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Abstract

Description Logics form a family of formalisms closely related to semantic net-
works but with the distinguishing characteristic that the semantics of the concept
description language is formally defined, so that the subsumption relationship
between two concept descriptions can be computed by a suitable algorithm. De-
scription Logics have proved useful in a range of applications but their wider
acceptance has been hindered by their limited expressiveness and the intractabil-
ity of their subsumption algorithms.

This thesis investigates the practicability of providing sound, complete and empir-
ically tractable subsumption reasoning for a Description Logic with an expressive
concept description language. It suggests that, while subsumption reasoning in
such languages is known to be intractable in the worst case, a suitably optimised
algorithm can provide acceptable performance with a realistic knowledge base.
This claim is supported by the implementation and testing of the FaCT system.

FaCT is a Description Logic classifier for an expressive concept description lan-
guage which includes support for both transitive roles and a role hierarchy. A
tableaux calculus style algorithm for subsumption reasoning in this language is
presented along with a proof of its soundness and completeness. The wide range
of novel and adapted optimisation techniques employed by FaCT is also described
and their effectiveness is evaluated by extensive empirical testing using both a
large realistic knowledge base (from the Galen project) and randomly generated
satisfiability problems. These tests demonstrate that the optimisation techniques
improve FaCT’s performance by at least three orders of magnitude, and that
as a result, FaCT provides acceptable performance when used with the Galen

knowledge base.

The work presented in this thesis should be of value to both users of Description
Logics, to whom the FaCT system has been made available, and to implementors
of Description Logic systems, who will be able to incorporate some or all of the
optimisation techniques in their algorithms. The optimisation techniques may
also be of interest to a wider audience of Automated Deduction and Artificial
Intelligence researchers.
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Chapter 1

Introduction

Description Logics form a family of formalisms which have grown out of knowledge
representation techniques using frames and semantic networks; their distinguish-
ing characteristic is a formally defined semantics which enables the subsumption
(kind-of) relationship to be computed by a suitable algorithm. Description Logic
based knowledge representation systems have proved useful in a range of applica-
tions, but their wider acceptance has been hindered by their limited expressiveness
and the intractability of their subsumption algorithms.

This thesis investigates the practicability of providing a sound, complete and
empirically tractable subsumption algorithm for an expressive Description Logic.
It suggests that, while subsumption testing in such Description Logics is known
to be intractable in the worst case, a suitably optimised algorithm can provide
acceptable performance with a realistic knowledge base.

This claim has been strongly supported by:

• the design of a sound and complete subsumption testing algorithm for an
expressive Description Logic;

• the development of a range of optimisation techniques which dramatically
improve the performance of the algorithm;

• the evaluation of the optimised algorithm through extensive empirical test-
ing, including detailed comparisons with existing systems.

1.1 Description Logics

Many computer applications require a symbolic model of the application world
which can be updated or queried. A common methodology is to describe objects,
their relationships and classes of objects with similar characteristics. A class

16



1.1. DESCRIPTION LOGICS 17

hierarchy (partial ordering) is often maintained based on the sub-class/super-
class relationship. This methodology can be seen in formalisms such as object
oriented databases, semantic networks and frame systems.

Description Logics (DLs) form a family of formalisms closely related to both se-
mantic networks and frame systems but with the distinguishing characteristic
that the semantics of the concept (class) description language is formally defined,
so that the resulting structured objects can be reasoned with [WS92]. In par-
ticular the subsumption (sub-class/super-class) relationship between two concept
descriptions can be computed by a suitable algorithm [Neb90a].

The use of DLs in knowledge representation systems originated with Kl-One

[BS85] and has led to the development of a wide range of related systems in-
cluding Nikl [Mos83], Krypton [BFL83], Kris [BH91c], Sb-One [Kob91],
CycL [LG91], loom [Mac91b], K-Rep [MDW91], Classic [PS91], Back [Pel91],
Candide [NSA+94] and Grail [RBG+97]. An excellent historical account and
overview can be found in [WS92].

DL Knowledge Representation Systems (DLKRSs) support the logical descrip-
tion of concepts and roles (relationships) and their combination, using a variety
of operators, to form more complex descriptions. For example, if person is an
existing concept and has-child is an existing role, then the concept parent might
be described as a kind of person who is related to another person via the has-child

role. DLKRSs may also allow concept and role descriptions to be used in asser-
tions of facts about individuals. For example, it might be asserted that John and
Jane are instances of person and that the relationship between John and Jane is
an instance of has-child .

A typical DLKRS will provide a range of reasoning services, in particular inferring
subsumption and instantiation (instance-of) relationships. For example, it might
be inferred that person subsumes parent and that John is an instance of (instanti-
ates) parent. Most DLKRSs have adopted a hybrid architecture, pioneered by the
Krypton system, in which the reasoning services are divided into a terminolog-
ical component (the TBox) and an assertional component (the ABox) [BGL85].
The TBox, or term classifier, reasons about concept and role descriptions: the ba-
sic reasoning service provided is subsumption, which the TBox uses to maintain
a concept hierarchy—a partial ordering of concepts based on the subsumption
relation. The ABox reasons about individuals and their relationships: the basic
reasoning service provided is instantiation, which the ABox can use to perform
realisation and retrieval—computing the most specific concepts which an indi-
vidual instantiates (realisation) and the individuals which are instances of a given
concept (retrieval)1.

The expressiveness of the concept description language is often much more re-
stricted than that of the assertional language, with the objective of providing
subsumption reasoning which is sound (only valid subsumption relationships

1In practice, ABox reasoning may only be performed in response to queries [MB92].
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are identified), complete (all valid subsumption relationships are identified) and
tractable (subsumption relationships can be computed in a “reasonable” time).
However, in spite of their restricted expressiveness, most implemented systems
do not provide complete subsumption reasoning and have been shown to perform
poorly when reasoning with large numbers of concepts [HKNP94, SvRvdVM95].

This thesis addresses the problem of providing a sound, complete and empirically
tractable subsumption reasoning algorithm for a DL with an expressive concept
description language, and of testing the algorithm with a realistic knowledge base.

1.2 DL Applications

DLs are typically used to provide high level terminologies (sometimes called con-
ceptual schemas or ontologies), to perform semantic indexing and to mediate
between other representations. DLs have proved useful in a variety of applica-
tions including:

• schema design, query optimisation and reasoning about views in object
oriented databases [BBLS94, BJNS94, Bre95, LR96];

• federated databases and cooperative information systems [BIG94, CL94,
GBBI96];

• database interoperability [GL94];

• software information systems [DBBS91];

• describing and classifying multimedia data [GHB96];

• the development of a very large knowledge base representing “human con-
sensus knowledge” (the Cyc project) [GL90, GL94];

• process planning and control in manufacturing [N.R96];

• the configuration of complex telecommunications systems [BIW94];

• reasoning about actions and plan generation in robotics [GINR96];

1.2.1 GALEN and GRAIL

A particularly promising application domain for DLs is in the growth area of
ontological engineering—the design, construction and maintenance of large con-
ceptual schemas or ontologies [MWD+96, HRG96, RH97]. An example of such
an application is the European Galen project. The Galen project aims to
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promote the sharing and re-use of medical data by building a large medical ter-
minology ontology which can be used by application designers as a flexible and
extensible classification schema [RNG93]. By using a DL to build the ontology
it is hoped to avoid many of the problems associated with existing hand-crafted
coding schemes [Now93], as well as providing additional benefits to applications:

• more detailed descriptions with clear semantics can be constructed system-
atically to provide principled extensions to the schema where required;

• the DL classifier can be used to check the coherence of new descriptions and
to enrich the schema by the discovery of implicit subsumption relationships;

• the DL can be used as a powerful database query language supporting
intensional as well as extensional queries [Bre95] and query optimisation
[BBLS94];

• data can be shared between existing applications by using the concept model
as an interlingua and providing mappings to a variety of coding schemes.

However, the usefulness of existing DL systems in this and other applica-
tions is limited by the restricted expressiveness of the TBox [DP91, Mac91a,
SvRvdVM95]. Design studies for the Galen project identified expressive re-
quirements which were satisfied by few if any implemented systems [Now93]:

• The ability to reason about transitive part-whole, causal and compositional
relations. A similar requirement has been identified in other application do-
mains, particularly those concerned with reasoning about physically com-
posed objects, such as engineering [Hor94, PL94, Sat95].

• The ability to reason with a more general form of axiom, called general
concept inclusions (see Section 2.2.4 on page 33), which allow subsumption
relations to be asserted between arbitrary pairs of concept descriptions.
This requirement has also been identified in a number of other applica-
tions [DP91, LR96].

To satisfy these requirements a new DL system, Grail, was designed and im-
plemented for the Galen project [GBS+94]. Grail supports reasoning about
transitive relations and general concept inclusions (GCIs) but, like most other
DL systems which use structural subsumption algorithms, Grail’s subsumption
reasoning is known to be incomplete [Hor95].

1.3 Subsumption Reasoning in DLs

Most implemented DL systems have used structural algorithms for computing
subsumption relationships. These algorithms determine subsumption between
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two concept descriptions by using recursive structural decomposition; e.g., it
would be determined that the concept “doctors all of whose children are doctors”
subsumes the concept “pediatricians, all of whose daughters are pediatricians” be-
cause the concept doctors subsumes the concept pediatricians and the role children

subsumes the role daughters.

The advantage with these algorithms is that by pre-processing concept descrip-
tions and storing them in a normalised form, subsequent subsumption tests, of
which many will be required to maintain the concept hierarchy, can be performed
relatively efficiently [BPS94]; the disadvantages are that the structural compar-
isons required to deal with more expressive description languages become ex-
tremely complex, and while it is relatively easy to demonstrate that the structural
comparisons are sound, they are almost invariably incomplete2. Of the systems
mentioned in Section 1.1, all but Kris use a structural algorithm; of these only
Classic claims to provide sound and complete subsumption reasoning [BPS94],
and that only for a very restricted concept description language.

An alternative approach is to transpose the subsumption problem into an equiv-
alent satisfiability problem: concept C subsumes concept D if and only if the
concept description “D and not C” is not satisfiable. The satisfiability problem
can then be solved using a provably sound and complete algorithm based on the
tableaux calculus [Smu68]. This approach was first described for the ALC De-
scription Logic [SSS91] and its practical application has been demonstrated in
the Kris system; it has many advantages (see Chapter 3) and has led to the de-
velopment of sound and complete algorithms for a wide range of DLs, including
those which support the transitive closure of roles [Baa90a] and GCIs [BDS93].

Use of the satisfiability testing approach is restricted to DLs which support gen-
eral negation, as this is required for the transformation from subsumption test
to satisfiability test. Unfortunately, the worst case complexity of the satisfi-
ability problem for these DLs is at least NP-hard [BFT95], and for more ex-
pressive DLs may be Exptime-complete [Sch91, Cal96]. These complexity re-
sults have led to the conjecture that expressive DLs might be of limited practi-
cal applicability [BDS93]. However, although the theoretical complexity results
are discouraging, empirical analyses of real applications have shown that the
kinds of construct which lead to worst case intractability rarely occur in practice
[Neb90b, HKNP94, SvRvdVM95, Hor95]. Moreover, it has been demonstrated
that for a relatively expressive DL (Kris), applying some simple optimisation
techniques to a tableaux algorithm can result in performance which is compa-
rable with that of incomplete structural algorithms [BHNP92]. There are many
other optimisation techniques which could be applied to tableaux algorithms,
and it therefore seems worthwhile to investigate empirically the practicability of
using a highly optimised tableaux algorithm for subsumption testing in a more
expressive DL, in particular one which supports transitive roles and GCIs.

2Although some structural algorithms may be complete with respect to a weaker four-valued
semantics [PS89].
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1.4 ALCHf R+ and the FaCT System

The logic chosen for this investigation was ALCHf R+ , an extension of ALC (see
Section 2.1.1 on page 25) which supports functional roles, transitively closed roles
and a role hierarchy. The reasons for choosing this logic were:

• it provides the kind of expressive possibilities required by many applications,
in particular the Galen project;

• the satisfiability testing algorithm required only a relatively minor extension
to an existing algorithm for the ALCR⊕ DL [Sat96];

• the satisfiability testing algorithm is relatively simple, facilitating experi-
mentation with a range of optimisation techniques.

The FaCT system is a terminological classifier (TBox), based on the ALCHf R+

Description Logic, which has been developed for this thesis and used as a test-
bed for a highly optimised implementation of the ALCHf R+ subsumption testing
algorithm.

Optimisation techniques investigated in the FaCT system include the normalisa-
tion and encoding of concept descriptions, eliminating GCIs by absorbing them
into concept descriptions, an improved search algorithm adapted from the Davis-
Putnam-Logemann-Loveland procedure, heuristic guided search, constraint prop-
agation, dependency directed backtracking and the caching and re-use of partial
results. Many of these techniques are novel or have not previously been applied
in a DL subsumption algorithm.

1.5 Thesis Outline

The remainder of the thesis is organised as follows:

Chapter 2 Presents the standard DL syntax and Tarski style model theoretic
semantics which is used to interpret both concept descriptions and sub-
sumption relationships.

Chapter 3 Explains the basic principles of tableaux subsumption algorithms
and how they can be extended to deal with more expressive DLs.

Chapter 4 Introduces the ALCHR+ DL, describes an algorithm for deciding the
satisfiability of ALCHR+ concept expressions and presents a proof of its
soundness and completeness. ALCHf R+ , an extension to ALCHR+ which
supports reasoning about functional relations, is also described.
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Chapter 5 Describes a range of optimisation techniques which are designed to
improve the empirical performance of tableaux algorithms in general and
of the ALCHf R+ algorithm in particular.

Chapter 6 Describes the FaCT system, explains how FaCT uses the ALCHf R+

algorithm to compute the concept hierarchy, and describes additional opti-
misation techniques which are applicable to this process.

Chapter 7 Explains the empirical testing procedures used to evaluate FaCT’s
performance, describes how the test data was generated, and presents the
results of the evaluation.

Chapter 8 Reviews the work presented and the extent to which the stated objec-
tives have been met. The significance of the major results is summarised,
outstanding issues are discussed and directions for future work are sug-
gested.



Chapter 2

Formal Foundations of

Description Logics

A key characteristic of Description Logics (DLs) is that they support the composi-
tion of structured concept descriptions, with which they can then reason [WS92].
Reasoning is made possible by the rigorous formal specification of the syntax
and semantics of their concept description languages. This chapter presents a
standard syntax and semantics for concept description languages which is widely
used in the DL literature and which will be used in the remainder of this thesis.
A number of useful theoretical results and equivalences will also be presented.

The chapter is organised as follows: Section 2.1 describes the syntax of DLs
using a standard infix notation; Section 2.2 describes how DLs are interpreted
using the standard Tarski style model theoretic semantics and also shows how
DLs can be interpreted using the First Order Predicate Calculus; Section 2.3
shows how the semantics are used to define the relation of subsumption and how
this definition can be simplified by restricting the syntax of a DL; and finally,
Section 2.4 describes some specific DLs, both theoretical and implemented, with
particular emphasis on the ALC family of DLs.

2.1 Syntax

DLs support the logical description of concepts, roles (relationships) and at-
tributes (single-valued or functional roles). Concepts, roles and attributes can
be combined, using a variety of operators, to form more complex expressions
which can be used in terminological axioms to add information to a knowledge
base [WS92]. The operators supported by DLs usually include some or all of
the standard logical connectives along with one or both of the universally and
existentially quantified relational operators (called value restrictions and exists
restrictions).

23
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Various forms of syntax have been used in implemented Description Logic Knowl-
edge Representation Systems (DLKRSs), often reflecting the programming lan-
guage used in the implementation; Table 2.1 shows the syntax of an axiom which
introduces the concept vegan, a person who only eats plants, as it would appear
in several implemented DLKRSs. Classic, Kris and Loom have a similar list
based syntax, which is convenient for their Lisp implementations, whereas Back

uses a syntax which is more convenient for its Prolog implementation.

DLKRS Concept introduction axiom
Back vegan := person and all(eats plant)
Classic (cl-define-concept ′vegan ′(AND person (ALL eats plant)))
Kris (defconcept vegan (AND person (ALL eats plant)))
Loom (defconcept vegan :is (:AND person (:ALL eats plant)))

Table 2.1: The concept vegan in various DLKRSs

A standard infix notation, commonly known as German syntax due to the na-
tionality of its originators, has been widely adopted for the theoretical discussion
of DLs [BHH+91]. This notation uses the symbols u and t for conjunction and
disjunction operators, reflecting their model theoretic interpretation as set inter-
section and union (see Section 2.2.1), the standard logical quantifier symbols ∀
and ∃ for value and exists restrictions and the ¬ symbol for complementation. A
variety of other symbols may also by used to represent additional operators, the
most commonly used of which will be described in the following sections. The
relation symbols

.
= and v are used in axioms and reflect their model theoretic

interpretations as set equality and set inclusion (see Section 2.2.3).

Example 2.1 Standard Infix Notation

Using the standard infix notation, the vegan concept introduction axiom would
be written as:

vegan
.
= person u ∀eats.plant

For readers more familiar with First Order Predicate Calculus (FOPC) than DLs,
it might be useful to note that concepts correspond to unary predicates in FOPC
and that roles correspond to binary predicates [DLNN95].

Example 2.2 Correspondence With FOPC

The vegan concept introduction from Example 2.1 could be written in FOPC as:

∀x.(vegan(x) ↔ person(x) ∧ ∀y.(eats(x, y) → plant(y)))

The correspondence between DLs and FOPC will be described in detail in the
following sections.
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2.1.1 Formal Syntax

A DL terminology (or terminological knowledge base) consists of a finite set of
axioms which can introduce new concept and role names, assert subsumption
relationships and assert that roles are either functional or transitive. Concept
and role names are treated as symbols in the logic.

A DL is characterised by the kinds of concept and role expression allowed in
its description language and the kinds of axiom allowed in its terminologies. Of
particular interest is the ALC DL [SSS91] as its properties, and those of its
family of extensions, have been the subject of detailed study (see Section 2.4.1
on page 39). An ALC terminology is defined by the following formation rules:

• Axioms are of the form:

C v D | C
.
= D

where C and D are concept expressions.

• Concept expressions are of the form:

CN | > | ⊥ | ¬C | C u D | C t D | ∃R.C | ∀R.C

where CN is a concept name, C and D are concept expressions and R is a
role expression.

• Role expressions are of the form RN , where RN is a role name.

The special concept names > (top) and ⊥ (bottom) represent the most general
and least general concepts respectively: their formal semantics will be given in
Section 2.2 on the following page. Nested conjunctive expressions (C1u(C2u . . .u
(Cn−1 u Cn) . . .)) and disjunctive expressions (C1 t (C2 t . . . t (Cn−1 t Cn) . . .))
will often be written as (C1 u . . . u Cn) and (C1 t . . . t Cn) respectively.

The set of concept and role names which appear in a terminology will be denoted
C and R respectively. There is no requirement for C and R to be disjoint:
whether a name refers to a concept or a role can be determined by its context.

More expressive DLs can extend this syntax in a number of ways:

1. In DLs which support attributes or transitive roles, the sets of attribute
(functional role) names F ⊆ R and transitive role names R+ ⊆ R are also
distinguished. Terminologies of such a DL may contain axioms which assert
that a role name is a member of one of these sets. These axioms are of the
form:

AN ∈ F | RN ∈ R+

where AN is an attribute name and RN is a role name.
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2. A wider range of concept expressions may be supported. The most common
of these are of the form:

>nR | 6nR | >nR.C | 6nR.C | ∃A.C | ∀A.C | A = B | A 6= B

where n is a nonnegative integer, C is a concept expression, R is a role
expression and A and B are attribute expressions.

3. A range of role expressions may be supported. The most common of these
are of the form:

>×> | R u S | R t S | R ◦ S | id(C) | R−1 |
R+ | R∗ | A t B | A−1 | A+ | A∗

where R and S are role expressions and A and B are attribute expressions.
The expression > × > represents the most general role: its formal seman-
tics will be given in Section 2.2. The reason for A t B, A−1, A+ and A∗

being role expressions and not attribute expressions will also be explained
in Section 2.2.

4. A range of attribute expressions may be supported. The most common of
these are of the form:

A u B | A ◦ B

where A and B are attribute expressions.

5. The terminology may include axioms of the form:

RN v R | RN
.
= R | AN v A | AN

.
= A | AN v R

where RN is a role name, AN is an attribute name, R is a role expressions
and A is an attribute expressions.

The syntax of a generalised DL supporting all the above axioms and expressions
is presented in Backus-Naur form (BNF) in Table 2.2 on the following page.

2.2 Model Theoretic Semantics

A Tarski style model theoretic semantics [Tar56] is used to interpret expressions
and to justify subsumption inferences. Concepts, roles and attributes are taken
to refer to sets of objects in the domain of interest and the relationships between
them. A terminology consists of a finite set of axioms which introduce new
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〈terminology〉 ::= {〈axiom〉∗}
〈axiom〉 ::= 〈C〉 v 〈C〉 | 〈C〉

.
= 〈C〉 |

RN v 〈R〉 | RN
.
= 〈R〉 |

AN v 〈A〉 | AN
.
= 〈A〉 | AN v 〈R〉 |

AN ∈ F | RN ∈ R+

〈C〉 ::= CN | > | ⊥ | ¬〈C〉 |
〈C〉 u 〈C〉 | 〈C〉 t 〈C〉 | ∃〈R〉.〈C〉 | ∀〈R〉.〈C〉 |
>〈n〉〈R〉 | 6〈n〉〈R〉 | >〈n〉〈R〉.〈C〉 | 6〈n〉〈R〉.〈C〉 |
∃〈A〉.〈C〉 | ∀〈A〉.〈C〉 | 〈A〉 = 〈A〉 | 〈A〉 6= 〈A〉

〈R〉 ::= RN | 〈R〉 u 〈R〉 | 〈R〉 t 〈R〉 | 〈R〉 ◦ 〈R〉 |
id(〈C〉) | 〈R〉−1 | 〈R〉+ | 〈R〉∗ |
〈A〉 t 〈A〉 | 〈A〉−1 | 〈A〉+ | 〈A〉∗

〈A〉 ::= AN | 〈A〉 u 〈A〉 | 〈A〉 ◦ 〈A〉
CN, RN and AN are concept, role and attribute names respectively
n is a nonnegative integer

Table 2.2: A Generalised DL Syntax in Backus-Naur form

concept, role and attribute names and assert subsumption relationships. In the
following discussion CN will be used to denote a concept name, RN a role name,
AN an attribute name C and D concept expressions, R and S role expressions
and A and B attribute expressions.

The meaning of concepts, roles and attributes is given by an interpretation I
which is a pair (∆I , ·I), where ∆I is the domain (a set) and ·I is an interpretation
function [BHH+91]. The interpretation function maps each concept name CN to
a subset of the domain:

CNI ⊆ ∆I

each role name RN to a set valued function (or equivalently a binary relation):

RNI : ∆I −→ 2∆I

(RNI ⊆ ∆I × ∆I)

and each attribute name AN to a single valued partial function:

ANI : dom ANI −→ ∆I

where dom ANI ⊆ ∆I .

It may sometimes also be convenient to treat the interpretation of an attribute
as a binary relation:

ANI ⊆ ∆I × ∆I

satisfying the additional condition:

if 〈d, e〉 ∈ ANI , then there is no f ∈ ∆I such that 〈d, f〉 ∈ ANI and e 6= f
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The interpretation of a concept, role or attribute expression is derived from the
interpretations of its components as described in the following sections.

2.2.1 Concept Expressions

DLs can support a wide variety of operators for building and combining concept
expressions. Table 2.3 presents the formal semantics of the concept expressions
introduced in Section 2.1.1.

Description Syntax Semantics
top > ∆I

bottom ⊥ ∅
conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

negation ¬C ∆I − CI

exists restriction ∃R.C {d ∈ ∆I | RI(d) ∩ CI 6= ∅}
value restriction ∀R.C {d ∈ ∆I | RI(d) ⊆ CI}
number restriction >nR {d ∈ ∆I | |RI(d)| > n}
number restriction 6nR {d ∈ ∆I | |RI(d)| 6 n}
qualified number restriction >nR.C {d ∈ ∆I | |RI(d) ∩ CI | > n}
qualified number restriction 6nR.C {d ∈ ∆I | |RI(d) ∩ CI | 6 n}
exists restriction ∃A.C {d ∈ dom AI | AI(d) ∈ CI}
value restriction ∀A.C {d ∈ ∆I | d ∈ dom AI ⇒ AI(d) ∈ CI}
attribute value map A = B {d ∈ ∆I | AI(d) = BI(d)}
attribute value map A 6= B {d ∈ ∆I | AI(d) 6= BI(d)}

Table 2.3: Concept expressions

It has already been mentioned (in Section 2.1 on page 23) that concepts corre-
spond to unary predicates in FOPC. A concept expression therefore corresponds
to an FOPC formula with a single free variable [DLNN95]: Table 2.4 on the fol-
lowing page shows how the concept expressions described in Table 2.3 correspond
to FOPC formulae with x as the free variable.

Note that:

1. There are two possible semantics for A = B and A 6= B (attribute value
map) concept expressions. The semantics given in Table 2.3 includes those
cases where one or both of A(d) and B(d) are undefined. The alternative
semantics, which specifies that both A(d) and B(d) must be defined, can
be captured by the concept expressions:

(A = B) u (∃A.>) u (∃B.>)

(A 6= B) u (∃A.>) u (∃B.>)
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Expression FOPC formula
> True
⊥ False
C u D C(x) ∧ D(x)
C t D C(x) ∨ D(x)
¬C ¬C(x)
∃R.C ∃y.(R(x, y) ∧ C(y))
∀R.C ∀y.(R(x, y) → C(y))

>nR ∃y1, . . . , yn.

(

∧

16i6n

(

R(x, yi) ∧
∧

i<j6n

yi 6= yj

))

6nR ∀y1, . . . , yn+1.

((

∧

16i6n+1

R(x, yi)

)

→
∨

16i<j6n+1

yi = yj

)

>nR.C ∃y1, . . . , yn.

(

∧

16i6n

(

R(x, yi) ∧ C(yi) ∧
∧

i<j6n

yi 6= yj

))

6nR.C ∀y1, . . . , yn+1.

((

∧

16i6n+1

(R(x, yi) ∧ C(yi))

)

→
∨

16i<j6n+1

yi = yj

)

∃A.C ∃y.((A(x) = y) ∧ C(y))
∀A.C ∀y.((A(x) = y) → C(y))
A = B ∀y.((A(x) = y) ↔ (B(x) = y))
A 6= B ∃y.¬((A(x) = y) ↔ (B(x) = y))

Table 2.4: Concept expressions and equivalent FOPC formulae

An abbreviated notation A
↓
= B and A

↓

6= B has been proposed for these
expressions [BHH+91].

2. Allowing roles in value map expressions (e.g., R = S or R 6= S) is known
to lead to undecidability [SS89].

3. There is considerable redundancy in the set of operators described in Ta-
ble 2.3, as demonstrated by the following identities:

∃R.C = ¬∀R.¬C
∀R.C = ¬∃R.¬C

>nR =

{

¬6(n − 1)R if n > 1
> if n = 0

6nR = ¬>(n + 1)R

>nR.C =

{

¬6(n − 1)R.C if n > 1
> if n = 0

6nR.C = ¬>(n + 1)R.C

(2.1)
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4. The following identities relating to the top and bottom concepts will also
be useful:

> u C = C > t C = >
⊥ u C = ⊥ ⊥ t C = C
∃R.⊥ = ⊥ ∀R.> = >

(2.2)

2.2.2 Role and Attribute Expressions

DLs can also support a range of operators for building and combining role and
attribute expressions, although this feature is not common in either implementa-
tions or theoretical descriptions. Table 2.5 presents the formal semantics of the
role and attribute expressions introduced in Section 2.1.1: in this context R and
S are taken to refer to either role or attribute expressions.

