and presents an appropriate extension
to the ALCR+ satisfiability testing algorithm.
ALCHR+ is of interest because it provides
useful additional expressive power and, al-
though its satisfiability problem is Exptime-
complete, the algorithm is relatively simple and
is amenable to optimisation.

1 Introduction

The importance of transitively closed roles in Descrip-
tion Logics (DLs) has long been recognised [PL94], par-
ticularly in domains which are concerned with physically
composed objects, for example in medicine [HRG96] and
engineering [Sat95]. The logic ALC+ [Baa90] supports
complete reasoning about roles and their transitive clo-
sures by extending ALC [SSS91] with union, composi-
tion and transitive closure role forming operators but,
unfortunately, has a satisfiability problem which is Ex-

ptime-complete.

The ALCR+ and ALC⊕ DLs were investigated in the
hope that a more restricted form of transitive role might
lead to a satisfiability problem in a lower complexity
class [Sat96]. ALCR+ extends ALC by allowing the use
of transitive roles in concept expressions. In [Sat96] an
algorithm for deciding the satisfiability of ALCR+ con-
cept expressions is provided along with a proof of its
soundness and completeness. It is also demonstrated
that the complexity of the problem is Pspace-complete,
the same as for ALC [DLNN95]. ALC⊕ extends ALCR+

to provide more expressive power by associating each
non-transitive role R with a transitive super-role R⊕

s.t. (R⊕)I ⊇ (R+)I . The extension to the ALCR+ al-
gorithm required for ALC⊕ is relatively minor but, al-
though [Sat96] does not present a soundness and com-
pleteness proof for the extension, it is shown that the
problem is Exptime-complete, the same as for ALC+.

This paper describes ALCHR+ , a logic which gener-
alises ALC⊕ by allowing the definition of a role hierarchy,
and presents an appropriate extension to the ALCR+ al-
gorithm. The ALCR+ soundness and completeness proof
has also been extended [Hor97b] but is not presented
here due to space restrictions. For the same reason, a
familiarity with the usual Tarski style model theoretic
semantics for ALC is assumed [BHH+91].

As ALCHR+ is more general than ALC⊕, but still less
expressive than ALC+, the complexity of its satisfiability
problem is clearly also Exptime-complete. However it
seems worthwhile to study this logic as it provides useful
expressive power, allowing for example general inclusion
axioms to be internalised in concept expressions, while
having a satisfiability testing algorithm which is much
simpler than that for ALC+, and thus more amenable to
optimisation [Hor97a].

2 The ALCHR+ Description Logic

The relationship between roles and their transitive or-
bits in ALC⊕ is equivalent to introducing a limited form
of role hierarchy—given a set of role names R and a set
of transitive roles R+ ⊆ R, the relationship between a
role and its transitive orbit can be described by a role
inclusion axiom of the form R ⊑ R⊕ where R ∈ R

and R⊕ ∈ R+. ALCHR+ generalises ALC⊕ by allowing
acyclic, but otherwise unrestricted, role inclusion axioms
of the form R ⊑ S, where {R, S} ⊆ R. The semantics
of the acyclic ⊑ relation mean that it is reflexive (for
all R ∈ R, R ⊑ R), antisymmetric (for any two roles
R and S, R ⊑ S ∧ S ⊑ R ⇒ R = S) and transitive
(R ⊑ P ∧ P ⊑ S ⇒ R ⊑ S). The ⊑ relation therefore
defines a partial ordering in R which, like the concept
subsumption relation, can be stored as a hierarchy, a di-
rected acyclic graph in which each role is linked to its
most specific super-roles and sub-roles.

If R is the set of all role names, R+ ⊆ R is the set
of transitive roles names and ⊑ is the inclusion relation
which defines a partial ordering in R, then as well as
being correct for ALC concept expressions, an ALCHR+

interpretation I = (∆I , ·I) must satisfy the additional



conditions:

1. if 〈d, e〉 ∈ RI and 〈e, f〉 ∈ RI and R ∈ R+, then
〈d, f〉 ∈ RI

2. if R ⊑ S, then RI ⊆ SI

3 The Expressiveness of ALCHR+

ALCHR+ allows complex role hierarchies to be estab-
lished. Consider Figure 1, for example, which shows a
fraction of the role hierarchy from a medical terminology
model developed as part of the Galen project [RH97],
with the notation R+ being used to denote that R is a
transitive role. ALCHR+ is able to capture the knowl-
edge that part-whole relations in the Galen model are
subdivided into structural roles and process roles, and
that the structural roles are further subdivided into Has-

Division, isMadeOf and hasLayer .
This is still strictly less expressive than ALC+.

ALC+ can simulate a primitive role hierarchy by us-
ing role disjunction: the role StructuralPartitiveAttribute

can be represented in ALC+ by the role expression
(StructuralPartitiveAttribute ⊔ HasDivision ⊔ isMadeOf ⊔
hasLayer)+, capturing the knowledge that StructuralPar-

titiveAttribute is a transitive super-role of HasDivision,
isMadeOf and hasLayer . Unlike ALCHR+ , however,
ALC+ can also simulate a non-primitive role hierarchy.
It can, for example, represent a role such as ancestor

with the expression parent+, capturing the knowledge
that ancestor is exactly equal to the transitive closure of
parent.

Unlike ALC⊕, ALCHR+ ’s role hierarchy also enables
internalisation [Baa90] to be used to test satisfiabil-
ity w.r.t. a terminology T which contains a set of
general concept inclusion axioms (GCIs). If T con-
tains the axioms C1 ⊑ D1, . . . , Cn ⊑ Dn, where
C1, . . . , Cn, D1, . . . , Dn are arbitrary concept expres-
sions, the satisfiability of a concept expression A w.r.t.
T can be tested by:

1. Forming the GCIs into a single concept expression
G

.
= (D1 ⊔ ¬C1) ⊓ . . . ⊓ (Dn ⊔ ¬Cn);

2. Defining a role T ∈ R+ s.t. ∀R ∈ R.R ⊑ T ;

3. Testing the satisfiability of A ⊓ G ⊓ ∀T .G.

Although the satisfiability problems for both logics are
Exptime-complete, the additional expressive power of
ALC+ is manifested in a more complex satisfiability test-
ing algorithm which requires both reasoning about role
expressions1 and a more sophisticated cycle detection
(blocking) mechanism in order to differentiate between
cycles which lead to a valid model and those which do
not. The algorithm for ALCHR+ on the other hand
does not need to consider role expressions, and cycle
detection is straightforward as all cycles lead to valid

1A relatively efficient mechanism for dealing with this
problem using finite state automata is suggested in [Baa90].

models. This simplicity makes the algorithm amenable
to a range of optimisation techniques which greatly en-
hance its performance in realistic applications: the opti-
mised algorithm has been used in the FaCT system [FaC]
and its effectiveness has been demonstrated by classify-
ing a large medical terminology knowledge base which
includes both a complex role hierarchy and numerous
transitive roles [Hor97a].

4 A Tableau Algorithm for ALCHR+

Like other tableau algorithms, the ALCHR+ algorithm
tries to prove the satisfiability of a concept expression
D by demonstrating a model of D—an interpretation
I = (∆I , ·I) s.t. DI 6= ∅. The model is represented by
a tree whose nodes correspond to individuals, each node
being labelled with a set of ALCHR+ -concepts. When
testing the satisfiability of an ALCHR+ -concept D these
sets are restricted to subsets of sub(D), where sub(D)
is the closure of the subconcepts of D. The soundness
and completeness of the algorithm can proved by show-
ing that the tree it creates corresponds to a tableau for
D and that D is satisfiable if and only if there exists a
tableau for D but, due to space restrictions, the proof
is not presented here. As usual, it is assumed that D is
in negation normal form, i.e., that negations are applied
only to primitive concepts. This can easily be achieved
using a combination of DeMorgan’s laws and the identi-
ties ¬∃R.C = ∀R.¬C and ¬∀R.C = ∃R.¬C.

The algorithm builds a tree where each node x of the
tree is labelled with a set L(x) ⊆ sub(D) and may, in ad-
dition, be marked satisfiable. The tree is initialised with
a single node x0, where L(x0) = {D}, and expanded
either by extending L(x) for some leaf node x or by
adding new leaf nodes. For a node x, L(x) is said to
contain a clash if, for some concept C, {C,¬C} ⊆ L(x)
or ⊥ ⊆ L(x). L(x) is called a pre-tableau if it is clash-free
and contains no unexpanded conjunction or disjunction
concepts. Note that ∅ is a pre-tableau.

Edges of the tree are either unlabelled or labelled R for
some role name R occuring in sub(D). Unlabelled edges
are added when expanding A ⊔ B concepts in L(x) and
are the mechanism whereby the algorithm explores the
alternative expansions offered by disjunctions. Labelled
edges are added when expanding ∃R.A terms in L(x) and
correspond to relationships between pairs of individuals.

A node y is called an R-successor of a node x if there is
an edge from x to y labelled R; y is called a ⊔-successor
of x if there is a path, consisting of unlabelled edges, from
x to y. A node x is an ancestor of a node y if there is a
path from x to y regardless of the labelling of the edges.
Note that both the ⊔-successor and ancestor relations
are reflexive: nodes are connected to themselves by the
empty path.

The algorithm initialises a tree T to contain a single



HasDivision+ isMadeOf + hasLayer
+

ProcessPartitiveAttributeStructuralPartitiveAttribute+

hasSubprocess
+

PartitiveAttribute+

Figure 1: A fraction of the Galen role hierarchy

node x0, called the root node, with L(x0) = {D}. T

is then expanded by repeatedly applying the rules from
Table 1 until either the root node is marked satisfiable
or none of the rules is applicable. If the root node is
marked satisfiable then the algorithm returns satisfiable;
otherwise it returns unsatisfiable.

5 Conclusion

ALCHR+ usefully extends the expressive power of
ALCR+ and ALC⊕ by supporting both a primitive role
hierarchy and the internalisation of GCIs.