Description Syntax Semantics
top role >×> ∆I × ∆I

conjunction R u S RI ∩ SI

disjunction R t S RI ∪ SI

composition R ◦ S RI ◦ SI

identity id(C) {〈d, d〉 | d ∈ CI}
inverse R−1 {〈d, d′〉 | 〈d′, d〉 ∈ RI}
transitive closure R+

⋃

16n(RI)n

transitive reflexive closure R∗
⋃

06n(RI)n

Table 2.5: Role and attribute expressions

A role expression corresponds to an FOPC formula with two free vari-
ables [DLNN95]: Table 2.6 shows how some of the role expressions described
in Table 2.5 correspond to FOPC formulae with x and y as the free variables.

Expression FOPC formula
R u S R(x, y) ∧ S(x, y)
R t S R(x, y) ∨ S(x, y)
R ◦ S ∃z.(R(x, z) ∧ S(z, y))
id(C) C(x) ∧ x = y
R−1 R(y, x)

Table 2.6: Role expressions and equivalent FOPC formulae

Note that:
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1. Expressions of the form A t B, A−1, A+ and A∗, where A and B are
attributes, are in general role expressions and not attribute expressions.
For example if AI = {〈d, f〉, 〈e, f〉, 〈f, g〉} and BI = {〈d, e〉}, then:

{〈d, e〉, 〈d, f〉} ⊂ (A t B)I

{〈f, d〉, 〈f, e〉} ⊂ (A−1)I

{〈d, f〉, 〈d, g〉} ⊂ (A+)I

{〈d, d〉, 〈d, f〉} ⊂ (A∗)I

2. Transitive closure and transitive reflexive closure role forming operators
cannot be expressed in FOPC [Baa90a] but transitively closed roles [Sat96]
can be described, e.g., for a role R-trans v ∆I × ∆I by adding an axiom:

∀x, y.(∃z.(R-trans(x, z) ∧ R-trans(z, y)) → R-trans(x, y))

to the terminology.

3. Using role and attribute expressions in number restriction concept expres-
sions (e.g., >nR+) leads to undecidability for most combinations of role
forming operators [BS96b].

4. Transitive reflexive closure role expressions in exists and value restriction
concept expressions can be transposed into transitive closure role expres-
sions, and vice versa, using the following identities:

∃R+.C = ∃R.(∃R∗.C)
∀R+.C = ∀R.(∀R∗.C)
∃R∗.C = C t ∃R+.C
∀R∗.C = C u ∀R+.C

(2.3)

5. Disjunction, composition and identity role expressions can be eliminated
from exists and value restriction concept expressions by applying the fol-
lowing identities:

∃(R t S).C = ∃R.C t ∃S.C
∀(R t S).C = ∀R.C u ∀S.C
∃(R ◦ S).C = ∃R.(∃S.C)
∀(R ◦ S).C = ∀R.(∀S.C)
∃id(C).D = C u D
∀id(C).D = ¬C t D

(2.4)

2.2.3 Introduction Axioms

A DL terminology consists of a finite set of axioms. The kinds of axiom which can
occur in a terminology are often restricted to those which introduce new concept
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role and attribute names and associate them with an expression through either
an equality or a subsumption relationship: these kinds of axiom will be called
introduction axioms. Restricting a terminology to introduction axioms which are
both unique (each name appears only once on the left hand side of an axiom) and
acyclic (the right hand side of an axiom cannot refer, either directly or indirectly,
to the name on its left hand side) greatly simplifies subsumption reasoning (see
Section 2.3 on page 35). The semantics of introduction axioms is described in
Table 2.7.

Description Syntax Semantics

concept introduction CN
.
= C CNI = CI

role introduction RN
.
= R RNI = RI

attribute introduction AN
.
= A ANI = AI

primitive concept introduction CN v C CNI ⊆ CI

primitive role introduction RN v R RNI ⊆ RI

primitive attribute introduction AN v A ANI = AI

Table 2.7: Introduction axioms

Introduction axioms which use the subsumption relation (v) correspond to im-
plications in FOPC while those which use the equality relation (

.
=) correspond

to a pair of implications or, equivalently, a bi-directional implication in FOPC.
Table 2.8 shows FOPC axioms corresponding to the introduction axioms in Ta-
ble 2.7.

DL axiom FOPC axiom
CN

.
= C ∀x.(CN(x) ↔ C(x))

RN
.
= R ∀x, y.(RN(x, y) ↔ R(x, y))

AN
.
= A ∀x, y.(AN(x, y) ↔ A(x, y))

CN v C ∀x.(CN(x) → C(x))
RN v R ∀x, y.(RN(x, y) → R(x, y))
AN v A ∀x, y.(AN(x, y) → A(x, y))

Table 2.8: Introduction axioms and equivalent FOPC axioms

Names which are associated with an expression via a subsumption relation are
known as primitives while names which are associated with an expression via an
equality relation are known as non-primitives. Primitives are not fully defined by
their characteristics—they are said to have only necessary characteristics. Non-
primitives on the other hand are fully defined by their characteristics—their char-
acteristics are said to be both necessary and sufficient. The expression associated
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with a non-primitive name in a unique introduction axiom will often be called its
definition.

Example 2.3 A Primitive Introduction Axiom

The axiom:

human v animal u biped

introduces the primitive concept human and states that a human is necessarily
both an animal and a biped but that the conjunction of animal(x) and biped(x) is
not sufficient to infer human(x). Natural kinds, such as human, are often primitive
because it is difficult or impossible to describe them definitively.

Example 2.4 A Non-primitive Introduction Axiom

The axiom:

woman
.
= human u female

introduces the non-primitive concept woman, states that a woman is necessarily
both a human and a female and also states that the conjunction of human(x)
and female(x) is sufficient to infer woman(x): human u female is said to be the
definition of woman.

Primitives which have no necessary conditions will be called atomic primitives.
e.g., in a terminology:

{vegan v ∀eats.plant}

the concept plant and the role eats are atomic primitives: nothing is known about
plant and eats other than the fact that their interpretations are subsets of ∆I and
∆I×∆I respectively. Atomic primitives are sometimes introduced explicitly with
axioms of the form:

plant v >

eats v >×>

2.2.4 General Terminological Axioms

DLs can support more general terminological axioms of the form C
.
= D or

C v D, where C and D are not restricted to be a concept names but can be
arbitrary concept expressions. Axioms of the form C

.
= D are known as concept

equations [Baa90a] or sort equations [BBN+91] while those of the form C v D
are known as general concept inclusion axioms (GCIs), universal terminologi-
cal axioms or universal implications [Sch91]. The semantics of these axioms is
described in Table 2.9 on the following page.
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Description Syntax Semantics
concept equation C

.
= D CI = DI

GCI C v D CI ⊆ DI

Table 2.9: General terminological axioms

Example 2.5 A General Concept Inclusion Axiom

The knowledge that all three-angled geometric figures are also three-sided might
be expressed using the GCI:

geometric-figure u ∃angles.three v ∃sides.three

A concept equation, like a non-primitive introduction axiom, corresponds to a
bi-directional implication in FOPC:

C
.
= D ≡ ∀x.(C(x) ↔ D(x))

while a GCI, like a primitive introduction axiom, corresponds to an ordinary
implication in FOPC:

C v D ≡ ∀x.(C(x) → D(x))

The left hand side of a GCI will therefore be called its antecedent and the right
hand side its consequent—in this case C is the antecedent and D is the consequent.

Note that:

1. Concept equations are interchangeable with GCIs as shown by the following
identities:

C
.
= D =

{

C v D
D v C

(2.5)

C v D = C u ¬D
.
= ⊥

2. The concept introduction axioms described in Section 2.2.3 are simply spe-
cial cases of GCIs and concept equations where the expression on the left
hand side is a concept name.

2.2.5 Functional and Transitive Role Axioms

In DLs which support attributes (functional roles) the terminology may include
axioms of the form AN ∈ F, which assert that AN is an attribute. If R is the set
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of role names in a terminology T , then the set of attribute names F ⊆ R in T is
defined by:

F = {r ∈ R | 1. r ∈ F is an axiom in T or
2. r

.
= A is an axiom in T

and A is an attribute expression or
3. r v A is an axiom in T

and A is an attribute expression}

An interpretation I of T must satisfy the additional condition that, for all AN ∈
F, ANI is a single valued partial function:

ANI : dom ANI −→ ∆I

In DLs which support transitive roles the terminology may include axioms of the
form RN ∈ R+, which assert that RN is a transitive role. If R is the set of roles
in a terminology T , then the set of transitive roles R+ ⊆ R in T is defined by:

R+ = {r ∈ R | 1. r ∈ R+ is an axiom in T or
2. r

.
= RN is an axiom in T

and RN ∈ R+}

An interpretation I of T must satisfy the additional condition that, for all RN ∈
R+, RNI is transitively closed:

if 〈d, e〉 ∈ RNI and 〈e, f〉 ∈ RNI , then 〈d, f〉 ∈ RNI

2.3 Subsumption and Classification

Subsumption relationships between pairs of concept, role and attribute expres-
sions are defined in terms of subset relationships between their interpretations.
Like the subset relation, subsumption is transitive, reflexive and antisymmetric,
and is therefore a partial ordering relation. Classification is the computation of
the partial ordering based on the subsumption relation.

In practice, subsumption between and classification of concept expressions is the
usual focus of interest in a Description Logic Knowledge Representation System
(DLKRS). A DL classifier will cache the computed partial ordering of the set of
named concepts in the form of a concept hierarchy, a directed acyclic graph in
which each concept is linked to its direct subsumers and subsumees. A concept
CN1 is a direct subsumer of concept CN2 iff CN2 v CN1 and there is no concept
CN3 such that CN2 v CN3 and CN3 v CN1; CN1 is a direct subsumee of CN2 iff
CN1 v CN2 and there is no concept CN3 such that CN1 v CN3 and CN3 v CN2.
The concept hierarchy can be used to provide rapid answers to queries regarding
classified concepts and to minimise the number of subsumption tests required to
classify a new concept (see Section 6.3 on page 102).
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2.3.1 Subsumption in General Terminologies

The semantics of DLs mean that subsumption can be formally defined in terms of
the subset relationship between interpretations. Given a terminology T consisting
of a finite set of terminological axioms, an interpretation I is a model of T if I
satisfies all the terminological axioms in T . A terminology T is satisfiable if and
only if it has a non-empty model. C is subsumed by D in T , written C vT D if
and only if CI is a subset of DI for all models I of T :

C vT D ⇐⇒ CI ⊆ DI for all models I of T

Note that if T is unsatisfiable, then every concept is subsumed by every other:
in an empty model, CI = ∅ for all C and ∅ ⊆ ∅.

This semantics for the subsumption relation, called descriptive semantics, can
produce counter-intuitive results when the terminology contains cycles [Neb91].
For example, given a terminology T consisting of the axioms:

branch v >×>

tree v >

binary-tree
.
= tree u 62branch> u ∀branch.binary-tree

ternary-tree
.
= tree u 63branch> u ∀branch.ternary-tree

descriptive semantics do not justify the intuitively obvious subsumption inference:

binary-tree vT ternary-tree

because it is easy to construct a cyclical model of T in which binary-treeI *
ternary-treeI :

∆I = {x}

treeI = {x}

branchI = {〈x, x〉}

binary-treeI = {x}

ternary-treeI = ∅

Alternative semantics based on least and greatest fixpoints have been proposed
but it is not clear that any one semantics is universally preferable [Baa90c, Neb91,
Sch93, BS96a]. Descriptive semantics are usually prefered as they are the most
conceptually obvious (they correspond to the semantics of first order logic), and
unlike fixpoint semantics, they are applicable to all DLs: fixpoints may not exist
for all concept expressions when the description languages includes, for example,
general concept negation or when the terminology includes GCIs [Baa90a, Sch93].
Subsumption based on descriptive semantics will therefore be assumed in the
remainder of this thesis.
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2.3.2 Subsumption in Unfoldable Terminologies

The evaluation of subsumption relationships is often simplified by restricting the
kinds of axiom which can appear in a terminology. In particular, restricting a
terminology so that it is unfoldable allows concept expressions to be unfolded so
that they contain only atomic primitive concept names. Subsumption between
unfolded concept expressions can then be evaluated independently of the termi-
nology.

A terminology T is unfoldable if:

1. All concept axioms are introductions of the form:

CN v C | CN
.
= C

i.e., there are no GCIs or concept equations in T .

2. All concept introduction axioms are unique: i.e., for each concept name CN

there is at most one axiom in T of the form CN v C or CN
.
= C

3. All concept introduction axioms are acyclic:

(a) an introduction axiom CN v C or CN
.
= C directly-uses a concept

name CN1 if CN1 appears in C (e.g., CN
.
= ∃R.CN1 directly-uses CN1);

(b) an introduction axiom uses a concept name CN1 if it directly-uses CN1

or if it directly-uses a concept name CN2 and CN2 uses CN1;

(c) an introduction axiom CN v C or CN
.
= C is acyclic unless it uses CN.

The process of unfolding a concept expression with respect to an unfoldable ter-
minology T can most easily be described if T contains only non-primitive concept
introduction axioms (i.e., axioms of the form CN

.
= C). Primitive concept intro-

duction axioms can be eliminated from T by replacing each axiom CN v C ∈ T
with an equivalent non-primitive introduction axiom CN

.
= CN′uC, where CN′ is

a unique, new atomic primitive concept [Baa90a]. CN′ represents the “primitive-
ness” of CN: the unspecified characteristic which differentiates CN from C. The
interpretation of CN in the original terminology (CNI ⊆ CI) remains the same
in the modified terminology:

CNI = (CN′ u C)I = CN′I ∩ CI ⊆ CI

A concept expression C can now be unfolded with respect to T , to give CuT , by
recursively substituting each non-primitive name in C with its definition, as stated
in T , until all concept names in the expression are atomic primitives [Baa90a,
Neb90b]. The interpretation of C w.r.t. T is preserved by unfolding because CI

is defined by the interpretations of its components, and a component CN is only
substituted with a concept expression D when (CN

.
= D) ∈ T , so CNI = DI .
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Example 2.6 Unfolding A Concept Expression

Given a terminology T containing the introductions from Examples 2.3 on page 33
and 2.4 on page 33:

T = {human v animal u biped,

woman
.
= human u female}

the axiom human v animalubiped can be replaced with human
.
= human′uanimalu

biped. The concept expression woman can then be unfolded with respect to T
by substituting woman with its definition human u female and then substituting
human with its definition human′ u animal u biped to give:

womanuT = human′ u animal u biped u female

In general, given an unfoldable terminology T in which all non-atomic primitive
introduction axioms have been replaced with equivalent non-primitive introduc-
tions as described above, an unfolded concept expression CuT is derived from a
concept expression C using the following steps:

1. If C is an atomic primitive concept name CN, then CuT −→ CN

2. If C is a concept name CN and (CN
.
= D) ∈ T , then CuT −→ DuT

3. If C is not a concept name, then CuT is given by substituting each compo-
nent concept expression D in C with DuT (e.g., ∃R.D −→ ∃R.DuT )

The interpretation of an unfolded concept expression CuT is defined by the inter-
pretations of the roles and atomic primitive concepts of which it is composed and
is independent of the concept introduction axioms in T . If T ′ is a terminology
derived from T by deleting all concept introduction axioms, then:

C vT D ⇐⇒ CuT vT ′ DuT

For DLs such as ALC, which do not support any form of role axiom, an unfoldable
terminology T will consist entirely of concept introduction axioms and T ′ will
therefore be an empty terminology. As any interpretation satisfies an empty
terminology, subsumption of unfolded ALC concepts CuT and DuT is independent
of T :

C vT D ⇐⇒ CI
uT ⊆ DI

uT for all models I

Subsumption in such a terminology can be evaluated using a much simpler de-
cision procedure: one which can only deal with a pair of concept expressions in
which all names are atomic primitives.

Note that a primitive interpretation (an assignment of values to the interpreta-
tions of primitive concepts) leads, via the semantics, to a unique interpretation
for all concept expressions in an unfoldable terminology: least fixpoint, great-
est fixpoint and descriptive semantics therefore coincide in unfoldable terminolo-
gies [Neb90a].
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2.4 Theoretical and Implemented DLs

This section introduces some of the DLs which have been described in the lit-
erature or which form the basis of implemented DL Knowledge Representation
Systems (DLKRSs). As stated in Section 2.1.1 on page 25, a particular DL is
characterised by the kinds of concept and role expression allowed in its description
language and the kinds of axiom allowed in its terminologies.

2.4.1 The ALC Family of DLs

The ALC DL [SSS91] and its family of extensions are of particular interest:

• a wide variety of expressive possibilities can be achieved by augmenting the
range of concept expressions, role expressions and terminological axioms
which are supported by ALC;

• ALC and its extensions have been the subject of detailed theoretical study:

– decidability and complexity results are available for many possible ex-
tensions;

– sound and complete subsumption testing algorithms have also been
designed in many cases.

The syntax of ALC was described in detail in Section 2.1.1 on page 25. To
recapitulate, if CN is a concept name, RN is a role name and C and D are
concept expressions, then axioms are of the form:

C v D | C
.
= D

and concept expressions are of the form:

CN | > | ⊥ | ¬C | C u D | C t D | ∃RN .C | ∀RN .C

Extensions of ALC which have been studied include:

• ALCN , ALCR and ALCNR [HN90]—ALC augmented with number re-
striction concept expressions (N ) or/and role conjunction (R);

• ALCF [HN90]—ALC augmented with attributes (sometimes called fea-
tures), attribute composition and attribute value map concept expressions;

• ALCFN [BH91c]—ALCF augmented with number restriction concept ex-
pressions;

• ALCFNR [HN90]—ALCFN augmented with role conjunction;
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• ALCN (◦) [BS96b]—ALCN augmented with role composition in number
restriction concept expressions;

• ALC+ [Baa90a]—ALC augmented with union, composition and transitive
closure role expressions;

• ALCR+ [Sat96]—ALC augmented with transitively closed primitive roles
(axioms of the form RN ∈ R+);

• ALC⊕ [Sat96]—ALCR+ augmented with a restricted form of primitive role
introduction axioms (see Section 4.1 on page 58);

• T SL [Sch91]—ALC augmented with union, composition, identity, transi-
tive reflexive closure and inverse role expressions;

• CIQ [GL96]—T SL augmented with qualified number restriction concept
expressions (inverse roles are the only form of role expression allowed in
qualified number restrictions);

It should be noted that extending the syntax of a description language does
not necessarily increase its expressiveness. For example, adding disjunction,
composition and identity role expressions to ALC does not increase its expres-
siveness as they can be eliminated from concept expressions using the identi-
ties 2.4 on page 31. Characterising and comparing the expressiveness of different
DLs is a non-trivial problem and has been the subject of a number of stud-
ies [Baa90b, Bor96, KdR97].

Figure 2.1 on the following page shows various members of the ALC family ar-
ranged in a hierarchy based on syntactic inclusion, although it is believed that
the expressiveness of these DLs is also distinct. CIQ is probably the most ex-
pressive DL which is know to be decidable and for which a sound and complete
subsumption testing algorithm is available [GL96].

Extensions of ALC which are introduced and will be the subject of detailed study
in this thesis are ALCHR+ and ALCHf R+ (see Chapter 4). ALCHR+ augments
ALC⊕ with unrestricted primitive role introduction axioms, allowing a complete
role hierarchy1 to be defined; ALCHf R+ augments ALCHR+ with attributes,
or functional roles2, and is the logic which is used in the FaCT system (see
Chapter 6).

1The H in ALCHR+ stands for role Hierarchy.
2The f in ALCHf R+ stands for f unctional roles
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Figure 2.1: A hierarchy of DLs from the ALC family

2.4.2 Implemented DLKRSs

Other than FaCT, Kris is the only available DLKRS which uses a sound and
complete tableaux based subsumption testing algorithm3, and for this reason it
is used as one of the benchmarks when testing FaCT’s performance (See Chap-
ter 7). The DL implemented in the Kris system is ALCFN augmented with
the ability to refer to elements of Lisp enumerated types and to nonnegative in-
tegers in concept expressions (these are called concrete domains [BH91a]). The
Kris classifier is only able to evaluate subsumption with respect to unfoldable
terminologies.

The other implemented DLKRSs mentioned in Section 2.1 on page 23 provide con-
cept description languages of varying expressiveness: Classic is more restricted
than Kris and does not support negation, disjunction or exists restrictions; un-
like Classic, Back does not support attributes, but adds (in version 5) support
for exists restrictions and qualified number restrictions, as well as conjunction,
composition, inversion and transitive closure role expressions; Loom is highly
expressive, supporting all the concept expressions described in Section 2.2.1 on
page 28, and even supporting additional expressions, such as role value maps
(R = S), which are known to be generally undecidable [SS89].

3The only other tableaux based system of which the author is aware is Crack [BFT95],
which has been developed at IRST in Trento, Italy, and is not currently available for use outside
IRST.
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Classic, Back and Loom all restrict terminologies to those which are unfold-
able and all use structural subsumption algorithms. Classic provides complete
subsumption reasoning with respect to purely conceptual expressions but it also
supports concepts which are extensionally defined (in terms of sets of individuals)
and its reasoning with respect to these concepts is incomplete, or at least requires
a weakening of the model theoretic semantics [BPS94]. Back and Loom both
provide incomplete subsumption reasoning: they do not guarantee to find all the
subsumption inferences which are justified by the semantics of their concept de-
scription languages. In the case of Loom, the degree of incompleteness can be
controlled using the power-level function, which:

. . . allows the user to turn off (or down) certain expensive types of
inferencing in order to gain a possibly substantial increase in classifier
performance. [Bri93]

However it is known to be difficult to characterize the inferences missed by in-
complete algorithms [Bor92] and in the case of Loom it is acknowledged that:

It is difficult to precisely characterize the types of inferencing affected
by the power-level. [Bri93]

Table 2.10 on the following page summarises and compares the expressiveness
of the members of the ALC family of DLs described in Section 2.4.1, and of
Kris, Classic, Back and Loom, in terms of their support for the concept
expressions described in Section 2.2.1 on page 28; Table 2.11 on page 44 makes the
same comparison in terms of their support for the role and attribute expressions
described in Section 2.2.2 on page 30.
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Concept Expressions
DL u t ¬ ∃R ∀R >nR 6nR >nR.C 6nR.C ∃A ∀A = 6=

ALC × × × × ×
ALCN × × × × × × ×
ALCR × × × × ×
ALCNR × × × × × × ×
ALCF × × × × × × × × ×
ALCFN × × × × × × × × × × ×
ALCFNR × × × × × × × × × × ×
ALCN (◦) × × × × × × ×
ALC+ × × × × ×
ALCR+ × × × × ×
ALC⊕ × × × × ×
T SL × × × × ×
CIQ × × × × × × × × ×
ALCHR+ × × × × ×
ALCHf R+ × × × × × × ×
Kris × × × × × × × × × × ×
Classic × × × × × × × ×
Back × × × × × × ×
Loom × × × × × × × × × × × × ×

Table 2.10: Concept expressions supported by DLs
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Role and Attribute Expressions
DL u t ◦ id −1 + ∗ A ◦ B

ALC
ALCN
ALCR ×
ALCNR ×
ALCF ×
ALCFN ×
ALCFNR × ×
ALCN (◦) ×
ALC+ × × ×
ALCR+

ALC⊕

T SL × × × × ×
CIQ × × × × ×
ALCHR+

ALCHf R+

Kris ×
Classic ×
Back × × × ×
Loom × × ×

Table 2.11: Role expressions supported by DLs



Chapter 3

Tableaux Algorithms

This chapter introduces tableaux subsumption testing algorithms and describes
their operation. It is intended to be illustrative of the general principles involved
rather than completely rigorous with respect to any particular algorithm: a rigor-
ous treatment of a subsumption testing algorithm for ALCHR+ will be presented
in Chapter 4.

The chapter is organised as follows: Section 3.1 shows how a subsumption problem
can be transposed into an equivalent satisfiability problem; Section 3.2 illustrates
the tableaux method by describing a simple tableaux satisfiability testing algo-
rithm; and finally, Section 3.3 shows how the algorithm can be extended to deal
with general terminologies.

3.1 Tableaux Subsumption Testing

Most early DL systems used structural subsumption algorithms [Woo91] based
on rules such as:

45
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(C1 u . . . u Cn) vT (D1 u . . . u Dm) if for every D in D1, . . . , Dn

there is some C in C1, . . . , Cn

such that C vT D

∃R.C vT ∃S.D if R vT S and C vT D

The rules are used to recursively decompose the problem until it is reduced to
axiomatic primitive subsumption relationships in the terminology T .

An alternative approach, first used in the Kris system [BH91b], is to transpose
the subsumption problem into an equivalent satisfiability problem:

C vT D ⇐⇒ (C u ¬D)I = ∅ for all models I of T

The validity of this transformation is clear from the semantics of subsumption:

C vT D ⇐⇒ CI ⊆ DI for all models I of T

CI ⊆ DI ⇐⇒ CI ∩ DI = ∅

CI ∩ DI = ∅ ⇐⇒ (C u ¬D)I = ∅

Given an unfoldable terminology T (see Section 2.3.2 on page 37), subsumption
between concept terms which have been unfolded with respect to T is independent
of T and can therefore be evaluated by testing the satisfiability of a single unfolded
concept expression:

C vT D ⇐⇒ (C u ¬D)IuT = ∅ for all I

i.e., C is subsumed by D with respect to T iff C u ¬D, unfolded w.r.t. T , is not
satisfiable (has no non-empty model).

The resulting satisfiability problems can be solved using an algorithm based on
the tableaux calculus [BH91b, HN90]. This approach has many advantages and
has dominated recent DL research:

• it has a sound theoretical basis in first order logic [HN90];

• it can be relatively easily adapted to allow for a range of description lan-
guages by changing the set of tableaux expansion rules [HN90, BFT95];

• it can be adapted to deal with more expressive logics, including those which
support transitively closed roles, by using more sophisticated control mech-
anisms to ensure termination [Baa90a, Sat96];

• it can be used to test knowledge base satisfiability and thus deal with DL
languages which permit cyclical definitions and/or GCIs [BDS93];

• it has been shown to be optimal for a number of DL languages, in the sense
that the worst case complexity of the algorithm is no worse than the known
complexity of the satisfiability problem for the logic [HN90];

• the theoretical frontiers of decidability and tractability are well understood
[Sch91, DHL+89].
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3.2 General Method

Tableaux algorithms try to prove the satisfiability of a concept expression D
by demonstrating a model—an interpretation I = (∆I , ·I) in which DI 6= ∅; a
tableau is a graph which represents such a model, with nodes corresponding to
individuals and edges corresponding to relationships between individuals. A typ-
ical algorithm will start with a single individual satisfying D and try to construct
a complete model “ground up” by inferring the existence of additional individuals
or of additional constraints on individuals. The inference mechanism consists of
applying a set of expansion rules which correspond to the logical constructs of
the language and the algorithm terminates either when the model is complete
(no further inferences are possible) or when an obvious contradiction has been
revealed.

To simplify the algorithm, D is assumed to be an unfolded concept expres-
sion in negation normal form. A concept expression is in negation normal form
when negations apply only to concept names and not to compound terms. Ar-
bitrary concept expressions can be transformed into negation normal form us-
ing a combination of DeMorgan’s laws and the identities 2.1 on page 29 (e.g.,
¬∃R.C = ∀R.¬C and ¬∀R.C = ∃R.¬C).

Example 3.1 Negation Normal Form

The negation normal form of ¬(∃R.C u ∀S.D) is obtained by first applying De-
Morgan’s laws:

¬(∃R.C u ∀S.D) −→ ¬∃R.C t ¬∀S.D

followed by identities 2.1:

¬∃R.C t ¬∀S.D −→ ∀R.¬C t ∃S.¬D

3.2.1 A Tableaux Algorithm for ALC

The tableaux method can best be illustrated by describing an algorithm for de-
ciding the satisfiability of ALC concept expressions. The algorithm uses a tree
to represent the model being constructed. Each node x in the tree represents an
individual and is labelled with a set L(x) of ALC concept expressions which it
must satisfy:

C ∈ L(x) ⇒ x ∈ CI

Each edge 〈x, y〉 in the tree represents a pair of individuals in the interpretation
of a role and is labelled with the role name:

R = L(〈x, y〉) ⇒ 〈x, y〉 ∈ RI

To determine the satisfiability of a concept expression D, a tree T is initialised
to contain a single node x0, with L(x0) = {D}, and expanded by repeatedly
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applying the rules from Table 3.1. T is fully expanded when none of the rules
can be applied. T contains an obvious contradiction or clash when, for some
node x and some concept C, either ⊥ ∈ L(x) or {C,¬C} ⊆ L(x).

u-rule if 1. (C1 u C2) ∈ L(x)
2. {C1, C2} * L(x)

then L(x) −→ L(x) ∪ {C1, C2}

t-rule if 1. (C1 t C2) ∈ L(x)
2. {C1, C2} ∩ L(x) = ∅

then a. save T

b. try L(x) −→ L(x) ∪ {C1}
If that leads to a clash then restore T and

c. try L(x) −→ L(x) ∪ {C2}

∃-rule if 1. ∃R.C ∈ L(x)
2. there is no y s.t. L(〈x, y〉) = R and C ∈ L(y)

then create a new node y and edge 〈x, y〉
with L(y) = {C} and L(〈x, y〉) = R

∀-rule if 1. ∀R.C ∈ L(x)
2. there is some y s.t. L(〈x, y〉) = R and C /∈ L(y)

then L(y) −→ L(y) ∪ {C}

Table 3.1: Tableaux expansion rules for ALC

A fully expanded clash-free tree T can trivially be converted into a model which
is a witness to the satisfiability of D:

∆I = {x | x is a node in T}

CNI = {x ∈ ∆I | CN ∈ L(x)} for all concept names CN in D

RI = {〈x, y〉 | 〈x, y〉 is an edge in T and L(〈x, y〉) = R}

The interpretations of concept expressions follow directly from the semantics
given in Table 2.3 on page 28.

Note that:

1. The second condition in each rule constitutes a control strategy which en-
sures that the algorithm does not fail to terminate due to an infinite rep-
etition of the same expansion. Informally, the algorithm is guaranteed to
terminate because:
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(a) The u, t and ∃ rules can only be applied once to any given concept
expression C in L(x).

(b) The ∀-rule can be applied many times to a given ∀R.C expression in
L(x) but only once to any given edge 〈x, y〉.

(c) Applying a rule to a concept expression C extends the labelling with
a concept expression which is always strictly smaller than C.

2. The t-rule is different from the other rules: it is non-deterministic and
operates by performing a depth first backtracking search of the possible
expansions resulting from disjunctions in D, halting when either a fully
expanded tree is found or every possible expansion is shown to lead to a
clash.

Example 3.2 Demonstrating Subsumption

Given an unfoldable terminology T containing the definition of vegan from Ex-
ample 2.1:

vegan
.
= person u ∀eats.plant

and the following definition of vegetarian:

vegetarian
.
= person u ∀eats.(plant t dairy)

the algorithm can be used to show that vegan vT vegetarian by demonstrating
that (vegan u ¬vegetarian)uT (i.e., vegan u ¬vegetarian unfolded w.r.t. T ) is not
satisfiable:

1. Unfold and normalise vegan u ¬vegetarian to give:

person u ∀eats.plant u (¬person t ∃eats.(¬plant u ¬dairy))

2. Initialise T to contain a single node x labelled:

L(x) = {person u ∀eats.plant u (¬person t ∃eats.(¬plant u ¬dairy))}

3. Apply the u-rule to person u ∀eats.plant u (¬person t ∃eats.(¬plant u
¬dairy)) ∈ L(x):

L(x) −→ L(x) ∪ {person,∀eats.plant,
¬person t ∃eats.(¬plant u ¬dairy)}

4. Apply the t-rule to ¬person t ∃eats.(¬plant u ¬dairy) ∈ L(x):

(a) Save T and try:
L(x) −→ L(x) ∪ {¬person}

This is an obvious contradiction as {person,¬person} ⊆ L(x).

(b) Restore T and try:

L(x) −→ L(x) ∪ {∃eats.(¬plant u ¬dairy))}
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5. Apply the ∃-rule to ∃eats.(¬plant u ¬dairy) ∈ L(x):

create a new node y and a new edge 〈x, y〉
L(y) = {¬plant u ¬dairy}
L(〈x, y〉) = eats

6. Apply the ∀-rule to ∀eats.plant ∈ L(x) and L(〈x, y〉) = eats:

L(y) −→ L(y) ∪ {plant}

7. Apply the u-rule to ¬plant u ¬dairy ∈ L(y):

L(y) −→ L(y) ∪ {¬plant,¬dairy}

This is an obvious contradiction as {plant,¬plant} ⊆ L(y).

As all possible applications of the t-rule (step 4) have now been shown to lead
to a contradiction, it can be concluded that, with respect to the definitions in T ,
vegan u ¬vegetarian is unsatisfiable and thus that vegetarian subsumes vegan.

Example 3.3 Demonstrating Non-subsumption

Conversely, it can be shown that vegetarian 6vT vegan by demonstrating that
(vegetarian u ¬vegan)uT is satisfiable:

1. Unfold and normalise vegetarian u ¬vegan to give:

person u ∀eats.(plant t dairy) u (¬person t ∃eats.¬plant)

2. Initialise T to contain a single node x labeled:

L(x) = {person u ∀eats.(plant t dairy) u (¬person t ∃eats.¬plant)}

3. Apply the u-rule to personu∀eats.(planttdairy)u(¬persont∃eats.¬plant) ∈
L(x):

L(x) −→ L(x) ∪ {person,∀eats.(plant t dairy),
¬person t ∃eats.¬plant}

4. Apply the t-rule to ¬person t ∃eats.¬plant ∈ L(x):

(a) Save T and try:
L(x) −→ L(x) ∪ {¬person}

This is an obvious contradiction as {person,¬person} ⊆ L(x).

(b) Restore T and try:

L(x) −→ L(x) ∪ {∃eats.¬plant}

5. Apply the ∃-rule to ∃eats.¬plant ∈ L(x):

create a new node y and a new edge 〈x, y〉
L(y) = {¬plant}
L(〈x, y〉) = eats
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6. Apply the ∀-rule to ∀eats.(plant t dairy) ∈ L(x) and L(〈x, y〉) = eats:

L(y) −→ L(y) ∪ {plant t dairy}

7. Apply the t-rule to plant t dairy ∈ L(y):

(a) Save T and try:
L(y) −→ L(y) ∪ {plant}

This is an obvious contradiction as {plant,¬plant} ⊆ L(y).

(b) Restore T and try:

L(y) −→ L(y) ∪ {dairy}

None of the expansion rules are now applicable to T so it is fully expanded. T

consists of two nodes, x and y, and a single edge 〈x, y〉 with labels:

L(x) = {person u ∀eats.(plant t dairy) u (¬person t ∃eats.¬plant),

person,∀eats.(plant t dairy),¬person t ∃eats.¬plant,

∃eats.¬plant}

L(y) = {¬plant, plant t dairy, dairy}

L(〈x, y〉) = eats

T can trivially be converted into a model which is a witness to the satisfiability
of vegetarian u ¬vegan and thus proves that vegan does not subsume vegetarian:

∆I = {x, y}

personI = {x}

dairyI = {y}

plantI = ∅

eatsI = {〈x, y〉}

Interpretations of concept expressions, and thus of non-primitive concepts in T ,
follow directly from the semantics given in Table 2.3 on page 28:

(plant t dairy)I = plantI ∪ dairyI

= {y}

(∀eats.(plant t dairy))I = {d ∈ ∆I | eatsI(d) ⊆ (plant t dairy)I}

= {x, y}

vegetarianI = personI ∩ (∀eats.(plant t dairy))I

= {x}

(∀eats.plant)I = {d ∈ ∆I | eatsI(d) ⊆ plantI}

= {y}

veganI = personI ∩ (∀eats.plant)I

= ∅

(¬vegan)I = ∆I − veganI
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= {x, y}

(vegetarian u ¬vegan)I = vegetarianI ∩ (¬vegan)I

= {x}

3.3 Dealing with General Terminologies

The algorithm described above tests the satisfiability of a single unfolded concept
expression and can therefore only be used to evaluate subsumption with respect
to an unfoldable terminology. To evaluate subsumption with respect to a general
terminology, one which may contain cycles, concept equations and general concept
inclusion axioms (GCIs), the algorithm can be extended by the addition of a meta
constraint M and a more sophisticated control strategy known as blocking, both
of which will be described in the following sections.

3.3.1 Meta Constraints

When testing satisfiability with respect to a general terminology T , it is necessary
to restrict the models I which can be generated by the algorithm to those which
satisfy T :

C vT D ⇐⇒ (C u ¬D)I = ∅ for all models I of T

where a model I satisfies a terminology T if it satisfies all the axioms in T (see
Section 2.3 on page 35). As all concept axioms can be transformed into equivalent
GCIs using identity 2.5:

C
.
= D =

{

C v D
D v C

it is sufficient to consider the problem of restricting models to those which satisfy
GCIs in T .

A GCI C v D ∈ T is satisfied by a model I iff CI ⊆ DI . This can be trans-
posed into an equivalent satisfiability condition in the same way as for general
subsumption testing: C v D is satisfied by I iff (C u ¬D)I = ∅. Negating both
sides of this equality gives:

C v D is satisfied by I ⇐⇒ (¬C t D)I = ∆I

i.e., a GCI C v D is satisfied by a model I iff every individual in the model
satisfies ¬C t D [BDS93].

The trees which are constructed by the tableaux algorithm described in Sec-
tion 3.2.1 can therefore be restricted to those which represent models satisfying
the GCI C v D by imposing a meta constraint:

for all nodes x in T, (¬C t D) ∈ L(x)
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where ¬C t D is transformed into negation normal form. The set of nodes x
in T represent the domain ∆I , and as (¬C t D) is in the label of every node,
(¬CtD)I = ∆I . For convenience, we will abuse notation by writing such a meta
constraint as:

∀x ∈ T.(¬C u D) ∈ L(x)

Example 3.4 Converting a GCI Into a Meta Constraint

The GCI geometric-figure u ∃angles.three v ∃sides.three from Example 2.5 on
page 34 would be converted into the meta constraint:

∀x ∈ T.(∃sides.three t ¬(geometric-figure u ∃angles.three)) ∈ L(x)

or, in negation normal form:

∀x ∈ T.(∃sides.three t (¬geometric-figure t ∀angles.¬three)) ∈ L(x)

which ensures that every individual in a valid model is either three-sided or not
a three-angled geometric figure.

The satisfiability of a concept expression D with respect to a general ALC ter-
minology T can be tested by transforming all the axioms in T into GCIs using
identity 2.5 to give:

T = {C1 v D1, . . . , Cn v Dn}

and imposing the meta constraints:

∀x ∈ T.(¬C1 t D1) ∈ L(x), . . . ,∀x ∈ T.(¬Cn t Dn) ∈ L(x)

on the tree construction algorithm [BDS93]. These constraints can be combined
to form a single meta constraint:

∀x ∈ T.M ∈ L(x)

where M is the negation normal form of:

(¬C1 t D1) u . . . u (¬Cn t Dn)

The tree construction algorithm can be modified to deal with this constraint by:

1. Initialising T so that L(x0) = {D,M}.

2. Adding M to the label of each new node created by the ∃-rule.

Note that it is not necessary to unfold D, because introduction axioms are repre-
sented by disjunctions in the label of every node. For example, an axiom CN

.
= C

would be transformed into two GCIs, CN v C and C v CN, leading to the
disjunctions ¬CN t C and CN t ¬C being present in the label of every node.
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3.3.2 Blocking

The modified tree construction algorithm described above no longer satisfies the
termination conditions stated in Section 3.2.1 and it is easy to construct examples
which would lead to non-termination.

Example 3.5 Non Terminating Tableaux Expansion

Given a terminology T containing the single cyclical axiom:

human v ∃parent.human

then testing the satisfiability of human w.r.t. T (i.e., evaluating human vT ⊥)
leads to:

M = ¬human t ∃parent.human

L(x0) = {human,M}

Application of the t-rule to M in L(x0) leads to ∃parent.human being added to
L(x0) (because adding ¬human causes a clash), and application of the ∃-rule leads
to the creation of a new node x1 with L(x1) = {human,M}. As L(x1) is equal to
the initial L(x0), the same expansion rules will be applied and the process will
continue indefinitely.

In order to ensure termination, the algorithm uses a more sophisticated control
strategy called blocking [BDS93]. To describe blocking it is necessary to introduce
some new terms:

• A generating rule is a tableaux expansion rule which extends the tree T

by adding a new node or nodes; in the case of ALC, the ∃-rule is the only
generating rule.

• The parent of a node y is the node x such that 〈x, y〉 is an edge in T.

• ancestor is the transitive closure of parent.

Blocking imposes a new condition on generating rules: the rule can only be
applied to a node y if it has no ancestor node x such that L(y) ⊆ L(x) [BBH96].
If a node does not meet this condition it is said to be blocked and the ancestor
node x is called the blocking node. When a node is blocked, it is being identified
with the blocking node and the tree is describing a cyclical model. Intuitively,
it can be seen that termination is now guaranteed because a finite terminology
can only produce a finite number of different concept expressions and therefore
a finite number of different labelling sets; all nodes must therefore eventually be
blocked.

Note that there is no theoretical reason why the blocking node has to be an
ancestor node. However, only checking ancestor nodes is sufficient to ensure
termination, minimises the number of nodes which must be checked and therefore
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minimises the number of nodes which must be kept in memory: in practice,
fully expanded branches of the tree will be discarded in order to reduce storage
requirements (see Section 5.1 on page 78).

A modified ∃-rule, which adds M to new nodes and incorporates blocking, is
shown in Table 3.2.

∃-rule if 1. ∃R.C ∈ L(x)
2. there is no y s.t. L(〈x, y〉) = R and C ∈ L(y)
3. there is no y s.t. y is an ancestor of x and L(x) ⊆ L(y)

then create a new node y and edge 〈x, y〉
with L(y) = {C,M} and L(〈x, y〉) = R

Table 3.2: Modified ∃-rule with meta constraint

The mechanism for converting T into a model which is a witness to the satisfia-
bility of D also needs to be extended to identify blocked nodes with the blocking
ancestor nodes:

∆I = {x | x is a node in T and x is not blocked}

CNI = {x ∈ ∆I | CN ∈ L(x)} for all concept names CN in T

RI = {〈x, y〉 | 1. 〈x, y〉 is an edge in T and L(〈x, y〉) = R
and y is not blocked or

2. for some z, 〈x, z〉 is an edge in T

and L(〈x, z〉) = R and y blocks z}

The interpretations of concept expressions follow directly from the semantics
given in Table 2.3 on page 28.

Example 3.6 Termination Resulting From Blocking

The tableaux expansion of the concept human described in Example 3.5 above,
where:

T = {human v ∃parent.human}

M = ¬human t ∃parent.human

leads to a tree T containing two nodes x0 and x1, and an edge 〈x0, x1〉, with:

L(x0) = {human,¬human t ∃parent.human,∃parent.human}

L(x1) = {human,¬human t ∃parent.human,∃parent.human}

L(〈x0, x1〉) = parent

Node x1 is now blocked because x0 is an ancestor of x1 and L(x1) ⊆ L(x0).
T therefore represents a cyclical model which demonstrates the satisfiability of
human w.r.t. T :

∆I = {x0}



56 CHAPTER 3. TABLEAUX ALGORITHMS

humanI = {x0}

parentI = {〈x0, x0〉}

3.3.3 Semi-unfoldable Terminologies

Testing satisfiability with respect to a general terminology by converting all the
axioms into GCIs is extremely inefficient: each GCI causes a disjunction to be
added to the label of every node, leading to an exponential increase in the number
of possible expansions which might be explored by the t-rule. A more efficient
technique is to divide T into an unfoldable part TU and a general part TG such
that T = TU ∪ TG. The unfoldable part TU can be formed by taking from T
at most one acyclic introduction axiom (see Section 2.3.2 on page 37) for each
concept name CN which appears in T ; i.e., an axiom of the form CN

.
= C or

CN v C where CN is not used either directly or indirectly in C. TG is then
defined as T − TU. Any terminology can be divided in this way although it is,
of course, possible that TU will be empty and that TG = T . We will call the
terminology TU ∪ TG a semi-unfoldable terminology.

The satisfiability of a concept expression D with respect to a semi-unfoldable
terminology TU ∪TG can be tested using the modified algorithm described above
by forming the meta constraint from TG and unfolding both M and D w.r.t.
TU so that they contain only primitive concept names. The trees constructed
by the algorithm will be restricted to those which represent models satisfying
T : the meta constraint will ensure that the general part TG is satisfied and any
interpretation of primitive concepts leads, via the semantics, to an interpretation
of concept expressions and non-primitive concepts which satisfies TU.



Chapter 4

The ALCHR+ Description Logic

This chapter describes ALCHR+ , a DL which augments ALC with transitively
closed primitive roles and primitive role introduction axioms. An algorithm for
deciding the satisfiability of ALCHR+ concept expressions is presented, along
with a proof of its soundness and completeness. An extension of the algorithm to
deal with ALCHf R+ , a DL which augments ALCHR+ with attributes, will also
be described.

The ALCHR+ algorithm generalises an algorithm for ALC⊕ which is presented
in [Sat96]. ALC⊕ also augments ALC with transitively closed primitive roles
but only supports a very limited form of primitive role introduction axiom by
associating each non-transitive role with a subsuming transitive role (its transi-
tive orbit). The soundness and completeness proof for the ALCHR+ algorithm
is adapted and extended from a proof of the soundness and completeness of a
satisfiability testing algorithm for ALCR+ [Sat96], a DL which augments ALC
with transitively closed primitive roles but does not support primitive role intro-
duction axioms. The soundness and completeness of the ALCHR+ algorithm also
implicitly proves the soundness and completeness of the ALC⊕ algorithm, which
had not previously been demonstrated, as the ALC⊕ algorithm can be seen as a
special case of the ALCHR+ algorithm.

The chapter is organised as follows: Section 4.1 discusses the relationship between
ALCHR+ and other transitive extensions to ALC; Section 4.2 describes a tab-
leaux algorithm for testing the satisfiability of ALCHR+ concept expressions, and
presents a proof of its soundness and completeness; Section 4.3 shows how the al-
gorithm can be used with general terminologies; and finally, Section 4.4 describes
how the algorithm can be extended to deal with attributes in the ALCHf R+ DL.

57
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4.1 Transitive Extensions to ALC

Extensions to ALC which support some form of transitive roles include CIQ,
T SL, ALC+, ALCR+ and ALC⊕ (see Section 2.4.1 on page 39). Of these, CIQ,
T SL and ALC+ all support role expressions with transitive or transitive re-
flexive operators, and from correspondence to propositional dynamic logics their
satisfiability problems are known to be Exptime-complete [Sch91, GL96]. The
ALCR+ and ALC⊕ DLs were investigated in the hope that a more restricted
form of transitive role might lead to a satisfiability problem in a lower complexity
class [Sat96].

ALCR+ augments ALC with transitively closed primitive roles: an ALCR+ ter-
minology may include axioms of the form R ∈ R+, where R is a role name and
R+ is the set of transitive roles names in the terminology (see Section 2.2.5 on
page 34). In [Sat96] an algorithm for deciding the satisfiability of ALCR+ concept
expressions is presented along with a proof of its soundness and completeness.
It is also demonstrated that the complexity of the problem is Pspace-complete,
the same as for ALC [DLNN95].

ALC⊕ extends ALCR+ by associating each non-transitive role R with its transi-
tive orbit. The transitive orbit of a role R, denoted R⊕, is a transitive role which
subsumes R, and could be defined by the axioms R⊕ ∈ R+ and R v R⊕. The
interpretation of R⊕ is therefore a superset of the interpretation of the transitive
closure of R, i.e., (R⊕)I ⊇ (R+)I . A means of extending the ALCR+ satisfiability
algorithm to deal with ALC⊕ concept expressions is described in [Sat96] but the
soundness and completeness of the extended algorithm is not proven. Unfortu-
nately it is shown that the complexity of the problem is Exptime-complete, the
same as for ALC+ [Sat96].

The relationship between roles and their transitive orbits in ALC⊕ is equivalent
to allowing a limited form of primitive role introduction axiom to appear in
ALC⊕ terminologies—the relationship between a role and its transitive orbit is
described by a primitive role introduction axiom of the form R v R⊕. ALCHR+

generalises ALC⊕ by allowing terminologies to include arbitrary primitive role
introduction axioms of the form R v S, where R and S are primitive role names.
The subsumption (v) relation defines a partial ordering in R, the set of role
names occuring in the terminology: the semantics of the subsumption relation
mean that it is reflexive (for all roles R, R v R), antisymmetric (for any two roles
R and S, R v S and S v R ⇒ R = S) and transitive (for any three roles R, R′

and S, R v R′ and R′ v S ⇒ R v S). Like the concept subsumption relation,
the role subsumption relation can be stored as a hierarchy, a directed acyclic
graph in which each role is linked to its direct super-roles (subsuming roles) and
sub-roles (subsumed roles). The Galen medical terminology ontology includes
transitively closed primitive roles and a role hierarchy, a fragment of which is
illustrated in Figure 4.1 on the following page, with the notation R(+) being used
to denote transitive roles (i.e., R ∈ R+).
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Figure 4.1: A fraction of the Galen role hierarchy

As it generalises ALC⊕, ALCHR+ is clearly at least as expressive as ALC⊕, and
although no formal proof is available (see Section 2.4.1 on page 39), ALCHR+

would appear to be more expressive than ALC⊕. Given the roles son, daughter

and descendant, ALCHR+ is able to express the fact that descendant is a transitive
role which includes both son and daughter with the axioms descendant ∈ R+,
son v descendant and daughter v descendant. This cannot be expressed in ALC⊕,
which is only able to assert an inclusion relation between a role and its transitive
orbit, e.g., son v son⊕, daughter v daughter⊕ and descendant v descendant⊕,
where {son⊕, daughter⊕, descendant⊕} ⊆ R+. The role hierarchy allows ALCHR+

to find subsumption relationships resulting from the interaction of a transitive
role and multiple sub-roles, which would not be possible using ALC⊕, e.g.:

∃daughter .(∃son.vegetarian) v ∃descendant.vegetarian

It is also clear that ALC+ (ALC augmented with union, composition and tran-
sitive closure role expressions) is at least as expressive as ALCHR+ . ALC+ can
express a primitive hierarchy identical to that defined in ALCHR+ by using role
union and transitive closure; e.g., the primitive role descendant could be rep-
resented by the expression (son t daughter t descendant)+. ALC+ is also able
to express the fact that descendant is exactly equal to the transitive closure of
sontdaughter by using the expression (sontdaughter)+ to represent descendant.
This allows a subsumption relationship such as:

∃(son t daughter)+.> v ∃son.> t ∃daughter .>

to be found, whereas ALCHR+ will not find the subsumption relationship:

∃descendant.> v ∃son.> t ∃daughter .>

i.e., in ALCHR+ , having a descendant does not imply having either a son or a
daughter , because descendantI ⊇ sonI ∪ daughterI .
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As ALCHR+ is at least as expressive as ALC⊕, and no more expressive than
ALC+, the complexity of its satisfiability problem is clearly Exptime-complete,
the same as for both ALC⊕ and ALC+. However the satisfiability testing al-
gorithm for ALCHR+ is much simpler than for ALC+ [Baa90a]: dealing with
role expressions in ALC+ is quite complex (a technique which uses finite state
automata is suggested in [Baa90a]) and the blocking strategy for ALC+ neces-
sitates differentiating between cycles which lead to a model and those which do
not. ALCHR+ is sufficiently expressive to represent the primitive role hierarchy
from the Galen ontology, and the simplicity of its satisfiability testing algorithm
means that it is easy to implement and amenable to a wide range of optimisation
techniques (see Chapter 5).

4.2 A Tableaux Algorithm for ALCHR+

In this section a tableaux algorithm for testing the satisfiability of ALCHR+ con-
cept expressions is described and a proof of its soundness and completeness is
presented. ALCHR+ is the DL obtained by augmenting ALC with transitively
closed primitive roles and primitive role introduction axioms. An ALCHR+ ter-
minology is defined by the following formation rules:

• Axioms are of the form:

C v D | C
.
= D | R v S | R ∈ R+

where C and D are concept expressions, R and S are role names and R+

is the set of transitive role names.

• Concept expressions are of the form:

CN | > | ⊥ | ¬C | C u D | C t D | ∃R.C | ∀R.C

where CN is a concept name, C and D are concept expressions and R is a
role name.

To simplify the description of the algorithm, it will be assumed that R+ and the
v relation have been defined by an ALCHR+ terminology T so that:

R+ = {R | R ∈ R+ is an axiom in T }

and for two roles R and S, R v S iff R v S is an axiom in T or there is a role
R′ such that R v R′ is an axiom in T and R′ v S. It will also be assumed that
concept expressions are fully unfolded and in negation normal form.

The semantics of ALCHR+ concept expressions are the same as for ALC (they
are described in full in Chapter 2 and summarised in Table 4.1), but ALCHR+ ’s
role axioms place additional constraints on the interpretation of roles:
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Syntax Semantics

CN CNI ⊆ ∆I

> ∆I

⊥ ∅
¬C ∆I − CI

C u D CI ∩ DI

C t D CI ∪ DI

∃R.C {d ∈ ∆I | RI(d) ∩ CI 6= ∅}
∀R.C {d ∈ ∆I | RI(d) ⊆ CI}

Table 4.1: Semantics of ALCHR+ concept expressions

Definition 4.1 As well as being correct for ALC concept expressions, an
ALCHR+ interpretation I = (∆I , ·I) must satisfy the additional conditions:

1. if 〈d, e〉 ∈ RI and 〈e, f〉 ∈ RI and R ∈ R+, then 〈d, f〉 ∈ RI

2. if R v S, then RI ⊆ SI

Like other tableaux algorithms, the ALCHR+ algorithm tries to prove the satis-
fiability of a concept expression D by demonstrating a model of D—an interpre-
tation I = (∆I , ·I) such that DI 6= ∅. The model is represented by a tree whose
nodes correspond to individuals in the model, each node being labelled with a set
of ALCHR+-concepts. When testing the satisfiability of an ALCHR+-concept D,
these sets are restricted to subsets of sub(D), where sub(D) is the closure of the
subexpressions of D and is defined as follows:

1. if D is of the form ¬C, ∃R.C or ∀R.C, then C is a subexpression of D, and
sub(D) = {D} ∪ sub(C);

2. if D is of the form C1 u C2 or C1 t C2, then C1 and C2 are subexpressions
of D, and sub(D) = {D} ∪ sub(C1) ∪ sub(C2);

3. otherwise sub(D) = {D}.