The complexity of subsumption reasoning in ALCHR+

is Exptime-complete, the same as for ALC+, but the al-
gorithm is much simpler and is amenable to a range of
optimisation techniques. Although the underlying com-
plexity means that intractabile problems may still arise,
in practice the algorithm has demonstrated acceptable
performance in realistic applications.

The complexity class of a problem is a relatively coarse
grained measure and, while not underestimating the im-
portance of theoretical complexity results, experience
with ALCHR+ suggests that consideration may also need
to be given to the ‘practical’ complexity of subsumption
testing algorithms.

References

[Baa90] F. Baader. Augmenting concept languages
by transitive closure of roles: An alternative
to terminological cycles. Research Report
RR-90-13, Deutsches Forschungszentrum für
Künstliche Intelligenz GmbH (DFKI), 1990.

[BHH+91] F. Baader, H.-J. Heinsohn, B. Hollunder,
J. Muller, B. Nebel, W. Nutt, and H.-J.
Profitlich. Terminological knowledge repre-
sentation: A proposal for a terminological
logic. Technical Memo TM-90-04, Deutsches
Forschungszentrum für Künstliche Intelligenz
GmbH (DFKI), 1991.

[DLNN95] F. M. Donini, M. Lenzerini, D. Nardi,
and W. Nutt. The complexity of con-
cept languages. Research Report RR-95-07,
Deutsches Forschungszentrum für Künstliche
Intelligenz GmbH (DFKI), 1995.

[FaC] The FaCT system. Available from
www.cs.man.ac.uk/∼horrocks/FaCT.

[Hor97a] I. Horrocks. Optimisation techniques for ex-
pressive description logics. Technical Report
UMCS-97-2-1, University of Manchester, De-
partment of Computer Science, February
1997.

[Hor97b] I. Horrocks. Optimising Tableaux Decision
Procedures for Description Logics. PhD the-
sis, University of Manchester, 1997. To ap-
pear.

[HRG96] I. Horrocks, A. Rector, and C. Goble. A de-
scription logic based schema for the classifica-
tion of medical data. In F. Baader, M. Buch-
heit, M.A. Jeusfeld, and W. Nutt, editors,
Reasoning about structured objects: knowl-
edge representation meets databases. Proceed-
ings of the 3rd Workshop KRDB’96, pages
24–28, 1996.

[PL94] L. Padgham and P. Lambrix. A frame-
work for part–of hierarchies in terminologi-
cal logics. In J. Doyle, E. Sandewall, and
P. Torasso, editors, Principals of Knowl-
edge Representation and Reasoning: Proceed-
ings of the Fourth International Conference
(KR’94), pages 485–496. Morgan-Kaufmann,
1994.

[RH97] A. Rector and I. Horrocks. Experience build-
ing a large, re-usable medical ontology us-
ing a description logic with transitivity and
concept inclusions. In Proceedings of the
Workshop on Ontological Engineering, AAAI



⊓-rule: If x is a leaf of T, L(x) is clash-free, A ⊓ B ∈ L(x) and {A, B} * L(x)
then L(x) −→ L(x) ∪ {A, B}

⊔-rule: If x is a leaf of T, L(x) is clash-free, A ⊔ B ∈ L(x), A /∈ L(x) and B /∈ L(x)
then create two ⊔-successors y, z of x with:

L(y) = L(x) ∪ {A}
L(z) = L(x) ∪ {B}

∃-rule: If x is a leaf of T and L(x) is a pre-tableau
then for each ∃R.A ∈ L(x) do:

1. ℓRx := {A} ∪ {C | ∀S.C ∈ L(x) and R ⊑ S}
∪ {∀S.C | ∀S.C ∈ L(x), S ∈ R+ and R ⊑ S}

2. If for some ancestor w of x, ℓRx ⊆ L(w)
then create an R-successor y of x with L(y) = ∅

3. Otherwise create an R-successor y of x with L(y) = ℓRx

SAT-rule: If a node x is not marked satisfiable, and one of the following is true of x:
1. L(x) is a pre-tableau containing no concepts of the form ∃R.A
2. L(x) is a pre-tableau and all R-successors of x are marked

satisfiable
3. L(x) is not a pre-tableau and some ⊔-successor of x is marked

satisfiable
then mark x satisfiable

Table 1: Tableau expansion rules for ALCHR+

Spring Symposium (AAAI’97). AAAI Press,
Menlo Park, California, 1997. To appear.

[Sat95] U. Sattler. A concept language for engineer-
ing applications with part–whole relations. In
Proceedings of the International Conference
on Description Logics—DL’95, pages 119–
123, Roma, Italy, 1995.

[Sat96] U. Sattler. A concept language extended
with different kinds of transitive roles. In
G. Görz and S. Hölldobler, editors, 20.
Deutsche Jahrestagung für Künstliche Intel-
ligenz, number 1137 in Lecture Notes in Ar-
tificial Intelligence, pages 333–345. Springer
Verlag, 1996.

[SSS91] M. Schmidt-Schauß and G. Smolka. Attribu-
tive concept descriptions with complements.
Artificial Intelligence, 48:1–26, 1991.