The soundness and completeness of the algorithm will be proved by showing that
it creates a tableau for D:

Definition 4.2 If D is an ALCHR+-concept and RD is the set of role names
occuring in D, a tableau T for D is defined to be a triple (S,L,E) such that: S

is a set of individuals, L : S → 2sub(D) maps each individual to a set of concept
expressions which is a subset of sub(D), E : RD → 2S×S maps each role name
occuring in D to a set of pairs of individuals, and there is some individual s ∈ S

such that D ∈ L(s). For all s ∈ S it holds that:
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1. ⊥ /∈ L(s), and if C ∈ L(s), then ¬C /∈ L(s)

2. if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s)

3. if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s)

4. if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t)

5. if ∃R.C ∈ L(s), then there is some t ∈ S s.t. 〈s, t〉 ∈ E(R) and C ∈ L(t)

6. if ∀R.C ∈ L(s), 〈s, t〉 ∈ E(R) and R ∈ R+, then ∀R.C ∈ L(t)

7. if R v S then E(R) ⊆ E(S)

Lemma 4.1 An ALCHR+-concept D is satisfiable iff there exists a tableau for
D.

Proof: For the if direction, if T = (S,L,E) is a tableau for D, a model I =
(∆I , ·I) of D can be defined as:

∆I = S

CNI = {s | CN ∈ L(s)} for all concept names CN in sub(D)

RI =

{

E(R)+ if R ∈ R+

E(R) otherwise

where E(R)+ denotes the transitive closure of E(R).

By induction on the structure of concepts it can be shown that I is well defined
and that DI 6= ∅. For concepts of the form ¬C, C1 u C2, C1 t C2 and ∃R.C,
the correctness of their interpretations follows directly from Definition 4.2 on
the preceding page and the semantics of ALCHR+ concept expressions given in
Table 4.1 above:

1. For concepts of the form ¬C, if ¬C ∈ L(s), then C /∈ L(s), so s ∈ ∆I −CI

and ¬C is correctly interpreted.

2. For concepts of the form C1 u C2, if C1 u C2 ∈ L(s), then C1 ∈ L(s) and
C2 ∈ L(s), so s ∈ CI

1 ∩ CI
2 and C1 u C2 is correctly interpreted.

3. For concepts of the form C1 t C2, if C1 t C2 ∈ L(s), then C1 ∈ L(s) or
C2 ∈ L(s), so s ∈ CI

1 ∪ CI
2 and C1 t C2 is correctly interpreted.

4. For concepts of the form ∃R.C, if ∃R.C ∈ L(s), then there is some t ∈ S
such that 〈s, t〉 ∈ E(R) and C ∈ L(t), so s ∈ {d ∈ ∆I | RI(d) ∩ CI 6= ∅}
and ∃R.C is correctly interpreted.

For concepts of the form ∀R.C, the correctness of their interpretations follows
from Definition 4.2, the semantics of ALCHR+ concept expressions and the addi-
tional condition imposed by property 1 in Definition 4.1 on the preceding page:
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1. if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t)

2. if ∀R.C ∈ L(s), 〈s, t〉 ∈ E(R), 〈t, u〉 ∈ E(R) and R ∈ R+, then ∀R.C ∈ L(t)
and C ∈ L(u)

so s ∈ {d ∈ ∆I | RI(d) ⊆ CI} and ∀R.C is correctly interpreted.

Finally, from Definition 4.2, there is some individual s ∈ S such that D ∈ L(s),
so s ∈ DI and DI 6= ∅.

For the converse, if I = (∆I , ·I) is a model of D, then a tableau T = (S,L,E)
for D can be defined as:

S = ∆I

E(R) = RI

L(s) = {C ∈ sub(D) | s ∈ CI}

It only remains to demonstrate that T is a tableau for D:

1. T satisfies properties 1–5 in Definition 4.2 on page 61 as a direct consequence
of the semantics of the ¬C, C1 u C2, C1 t C2, ∀R.C and ∃R.C concept
expressions.

2. If d ∈ (∀R.C)I , 〈d, e〉 ∈ RI and R ∈ R+, then e ∈ (∀R.C)I unless there is
some f such that 〈e, f〉 ∈ RI and f /∈ CI . However, if 〈d, e〉 ∈ RI , 〈e, f〉 ∈
RI and R ∈ R+, then from property 1 of Definition 4.1 on page 61 〈d, f〉 ∈
RI and d /∈ (∀R.C)I . T therefore satisfies property 6 in Definition 4.2.

3. T satisfies property 7 in Definition 4.2 as a direct consequence of property 2
in Definition 4.1. �

4.2.1 Constructing an ALCHR+ Tableau

From Lemma 4.1 on the preceding page, an algorithm which constructs a tableau
for an ALCHR+-concept D can be used as a decision procedure for the satisfia-
bility of D. Such an algorithm will now be described in detail.

The algorithm builds a tree where each node x of the tree is labelled with a set
L(x) ⊆ sub(D) and may, in addition, be marked satisfiable. The tree is initialised
with a single node x0, where L(x0) = {D}, and expanded either by extending
L(x) for some leaf node x or by adding new leaf nodes. From this tree a tableau
for D will be constructed.

For a node x, L(x) is said to contain a clash if it does not satisfy property 1 of
Definition 4.2 on page 61, i.e., ⊥ ⊆ L(x) or, for some concept C, {C,¬C} ⊆ L(x).
L(x) is called a pre-tableau if it satisfies properties 1–3 of Definition 4.2, i.e., it is
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clash-free and contains no unexpanded conjunction or disjunction concepts. Note
that ∅ is a pre-tableau.

Edges of the tree are either unlabelled or labelled R for some role name R occuring
in sub(D). Unlabelled edges are added when expanding C1 t C2 concepts in
L(x) and are the mechanism whereby the algorithm searches possible alternative
expansions. Labelled edges are added when expanding ∃R.C terms in L(x) and
correspond to relationships between pairs of individuals.

A node y is called an R-successor of a node x if there is an edge 〈x, y〉 labelled
R; y is called a t-successor of x if there is a path, consisting of unlabelled edges,
from x to y. A node x is an ancestor of a node y if there is a path from x to
y regardless of the labelling of the edges. Note that both the t-successor and
ancestor relations are reflexive as nodes are connected to themselves by the empty
path.

The algorithm initialises a tree T to contain a single node x0, called the root node,
with L(x0) = {D}. T is then expanded by repeatedly applying the rules from
Table 4.2 on the following page until either the root node is marked satisfiable
or none of the rules is applicable. If the root node is marked satisfiable then the
algorithm returns satisfiable; otherwise it returns unsatisfiable.

A few remarks about the expansion rules may be useful:

1. The ∃-rule incorporates the actions of both the ∃ and ∀-rules in the ALC
algorithm described in Section 3.2.1 on page 47.

2. The ∃-rule deals with transitive roles by propagating ∀R.C labels to R-
successors when R ∈ R+. It deals with the role hierarchy by processing an
∀S.C label whenever an edge 〈x, y〉 is added such that L(〈x, y〉) = R and
R v S.

3. Part b of the ∃-rule constitutes a blocking strategy, preventing non-
termination in cases such as D = ∃R.C u ∀R.(∃R.C) and R ∈ R+.

4. The combination of the t and SAT-rules constitute a search of the possible
alternative models. As the expansion of a node x cannot affect any of its
predecessors, only alternative sub-trees below x are searched and these are
represented by t-successors. The SAT-rule marks fully expanded clash-free
leaf nodes as satisfiable and works back up the tree marking pre-tableau
nodes (those with R-successors) satisfiable if all of their sub-trees were
satisfiable and marking search nodes (those with t-successors) satisfiable if
any of their sub-trees were satisfiable.

Several examples of tableaux expansion will be provided in Section 4.2.3 on
page 67.
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u-rule: if 1. x is a leaf of T, L(x) is clash-free, C1 u C2 ∈ L(x)
2. {C1, C2} * L(x)

then L(x) −→ L(x) ∪ {C1, C2}

t-rule: if 1. x is a leaf of T, L(x) is clash-free, C1 t C2 ∈ L(x)
2. {C1, C2} ∩ L(x) = ∅

then create two t-successors y, z of x with:
L(y) = L(x) ∪ {C1}
L(z) = L(x) ∪ {C2}

∃-rule: if x is a leaf of T and L(x) is a pre-tableau
then for each ∃R.C ∈ L(x) do:

a. `Rx := {C} ∪ {D | ∀S.D ∈ L(x) and R v S}
∪ {∀S.D | ∀S.D ∈ L(x), S ∈ R+ and R v S}

b. if for some ancestor w of x, `Rx ⊆ L(w)
then create an R-successor y of x with L(y) = ∅

c. otherwise create an R-successor y of x with L(y) = `Rx

SAT-rule: if a node x is not marked satisfiable and either:
a. L(x) is a pre-tableau containing no concepts of the

form ∃R.C
b. L(x) is a pre-tableau which has successors,

and all successors of x are marked satisfiable
c. L(x) is not a pre-tableau and some t-successor of x is

marked satisfiable
then mark x satisfiable

Table 4.2: Tableaux expansion rules for ALCHR+

4.2.2 Soundness and Completeness

The soundness and completeness of the algorithm will be demonstrated by prov-
ing that, for an ALCHR+-concept D, it always terminates and that it returns
satisfiable if and only if D is satisfiable.

Lemma 4.2 For each ALCHR+-concept D, the tableau construction terminates.

Proof: Let m = |sub(D)|. As nodes are labelled with subsets of sub(D), |L(x)| ≤
m for all nodes x. For any node x the u-rule can therefore be applied at most
m times. The size of any sub-trees is also limited by m: the t-rule can also
be applied at most m times along an unlabelled path and the ∃-rule can be
applied at most 2m times along any path before there must be some ancestor y
s.t. `Rx ⊆ L(y) for any R.
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Lemma 4.3 An ALCHR+-concept D is satisfiable iff the tableau construction for
D returns satisfiable.

Proof: For the if direction (the algorithm returns satisfiable), let T be the tree
constructed by the tableaux algorithm for D. A tableau T = (S,L,E) can be
defined with:

S = {x | x is a node in T and x is marked satisfiable
and L(x) is a non-empty, pre-tableau.}

E(R) = {〈x, y〉 ∈ S × S | 1. y is a t-successor of an R-successor of x or
2. x has an R-successor z with L(z) = ∅

and y is an ancestor of x
and `Rx ⊆ L(y) or

3. 〈x, y〉 ∈ E(S) and S v R}

and it can be shown that T is a tableau for D:

1. D ∈ L(x) for the root x0 of T and for all t-successors of x0. As x0 is
marked satisfiable one of these must be a non-empty pre-tableau marked
satisfiable, so D ∈ L(s) for some s ∈ S.

2. Properties 1–3 of Definition 4.2 on page 61 are satisfied because each x ∈ S

is a pre-tableau.

3. Property 4 in Definition 4.2 is satisfied because {C | ∀R.C ∈ L(x)} ⊆ `Rx

and `Rx ⊆ L(y) for all y with 〈x, y〉 ∈ E(R).

4. Property 5 in Definition 4.2 is satisfied by the ∃-rule which, for all x ∈ S,
creates for each ∃R.C ∈ L(x) a new R-successor y with either:

(a) C ∈ L(y) or

(b) L(y) = ∅, C ∈ `Rx and `Rx ⊆ L(z) for some ancestor z of x.

5. Property 6 in Definition 4.2 is satisfied because {∀R.C | ∀R.C ∈ L(x) and
R ∈ R+} ⊆ `Rx and `Rx ⊆ L(y) for all y with 〈x, y〉 ∈ E(R).

6. Property 7 in Definition 4.2 is satisfied because 〈x, y〉 ∈ E(S) for all 〈x, y〉 ∈
E(R) and R v S.

For the converse (the algorithm returns unsatisfiable), it can be shown by induc-
tion on h(x), the height of the sub-tree below x, that if x is not marked satisfiable
then the concept X = uC∈L(x)C is not satisfiable:

1. If h(x) = 0 (x is a leaf) and x is not marked satisfiable, then L(x) contains
a clash and X is clearly unsatisfiable.
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2. If h(x) > 0, L(x) is not a pre-tableau and x is not marked satisfiable, then
none of its t-successors is marked satisfiable; hence C1 t C2 ∈ L(x) and
neither y with L(y) = L(x)∪{C1} nor z with L(z) = L(x)∪{C2} is marked
satisfiable. It follows by induction that X is not satisfiable.

3. If h(x) > 0, L(x) is a pre-tableau and x is not marked satisfiable, then there
is some R-successor of x which is not marked satisfiable and it follows by
induction that X is not satisfiable. �

4.2.3 Worked Examples

In this section worked examples will be used to illustrate some of the features of
the tableaux algorithm.

Example 4.1 Complex Role Interactions

This example illustrates a subsumption inference which results from the interac-
tion of transitive roles and the role hierarchy. Given a terminology T :

{R v Q,S v Q,Q ∈ R+} ⊆ T

the role hierarchy represented by T is shown in Figure 4.2, with the notation
Q(+) being used to denote that Q ∈ R+.

a b

c�dHe@f

Figure 4.2: The role hierarchy represented by T

It can be shown that ∃R.(∃S.C) vT ∃Q.C by demonstrating that ∃R.(∃S.C) u
¬∃Q.C is unsatisfiable w.r.t. T :

1. Convert ∃R.(∃S.C) u ¬∃Q.C to negation normal form:

∃R.(∃S.C) u ∀Q.¬C

2. Initialise T to contain a single node x0 labeled:

L(x0) = {∃R.(∃S.C) u ∀Q.¬C}

3. Apply the u-rule to ∃R.(∃S.C) u ∀Q.¬C ∈ x0:

L(x0) −→ L(x0) ∪ {∃R.(∃S.C),∀Q.¬C}

4. Apply the ∃-rule to ∃R.(∃S.C) ∈ L(x0):

(a) `Rx0
:= {∃S.C,¬C,∀Q.¬C}
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(b) There is no ancestor w of x0 with `Rx0
⊆ L(w), so create an R-successor

x1 of x0 with L(x1) = `Rx0

5. Apply the ∃-rule to ∃S.C ∈ L(x1):

(a) `Sx1
:= {C,¬C,∀Q.¬C}

(b) There is no ancestor w of x1 with `Sx1
⊆ L(w), so create an S-successor

x2 of x1 with L(x2) = `Sx1
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Figure 4.3: Expanded tree T for ∃R.(∃S.C) u ¬∃Q.C

None of the expansion rules are now applicable to T, so it is fully expanded:
the fully expanded tree is shown in Figure 4.3. Because L(x2) contains a clash
({C,¬C} ⊆ L(x2)) it is not a pre-tableau and the SAT-rule does not apply.
As a result, neither x1 nor x0 is marked satisfiable and the algorithm returns
unsatisfiable.

Example 4.2 Blocking

This example illustrates the operation of the blocking mechanism. Given a ter-
minology T :

{R ∈ R+} ⊆ T

it can be shown that ∃R.C 6vT ∃R.(∀R.¬C) by demonstrating that ∃R.C u
¬∃R.(∀R.¬C) is satisfiable w.r.t. T :

1. Convert ∃R.C u ¬∃R.(∀R.¬C) to negation normal form:

∃R.C u ∀R.(∃R.C)

2. Initialise T to contain a single node x0 labeled:

L(x0) = {∃R.C u ∀R.(∃R.C)}

3. Apply the u-rule to ∃R.C u ∀R.(∃R.C) ∈ x0:

L(x0) −→ L(x0) ∪ {∃R.C,∀R.(∃R.C)}
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4. Apply the ∃-rule to ∃R.C ∈ L(x0):

(a) `Rx0
:= {C,∃R.C,∀R.(∃R.C)}

(b) There is no ancestor w of x0 with `Rx0
⊆ L(w), so create an R-successor

x1 of x0 with L(x1) = `Rx0

5. Apply the ∃-rule to ∃R.C ∈ L(x1):

(a) `Rx1
:= {C,∃R.C,∀R.(∃R.C)}

(b) There is an ancestor x1 of x1 (recall that ancestor is reflexive) with
`Rx1

⊆ L(x1), so create an R-successor x2 of x1 with L(x2) = ∅

6. Apply the SAT-rule to x2: x2 is not marked satisfiable and L(x2) is a pre-
tableau (recall that ∅ is a pre-tableau) containing no concepts of the form
∃R.C, so mark x2 satisfiable.

7. Apply the SAT-rule to x1: x1 is not marked satisfiable and L(x1) is a pre-
tableau with successors, all of which are marked satisfiable.

8. Apply the SAT-rule to x0: x0 is not marked satisfiable and L(x0) is a pre-
tableau with successors, all of which are marked satisfiable.
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Figure 4.4: Expanded tree T and model for ∃R.C u ∀R.(∃R.C)

None of the expansion rules are now applicable to T, so it is fully expanded.
Because L(x0) is marked satisfiable, the algorithm returns satisfiable: both the
fully expanded T and the model which it represents are shown in Figure 4.4.
Note that L(x2) = ∅ represents a cycle in the model. The model represented by
T is:

∆I = {x0, x1}

CI = {x1}

RI = {〈x0, x1〉, 〈x1, x1〉}

The interpretations of concept expressions follow directly from the semantics
given in 4.1 on page 61 and is consistent with the labeling of the nodes in T.
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Example 4.3 Disjunctions

This example illustrates how the algorithm uses t-successors to search possible
alternative models. Given a terminology T containing no role axioms, it can be
shown that ∃R.(C t D) u ∀R.¬C is satisfiable w.r.t. T :

1. Initialise T to contain a single node x0 labeled:

L(x0) = {∃R.(C t D) u ∀R.¬C}

2. Apply the u-rule to ∃R.(C t D) u ∀R.¬C ∈ x0:

L(x0) −→ L(x0) ∪ {∃R.(C t D),∀R.¬C}

3. Apply the ∃-rule to ∃R.(C t D) ∈ L(x0):

(a) `Rx0
:= {C t D,¬C}

(b) There is no ancestor w of x0 with `Rx0
⊆ L(w), so create an R-successor

x1 of x0 with L(x1) = `Rx0

4. Apply the t-rule to C t D ∈ L(x1): create 2 t-successors x2 and x3 with
L(x2) = L(x1) ∪ {C} and L(x3) = L(x1) ∪ {D}.

5. Apply the SAT-rule to x3: x3 is not marked satisfiable and L(x3) is a pre-
tableau containing no concepts of the form ∃R.C, so mark x3 satisfiable.

6. Apply the SAT-rule to x1: x1 is not marked satisfiable, L(x1) is a not
pre-tableau and x1 has a successor (x3) which is marked satisfiable.

7. Apply the SAT-rule to x0: x0 is not marked satisfiable and L(x0) is a pre-
tableau with successors, all of which are marked satisfiable.
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Figure 4.5: Expanded tree T and model for ∃R.(C t D) u ∀R.¬C

None of the expansion rules are now applicable to T, so it is fully expanded.
Because L(x0) is marked satisfiable, the algorithm returns satisfiable: both the
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fully expanded T and the model which it represents are shown in Figure 4.5. The
model represented by T is:

∆I = {x0, x3}

CI = ∅

DI = {x3}

RI = {〈x0, x3〉}

The interpretations of concept expressions follow directly from the semantics
given in 4.1 on page 61 and is consistent with the labeling of the nodes in T.

4.3 Internalising GCIs

The algorithm described above tests the satisfiability of a single unfolded con-
cept expression but it can, without modification, be used to test satisfiability
with respect to a general terminology T , one which may contain cycles, concept
equations and general concept inclusion axioms (GCIs).

It has already been shown (in Section 3.3.1 on page 52) how an arbitrary set of
concept axioms in T can be converted into a single concept expression M which
must be satisfied by every individual in a model which satisfies T . This condition
can be imposed on individuals in a model of an ALCHR+ concept expression D
using a procedure called internalisation [Baa90a]. Internalisation works by testing
the satisfiability of a new concept expression D u M u ∀U.M which incorporates
(internalises) both M and D. The role U is a specially defined transitive role
which subsumes all the other roles in R (the set of role names occuring in T ):

U ∈ R+ is an axiom in T and for all R ∈ R, R v U is an axiom in T

Applying the u-rule to D uMu ∀U.M ∈ L(x0) will lead to {M,∀U.M} ⊆ L(x0),
and due to the properties of the t-rule and the ∃-rule, all of x0’s successors will
also have M in their labels.

As discussed in Section 3.3.3 on page 56, dealing with a general terminology T
in this way is extremely inefficient and it is preferable to convert T into a semi-
unfoldable terminology by dividing it into an unfoldable part TU and a general
part TG such that T = TU∪TG. M can then be formed from TG and both M and
D unfolded with respect to TU before testing the satisfiability of D uMu ∀U.M.

4.4 ALCHR+ Extended with Attributes

In order to provide a DL whose expressive possibilities are closer to those of
the Grail DL, ALCHR+ can be extended with limited support for attributes
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(functional roles) to give ALCHf R+ . Unlike ALCF [HN90], ALCHf R+ does not
include support for attribute value map concept forming operators: this is in line
with Grail and only requires a small extension to the algorithm.

ALCHf R+ extends the syntax of ALCHR+ by allowing axioms of the form:

A ∈ F

to appear in terminologies, and by supporting concept expressions of the form:

∃A.C | ∀A.C

where A is an attribute name, C is a concept expression and F is the set of
attribute names.

As before, it will be assumed that F, R+ and the v relation have been defined
by an ALCHf R+ terminology T . The set of attribute names F is defined by:

F = {A | 1. A ∈ F is an axiom in T or
2. A v B is an axiom in T

and B ∈ F}

Note that any role which has an attribute as a super-role must itself be an at-
tribute: if BI is functional and AI ⊆ BI then AI must also be functional.

In ALCHf R+ , the set of transitive roles is made disjoint from the set of attributes
(R+ ∩ F = ∅) by making a small alteration to the definition of R+ given in
section 4.2 above, so that:

R+ = {R | R ∈ R+ is an axiom in T and R /∈ F}

This restriction does not seem unreasonable: in general, the transitive closure of
an attribute is a role [BHH+91], and it is difficult to imagine the meaning of a
transitively closed attribute. The restriction also greatly simplifies the algorithm
because, if transitive roles and attributes are not disjoint, then chains of A-
successors for a transitive attribute A (i.e., A ∈ F and A ∈ R+) would have to
be collapsed:

AI(x) = y and AI(y) = z ⇒ AI(x) = z ⇒ y = z

The semantics of ALCHf R+ concept expressions are the same as for ALCHR+ ,
extended to deal with ∃A.C and ∀A.C expressions as shown in Table 4.3 on the
following page, but ALCHf R+ ’s attribute axioms place an additional constraint
on ALCHf R+ interpretations:

Definition 4.3 As well as being correct for ALCHR+ concept expressions, an
ALCHf R+ interpretation I = (∆I , ·I) must satisfy the additional condition that,
for all A ∈ F, AI is a single valued partial function:

AI : dom AI −→ ∆I
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Syntax Semantics
∃A.C {d ∈ dom AI | AI(d) ∈ CI}
∀A.C {d ∈ ∆I | d ∈ dom AI ⇒ AI(d) ∈ CI}

Table 4.3: Semantics of ALCHf R+ concept expressions

The ∃-rule in the ALCHR+ tree construction algorithm can be extended to deal
with attributes in ALCHf R+ . Expressions of the form ∃R.C, where R is a role,
are dealt with exactly as before, but expressions of the form ∃A.C, where A is
an attribute, require special treatment. The extended rule treats attributes in
a similar way to roles: ∃A.C expressions in the label of a pre-tableau node x
will lead to the creation of new A-successor nodes yi and labelled edges 〈x, yi〉.
However, it may group together multiple ∃A.C expressions in x’s label to create
a single A-successor y, labeling the edge 〈x, y〉 with a set of attribute names A.

Multiple ∃A.C expressions must be grouped together when, in the model rep-
resented by the tree, the AI(x) are constrained to be the same individual, for
example when there are multiple ∃A.C expressions containing the same attribute
A. The interaction between attributes and the role hierarchy (defined by the v
relation) means that for two expressions ∃A.C1 ∈ L(x) and ∃B.C2 ∈ L(x), AI(x)
and BI(x) are also constrained to be the same individual when A v B (because
AI ⊆ BI) or B v A (because BI ⊆ AI). We will say that an attribute B is
directly-constrained by an attribute A in L(x) if:

(∃A.C ∈ L(x) and A v B) or (∃B.C ∈ L(x) and B v A)

and we will say that an attribute B is constrained by an attribute A in L(x) if
B is directly-constrained by A in L(x) or if, for some attribute A′, A′ is directly-
constrained by A in L(x) and B is constrained by A′ in L(x). For an attribute
B and a node x, the set of attributes which are constrained by B in L(x) will be
denoted ABx:

ABx = {A | A is constrained by B in L(x)}

The extended ∃-rule for ALCHf R+ is shown in Table 4.4 on the following page.

Note that:

1. The ALCHf R+ extension is orthogonal to ALCHR+ : for all concept expres-
sions not containing attributes, the trees constructed by the two algorithms
will be identical.

2. The treatment of roles and attributes is sufficiently similar that, for most
purposes, it is convenient not to distinguish between the two. In the re-
mainder of this thesis ∃R.C and ∀R.C expressions will therefore be taken
to refer to either the role or attribute case unless it is explicitly stated that
they refer only to roles.
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if x is a leaf of T and L(x) is a pre-tableau
then for each ∃R.C ∈ L(x) where R /∈ F do:

a. `Rx := {C} ∪ {D | ∀S.D ∈ L(x) and R v S}
∪ {∀S.D | ∀S.D ∈ L(x), S ∈ R+ and R v S}

b. if for some ancestor w of x, `Rx ⊆ L(w)
then create an R-successor y of x with L(y) = ∅

c. otherwise create an R-successor y of x with L(y) = `Rx

and for each ∃A.D ∈ L(x) where A ∈ F do:
a. if for some A-successor y of x, A ∈ A then do nothing.
b. otherwise

i. A := AAx

ii. `Ax :=
⋃

B∈A
({C | ∃B.C ∈ L(x)} ∪
{C | ∀S.C ∈ L(x) and B v S} ∪
{∀S.C | ∀S.C ∈ L(x), S ∈ R+ and B v S})

iii. if for some ancestor w of x, `Ax ⊆ L(w)
then create an A-successor y of x with L(y) = ∅

iv. otherwise create an A-successor y of x with L(y) = `Ax

Table 4.4: Extended ∃-rule for ALCHf R+

3. In the context of ALCHf R+ , the first part of the SAT-rule, which states
that a node x can be marked satisfiable if L(x) is a pre-tableau containing
no concepts of the form ∃R.C, is taken to refer to concepts where R is either
a role or an attribute.

When demonstrating the satisfiability of an ALCHf R+ concept expression D, the
algorithm will construct a tree T. If D contains disjunctive terms, then T may
represent multiple possible models, as illustrated in Figure 4.6 on the following
page for D = ∃A.(C tD). In ALCHR+ the model obtained by merging all these
possibilities together is still valid, but in ALCHf R+ the merged model can lead to
a violation of the additional constraint in Definition 4.3 on page 72 which states
that if A is an attribute, then its interpretation must be a single valued partial
function.

Before using T to derive an ALCHf R+ tableau, multiple possible models must
therefore be eliminated by deleting all but one of the successors of any node which
has t-successors, and by deleting all of the successors of deleted t-successors. The
tableau construction described in the proof of Lemma 4.3 on page 66 can then
be extended to deal with A-successors in T:

S = {x | x is a node in T and x is marked satisfiable
and L(x) is a non-empty, pre-tableau.}



4.4. ALCHR+ EXTENDED WITH ATTRIBUTES 75

Ë`Ì<ÍpÎ¯Ë>Ï�Ì4ÐBÑwÒ

Ë`Ì<ÍpÎ¯Ë>Ï�Ì4ÐBÑwÒ

Ë`Ì<ÍpÎ>Ë>Ï�Ì4Ð6Ñ ÒË`Ì<ÍpÎ>Ë>Ï�Ì�ÐBÑwÒ

Ó Ô�Õ�Ö�×)Ø'Ù

Ú�Û

ÚNÜÚ�Ý

ÚNÞ

ß ß

Ú

Ú à-á�âäãæå ß�ç|è
é á�ê
é å ßÀç ê

é å ßÀçÀëFç êé å ßÀçÀë åìê Ú�Ý ÚNÜ

Ú�Þ Ú

Ú

ÚNÞ Ú

áá

Figure 4.6: Expanded tree T and models for ∃A.(C t D)

E(R) = {〈x, y〉 ∈ S × S | 1. y is a t-successor of an R-successor of x or
2. x has an R-successor z with L(z) = ∅

and y is an ancestor of x
and `Rx ⊆ L(y) or

3. 〈x, y〉 ∈ E(S) and S v R or
4. 〈x, y〉 ∈ E(A) and A v R}

E(A) = {〈x, y〉 ∈ S × S | 1. y is a t-successor of an A-successor of x
and A ∈ A or

2. x has an A-successor z with L(z) = ∅
and y is an ancestor of x and `Ax ⊆ L(y)
and A ∈ A}

Example 4.4 Attribute Interactions

This example illustrates a subsumption inference which results from a subtle
interaction of attributes and the role hierarchy. Given a terminology T :

{B1 v A,B2 v A,A ∈ F, B1 ∈ F, B2 ∈ F} ⊆ T

the role hierarchy represented by T is shown in Figure 4.7.

í

îÀï îñð

Figure 4.7: The role hierarchy represented by T

It can be shown that ∃B1.C vT ∀B2.C by demonstrating that ∃B1.C u ¬∀B2.C
is unsatisfiable w.r.t. T :
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1. Convert ∃B1.C u ¬∀B2.C to negation normal form:

∃B1.C u ∃B2.¬C

2. Initialise T to contain a single node x0 labeled:

L(x0) = {∃B1.C u ∃B2.¬C}

3. Apply the u-rule to ∃B1.C u ∃B2.¬C ∈ L(x0):

L(x0) −→ L(x0) ∪ {∃B1.C,∃B2.¬C}

4. Apply the ∃-rule to ∃B1.C ∈ L(x0):

(a) There is no A-successor y of x0 with B1 ∈ A so:

i. A := AB1x0
, the set of attributes which are constrained by B1

in L(x0). Both B1 and A are directly constrained by B1 because
∃B1.C ∈ L(x0), B1 v B1 and B1 v A; B2 is directly constrained
by A because ∃B2.¬C ∈ L(x0) and B2 v A; B1 and A are con-
strained by B1 because they are directly constrained by B1, and
B2 is constrained by B1 because A is directly constrained by B1

and B2 is constrained by A. Therefore:

AB1x0
= {B1, A,B2}

ii. `B1x0
:= {C,¬C}

iii. There is no ancestor w of x0 with `B1x0
⊆ L(w), so create an

A-successor x1 of x0 with L(x1) = `B1x0

5. Apply the ∃-rule to ∃B2.¬C ∈ L(x0):

(a) There is an A-successor x1 of x0 with B2 ∈ A so do nothing.
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Figure 4.8: Expanded tree T for ∃B1.C u ∃B2.¬C

None of the expansion rules are now applicable to T, so it is fully expanded:
the fully expanded tree is shown in Figure 4.8. Because L(x1) contains a clash
({C,¬C} ⊆ L(x1)) it is not a pre-tableau and the SAT-rule does not apply. As
a result, x0 is not marked satisfiable and the algorithm returns unsatisfiable.



Chapter 5

Optimising Tableaux Algorithms

In addition to dealing with specific queries, a DL classifier uses its subsumption
testing algorithm to compute a concept hierarchy, a partial ordering of named
concepts based on the subsumption relation. Techniques for improving the per-
formance of a DL classifier therefore divide naturally into two categories: those
which try to optimise the subsumption testing algorithm and those which try to
reduce the number of subsumption tests required to compute the partial order-
ing [BHNP92]. This chapter describes techniques which can be used to optimise
tableaux subsumption testing algorithms in general and the ALCHf R+ algorithm
in particular; techniques for reducing the number of subsumption tests required
to compute the partial ordering are described in Chapter 6.

To improve the performance of the ALCHf R+ subsumption testing algorithm, a
range of known, adapted and novel optimisations have been employed. It has been
suggested [BHNP92] that such techniques can be further sub-divided into those
which try to avoid general subsumption tests by using a cheaper test (typically
a structural comparison) and those which try to improve the performance of
the general subsumption testing algorithm, but this distinction is blurred by
some of the novel techniques described here (e.g., caching) which operate at both
levels. Of the techniques described, those which are believed to be novel, or whose
adaption to tableaux subsumption testing is novel, include:

• Lexically normalising and encoding concept expressions—a novel technique
which detects structurally obvious satisfiability and unsatisfiability as well
as enhancing both the efficiency and effectiveness of other optimisations.

• Absorbing GCI axioms into primitive concept introduction axioms—a novel
technique which can eliminate most GCIs (in the case of the Grail DL, all
GCIs) from a terminology.

• Semantic branching—a search technique adapted from the Davis-Putnam-
Logemann-Loveland procedure (DPL) commonly used to solve proposi-
tional satisfiability (SAT) problems [DLL62]. A similar technique is also
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used in the Ksat algorithm [GS96a].

• Dependency directed backtracking—a technique adapted from constraint
satisfiability problem solving [Bak95].

• Caching and re-using partial models—a novel technique which takes advan-
tage of the repetitive structure of the satisfiability problems generated by
terminological classification.

The chapter is organised as follows: Sections 5.1 and 5.2 describe known tech-
niques for reducing the algorithm’s storage requirements and for optimising tab-
leaux subsumption testing; Sections 5.3–5.7 describe the optimisation techniques
listed above, which have been developed in this thesis; and finally, Section 5.8
discusses interactions between the various techniques.

5.1 Reducing Storage Requirements

When considering the performance of an algorithm, its execution time and its
storage requirement may both be significant factors. In practice, execution time
is the limiting factor as regards the usefulness of tableaux satisfiability testing
algorithms (see Section 7.2 on page 111), and minimising execution time is the
primary objective of the optimisation techniques developed in this thesis. How-
ever, it is still sensible to use an improved search technique which reduces the
storage requirements of the ALCHf R+ algorithm: storage requirements may be-
come more significant if the optimised algorithm can be used to solve sufficiently
large problems, and the improved search technique can also reduce execution
time.

Implementing the ALCHf R+ algorithm exactly as described in the theoretical
presentation in Chapter 4 would involve a very large storage requirement as all
the possible models explored are represented in the tree which is constructed by
the algorithm. The algorithm’s storage requirement can be reduced by modify-
ing the way in which successor nodes are explored. With less expressive DLs,
a trace technique can be used which discards the labels of all fully expanded
nodes [HN90], but this is not possible when access to the labels of predecessor
nodes is required by the blocking mechanism. It is possible, however, to reduce
storage requirements by performing a depth first search of a node’s successors
and discarding fully expanded sub-trees. For example, if applying the ∃-rule to
a pre-tableau node x generates several R-successors and A-successors, these can
be expanded one at a time, with the sub-tree generated by each expansion being
discarded as soon as it is complete. The search of is halted, and x shown to be
unsatisfiable, if any of its successors proves unsatisfiable; x is marked satisfiable
if all its successors were satisfiable.



5.2. LAZY UNFOLDING 79

Similarly, the t-successors of a node y can be explored one at a time and discarded
when fully expanded. In this case the search is halted, and y marked satisfiable,
if any of its successors proves satisfiable; y is unsatisfiable if all its successors were
unsatisfiable.

Depth first search can also reduce execution time, because there is no wasted
expansion of nodes whose satisfiability cannot affect the satisfiability of their
ancestor nodes. Without depth first search there is nothing, for example, to
prevent the expansion of an R-successor of a node when another R-successor has
already been shown to be unsatisfiable, or the expansion of a t-successor of a
node when another t-successor has already been shown to be satisfiable.

5.2 Lazy Unfolding

Although theoretical descriptions of tableaux algorithms generally assume that
the concept expression to be tested is fully unfolded, in practice it is usual to
unfold the expression only as required by the progress of the algorithm. For
example, when testing the satisfiability of an expression ∃R.CN, where CN is a
concept name, the unfolding of CN can be delayed until the ∃-rule has created
an R-successor y with L(y) = {CN}. At this point the negation normal form of
CN’s definition can be substituted for CN in L(y). This method, which will be
called lazy unfolding, is more efficient as it can avoid wasted unfolding in sub-
trees which are not expanded by the depth first search described in the previous
section.

It has been shown (in the Kris system) that a significant improvement in
performance can be obtained simply by leaving concept names in node labels
and adding, instead of substituting, their definitions when they are lazily un-
folded [BHNP92]. This is because obvious contradictions can often be detected
much earlier by comparing concept names rather than their unfolded definitions.
This can save a great deal of wasted expansion if the unfolded definitions are
large and complex.

Example 5.1 Contradiction Detection Due To Lazy Unfolding

When testing the satisfiability of the concept expression:

∃R.CN u ∀R.¬CN

the optimised algorithm will detect a contradiction as soon it creates an R-
successor y because {CN,¬CN} ⊆ L(y). This could save a lot of wasted work if
unfolding CN produces a large and complex expression.
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5.3 Normalisation and Encoding

In realistic terminologies, large and complex concepts are seldom described mono-
lithically, but are built up from a hierarchy of named concepts whose descriptions
are less complex. The lazy unfolding optimisation described above can use this
structure to provide more rapid detection of inconsistencies. The hierarchical
structuring of terminologies, and thus the effectiveness of the lazy unfolding op-
timisation, can be taken to its logical conclusion by lexically normalising and
encoding all concept expressions and, recursively, their sub-expressions so that:

1. All sub-expressions are named concepts; e.g., ∃R.(C1uC2) would be encoded
as ∃R.D where D

.
= C1 u C2.

2. All concept expressions are in a standard form; e.g., all exists restrictions
(∃R.C expressions) are converted to value restrictions (∀R.C expressions),
so ∃R.D would be normalised to ¬∀R.¬D.

Adding normalisation (step 2) allows lexically equivalent expressions to be recog-
nised and identically encoded and can also lead to the detection of concept de-
scriptions which are obviously satisfiable or unsatisfiable. A functional definition
of the normalisation and encoding process is given in Table 5.1 on the following
page.

Note that:

1. Expressions of the form ∃R.C and ∀R.C refer to the case where R is either
a role or an attribute.

2. The Encode function minimises the number of new concept definitions
added to the knowledge base T by identifying lexically equivalent expres-
sions which have already been encoded. In the case of conjunctive ex-
pressions, this is facilitated by sorting the conjuncts and eliminating any
redundancies.

3. Non-primitive concepts introduced by the encoding process are are not clas-
sified in the concept hierarchy. Their function is to act as place-holders or
macros, representing the encoded concept expression.

Example 5.2 Detecting Unsatisfiability Via Normalisation and Encod-

ing

Normalising and encoding the expression ∃R.(C uE u¬D)u∀R.(Dt¬C t¬E),
where C, D and E are all concept names, would proceed as follows (assuming an
empty terminology T ):
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Normalise(C) :

C = concept name
−→ C

C = ¬D −→ CN if Normalise(D) = ¬CN

⊥ if Normalise(D) = >
> if Normalise(D) = ⊥
otherwise ¬Normalise(D)

C = ∀R.D −→ > if Normalise(D) = >
otherwise Encode(∀R.Normalise(D))

C = D1 u . . . u Dn

−→ ⊥ if ⊥ ∈ {Normalise(D1), . . . , Normalise(Dn)}
⊥ if ∃D.({D, ¬D} ⊆ {Normalise(D1), . . . , Normalise(Dn)})
otherwise Encode(Normalise(D1) u . . . u Normalise(Dn))

C = ∃R.D −→ Normalise(¬∀R.¬D)

C = D1 t . . . t Dn

−→ Normalise(¬(¬D1 u . . . u ¬Dn))

Encode(C) :

C = ∀R.D −→ CN if CN
.
= ∀R.D ∈ T

otherwise CN
′ where CN

′ is a new concept name and

T −→ T ∪ {CN
′ .
= ∀R.D}

C = D1 u . . . u Dn

−→ CN if CN
.
= (D′

1 u . . . u D′
n) ∈ T and

∀D.(D ∈ {D1, . . . , Dn} ⇔ D ∈ {D′
1, . . . , D

′
n})

otherwise CN
′ where CN

′ is a new concept name and

T −→ T ∪ {CN
′ .
= D1 u . . . u Dn}

Table 5.1: Normalisation and encoding

1. Normalise the first sub-expression:

(a) Normalise(∃R.(C u E u ¬D)) −→ ¬Normalise(∀R.¬(C u E u ¬D))

(b) Normalise(∀R.¬(C u E u ¬D)) −→ Encode(∀R.Normalise(¬(C u E u
¬D)))

(c) Normalise(¬(C u E u ¬D)) −→ ¬Encode(C u E u ¬D)

(d) Encode(C u E u ¬D) −→ CN1 where CN1 is a new concept name and
T −→ T ∪ {CN1

.
= C u ¬D u E}

(e) Encode(∀R.Normalise(¬(C u E u ¬D))) −→ CN2 where CN2 is a new
concept name and T −→ T ∪ {CN2

.
= ∀R.¬CN1}

(f) Normalise(∃R.(C u E u ¬D)) −→ ¬CN2
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2. Normalise the second sub-expression:

(a) Normalise(∀R.(D t ¬C t ¬E)) −→ Encode(∀R.Normalise(D t ¬C t
¬E))

(b) Normalise(D t ¬C t ¬E) −→ Normalise(¬(¬D u C u E))

(c) Normalise(¬(¬D u C u E)) −→ ¬Encode(¬D u C u E)

(d) Encode(¬D u C u E) −→ Encode(C u ¬D u E), which is recognised
as CN1

(e) Normalise(∀R.(Dt¬Ct¬E)) −→ Encode(∀R.¬CN1), which is recog-
nised as CN2

3. Recombine the two sub-expressions:

(a) Normalise(∃R.(CuEu¬D)u∀R.(Dt¬Ct¬E)) −→ Normalise(¬CN2u
CN2)

(b) Normalise(¬CN2 u CN2) −→ ⊥

4. The concept expression is identified as unsatisfiable without recourse to the
tableaux expansion algorithm.

Normalisation and encoding has a number of advantages:

• Structurally obvious satisfiability and unsatisfiability can be detected with-
out using the tableaux algorithm—in effect a general subsumption test has
been avoided by using a cheaper structural test.

• Knowledge bases with large amounts of repetitive structure can be stored
more compactly.

• Other optimisation techniques are facilitated (see Section 5.8 on page 95).

• More efficient data structures can be used (see Section 6.2.4 on page 101).

The disadvantages of normalisation and encoding are that there is obviously some
cost associated with the process, although this is likely to be small relative to the
cost of classifying the knowledge base (see Section 7.3.1 on page 115), and that the
size of the knowledge base could be increased if it contains very little repetitive
structure. However, any increase in knowledge base size should be relatively small
because new concept definitions added by encoding will result in a compaction of
existing definitions. For example, if the concept expression C1u . . .uCn occurs in
a knowledge base T , a non-primitive concept definition CN

.
= C1 u . . . u Cn may

be added to T (if C1 u . . . u Cn is not recognised as the definition of an existing
concept), but the original occurrence of C1 u . . . u Cn will be replaced by CN.
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5.4 GCI Absorption

GCIs are a major cause of intractability: each GCI causes a disjunctive expression
to be added to the label of every node in the tree generated by the tableaux
algorithm and this leads to an exponential increase in the size of the search space
to be explored by the t-rule. The aim of this technique is to reduce the number
of GCIs by absorbing them into primitive concept introduction axioms whenever
possible. It was suggested by the structure of GCIs in the Galen terminology
and by restrictions on the structure of GCIs imposed by the syntax of the Grail

concept description language:

• Many GCIs in the Galen terminology have only a primitive concept name
as their antecedent.

• When the antecedent of a Grail GCI is not a primitive concept it is either
a conjunctive concept expression or a non-primitive concept name whose
definition is a conjunctive concept expression.

• The first conjunct of a Grail conjunctive concept expression is always
either a primitive concept name or a non-primitive concept name whose
definition is a conjunctive concept expression.

This structure means that the antecedent of a Grail GCI can always be unfolded
so that it is either a primitive concept name or a conjunctive concept expression
one of whose terms is a primitive concept name.

When the antecedent of a GCI is a primitive concept name, the GCI simply states
additional necessary conditions for the primitive concept and can be absorbed into
the primitive concept’s introduction axiom using the identity:

CN v C and CN v D = CN v C u D (5.1)

the validity of which is obvious from the semantics:

CNI ⊆ CI ∧ CNI ⊆ DI ⇐⇒ CNI ⊆ CI ∩ DI

Furthermore, when the antecedent of a GCI is a conjunctive concept expression
one of whose terms is a primitive concept, it can be transformed into a GCI with
a primitive concept name as its antecedent using the identity:

CN u C v D = CN v D t ¬C (5.2)

the validity of which is again obvious from the semantics:

CNI ∩ CI ⊆ DI ⇐⇒ CNI ⊆ DI ∪ (¬C)I
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Example 5.3 Absorbing a GCI

The GCI:
geometric-figure u ∃angles.three v ∃sides.three

from Example 2.5 can be absorbed into the primitive concept introduction axiom:

geometric-figure v shape

by first transforming the GCI using identity 5.2 on the preceding page to give:

geometric-figure v ∃sides.three t ¬∃angles.three

and then absorbing this into the introduction axiom using identity 5.1 on the
preceding page to give:

geometric-figure v shape u (∃sides.three t ¬∃angles.three)

Absorption can also be performed on GCIs whose consequent is a negated primi-
tive concept name, or a disjunctive expression one of whose elements is a negated
primitive concept name. This is done using using the identity:

C v ¬CN t D = CN v D t ¬C

In general, a GCI C v D can be absorbed into a primitive concept introduction
axiom, whenever possible, by using the following steps:

1. Initialise a set G to contain the GCI’s consequent and negated antecedent:

G := {D,¬C}

2. If for some w ∈ G, w is a negated primitive concept name with an intro-
duction axiom of the form w v Cw, absorb the GCI into w’s introduction
so that it becomes:

w v Cw u





⊔

y∈G−{w}

y





and exit.

3. If for some w ∈ G, w is a negated conjunctive concept expression ¬(C1 u
. . . u Cn) or a negated non-primitive concept name whose definition is a
conjunctive concept expression C1 u . . . u Cn, then expand w:

G −→ (G − {w}) ∪ {¬C1, . . . ,¬Cn}

and return to step 2.

4. If for some w ∈ G, w is a disjunctive concept expression C1 t . . . t Cn

or a non-primitive concept name whose definition is a disjunctive concept
expression C1 t . . . t Cn, then expand w:

G −→ (G − {w}) ∪ {C1, . . . , Cn}

and return to step 2.



5.5. SEMANTIC BRANCHING SEARCH 85

5. The GCI could not be absorbed. It must be added to the meta constraint
M:

M −→ M u (D t ¬C)

and dealt with using internalisation (see Section 4.3 on page 71).

The advantage of absorption is that it avoids adding large numbers of irrele-
vant disjunctions to the label of every node in a tree T being constructed by
the tableaux expansion algorithm. Using internalisation to deal with the GCI
geometric-figureu ∃angles.three v ∃sides.three from example 5.3 on the preceding
page would result in the disjunction:

∃sides.three t ¬geometric-figure t ¬∃angles.three

being added to the label of every node in T. Absorbing the GCI into
geometric-figure’s introduction axiom on the other hand results in the disjunc-
tion:

∃sides.three t ¬∃angles.three

being added to a node x only when geometric-figure ∈ L(x)—this will happen
automatically when geometric-figure is unfolded.

If there is more than one primitive concept into whose definition the GCI could be
absorbed, the primitive which is chosen is irrelevant as regards the correctness if
not of the efficiency of absorption1. For example the GCI CN1 uCN2 v C, where
CN1 and CN2 are both primitive concept names, could be absorbed into the the
introduction axioms of either CN1 or CN2. If absorbed into CN1’s introduction
then all nodes x s.t. CN1 ∈ L(x) will have C t ¬CN2 in their labels; if absorbed
into CN2’s introduction then all nodes x s.t. CN2 ∈ L(x) will have C t ¬CN1 in
their labels. In either case the GCI is clearly satisfied:

CN1 u CN2 ∈ L(x) and CN1 v C t ¬CN2 leads to L(x) ∪ {C}

CN1 u CN2 ∈ L(x) and CN2 v C t ¬CN1 leads to L(x) ∪ {C}

5.5 Semantic Branching Search

Standard tableaux algorithms are inherently inefficient as they use a search tech-
nique called syntactic branching. Syntactic branching works by choosing an un-
expanded disjunction and searching the different models obtained by adding each
of the disjuncts [GS96a]. As the alternative branches of the search tree are not
disjoint, there is nothing to prevent the recurrence of an unsatisfiable disjunct in
different branches. The resulting wasted expansion could be costly if discovering
the unsatisfiability requires the solution of a complex sub-problem.

1Intuitively, it would seem sensible to choose the primitive which is least general or which
occurs least frequently in the terminology, but this has not been investigated.
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Example 5.4 Wasted Search Due To Syntactic Branching

Tableaux expansion of a tree T with a leaf node x, where {(C tD1), (C tD2)} ⊆
L(x) and C is an unsatisfiable concept, expression could lead to the search pattern
shown in Figure 5.1.
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Figure 5.1: Syntactic branching

This problem is dealt with by using a semantic branching technique adapted from
the Davis-Putnam-Logemann-Loveland procedure (DPL) commonly use to solve
propositional satisfiability (SAT) problems [DLL62, Fre96]. Instead of choosing
an unexpanded disjunction in L(x), a single disjunct D is chosen from one of the
unexpanded disjunctions in L(x). The two possible sub-trees obtained by adding
either D or ¬D to L(x) are then searched. The resulting search pattern will be
shown (in Figure 5.2 on page 88) after discussing some enhancements to the basic
technique.

Semantic branching has a number of advantages:

• At each branching point in the search tree the two branches are strictly
disjoint, so there is no possibility of wasted search as in syntactic branching.

• A great deal is known about the implementation and optimisation of this
algorithm. In particular, both boolean constraint propagation and heuristic
guided search can be used to minimise the size of the search tree.

5.5.1 Boolean Constraint Propagation

Boolean constraint propagation (BCP) [Fre95] is a technique used to maximise
deterministic expansion, and thus pruning of the search tree via clash detection,
before performing non-deterministic expansion (branching).

Before the t-rule is applied to the label of a node x, BCP deterministically
expands disjunctions in L(x) which present only one expansion possibility and
detects a clash when a disjunction in L(x) has no expansion possibilities. The
number of expansion possibilities presented by a disjunction (C1t. . .tCn) ∈ L(x)
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is equal to the number of disjuncts Ci such that ¬Ci /∈ L(x). In effect, BCP is
applying the inference rule:

¬C,C t D

D

to L(x) or, in other words, performing some propositional resolution on the dis-
junctive clauses in L(x).

Example 5.5 Boolean Constraint Propagation

Given a node x such that:

{(C t (D1 u D2)), (¬D1 t ¬D2),¬C} ⊆ L(x)

BCP deterministically expands the disjunction (C t (D1 u D2)), because ¬C ∈
L(x):

L(x) −→ L(x) ∪ {(D1 u D2)}

After (D1 u D2) is expanded to give L(x) −→ L(x) ∪ {D1, D2}, BCP identifies
(¬D1 t ¬D2) as a clash because D1 ∈ L(x) and D2 ∈ L(x).

5.5.2 Heuristic Guided Search

Heuristic techniques can be used to guide the search in a way which tries to
minimise the size of the search tree. One possible method is to branch on the
disjunct which has the Maximum number of Occurrences in disjunctions of Min-
imum Size—the well known MOMS heuristic [Fre95]. By choosing a disjunct
which occurs frequently in small disjunctions, MOMS heuristic tries to maximise
the effect of BCP. For example, if the label of a node x contains the unexpanded
disjunctions:

{C t D1, . . . , C t Dn} ⊆ L(x)

then branching on C leads to their deterministic expansion in a single step. When
C is added to L(x), all of the disjunctions are fully expanded and when ¬C is
added to L(x), BCP will expand all of the disjunctions, causing D1, . . . , Dn to be
added to L(x). Branching first on any of D1, . . . , Dn, on the other hand, would
only cause a single disjunction to be expanded.

When branching on a given disjunct, the order in which the two branches are
explored is also heuristically determined. The branch which maximises the po-
tential for BCP expansion is explored first, as the concepts added by BCP may
result in further expansion. In the above example, adding ¬C to L(x) would be
tried first as this will cause BCP to add D1, . . . , Dn to L(x). Adding D1, . . . , Dn

to L(x) will, in turn, satisfy any other disjunctions in L(x) containing these con-
cepts and could lead to further BCP expansion if any of ¬D1, . . .¬Dn occur in
other disjunctions in L(x).



88 CHAPTER 5. OPTIMISING TABLEAUX ALGORITHMS

Example 5.6 Semantic Branching Search

When applied to node x in the tree T from Example 5.4 on page 86, where
{(C tD1), (C tD2)} ⊆ L(x), MOMS heuristic would select C as the disjunct on
which to branch because it occurs in 2 disjunctions of size 2. The t-successor in
which ¬C is added to L(x) would be explored first as BCP also causes D1 and
D2 to be added to L(x). The modified search pattern is illustrated in Figure 5.2.
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Figure 5.2: Semantic branching with BCP

5.5.3 The Optimised Search Algorithm

In general, for a node x in a tree T, the optimised search algorithm proceeds as
follows:

1. Perform all deterministic expansions; e.g., apply the u-rule from Table 4.2
on page 65 as many times as possible.

2. Perform Boolean Constraint Propagation (BCP):

(a) Search L(x) for unexpanded disjunctions (C1 t . . . t Cn) where:

{¬C1, . . . ,¬Ci−1} ⊆ L(x)

{¬Ci+1, . . . ,¬Cn} ⊆ L(x)

Ci /∈ L(x)

(b) If such a disjunction is found and ¬Ci ∈ L(x), return clash.

(c) If such a disjunction is found and ¬Ci /∈ L(x), expand the disjunction:

L(x) −→ L(x) ∪ {Ci}

and return to step 1.

3. Perform heuristic guided search if there are unexpanded disjunctions (C11t
. . . t C1n), . . . , (Cm1 t . . . t Cmn) in L(x).
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(a) Use MOMS heuristic to select Cij such that ¬Cij /∈ L(x). If there is
more than one candidate with the same MOMS priority, try to break
the tie by using Jeroslow and Wang’s weighted occurrences heuris-
tic [JW90].

(b) Create two t-successors y and z with:

L(y) = L(x) ∪ {Cij}

L(z) = L(x) ∪ {¬Cij}

(c) Explore y and z in a heuristically determined order: explore y first
if the number of occurrences of ¬Cij is greater than the number of
occurrences of Cij, otherwise explore z first.

5.6 Dependency Directed Backtracking

Inherent unsatisfiability concealed in sub-problems can lead to large amounts of
unproductive backtracking search known as thrashing. The problem is exacer-
bated when blocking is used to guarantee termination, because blocking requires
that sub-problems only be explored after all other forms of expansion have been
performed. In the ALCHf R+ algorithm, for example, the ∃-rule can only be
applied to a pre-tableau, a node label which does not contain any unexpanded
conjunctions or disjunctions.

Example 5.7 Thrashing

Expanding a node x, where:

L(x) = {(C1 t D1), . . . , (Cn t Dn),∃R.(C u D),∀R.¬C}

would lead to the fruitless exploration of 2n pre-tableau t-successors of x before
the inherent unsatisfiability is discovered2. The search tree under x created by
the tableaux expansion algorithm is illustrated in Figure 5.3 on the following
page.

This problem is addressed by adapting a form of dependency directed backtrack-
ing called backjumping, which has been used in solving constraint satisfiability
problems [Bak95]. Backjumping works by labeling concept expressions with a
dependency set indicating the t-nodes (nodes with t-successors) on which they
depend. A concept expression depends on a t-node x when it was added to the
label of x’s t-successor by the search algorithm, or when it depends an another
concept expression which depends on x. A concept expression C depends on

2Note that if L(x) simply included ∃R.C instead of ∃R.(C u D), then the inherent unsatis-
fiability would have been detected immediately due to the encoding of ∃R.C and ∀R.¬C as CN

and ¬CN for some concept name CN.
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Figure 5.3: Thrashing in backtracking search

a concept expression D when C was added to a node label by a deterministic
expansion (an application of the u-rule, ∃-rule or BCP) which used D.

When a clash is discovered, the dependency sets of the clashing concepts can
be used to identify the most recent t-node where exploring an alternative t-
successor might alleviate the cause of the clash. The algorithm can then jump
back over intervening t-nodes without exploring alternative t-successors.

For example, when expanding the t-node x from Example 5.7 on the preceding
page, where:

L(x) = {(C1 t D1), . . . , (Cn t Dn),∃R.(C u D),∀R.¬C}

the search algorithm will create a sequence of t-successors and t-nodes, eventu-
ally leading to a pre-tableau node xn with {∃R.(CuD),∀R.¬C} ⊆ L(xn). When
xn is expanded the algorithm will generate an R-successor y1 with {C,¬C} ⊆
L(y1) and a clash will be detected. As neither of the clashing concepts in L(y1)
will have the t-nodes leading from x to xn in their dependency sets, the algo-
rithm can either return unsatisfiable immediately (if both the dependency sets
were empty) or jump directly back to the most recent t-node on which one of the
clashing concepts did depend. Figure 5.4 on the following page illustrates how
the search tree below x is pruned by backjumping, with only n + 2 nodes being
explored instead of 2n + 2n+1 − 1 nodes.

In more general terms, backjumping works as follows:

1. The initial concept expressions in L(x0) have their dependency sets ini-
tialised to ∅.
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Figure 5.4: Pruning the search using backjumping

2. Concept expressions added to node labels by deterministic expansion (the
u-rule, ∃-rule and BCP) are labelled with the (union of the) label(s) from
the concept expression(s) which are used in the expansion.

3. If xn is a t-node, the concept expressions C and ¬C added to the labels of
the t-successors of xn by the search algorithm are labeled {n}.

4. After a clash, return a dependency set D consisting of the (union of the)
label(s) from the clashing concept(s).

5. If the first t-successor of a t-node xn is unsatisfiable, and returns a de-
pendency set D1 such that n /∈ D1, backtrack immediately returning the
dependency set D1.

6. If the second t-successor of xn is unsatisfiable, and returns a dependency
set D2, return the dependency set (D1 ∪ D2) − {n}.

5.7 Caching

The combination of normalisation, encoding and lazy unfolding facilitates the
rapid detection of “obvious” unsatisfiability (subsumption), but detecting “ob-
vious” satisfiability (non-subsumption) is more difficult for tableaux algorithms.
This is unfortunate as, when classifying realistic terminologies:



92 CHAPTER 5. OPTIMISING TABLEAUX ALGORITHMS

• most tests are satisfiable (e.g., a ratio of 3:1 when classifying the Galen

terminology);

• satisfiable tests are generally much more expensive (e.g., a ratio of 7:1 when
classifying the Galen terminology).

This problem is tackled by trying to use cached results from previous tableaux
tests to demonstrate the satisfiability of a concept expression. This is possible
because satisfiability problems in sub-trees are completely independent and have
no effect on ancestor nodes, other than to determine their satisfiability. A con-
siderable amount of work can be saved when large or complex models are re-used
in this way.

Example 5.8 Merging Models

Given two concepts:

C
.
= D1 u ∃R1.C1 u ∃R2.C2

D
.
= ¬(D2 u ∃R3.C3)

the satisfiability of C u ¬D (and thus the non-subsumption C 6v D) can be
demonstrated by a model consisting of models of C and ¬D joined at their roots,
as shown in Figure 5.5. Note that ¬D

.
= D2 u ∃R3.C3.
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Figure 5.5: Merging models of C and ¬D

When the root node x0 of a tree T is marked satisfiable, it must have a pre-tableau
t-successor which is marked satisfiable—this node represents the individual which
is the root of the model described by T and will be denoted xr. To demonstrate
that two models joined at their roots result in a valid (non-clashing) model, it is
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only necessary to examine the labels on their xr nodes, which we will call their xr-
labels, and check that the union of these labels is still a satisfiable pre-tableau.
Given two models represented by trees TC and TD, with xr-labels L(xC

r ) and
L(xD

r ), L(xC
r ) ∪ L(xD

r ) is a satisfiable pre-tableau, and the two models can be
joined, unless either:

1. the union of their xr-labels contains an immediate contradiction, e.g.:

C1 ∈ L(xC
r ) ∧ ¬C1 ∈ L(xD

r )

2. exists and value restrictions in the xr-labels might interact, e.g.:

∃R.C1 ∈ L(xC
r ) and ∀S.C2 ∈ L(xD

r ) and R v S

where R and S are either roles or attributes;

3. attribute exists restrictions in the xr-labels might interact, e.g.:

∃A.C1 ∈ L(xC
r ) and ∃B.C2 ∈ L(xD

r ) and (AAxC
r
∩ ABxD

r
6= ∅)

Note that conditions 2 and 3 state that restrictions might interact—it would be
possible to merge models in a wider range of cases by examining the potential
interaction in more detail (e.g., when condition 2 is violated, by checking if ∀S.C2

is already in L(xC
r )), or by considering additional nodes. However, the test de-

scribed is fast and requires a relatively small amount of space for storing cached
models.

Given a concept D, a model of which is represented by the tree TD containing the
xr node xD

r , the space required for caching can be minimised by only storing those
components of L(xD

r ) which need to be checked before merging can be performed,
i.e., concept names and their negations, roles and attributes which occur in exists
or value restrictions, and attributes which are constrained by attribute exists
restrictions. These are cached as the sets SD

c , SD
¬c, SD

∃ , SD
∀ and SD

A , where:

SD
c = {CN | CN ∈ L(xD

r )}

SD
¬c = {CN | ¬CN ∈ L(xD

r )}

SD
∃ = {R | ∃R.C ∈ L(xD

r )} ∪ {A | ∃A.C ∈ L(xD
r )}

SD
∀ = {R | ∀R.C ∈ L(xD

r )} ∪ {A | ∀A.C ∈ L(xD
r )}

SD
A = {A | ∃B.C ∈ L(xD

r ) and A ∈ ABxD
r
}

In more general terms, when testing if C is subsumed by D, caching works as
follows:

1. If models for C, ¬C, D or ¬D have not been cached, perform the satisfiabil-
ity test(s) and, in each case, cache Sc, S¬c, S∃, S∀ and SA. If a satisfiability
test fails, the concept being tested is equal to ⊥ and its negation to >.
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2. Return true (C v D) or false (C 6v D) if obvious subsumption or non-
subsumption is detected:

¬D = ⊥ ⇒ true (C v D)

C = ⊥ ⇒ true (C v D)

D = ⊥ and C 6= ⊥ ⇒ false (C 6v D)

¬C = ⊥ and ¬D 6= ⊥ ⇒ false (C 6v D)

3. Return false (C 6v D) if the cached models of C and ¬D can be merged.
The models can be merged unless either:

(a) SC
c ∩ S¬D

¬c 6= ∅

(b) SC
¬c ∩ S¬D

c 6= ∅

(c) there is some R,S s.t. R ∈ SC
∃ and S ∈ S¬D

∀ and R v S

(d) there is some R,S s.t. R ∈ SC
∀ and S ∈ S¬D

∃ and S v R

(e) SC
A ∩ S¬D

A 6= ∅

4. Perform a tableaux satisfiability test on C u¬D returning false (C 6v D) if
it is satisfiable and true (C v D) if it is not.

5.7.1 Using Caching in Sub-problems

The caching technique can be extended in order to avoid the construction of
obviously satisfiable sub-trees during tableaux expansion. For example, if some
leaf node x is about to be expanded, and L(x) = {CN}, unfolding and expanding
CN is clearly unnecessary if CN is already known to be satisfiable, i.e., a model
of CN has already been cached.

The technique can be further extended by trying to merge cached models of all
the concepts in a leaf node’s label before starting the expansion process. The
method generalises that described in section 5.7 in the obvious way—models of
concepts D1, . . . , Dn can be merged unless either:

1. there is some i, j s.t. SDi
c ∩ S

Dj
¬c 6= ∅

2. there is some i, j, R, S s.t. R ∈ SDi
∃ and S ∈ S

Dj
∀ and R v S

3. there is some i, j s.t. SDi
A ∩ S

Dj
A 6= ∅
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5.8 Interactions Between Optimisations

The behaviour of the optimisation techniques is not orthogonal—some interfere
while others are complementary:

• The normalisation and encoding of concept expressions complements most
of the other optimisation techniques:

– The effect of lazy unfolding is enhanced because it is not limited to
named concepts—clashes between encoded concept expressions can
also be rapidly detected.

– Semantic branching, BCP and heuristic guided search can be per-
formed more efficiently because the large numbers of comparisons of
disjuncts required by these procedures can be performed on a concept
name level instead of a structural level—normalisation and encoding
effectively performs all structural comparisons prior to classification
and caches the results in the form of new non-primitive concept intro-
ductions.

– The granularity of caching is maximised—when classifying a termi-
nology, models of every concept expression and subexpression in the
terminology may eventually be cached.

– The effect of the told subsumer classification optimisation is enhanced
(see Section 6.3 on page 102).

• Using MOMS heuristic to select branching disjuncts interacts with and
degrades the performance of backjumping (see Section 7.3.1 on page 115).
For this reason, the heuristic guided search optimisation is disabled by
default in the FaCT classifier (see Section 6.4.1 on page 104).

• Several of the optimisations increase storage requirements. Backjumping,
in particular, requires a dependency set to be stored with every concept
expression in a node label. However, as the same dependency sets will be
used in whole or in part by large numbers of concept expressions, the storage
requirement can be reduced by using a pointer based implementation such
as Lisp lists.



Chapter 6

The FaCT Classifier

This chapter describes FaCT1, a DL classifier which has been implemented as
a test-bed for the optimised ALCHf R+ subsumption testing algorithm, and ex-
plains how FaCT uses the algorithm to classify a terminological knowledge base
(TKB).

The chapter is organised as follows: Section 6.1 provides a brief overview of the
FaCT system and describes the syntax of FaCT TKBs; Section 6.2 explains the
pre-processing which FaCT performs on axioms in the TKB prior to classification;
Section 6.3 describes the optimised algorithm which FaCT uses to classify the
TKB; and finally, Section 6.4 explains how FaCT can be configured to facilitate
testing and to adapt its behaviour to different reasoning tasks.

6.1 FaCT Overview

FaCT has been designed to be closely compatible with the Kris system [BH91c]:
it uses the same, relatively standard, concept description syntax (with the excep-
tion of number restrictions and attribute value maps which are not supported by
FaCT) and a similar function and macro interface, extended as necessary to deal
with the additional features provided by FaCT. This facilitates comparing the
two systems by allowing TKBs which use a common subset of the two languages
(ALC augmented with attributes but restricted to unfoldable terminologies) to
be classified by either system.

As the purpose of FaCT is to evaluate the feasibility of using the optimised
ALCHf R+ algorithm for subsumption reasoning, only a terminological classifier
(TBox) has been implemented: FaCT reasons about concept, role and attribute
descriptions, and maintains a concept hierarchy based on the subsumption rela-
tion (see Section 1.1 on page 16). FaCT provides a wide range of functions and
macros for managing TKBs, adding axioms to a TKB, performing inferences and

1
Fast Classification of Terminologies.
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answering queries. FaCT’s main features are described in the following sections
and a full reference manual is reproduced in Appendix A.

6.1.1 Concept Description Syntax

Like Kris, FaCT is implemented in Lisp, and its concept descriptions use the
same list based syntax employed by Kris. The correspondence between this form
and the standard infix notation is shown in Table 6.1.

FaCT syntax Standard notation
*TOP* >
*BOTTOM* ⊥
(and C1 . . .Cn) C1 u . . . u Cn

(or C1 . . .Cn) C1 t . . . t Cn

(not C) ¬C
(some R C) ∃R.C
(all R C) ∀R.C
(some A C) ∃A.C
(all A C) ∀A.C

Table 6.1: FaCT concept expressions

6.1.2 Knowledge Base Syntax

A FaCT TKB is defined by a set of macro calls (or their functional equivalents—
see Appendix A) which add axioms to the terminology. Table 6.2 on the following
page describes the syntax of FaCT’s primary axiomatic macros and how they
correspond to terminological axioms in the standard notation. The macros extend
those provided by Kris where necessary to deal with the additional features of
FaCT. In particular the key-word arguments :supers and :transitive have
been added to role introduction macros, allowing the role hierarchy and transitive
roles to be specified, and an implies macro has been provided for adding GCIs
to the TKB.

FaCT forbids the multiple introduction of concepts, roles and attributes: only one
defconcept or defprimconcept macro is allowed for a given concept name and
only one defprimrole or defprimattribute macro for a given role/attribute
name. The restriction on concept introductions is not strictly necessary, as FaCT
can deal with general terminologies. However, it has the benefit of alerting users
to inadvertent multiple introductions, and it does not reduce expressiveness—
if additional primitive introductions are required they can be stated directly as
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FaCT syntax Standard notation
(defprimconcept CN C) CN v C
(defconcept CN C) CN

.
= C

(implies C D) C v D
(defprimrole RN) RN v >×>

(defprimrole RN :supers (R1 . . . Rn) :transitive T)



















RN ∈ R+

RN v R1
...

RN v Rn

(defprimattribute AN)

{

AN ∈ F

AN v >×>

(defprimattribute AN :supers (R1 . . . Rn)



















AN ∈ F

AN v R1
...

AN v Rn

Table 6.2: FaCT axiomatic macros

GCIs, and if addition non-primitive introductions are required they can be trans-
posed into a pairs of GCIs using identity 2.5:

CN
.
= C =

{

CN v C
C v CN

Note that defconcept and defprimconcept macros do not cause the concepts
they introduce to be classified: to classify the TKB a call must be made to the
classify-tkb function. When classify-tkb is called, FaCT first performs some
pre-processing on the axioms in the TKB (see Section 6.2) and then computes
the concept hierarchy (see Section 6.3 on page 102).

6.2 Pre-processing Terminological Axioms

This section describes the pre-processing FaCT performs on terminological axioms
prior to classification. Although the restriction which FaCT places on introduc-
tion axioms ensures that they are unique, the TKB may still contain cycles and
GCIs. Pre-processing transforms the TKB into a form which can be dealt with
by the ALCHf R+ algorithm, traps (and if possible corrects) simple errors and
performs all the optimisation procedures which must precede classification. The
basic steps are:

1. Deal with terminological cycles;



6.2. PRE-PROCESSING TERMINOLOGICAL AXIOMS 99

2. Pre-process roles and attributes;

3. Absorb GCIs and form the meta constraint M;

4. Normalise and encode concept expressions.

Each of these steps is described in detail in the following sections.

6.2.1 Terminological Cycles

A method of dealing with terminological cycles by converting concept introduc-
tion axioms into GCIs was described in Section 3.3 on page 52. However, this
method would run counter to one of the main optimisation strategies described
in Chapter 5, which is to reduce the number of GCIs in the terminology. Because
lazy unfolding is used in the satisfiability testing algorithm, FaCT is able to deal
with terminological cycles in a much more efficient manner.

Treating cyclical primitive concept introduction axioms as GCIs is not necessary
because a combination of lazy unfolding and blocking ensures that the algorithm
terminates and that the model it constructs satisfies all the primitive introduction
axioms in the terminology. When building a tree T, lazy unfolding ensures that
if the terminology T contains an axiom CN v C, then for any node x in T, CN ∈
L(x) ⇒ C ∈ L(x). Therefore, in the model represented by T, CNI ⊆ CI and the
axiom is satisfied. If C refers either directly or indirectly to CN, termination of the
tree construction algorithm is still guaranteed because of the blocking strategy.

Lazy unfolding also takes care of non-primitive introduction axioms CN
.
= C ∈ T ,

provided that C can be unfolded so that it contains only primitive concepts.
When building a tree T, lazy unfolding again ensures that, for any node x in T,
CN ∈ L(x) ⇒ C ∈ L(x). Any primitive interpretation (an assignment of values
to the interpretations of primitive concepts) will then lead, via the semantics, to
an interpretation for CN such that CNI = CI . However, if C cannot be unfolded
so that it contains only primitive concepts, then it cannot be guaranteed that the
model represented by T satisfies T .

Example 6.1 Unsatisfiability Due To Cyclical Non-primitive Axioms

If a terminology T is defined as:

T = {CN1 v >, CN2
.
= ¬CN2}

then T is obviously unsatisfiable (it has only an empty model):

CNI
2 = ∆I − CNI

2 ⇒ ∆I = ∅

Testing the satisfiability of CN1, however, would cause the algorithm to build a
tree representing the model:

∆I = {x}

CNI
1 = {x}
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which is not valid with respect to T .

FaCT deals with this problem by checking each non-primitive concept introduc-
tion axiom to see if the definition can be unfolded until it contains only primitive
concepts. If this is not the case, then the axiom is transformed into a primitive
introduction and a GCI using the identity 2.5 on page 34.

Example 6.2 Eliminating Cyclical Non-primitive Axioms

The terminology T from Example 6.1 would be transformed to give:

T = {CN1 v >, CN2 v ¬CN2,¬CN2 v CN2}

The GCI ¬CN2 v CN2 cannot be absorbed and would would be added to the meta
constraint: M −→ Mu (CN2 tCN2), which can be simplified to M −→ MuCN2.
When combined with the primitive concept introduction CN2 v ¬CN2 this would
mean that, for any node x in any tree constructed by the tableaux algorithm w.r.t.
T , {CN2,¬CN2} ⊆ L(x). The algorithm would therefore return unsatisfiable
when testing the satisfiability of any concept expression.

6.2.2 Pre-processing Roles and Attributes

Prior to classification, FaCT computes the set of attributes F, the set of transitive
roles R+, and the role hierarchy. FaCT also performs consistency checking and,
in some cases, takes remedial action.

When computing the role hierarchy, FaCT caches all the super-roles (subsuming
roles and attributes) of each role and attribute—normally only the direct (most
specific) super-roles would be cached. This does not require a great deal of addi-
tional storage, because role hierarchies are generally much smaller than concept
hierarchies, and it facilitates the operation of the ∃-rule in the tableaux expansion
algorithm (see Table 4.4 on page 74).

For each role or attribute R introduced by a defprimrole or defprimattribute
macro, FaCT performs the following steps:

1. The set of all super-roles of R is computed by taking the union of the set of
roles and attributes S such that R v S is an axiom in the terminology, and
all of their recursively computed super-roles. A role or attribute appearing
in its own super-role set is trapped as an error although, in principal, a
set of cyclically defined roles all have the same interpretation and could be
replaced by a single role [Neb90a].

2. If R ∈ F is an axiom in the terminology (R was introduced by a
defprimattribute macro), R is added to F. If R ∈ F is not an axiom
in the terminology (R was introduced by a defprimrole macro), but it has
an attribute in its super-role set, a warning is issued and R is added to F

(it becomes an attribute); if R ∈ R+ is an axiom in the terminology (R
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had :transitive T in its introduction macro), a further warning is issued
as attributes cannot be transitive.

3. If R ∈ R+ is an axiom in the terminology (R had :transitive T in its
introduction macro), R is added to R+ unless it has already been added to
F (transformed into attribute) by step 2.

6.2.3 Absorbing GCIs

FaCT absorbs GCIs into primitive concept introduction axioms, wherever possi-
ble, using the procedure described in Section 5.4 on page 83. GCIs which cannot
be absorbed are combined to form the meta constraint M:

C1 v D1, . . . , Cn v Dn ⇒ M = (D1 t ¬C1) u . . . u (Dn t ¬Cn)

6.2.4 Normalisation and Encoding

FaCT normalises and encodes all concept expressions, including the meta con-
straint M, extending the procedure described in section 5.3 on page 80 so that
concept names are also encoded: non-primitive names are simply replaced with
their encoded definitions while primitive names are replaced with a unique new
name. For example, if a terminology T contains the non-primitive introduction
axiom CN

.
= C, then C will be encoded as CNx, where CNx is a system generated

concept name, and CNx will be substituted for CN wherever it appears in T . If
T contains the primitive introduction axiom CN v C, then C will be encoded as
CNx, where CNx is a system generated concept name, and a new system generated
concept name CNy will be substituted for CN wherever it appears in T .

The advantage of this is that FaCT can use internally whatever form of name is
most convenient, maintaining a mapping to “external” names only for the pur-
poses of input and output. FaCT actually encodes concepts as integers, with
positive concepts being encoded as even integers and their negations as odd in-
tegers, so that:

Encode(¬C) =

{

Encode(C) + 1 if Encode(C) is even
Encode(C) − 1 if Encode(C) is odd

For example, > is encoded as 0 and ⊥ is encoded as 1. This has a number of
benefits:

• Concepts can be negated simply by inverting their least significant bit.

• Lazy unfolding requires large numbers of accesses to concept definitions,
and this can be made more efficient by storing them in an array instead of
a hash table.
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• The negation normal form of each negated concept definition can be pre-
computed and stored in the array.

Note that only the (encoded version of) concept names which are introduced in
defconcept and defprimconcept macros are classified in the concept hierarchy.

6.3 Classifying the Knowledge Base

Like other DL classifiers, FaCT uses its subsumption testing algorithm to com-
pute a partial ordering of the set of named concepts in the TKB. The computed
partial ordering is cached in the form of a concept hierarchy, a directed acyclic
graph in which each concept is linked to its direct subsumers and subsumees (see
Section 2.3 on page 35). This process is called classification.

As subsumption testing is always potentially costly, it is important to ensure
that the classification process uses the smallest possible number of tests. Min-
imising the number of subsumption tests required to classify a concept in the
concept hierarchy can be treated as an abstract order-theoretic problem which is
independent of the ordering relation (subsumption in this case). However, some
additional optimisation can be achieved by using the structure of concept ex-
pressions to reveal obvious subsumption relationships and to control the order in
which concepts are added to the hierarchy.

The classification algorithm used by FaCT is enhanced traversal, an optimised
algorithm which is used in the Kris system [BHNP92]. Enhanced traversal com-
putes a concept’s subsumers by searching down the hierarchy from the > concept
(the top search phase) and its subsumees by searching up the hierarchy from the
⊥ concept (the bottom search phase).

When classifying a concept D, the top search takes advantage of the transitivity
of the subsumption relation by propagating failed results from preceding tests. It
concludes, without performing a subsumption test, that D is not subsumed by C
if it has already been shown that D is not subsumed by some subsumer of C (a
more general concept than C):

D 6v C1 and C v C1 ⇒ D 6v C

To maximise the effect of this strategy, a modified breadth first search is
used [Ell92] which ensures that a subsumption test D v C? is not performed
until it has been established that D is subsumed by all of C’s subsumers.

The bottom search uses a corresponding technique, testing if D subsumes C only
when D is already known to subsume all of C’s subsumees. Information from the
top search is also used by confining the bottom search to those concepts which
are subsumed by all of D’s subsumers:

C 6v C1 and D v C1 ⇒ C 6v D
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FaCT also uses an enhancement of this technique, described in [BHNP92], which
takes advantage of the structural subsumption relationships:

(C1 u . . . u Cn) v C1
...

(C1 u . . . u Cn) v Cn

When a concept CN is introduced with an axiom of the form CN v C or CN
.
= C,

C is said to be a told subsumer of CN, and if C is a conjunctive concept expression
(C1 u . . . u Cn), then C1, . . . , Cn are also told subsumers of CN. Moreover, due
to the transitivity of the subsumption relation, any told subsumers of C1, . . . , Cn

are also told subsumers of CN. Before classifying CN, all of its told subsumers
which have already been classified, and all their subsumers, are marked as sub-
sumers of CN; subsumption tests with respect to these concepts are therefore
rendered unnecessary. The effect of this procedure is enhanced by normalisation
and encoding because it is no longer limited to named concepts—a concept whose
definition is structurally equivalent to one of the conjuncts in another concept’s
conjunctive definition will also be recognised as a told subsumer.

FaCT extends this technique in the obvious way to take advantage of structural
subsumption relations with respect to disjunctive concept expressions: when a
concept CN is introduced with an axiom of the form CN

.
= C and C is a disjunctive

concept expression (C1 t . . . t Cn), CN is a told subsumer of C1, . . . , Cn.

To maximise the effect of this technique, concepts are classified in definition
order—that is, a concept CN is not classified until all of its told subsumers have
been classified. Kris takes advantage of this ordering by omitting the bottom
search phase when classifying a primitive concept: its subsumees are simply set to
{⊥}. This is possible with unfoldable terminologies because a primitive concept
can only subsume concepts for which it is a told subsumer, and because concepts
are classified in definition order, a primitive concept will be classified before any
of its subsumees. FaCT cannot use this additional optimisation because, in the
presence of GCIs, it cannot be guaranteed that a primitive concept will only
subsume concepts for which it is a told subsumer.

Example 6.3 Primitive Subsumption Caused By GCIs

If a terminology T is defined such that:

{CN1 v ∃R.C, CN2 v >,∃R.C v CN2} ⊆ T

CN2 is not a told subsumer of CN1 so CN1 may be classified first. However, when
CN2 is classified the bottom search phase will discover that it subsumes CN1 due
to the GCI ∃R.C v CN1.
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6.4 Configuring FaCT

Many of FaCT’s features are configurable. This facilitates testing and allows
FaCT to adapt its behavior to different reasoning tasks.

6.4.1 Configuring Optimisations

In order to facilitate testing, the GCI absorption, backjumping, heuristic guided
search and caching optimisations can be completely disabled, and the normali-
sation and encoding optimisation can be partially disabled. Normalisation and
encoding cannot be completely disabled as many of FaCT’s data structures take
advantage of the integer encoding of concept expressions, but it is possible to
disable the lexical matching which the encode function normally performs and
this will eliminate most of the optimisation’s benefits (see Section 5.3 on page 80
and Section 5.8 on page 95).

Most of the optimisations are enabled by default, the exceptions being heuristic
guided search and caching. Heuristic guided search is disabled by default due to
its adverse interaction with the backjumping optimisation (see Section 7.3.1 on
page 115). Caching is normally enabled by default but is automatically disabled
when FaCT is used to solve individual satisfiability problems (see Section 7.5 on
page 124): caching is of little benefit unless multiple tests are being performed
on concepts with structural similarities, as is the case when classifying a TKB.

6.4.2 Configuring Reasoning Power

The blocking mechanism in the ALCHf R+ algorithm’s ∃-rule works by comparing
the label which would be applied to an R-successor or an A-successor of node x
with the labels of all of x’s ancestor nodes. This can be costly and is not required
for a simpler description language such as ALC. FaCT takes advantage of this
by automatically disabling blocking when classifying TKBs, or solving individual
satisfiability problems, which do not include transitive roles, GCIs or cyclical
definitions.



Chapter 7

Test Methodology and Data

This chapter describes the empirical testing procedures which have been used
to evaluate the performance of the FaCT classifier and the effectiveness of the
various optimisation techniques.

The test procedures divide into four categories:

• Classifying a realistic TKB—the performance of FaCT was measured using
the Galen ontology [RGG+94], a large TKB from a real application.

• Comparing FaCT with Kris—the performance of FaCT was compared with
that of the Kris system [BH91c], another tableaux based DL classifier. As
Kris does not support either transitive roles or GCIs, a simplified version
of the Galen ontology was used for this purpose.

• Solving randomly generated satisfiability problems—the performance of
FaCT’s satisfiability test was measured using randomly generated satisfia-
bility problems, an established test method [GS96b, HS97], and compared
with that of other algorithms, in particular Ksat [GS96a] and the FLOT-
TER/SPASS theorem prover [HS97].

• Testing for correctness—the correctness of FaCT’s algorithms was checked
empirically using a test suite of “hard problems” adapted from [HKNP94]
and by comparing, whenever possible, the results obtained using FaCT with
those obtained using other systems.

The chapter is organised as follows: Section 7.1 describes the Galen ontology and
explains how it was translated from Grail into ALCHf R+ ; Section 7.2 provides
details of the testing methodology; Section 7.3 describes the tests performed
on FaCT using the Galen terminology; Section 7.4 describes the tests which
compare the performance of FaCT and Kris; Section 7.5 describes the tests
which compare the performance of FaCT and Ksat; Section 7.6 describes the
correctness testing procedures; and finally, Section 7.7 summarises the results of
the various tests and discusses the effectiveness of the optimisation techniques.
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7.1 The GALEN Ontology

Many of the tests in this chapter use a real TKB developed as part of the Galen

project. The Galen TKB is is a high level ontology which has been designed to
form the foundation of a large concept model representing medical terminology;
it contains 2,740 concepts, 413 roles and 1,214 GCIs.

The Galen TKB has been created using the specially developed Grail DL
which supports a primitive role hierarchy, transitive roles and GCIs. Grail has
a limited terminological language—only conjunction and exists restrictions are
allowed in concept expressions—and an unusual syntax which restricts the way
concept expressions can be formed. Before using the Galen TKB with FaCT it
was necessary to translate it into ALCHf R+ .

7.1.1 Translating GRAIL into ALCHf R+

Concept Expressions and Introduction Statements

Although Grail’s semantics are operationally rather than formally de-
fined, translating Grail concept expressions and introduction statements into
ALCHf R+ is straightforward and uncontroversial: Table 7.1 gives ALCHf R+

equivalents for Grail concept expressions and for its most important termino-
logical statements. The which statement is Grail’s only mechanism for forming
concept expressions, and they are restricted by the syntax of the statement to a
combination of conjunction and exists restrictions. The newSub and name state-
ments serve as primitive and non-primitive concept introduction axioms while
the topicNecessarily statement is used to add GCI axioms to the TKB.

Grail ALCHf R+

C which 〈R1 C1 . . . Rn Cn〉 C u ∃R1.C1 u . . . u ∃Rn.Cn

C newSub CN CN v C

C name CN CN
.
= C

C topicNecessarily 〈R1 C1 . . . Rn Cn〉 C v ∃R1.C1 u . . . u ∃Rn.Cn

Table 7.1: Grail concept statements and equivalent ALCHf R+

Role Introduction Statements

Unfortunately, the semantics of Grail’s role statements are less clear. In Grail,
pairs of primitive roles are introduced with the newAttribute statement, e.g.:

StructuralPartitiveAttribute newAttribute hasLayer isLayerOf manyMany (7.1)
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where StructuralPartitiveAttribute is an existing role, hasLayer and isLayerOf

are a pair of new roles, and manyMany is a keyword which specifies that
they are to be roles rather than attributes. The role hierarchy is estab-
lished by making hasLayer a sub-role of StructuralPartitiveAttribute (see Fig-
ure 4.1 on page 59) and isLayerOf a sub-role of InverseStructuralPartitiveAttribute,
where InverseStructuralPartitiveAttribute is the role which was paired with
StructuralPartitiveAttribute when it was introduced. The built-in most general
role, Attribute, is provided as a foundation for the role hierarchy and is assumed
to be paired with itself. The general form of newAttribute statements is:

RN newAttribute RN1 RN2 k

where RN1 and RN2 are two new primitive sub-roles of, respectively, RN and
the role with which RN was paired in its introduction axiom. The keyword
k determines whether RN1 and RN2 are roles or attributes and can be one of
oneOne (both RN1 and RN2 are attributes), manyMany (neither are attributes),
oneMany (RN1 is an attribute) or manyOne (RN2 is an attribute).

The syntax of the new attribute statement, and its use in the Galen model,
seems to imply that RN2 is the inverse of RN1 and suggests that statement (7.1)
could be taken to mean:

hasLayer v StructuralPartitiveAttribute

isLayerOf
.
= hasLayer−1

However, this is not the case: the Grail classifier does not reason about inverse
roles1 and the two new roles are treated semantically as though they were un-
connected. What Grail does do, is to use the pairing of roles to expand certain
statements so that their syntactic inverse is also added to the TKB. For example,
as well as the topicNecessarily statement described in Table 7.1 on the pre-
ceding page, Grail also provides the necessarily statement which makes use
of the pairing of roles to add a pair of topicNecessarily statements. Given the
role introduction statement (7.1) above, the statement:

GramPositiveBacterialCell necessarily 〈hasLayer GramPositiveCellWall〉

would be expanded by Grail into the two topicNecessarily statements:

GramPositiveBacterialCell topicNecessarily 〈hasLayer GramPositiveCellWall〉

GramPositiveCellWall topicNecessarily 〈isLayerOf GramPositiveBacterialCell〉

The approach taken when translating the Galen ontology into ALCHf R+ has
been to translate a newAttribute axiom as two role introduction axioms:

RN newAttribute RN1 RN2 k −→

{

RN1 v RN

RN2 v RN ′

1Reasoning with inverse roles, attributes and transitivity is known to be problemati-
cal [Sch91, GL96].
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where RN ′ is the role which was paired with RN in its introduction axiom.
Whether RN1 and RN2 are roles or attributes is determined by the value of k.
Grail necessarily statements are then expanded into two topicNecessarily

statements and translated as per Table 7.1 on page 106:

C necessarily 〈RN1 D〉 −→

{

C v ∃RN1.D
D v ∃RN2.C

Specialisation

A further problem arises when attempting to translate the Grail specialisedBy

statement, which is used to declare the specialisation of one role by another. For
example, the Grail statement:

hasLocation specialisedBy isPart

is intended to capture the meaning that, if object1 hasLocation in object2 and
object2 isPart of object3, then object1 also hasLocation in object3: e.g., if a frac-
ture is located in a part of a bone then it is also located in the bone itself.
Similar expressiveness is provided in the CycL DL [LG89] by the transfersThro
statement, which allows relationships established with one role to be “transfered
through” those established with another. However, CycL’s transfersThro state-
ment does not affect terminological reasoning: it only affects reasoning about
individuals in CycL’s ABox (see Section 1.1 on page 16).

Unfortunately the formal semantics of the specialisedBy statement is not clear.
It is perhaps most obvious to think of it as a role inclusion axiom:

R specialisedBy S −→ R ◦ S v R

While this appears to capture the intended meaning very neatly, it has the obvious
disadvantage that the resulting axioms are not supported by ALCHf R+ . In fact
there is no known subsumption algorithm for a DL supporting such axioms, nor
is it known if such a logic would be decidable.

An alternative approach is to use specialisedBy statements to expand concept
expressions so that, given R specialisedBy S, the expression ∃R.C would be
expanded to give ∃R.C t∃R.(∃S.C), or perhaps ∃R.(∃S∗.C). The problems with
this approach are that it is uncertain which, if any, of the two expanded expres-
sions best capture the intended meaning; that ALCHf R+ does not support the
transitive reflexive role forming operator required by the second expansion; and
that there are cycles in the specialisedBy statements in the Galen ontology
(e.g., R specialisedBy S, S specialisedBy R), so the expansion process would
be non-terminating2.

2The designers of the Galen ontology have stated, in a personal communication, that the
existence of cycles in specialisedBy statements is an error which will be corrected in future
versions of the ontology.
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Given the problems with specialisedBy statements, it was decided to discard
them when translating the Galen ontology. The resulting ontology can still be
considered “realistic”: it will be identical to the original apart from the loss of a
small number of subtle subsumption inferences.

Transitivity and the Role Hierarchy

Grail supports two more role statements which can be straightforwardly trans-
lated into ALCHf R+ . The transitiveDown statement asserts that a given role
is transitive and is translated as:

RN transitiveDown −→ RN ∈ R+

The addSub statement asserts a role inclusion, forming part of the role hierarchy,
and is translated as:

RN1 addSub RN2 −→ RN2 v RN1

The translation of Grail role statements into ALCHf R+ is summarised in Ta-
ble 7.2

Grail ALCHf R+

RN newAttribute RN1 RN2 k

{

RN1 v RN

RN2 v RN−1

RN transitiveDown RN ∈ R+

RN1 addSub RN2 RN2 v RN1

RN1 specialisedBy RN2 ignored

Table 7.2: Grail role axioms and equivalent ALCHf R+

7.1.2 Test Knowledge Bases

Three TKBs were used in the various experiments. The first of these, TKB0,
includes both transitive roles and GCIs, which means that it can be used with
FaCT but not with Kris (see Section 2.4.2 on page 41); TKB1 and TKB2,
are simplified versions of TKB0 which can be used with either FaCT or Kris.
Table 7.3 provides details of the composition of each of the TKBs.

TKB0 was derived from the Galen ontology by translating the Grail TKB as
described in Section 7.1.1. TKB1 is a simplification of TKB0 which is suitable
for use with Kris. The simplification steps were as follows:
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Characteristic TKB0 TKB1 TKB2

Concepts 2,740 2,719 3,917
primitive 2,041 2,041 2,041
non-primitive 699 678 1,876

Roles 413 413 413
attributes 150 150 150
transitive 26 0 0

GCIs 1,214 1,214 0
absorbed 0 1,214 0
non-absorbed 1,214 0 0

Table 7.3: Test TKB characteristics

1. Role inclusion axioms were discarded as Kris does not support a role hier-
archy.

2. Transitivity axioms were discarded as Kris does not support transitive
roles.

3. GCI axioms were pre-absorbed into primitive concept introduction axioms,
as described in Section 6.2.3 on page 101.

4. Terminological cycles were eliminated from the TKB as Kris is unable to
deal with them.

5. Synonyms such as Haemoglobin
.
= Hemoglobin were eliminated from the

TKB as Kris does not deal with these correctly. This accounts for the
slightly reduced number of non-primitive concepts.

6. The TKB was ordered so that a concept’s introduction axiom always ap-
pears before the concept is used in a concept expression. The resulting
TKB is more convenient for detailed performance analyses as it is possible
to classify concepts one at a time in the order in which their introductions
occur in the TKB.

In practice, trying to classify TKB1 using Kris proved to be highly intractable
and had to be abandoned. In order to create a TKB which Kris was able to
classify, a more radical simplification was applied to TKB0 to produce TKB2.
In TKB2, instead of absorbing GCIs into primitive introductions, they were
converted into non-primitive concept introductions:

C v D −→ CN
.
= C u D

where CN is a unique, system generated name. This method of eliminating GCIs
was chosen because it increased the size of the TKB by adding “realistic” con-
cepts: if the TKB includes the assertion that C implies D, it is reasonable to
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assume that concepts of type C u D are realistic. Non-primitive concepts were
prefered, as their classification on the basis of subsumption reasoning is a key
characteristic of DLs. After GCIs had been dealt with, role inclusions, transi-
tivity, cycles and synonyms were eliminated and the TKB was ordered, in the
same way as when converting TKB0 to TKB1. The elimination of synonyms
accounts for the fact that the number of non-primitive concepts in TKB2 is less
than the sum of the non-primitive concepts and GCIs in TKB0.

7.2 Testing Methodology

The majority of the tests described in this chapter use CPU time as their measure
of performance. CPU time has been the most widely used performance indicator
in earlier analyses [BHNP92, HKNP94, Spe95, SvRvdVM95, GS96b, HS97]; it has
the advantage of being easy to measure and of being common to all algorithms,
although its value will clearly be affected by implementation style, language and
hardware. Empirically, it can also been seen to be the limiting factor as regards
the usefulness of tableaux algorithms: the tests conducted in earlier analyses, as
well as those described here, indicate that computational intractability is a seri-
ous problem in terminological reasoning, whereas excessive storage requirements
are not. For example, when classifying TKB0 with the encoding optimisation
disabled, some individual satisfiability tests took over 18,000s, while the largest
tree ever stored in memory contained only 417 pre-tableau nodes. It is worth not-
ing, however, that storage requirements could become a more important factor
if further improvements in the optimisation techniques allow significantly larger
problems to be solved.

Other performance measures used include:

• Search space—the amount of backtracking search performed during satisfi-
ability tests. This indicates the extent to which the various optimisations
are successful in pruning the potentially very large search space.

• Satisfiability tests—the number of satisfiability tests performed when clas-
sifying a concept. This indicates the extent to which classification times
depend on the “hardness” of individual satisfiability tests and the extent to
which they depend on the number of tests performed. It is also useful to
compare the number of satisfiability tests with the number of subsumption
tests as this indicates the success rate of the caching optimisation.

7.2.1 Percentile Plots

Many of the graphs in the following sections plot percentile CPU times. The 50th
percentile is the time taken by the problem in the test set such that 50% of the
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problems took a shorter time (this is the median time); the 100th percentile is
the time taken by the hardest problem in the test set. This is more informative
than simply plotting the average time or the median time: average time is often
distorted by a small number of very hard problems, and so does not indicate the
typical solution time; median time masks hard problems, and so does not indicate
either the total time or the worst-case time.

In TKB classification tests, the percentile classification times have been calculated
for groups of concepts, usually of size 100, and plotted against the number of
concepts which have already been classified (classified TKB size). These plots
necessarily exclude pre-processing time (see Section 6.2 on page 98), but this is
small in comparison to total classification time: e.g., the time required to pre-
process TKB0 was ≈12s compared to ≈361s to classify it. Presenting the data
in this way shows how both typical and worst case performance varies as the size
of the classified concept hierarchy increases. This is of interest because one of the
major problems with existing DL systems is the degradation in their performance
as TKB size increases [HKNP94, SvRvdVM95].

In tests using randomly generated satisfiability problems, groups of 100 problems
are generated at each data point, using the same random generation parameters.
The median solution times, or in some cases the 50th, 60th 70th, 80th, 90th and
100th percentile solution times, are plotted against L/N , the ratio of the number
of disjunctive clauses to the number of atomic primitive concepts (see Section 7.5
on page 124).

7.2.2 Data Gathering

FaCT has an integrated profiling facility, and for tests which only involved FaCT
(i.e., using TKB0) this facility was used to gather performance data. Kris has
no such facility, so when comparing FaCT with Kris it was necessary to use an
external timing procedure which measures the time taken to classify each concept
using an add-concept statement (see Appendix A), which forces the concept to
be classified immediately. Imposing an order on the classification of concepts
degrades performance as it prevents the classifier from maximising the benefit
of the told subsumer optimisation by classifying concepts in definition order (see
Section 6.3 on page 102). For this reason, the external timing mechanism was
used with both systems when comparing the performance of FaCT and Kris (i.e.,
using TKB1 and TKB2).

7.2.3 System Specification

The current version of FaCT is written in Lisp and compiled using Allegro Lisp
with the compiler optimisation settings speed=3, safety=0, compilation-speed=0,
space=0, and debug=0. No attempt has been made at low-level optimisation or
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tuning of the Lisp code, for example by using type declarations or by trying to
minimise the amount of consing [Nor92]. All tests have been performed on a Sun
SPARCstation 20/61 equipped with a 60MHz superSPARC processor, a 1Mbyte
off-chip cache and 128Mbytes of RAM.

7.3 Classifying the GALEN Terminology

The purpose of these tests was to analyse and evaluate the performance of FaCT,
and the effectiveness of the various optimisation techniques, when classifying a
large “realistic” TKB, i.e., TKB0.

Function Time(s)
Load 6.93
Pre-process 11.87
Classify 360.53
Total 379.33

Table 7.4: Total classification times (TKB0/FaCT)

Table 7.4 shows the time taken by FaCT to classify TKB0; Figure 7.1 shows the
50th percentile (median) and 100th percentile classification time per concept plot-
ted against the number of concepts which have already been classified (classified
TKB size).
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Figure 7.1: Classification time per concept -v- TKB size (TKB0/FaCT)

The time required to classify single concepts ranges from ≈0s to ≈15s and does
not appear to be directly correlated with the number of classified concepts. The
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variation in classification time is due in part to variations in the “hardness” of in-
dividual satisfiability tests and in part to variations in the number of satisfiability
tests performed when classifying concepts in different parts of the TKB.

The number and hardness of satisfiability tests required to classify different con-
cepts reflects the kinds of concepts being classified, the complexity of the hierarchy
in the area of the TKB to which they belong and the order in which they are clas-
sified. The consistently high median classification times in the region of classified
TKB size 350–650, for example, are caused by the classification of part of the
hierarchy concerned with human anatomy. Concepts concerned with anatomy
form a populous and complex sub-hierarchy, and many of the primitive concepts
near the the top of this sub-hierarchy have large numbers of disjunctive clauses
in their introduction axioms due to the absorption of GCIs. The most general
anatomical concept, BodyStructure, is at the top of a sub-hierarchy containing
780 concepts, and has 10 disjunctive clauses in its introduction axiom. Classifi-
cation of a concept in the anatomy sub-hierarchy below BodyStructure therefore
tends to require a greater than average number of satisfiability tests, due the
size and complexity of the hierarchy, and more expensive satisfiability tests, due
to the search space which may have to be explored when expanding disjunctive
expressions.

The low median classification times in the region of classified TKB size 850–
1,350, on the other hand, are caused by the classification of a primitive sub-
hierarchy which contains state value concepts such as acute, often and persistent.
The concept State, for example, is at the top of a sub-hierarchy containing 340
concepts, none of which have disjunctive clauses in their introduction axioms.
This sub-hierarchy consists entirely of asserted primitive subsumption relations,
e.g.:

ProcessState v State

TemporalState v ProcessState

ChronicityState v TemporalState

acute v ChronicityState

Classification therefore requires relatively few, simple satisfiability tests, most of
which are avoided by a combination of the told subsumer and caching optimisa-
tions.

Peaks in the 100th percentile classification time are largely the result of the order
in which concepts are classified: it takes longer to classify the first concepts in
a sub-hierarchy because many of the concepts referred to in their introduction
axioms will not have been previously encountered by the classifier and so will not
have cached models. In complex and highly connected parts of the TKB, this
can cause a cascade of satisfiability testing and caching before classification can
continue.
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The peak of 14.7s which appears at classified KB size = 150, for example, is
caused by the classification of the concept BodyCavity. FaCT first tests the sat-
isfiability of BodyCavity in order to cache the resulting model for use in avoiding
subsequent subsumption tests. During the tableaux expansion many as yet un-
cached concepts are encountered, in particular in an area of the anatomical hier-
archy which describes the knee joint in considerable detail. This causes FaCT to
performs satisfiability tests on, and cache models for, more than 170 additional
concepts before continuing with the classification of BodyCavity.

Although caching will cause some overhead, FaCT is not performing a great deal
of additional work during these satisfiability tests, as the concepts encountered
in the tableaux expansion would have to be unfolded and expanded in any case.
Moreover, caching means that the work FaCT is performing can be used to speed
up subsequent tests, both during the classification of BodyCavity and of subse-
quent anatomical concepts. Without caching, classifying BodyCavity takes ≈150s,
and classifying many of the other anatomical concepts in the TKB size 350–850
region takes at least as long (compare Figure 7.1 with Figure 7.4 on page 119).

The peak in classification time for BodyCavity reflects FaCT’s “on demand”
method of organising the work which it must perform in order to classify a TKB.
If FaCT was being used interactively to add concepts to a hierarchy, such peaks
would be less likely to arise as introduction axioms could only refer to concepts
which had already been classified. This effect can be observed in Figure 7.8 on
page 123, which shows FaCT’s performance with TKB1, a TKB which has been
sorted so that all concepts are classified before being used in introduction axioms:
the 100th percentile classification time plot for this TKB is much flatter than that
for TKB0.

7.3.1 Testing Optimisation Techniques

In order to test the effect of some of the optimisation techniques on FaCT’s
performance, the above test was repeated several times with one or more of the
optimisations disabled. It only proved possible to perform a detailed analysis with
respect to the encoding and caching optimisations: it is not possible to disable
semantic branching, and with either GCI absorption or backjumping disabled the
resulting intractability made it impossible to classify the TKB.

It will be recalled that in FaCT, the heuristic guided search optimisation, using
MOMS heuristic, is disabled by default due to its interaction with backjump-
ing (see Section 6.4.1 on page 104). The adverse effect of MOMS heuristic was
demonstrated by repeating the TKB classification test with the optimisation en-
abled.
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GCI Absorption

With GCI absorption disabled, FaCT failed to classify a single concept. This is
not particularly surprising as each of the 1,214 GCIs will cause a disjunction to
be added to the label of the root node and of every R-successor and A-successor
node in the tree constructed by the tableaux algorithm. The size of the resulting
search space, which is exponential in the number of disjunctions, might best be
described as “discouraging”.

Backjumping

With backjumping disabled ≈150 concepts were successfully classified, but serious
intractability was soon encountered: the attempted classification was abandoned
after the algorithm had used 100 hours of CPU time trying to classify the concept
BodyCavity.

Normalisation and Encoding

It is not possible to completely disable normalisation and encoding (see Sec-
tion 6.4.1 on page 104), but the lexical matching which the encode function per-
forms can be disabled, and this will eliminate most of the optimisation’s benefits.
Table 7.5 shows the time taken by FaCT to classify TKB0 with lexical encoding
disabled: the total classification time increased by a factor of ≈158.

Function Time(s)
Load 7
Pre-process 12
Classify 59,807
Total 59,826

Table 7.5: Total classification times without encoding (TKB0/FaCT)

Figure 7.2 on the following page contrasts FaCT’s normal performance with
its performance when lexical encoding is disabled; in both cases the 50th per-
centile (median) and 100th percentile classification time per concept is plotted
against classified TKB size. It can be seen from these graphs that, while lex-
ical encoding improves performance generally, its most significant effect is to
smooth peaks in the 100th percentile time. Without lexical encoding the concept
KneeJointRecessus, for example, took over 29,250s to classify compared to 2.2s
with lexical encoding.
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Figure 7.2: Classification with and without lexical encoding (TKB0/FaCT)

The increased time taken to classify concepts without encoding is primarily the
result of a small number of very costly failed satisfiability tests: e.g., discover-
ing that KneeJointRecessus u ¬MirrorImagedBodyStructure is not satisfiable took
≈19,000s. Unsatisfiable tests are normally less expensive than satisfiable ones
because lexically obvious contradictions in concept expressions are quickly dis-
covered by the lazy unfolding optimisation. Without lexical encoding, however,
this optimisation is much less effective, and more unfolding and expansion may be
required in order to discover unsatisfiability. Where the expansion encounters dis-
junctive concepts, the unsatisfiability of every t-successor must be demonstrated
and this can lead to an explosion in the search space.
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Figure 7.3: Search space with and without lexical encoding (TKB0/FaCT)

The increase in search space caused by disabling lexical encoding is illustrated
by Figure 7.3 which plots search space (number of back-tracks + 1) against the
percentage of satisfiability tests which led to at least that size of search space being
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explored. The plots are separated into satisfiable and unsatisfiable tests, with and
without lexical encoding. Note that both x and y scales are logarithmic. It can
be seen that with lexical encoding enabled over 95% of satisfiability problems are
solved without any backtracking, and that in the worst case this increases to only
13 backtracks for an unsatisfiable problem and 52 backtracks for a satisfiable
problem. When lexical encoding is disabled only 60% of problems are solved
without backtracking, and in the worst case this increases to 42,270 backtracks
for a satisfiable problem and 1,458,394 backtracks for an unsatisfiable problem.

Caching

Table 7.6 shows the time taken by FaCT to classify TKB0 with caching disabled:
the total classification time increased by a factor of ≈177.

Function Time(s)
Load 7
Pre-process 12
Classify 67,147
Total 67,166

Table 7.6: Total classification times without caching (TKB0/FaCT)

Figure 7.4 on the following page contrasts FaCT’s normal performance with its
performance when caching is disabled; in both cases the 50th percentile (median)
and 100th percentile classification time per concept is plotted against classified
TKB size. Like lexical encoding, caching has the effect of smoothing peaks in the
classification times; although disabling caching does not cause such high peaks
(a maximum of ≈2,255s), its effect is more uniform than that of lexical encoding
and its overall effect is slightly greater.

The increased time taken to classify concepts without caching is primarily the
result of an increase in the number of satisfiability tests performed. This is
illustrated by Figure 7.5 on the following page, which plots the median number
of satisfiability tests required to classify each concept against classified TKB size,
both with and without caching. When classifying TKB0 with caching enabled,
FaCT performs a total of 122,695 subsumption tests but only 23,492 satisfiability
tests; with caching disabled, the number of satisfiability tests is equal to the
number of subsumption tests.

Heuristic Guided Search

Heuristic guided search, using MOMS heuristic, is disabled by default in the
FaCT system. Table 7.7 on page 120 shows the time taken by FaCT to classify
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Figure 7.4: Classification with and without caching (TKB0/FaCT)
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Figure 7.5: Satisfiability tests with and without caching (TKB0/FaCT)

TKB0 with MOMS heuristic enabled: the total classification time increased by
a factor of ≈4.

Figure 7.6 on the following page contrasts FaCT’s normal performance with its
performance when MOMS heuristic is enabled; in both cases the 50th percentile
(median) and 100th percentile classification time per concept is plotted against
classified TKB size. It can be seen from these graphs that the use of MOMS
heuristic degrades performance generally, with the effect being most significant
in the peak 100th percentile times. With MOMS heuristic enabled, the worst case
classification time (for the concept BodyCavity) increased from 14.7s to 159.2s.

Although some time will clearly be required to evaluate the heuristic function,
the increased time taken to classify concepts with MOMS heuristic enabled is pri-
marily the result of an increase in the size of the search space. This is illustrated
by Figure 7.7 on page 121 which plots search space (number of back-tracks + 1)
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Function Time(s)
Load 7
Pre-process 12
Classify 1,574
Total 1,593

Table 7.7: Total classification times with MOMS heuristic (TKB0/FaCT)
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Figure 7.6: Classification with and without MOMS heuristic (TKB0/FaCT)

against the percentage of satisfiability tests which led to at least that size of
search space being explored. The plots are separated into satisfiable and unsat-
isfiable tests, with and without MOMS heuristic. Note that both x and y scales
are logarithmic. It can be seen that with MOMS heuristic enabled, the number
of backtracks required to solve the hardest problems increased dramatically, par-
ticularly for satisfiable problems: in the worst case (testing the satisfiability of
BodyCavity) the number of backtracks increased from 52 to 4,833.

The increase in the size of the search space when MOMS heuristic is enabled
is due to an interaction between the heuristic and the backjumping optimisa-
tion. When MOMS heuristic is not used to select the disjunct on which to
branch, the algorithm chooses a disjunct from the first unexpanded disjunction
in L(x). As a result of the implementation, this will usually be the “oldest” un-
expanded disjunction, that is the disjunction whose dependency set contains the
smallest maximum dependency value. This is quite a useful heuristic for select-
ing branching disjuncts because it maximises the pruning effect of backjumping
when a clash is discovered. Using MOMS heuristic can cause disjuncts to be se-
lected from “newer” unexpanded disjunctions, and this reduces the effectiveness
of backjumping.
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Figure 7.7: Search space with and without MOMS heuristic (TKB0/FaCT)

Because of the limited effectiveness of MOMS heuristic in typical concept satisfia-
bility problems, the adverse effect of the interaction with backjumping outweighs
the benefit of the heuristic. The heuristic relies for its effectiveness on finding
the same disjuncts recurring in multiple unexpanded disjunctions: this is likely
in SAT problems, where the disjuncts are propositional variables, and where the
number of different variables is usually small compared to the number of disjunc-
tive clauses (otherwise problems would, in general, be trivially satisfiable); it is
unlikely in concept satisfiability problems, where the disjuncts are concept ex-
pressions, and where the number of different concept expressions is usually large
compared to the number of disjunctive clauses. As a result, the heuristic will
often discover that all disjuncts have similar or equal MOMS priorities, and the
guidance it provides is not particularly useful.

7.4 Comparing FaCT and KRIS

Although the Galen TKB was created using Grail, a direct comparison be-
tween FaCT and Grail would be of limited value:

• They use different host environments: FaCT is Lisp based whereas Grail

is SmallTalk based. This makes it difficult to separate differences in the
performance of the algorithms from differences in the performance of the
environments.

• They perform different subsumption reasoning tasks: FaCT performs com-
plete tableaux based subsumption tests whereas Grail performs incom-
plete structural tests.

• They perform different classification tasks: Grail has an integrated sanc-
tioning mechanism so that, as well as classifying concepts and checking that
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they are logically coherent, it also uses sanctioning information to check that
descriptions are “sensible” [RBG+97].

• They use different description languages: they cannot be tested with an
identical TKB.

It was therefore decided to test FaCT by comparing it with Kris3. In contrast
to Grail, Kris is Lisp based, uses a sound and complete tableaux subsumption
test (it is the only other available system to do so) and can classify a simplified
FaCT TKB.

In practice, trying to classify TKB1 using Kris proved to be highly intractable
and had to be abandoned: after approximately 100 hours of CPU time Kris

had only classified a small proportion of the TKB. Table 7.8 shows the rela-
tive performances of FaCT and Kris without the overhead imposed by gathering
performance data; Figure 7.8 on the following page shows the 50th percentile (me-
dian) and 100th percentile classification time and the 50th and 100th percentile
number of satisfiability tests per concept classification plotted against TKB size.
It can be seen that when using Kris the classification times, particularly the
100th percentile time, escalated rapidly and soon reached the point where the al-
gorithm was effectively non-terminating: after classifying only ≈10% of TKB1,
Kris had already taken over 1,900 times longer than FaCT.

Time (s)
Function FaCT Kris

Load 6.03 135.90
Pre-process 0.85 –
Classify 204.03 �400,000
Total 210.91 �400,000

Table 7.8: Total classification times (TKB1)

As little detailed information could be derived from this experiment, a further
comparison was carried out using TKB2. Although the complexity of TKB2 is
significantly reduced compared to the Galen TKB, comparing the performance
of Kris and FaCT when classifying this TKB is still of interest for several reasons:

• It provides a useful correctness test for the FaCT classifier.

• It indicates the impact the optimisation techniques would be likely to have
on a less expressive DL and a TKB which does not contain numerous large
disjunctions resulting from the absorption of GCIs.

3For completeness, it should be noted that the Grail classifier takes approximately 24 hours
to classify the Galen ontology TKB using the standard test hardware (see Section 7.2.3 on
page 112).
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Figure 7.8: Classification time per concept -v- classified TKB size (TKB1)

• It demonstrates the extent to which FaCT’s performance improves when
only a subset of the available expressiveness is used: the ability to provide
“pay as you go” performance has been identified as a desirable characteristic
for knowledge representation systems [DP91].

Table 7.9 on the following page shows the times taken by both FaCT and Kris

to classify TKB2 without the overhead imposed by gathering performance data;
Figure 7.9 on the following page shows the 50th percentile (median) and 100th
percentile classification times plotted against TKB size. Overall, FaCT outper-
formed Kris by a factor of ≈6.6.

It can be seen that much of FaCT’s improved performance is achieved by smooth-
ing out the large peaks which occur in Kris’s classification times. This is par-
ticularly noticeable looking at the 100th percentile which is relatively consistent
(0.02–0.50s) with FaCT and widely varying (0.02–46.18s) with Kris: in a small
number of cases Kris can take several hundred times longer than the median
time to classify a concept and in these cases Kris can be >100 times slower than
FaCT. Median classification times on the other hand are relatively similar, with
Kris actually out-performing FaCT for the first 1,300 concepts classified. This
is probably due to the fact that, as most of these concepts are primitives, Kris

can avoid the bottom search phase of classification (see Section 6.3 on page 102).
FaCT does not perform this optimisation because it would not be valid if the
TKB contained GCIs.

Figure 7.10 on page 125 uses TKB2 to compare the performance of Kris and
FaCT with its encoding, caching and backjumping optimisations disabled. While
the lack of these optimisations does degrade FaCT’s performance, it is still con-
siderably faster than Kris (classification time was 444.68s) and does not display
such serious worst case intractability in the 100th percentile times. Given the
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Time (s)
Function FaCT Kris

Load 7.60 135.90
Pre-process 1.08 –
Classify 146.37 887.17
Total 155.05 1,023.07

Table 7.9: Total classification times (TKB2)
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Figure 7.9: Classification time per concept -v- classified TKB size (TKB2)

similarity of the FaCT and Kris systems, it seems reasonable to assume that
this is the result of FaCT’s semantic branching search optimisation, which could
not be disabled. This optimisation is likely to be most effective when the search
space is largest and could account for FaCT’s improved performance with harder
classification problems.

7.5 Solving Satisfiability Problems

The correspondence between ALC and the propositional modal logic K(m) [Sch91]
means that FaCT can also be used as a K(m) theorem prover: K(m) formulae cor-
respond to ALC concept expressions as shown in Table 7.10 on the following
page. Note that the modal operators � and ♦ correspond to exists and value
restrictions (∃R.C and ∀R.C expressions), with different roles corresponding to
distinct modalities or accessibility relations. Standard modal K (K(1)) has only
one modality, so modal K formulae correspond to ALC concept expressions con-
taining a single role.
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Figure 7.10: Classification without optimisations (TKB2)

K(m) ALC K(m) ALC
True > False ⊥
φ C ¬φ ¬C
φ ∧ ϕ C u D φ ∨ ϕ C t D
�iφ ∀Ri.C ♦iφ ∃Ri.C

Table 7.10: The correspondence between modal K(m) and ALC

The performance of FaCT’s satisfiability testing algorithm when used as a K(m)

theorem prover was evaluated by comparing it with the Ksat K(m) theorem
prover [GS96a]. The evaluation is of interest for several reasons:

• It provides a useful correctness test for the FaCT classifier.

• A range of carefully designed and controlled experiments can be conducted
in a way which is not possible when using a realistic TKB.

• It demonstrates how FaCT’s performance compares with that of a dedicated
K(m) theorem prover.

The comparison uses randomly generated K(m) formulae transposed into ALC
concept expressions, a test method devised by Ksat’s developers and derived
from a widely used procedure for testing propositional satisfiability (SAT) deci-
sion procedures [GS96b, Fre96]. The transposition of K(m) formulae into ALC
concept expressions is performed in accordance with the correspondences given
in Table 7.10.

Two random generation procedures were used in the tests, the first de-
vised by Giunchiglia and Sebastiani [GS96b] and the second by Hustadt and
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Schmidt [HS97]. Both procedures use a number of parameters to control the
size and complexity of the generated expressions; the Hustadt and Schmidt pro-
cedure is designed to eliminate trivially unsatisfiable formulae and so generate
more consistently difficult problems.

The random generation procedures both produce conjunctive concept expressions
of the form (D1 u . . . u DL) where each Di is a K-disjunctive expression of the
form (C1 t . . . t CK). Each disjunct Cj can be either a literal (an atomic prim-
itive concept or its negation) or a modal atom (a value restriction concept or
its negation). Modal atoms are of the form ∀Ri.D where Ri is a primitive role
corresponding to one of the modalities and D is another K-disjunctive expression.

Generation is controlled by six parameters:

N — the number of different primitive concepts (propositional variables);

M — the number of different roles (modalities);

K — the size of the K-disjunctive expressions;

D — the maximum depth of nested value restrictions (modal depth);

P — the probability of a disjunct being a primitive concept or a negated prim-
itive concept (literal) rather than a value restriction or negated value re-
striction (modal atom);

L — the number of K-disjunctive expressions in the top-level conjunction.

If P is 1, the formulae generated are purely propositional and, it is claimed by
Giunchiglia and Sebastiani, are of the kind widely used for testing SAT decision
procedures [GS96b]. It has been shown that when K is fixed, the probability
of such a randomly generated propositional formula being unsatisfiable is pro-
portional to the ratio L/N , and that, independent of the algorithm being used,
the hardest satisfiability problems are found in the critically-constrained region
where the probability of satisfiability is ≈0.5 [Fre96]. Well designed algorithms
have been shown to exhibit an easy-hard-easy behavior, called a phase transi-
tion: for given values of K and N , problems with a value of L which makes
them either under-constrained (�50% satisfiable) or over-constrained (�50%
satisfiable) are generally much easier to solve than critically constrained prob-
lems [Fre96, SML96]. The phase transition phenomenon has also been observed
in a range of other NP-complete problems [HHW96].

7.5.1 Using the Giunchiglia and Sebastiani Generator

The experiments devised by Giunchiglia and Sebastiani are designed to test the
performance of K(m) satisfiability testing algorithms and to discover if a phase
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transition can be observed. Three sets of experiments are performed by varying
one of the parameters N , M and D while keeping the others fixed. The values of
the fixed parameters is chosen so that varying L to give values L/N in the range
1–40 produces problems ranging from ≈100% satisfiable to ≈0% satisfiable. In
all the experiments, K is fixed at 3 (disjunctions are of size 3) and P is fixed
at 0.5 (half the disjuncts are literals, and half are modal atoms). The values
used for the three sets of experiments are: N = 3, 4, 5 and 8, with M fixed
at 1 and D at 2; M = 1, 2, 5, 10 and 20, with N fixed at 4 and D at 2; and
D = 2, 3, 4 and 5, with N fixed at 3 and M at 1. As there is some overlap in the
parameter settings (e.g., N = 4, M = 1 and D = 2 occurs in both the first and
second sets of experiments) this only gives rise to 11 different experiments. The
parameter settings used in the 11 experiments are summarised in Table 7.11.

N M K D P
PS0 5 1 3 2 0.5
PS1 3 1 3 5 0.5
PS2 3 1 3 4 0.5
PS3 3 1 3 3 0.5
PS4 3 1 3 2 0.5
PS5 4 1 3 2 0.5
PS6 4 4 3 2 0.5
PS7 4 5 3 2 0.5
PS8 4 10 3 2 0.5
PS9 4 20 3 2 0.5
PS10 8 1 3 2 0.5

Table 7.11: Parameter settings PS0–PS11

For each parameter setting, 100 problems were generated at each data point
(integer values of L/N), and solved using both Ksat and FaCT. A total of 44,000
problems were therefore generated, and in order to keep the CPU-time required
by the experiment within reasonable bounds, a 1,000s time limit was imposed on
individual problems. The results of these experiments are shown in Figures 7.11–
7.13 and the percentages of the generated problems which were satisfiable are
shown in Figure 7.14 on page 129

Several points emerge from these results:

• FaCT outperformed Ksat in all cases and by the greatest factor when the
problems were hardest: Ksat’s median solution times were >1,000 times
larger than those of FaCT for problems generated using PS10 with L/N
in the range 8–23.
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Figure 7.11: Median solution times — varying N
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Figure 7.12: Median solution times — varying M

• Varying either M or D makes little difference to the difficulty of the prob-
lems generated, at least for FaCT.

• With the possible exception of PS10, the results obtained using FaCT do
not show a pronounced phase transition.

• Increasing N causes much harder problems to be generated. PS10 (N=8)
generated by far the most challenging problems, and when L/N was in the
range 10–23, Ksat failed to solve more than half the problems within the
1,000s time limit. For the same problems, FaCT’s median solution time
was ≈1s.

Two serious weaknesses in Giunchiglia and Sebastiani’s experimental method
have been pointed out [HS97]. Firstly, because the random generation procedure
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Figure 7.14: Percentages of satisfiable problems generated

chooses individual literals at random from the set of N propositional variables
and their negations, the K-disjunctions which it generates can be tautological,
containing both a proposition (primitive concept) and its negation, e.g., (φ1 ∨
φ2 ∨ ¬φ1). Replacing these kinds of expression with True (>), and performing
further simplification using the identities 2.2 on page 30, can considerably reduce
the effective size of many formulae and is sufficient to demonstrate that some
formulae are satisfiable (they simplify to True/>) or unsatisfiable (they simplify
to False/⊥).

This method of randomising literals is not, as Giunchiglia and Sebastiani mis-
takenly claim, the same as the method widely employed in testing SAT decision
procedures [GS96b, HS97, Fre96]. The standard method for generating random
SAT problems, which is apparently due to Franco and Paull [FP83], chooses the
combination of K propositional variables in a given K-disjunction from the NCK

different possibilities, then negates each variable with a probability of 0.5 to give
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K literals. Choosing combinations of propositional variables eliminates the dupli-
cation of variables within K-disjunctions and the possibility of generating trivial
tautologies.

The second weakness in Giunchiglia and Sebastiani’s experimental method is
that, when using a value of P greater than 0, there is a probability that some
of the top level K-disjunctions will contain only propositional variables. If the
conjunction of these clauses is unsatisfiable, then the whole formula can be shown
to be unsatisfiable without expanding any of the modal atoms. It can be shown
that, when N is small, the solution of this kind of problem is trivial, even using
the truth table method [HS97]. When P = 0.5, the value used by Giunchiglia
and Sebastiani, and L � N , the probability of these kinds of formulae being
generated is quite large, and as a result, most of the problems generated as L/N
tends to 40 are trivially unsatisfiable.
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Figure 7.15: Percentile solution times — PS10/FaCT

The effect of these weaknesses on the performance analyses can be seen in Fig-
ure 7.15, which plots the percentile solution times obtained using FaCT with
PS10. For problems in the range L/N > 21 the majority of problems are triv-
ially unsatisfiable and this accounts for the rapid fall off in the 50th percentile
(median) solution time. However a small number of non-trivial problems are gen-
erated and these become increasingly challenging as the problem size increases.
With L/N = 37 for example, the median solution time across all 100 problems
was <0.6s, but for the 7 satisfiable and thus non-trivial problems, the median
solution time increased to 28.2s and the hardest problem took FaCT >308s to
solve. Ksat failed to solve any of these 7 problems within the 1,000s time limit.

7.5.2 Using the Hustadt and Schmidt Generator

An alternative generator designed by Hustadt and Schmidt produces many more
hard problems, particularly in the over-constrained region, by eliminating trivially
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unsatisfiable cases [HS97]. Hustadt and Schmidt eliminate the possibility of gen-
erating tautological K-disjunctions by using the combination method of choosing
literals, as described in the previous section. The possibility of unsatisfiability
being determined by purely propositional K-disjunctions at the top level is also
eliminated by setting P = 0 so that K-disjunctions consist entirely of modal
atoms, except those nested at depth D which consist entirely of propositional
variables.

Hustadt and Schmidt used their improved random problem generator to evaluate
four different modal logic decision procedures, one of which was Ksat. Their
experiments were similar to those performed by Giunchiglia and Sebastiani: each
experiment fixed the parameters N , M , K, D and P , so that varying L to
give values of L/N in the range 1–30 generated problems ranging from ≈100%
satisfiable to ≈0% satisfiable. As it was shown that the value of N is by far the
most significant factor in determining the “hardness” of problems [HS97], only
two experiments were performed, one with N = 4 (PS12) and the other with
N = 6 (PS13). The two parameter settings used are given in full in Table 7.12.

N M K D P
PS12 4 1 3 1 0
PS13 6 1 3 1 0

Table 7.12: Parameter settings PS12 and PS13

The experiments using PS12 and PS13 were repeated using both Ksat and
FaCT. The results of the experiment with PS12 are shown in Figure 7.16 on
the following page. The difference in performance between FaCT and Ksat

is even more marked than for PS10. Not only did FaCT outperform Ksat

quantitatively (for example with L/N = 16 FaCT’s median solution time was ≈2s
compared to Ksat’s >1,000s) but also qualitatively: FaCT’s performance shows
evidence of a phase transition, with all the percentile solution times diminishing
for probabilities of satisfiability <0.5. For L/N = 30, FaCT’s median solution
time had fallen to <0.3s whereas Ksat’s was still >1,000s.

The best performing decision procedure in Hustadt and Schmidt’s evaluation was
a “translation approach” which used an optimised functional translation of the
modal formula into FOPC [OS95], and then solved the FOPC formula using the
FLOTTER/SPASS theorem prover [WGR96]. In contrast to FaCT, the median
solution time using the translation approach with PS12 reached a peak of ≈30s
for L/N = 20 and showed little sign of decreasing. This was in spite of the fact
that Hustadt and Schmidt used a much faster machine for their evaluation (a Sun
Ultra 1/170E with 196MB of main memory) and that FLOTTER/SPASS used
compiled C code, which would normally be expected to outperform Lisp code.

Increasing N , the number of propositional variables, from 4 (PS12) to 6 (PS13)
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Figure 7.16: Percentile solution times — PS12

dramatically increased the difficulty of the problems generated, as can be seen
from Figure 7.17. For values of L/N > 7 when using Ksat, and L/N > 11 when
using FaCT, more than half the problems were not solved within the 1,000s time
limit. From Hustadt and Schmidt’s results it would appear that the translation
approach fared a little better with its median solution exceeding 1,000s for values
of L/N > 13.
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Figure 7.17: Percentile solution times — PS13

It is not difficult to understand why the problems generated with PS13 are so
much more challenging than those generated with PS12. Both parameter settings
generate modal formulae of the form:

((φ11 ∨ φ12 ∨ φ13) ∧ . . . ∧ (φL1 ∨ φL2 ∨ φL3))
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where each φij is a (possibly negated) modal atom of the form:

�(ϕa ∨ ϕb ∨ ϕc)

When N = 4, the purely propositional disjunctive clauses (ϕa ∨ϕb ∨ϕc) at depth
1 contain a combination of 3 propositional variables chosen from 4 candidates,
giving only 4!

(4−3)!3!
= 4 different possibilities. Each of the 3 variables is then

negated with a probability of 0.5, which gives a total of 4× 23 = 32 possibilities.
As there is only 1 modality, this means that there are 64 possible φij corresponding
to the 32 possible �(ϕa ∨ϕb ∨ϕc) and their negations. The size of the worst case
search space at depth 0 is therefore 232 regardless of the size of the problem, and
given the constrainedness of the propositional sub-problems at modal depth 1,
which contain at most 4 variables, this search space can be effectively pruned by
the backjumping optimisation. Figure 7.18 plots the percentile search space sizes
(the number of backtracks before a solution is found) measured for FaCT with
PS12.
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Figure 7.18: Search space — PS12/FaCT

When N = 6, the total number of possible propositional clauses at depth 1
increases to 6!

(6−3)!3!
× 23 = 160 and the size of the worst case search space at

depth 0 is therefore 2160. As the propositional sub-problems at modal depth 1
are less constrained the pruning of this search space will also be less effective and
larger problems soon become highly intractable.

7.6 Testing for Correctness

Although the underlying ALCHR+ algorithm has been shown to be correct, er-
rors might have been introduced by the ALCHf R+ extension, the optimisation
techniques or the implementation process. Empirical testing cannot completely
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eliminate this possibility (some errors might be very obscure), but extensive em-
pirical testing does suggest a high probability that the implementation is correct.

7.6.1 Hard Problems

During development, FaCT’s correctness was regularly checked using a suite of
“hard problems”, some adapted from [HKNP94] and some designed specifically
to test FaCT’s features. These tests include:

• Detecting unsatisfiability caused by disjoint concepts. e.g., if {C v ¬D} ⊆
T , is C u D satisfiable w.r.t. T ?

• Detecting unsatisfiability caused by disjoint concepts and attributes. e.g.,
if {C v ¬D,A ∈ F} ⊆ T , is ∃A.C u ∃A.D satisfiable w.r.t. T ?

• Detecting subsumption relations caused by GCIs (see Example 6.3 on
page 103).

• Detecting subsumption relations caused by the interaction of transitive roles
and the role hierarchy (see Example 4.1 on page 67).

• Detecting subsumption relations caused by complex interactions between
attributes and the role hierarchy (see Example 4.4 on page 75).

7.6.2 Classification

The correctness of terminological classification in FaCT was checked by comparing
the TKB0 concept hierarchies computed by FaCT with and without various
optimisations and by comparing the hierarchies computed by FaCT and Kris for
TKB2 (see Section 7.4 on page 121).

Unfortunately, the usefulness of the latter comparison is limited by the fact that
TKB2 did not contain a role hierarchy, transitive roles or GCIs. It did not,
therefore, test the correctness of the FaCT classifier with respect to these con-
structs.

7.6.3 Satisfiability Testing

The correctness of satisfiability testing in FaCT was checked by comparing it
with the Ksat algorithm. The results computed by FaCT for 50,000 randomly
generated satisfiability problems were compared with those computed by Ksat.
The results were identical in all those cases where both Grail and Ksat were
able to compute answers before exceeding the CPU-time limit of 1,000s.
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The usefulness of the test is again limited by the fact that Ksat only supports a
subset of the language implemented in FaCT, namely ALC, so that those parts
of the algorithm which deal with attributes, transitivity, the role hierarchy and
non-absorbed GCIs were not tested. However the extensions to the basic ALC
algorithm required to support these features are relatively minor: the main com-
plexity of the algorithm is in the optimisation techniques and this area of the
code is thoroughly exercised by these tests.

7.7 Summary

The results of the experiments presented in this chapter demonstrate that, with
the exception of MOMS heuristic, the optimisation techniques dramatically im-
prove the performance of the ALCHf R+ algorithm, and that they are most effec-
tive with the hardest problems. The performance improvement for these problems
is at least three orders of magnitude: it is impossible to be more precise because,
without optimisation, many problems are so intractable as to be effectively non-
terminating.

7.7.1 GCIs and Absorption

When classifying a TKB containing GCIs, absorption is by far the most important
optimisation technique: without absorption, FaCT failed to classify a single con-
cept from TKB0. Unlike the other optimisations, absorption actually simplifies
the problem by eliminating GCIs from the terminology. Without this simplifica-
tion, the potential size of the search space which may have to be explored when
classifying TKB0 makes it unlikely that any other optimisation techniques could
succeed in making the problem tractable.

The success of this optimisation depends on GCIs being of an appropriate form,
specifically on their antecedents being either primitive concepts or conjunctive
concept expressions which contain, or can be unfolded so that they contain, a
primitive conjunct. It is difficult to assess whether or not this is a serious restric-
tion without analysing other realistic TKBs which contain GCIs, and as Grail

and FaCT are the only known DL implementations which support GCIs, it is
unlikely that such TKBs exist. It seems probable, however, that most GCIs in a
realistic TKB would be amenable to absorption:

1. The majority of concepts in realistic knowledge bases are primitive, and the
definitions of most non-primitive concepts are conjunctive concept expres-
sions [HKNP94]; in fact many implemented DLs find it acceptable not to
support disjunctive concept expressions (e.g., Classic).
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2. The restricted form of concept expression supported by Grail, which re-
sults in all Grail GCIs being amenable to absorption, is the result of a
detailed design study which concluded that this form of expression was ad-
equate for describing medical terminology [Now93]. Grail has also proved
useful in a number of other applications domains, and where problems have
been encountered it has been due to the lack of number restrictions rather
than the lack of disjunction [BG96, GHB96].

3. It is difficult to imagine situations where non-absorbable GCIs would be
necessary: if a GCI is not amenable to absorption, it means that it repre-
sents a general assertion which might be applicable to every concept in the
TKB. Even when a GCI is not of the appropriate form, it would normally be
possible to apply a reasonable restriction to the assertion which would allow
it to be absorbed. e.g., given the GCI ∃degree.MSc v ∃degree.BSc [BDS93]
it seems reasonable to assume than having degrees is only applicable to
persons, and to restrict the GCI to person u ∃degree.MSc v ∃degree.BSc.

7.7.2 Backjumping and MOMS Heuristic

When solving individual subsumption/satisfiability problems, backjumping is the
most important optimisation. Even when absorption succeeds in eliminating
all the GCIs from a terminology, the resulting classification problem can still
be highly intractable, as large numbers of disjunctive expressions are added to
concept introduction axioms. The backjumping optimisation is highly effective
in pruning the search space which can result from expanding these disjunctions:
without backjumping, single satisfiability problems are encountered which are so
intractable as to be effectively non-terminating.

The use of MOMS heuristic to guide the exploration of the search space interacts
with backjumping, reduces its effectiveness, and degrades FaCT’s performance.
As a result, the use of MOMS heuristic is disabled by default in the FaCT system.

7.7.3 Other Optimisations

The normalisation and encoding optimisation and the caching optimisation also
make significant contributions to FaCT’s performance: disabling either optimisa-
tion degrades performance by a factor of over 100 when classifying TKB0.

The caching optimisation is particularly important because it can cheaply elimi-
nate obvious non-subsumers and concentrate more expensive subsumption testing
in areas of the TKB where subsumers are likely to be found. As a result, the
time taken to classify a new concept is relatively independent of the total size of
the classified TKB and is instead dependent on the size and complexity of the
sub-hierarchy to which the new concept belongs.



Chapter 8

Discussion

This thesis concludes with a review of the work presented and an assessment of
the extent to which the objectives set out in Chapter 1 have been met. The
significance of the major results is summarised, outstanding issues are discussed
and directions for future work are suggested.

8.1 Thesis Overview

The objective of this thesis was to investigate the practicability of providing
sound, complete and empirically tractable subsumption reasoning for a DL with
an expressive concept description language and to demonstrate that, in spite of
the worst-case intractability of reasoning in such languages, a suitably optimised
tableaux algorithm could provide acceptable performance with a realistic termi-
nological knowledge base (TKB).

This claim has been strongly supported by the successful development of the
FaCT system and by results from the empirical testing of FaCT using a large
TKB from the Galen project. It has also been demonstrated that, when used
with a simplified TKB, FaCT’s performance compares favourably with that of
a less expressive DL (Kris) and that, when used to solve randomly generated
K(m) satisfiability problems, FaCT’s performance compares favourably with that
of dedicated K(m) theorem provers (Ksat and FLOTTER/SPASS).

8.2 Significance of Major Results

The major results of this thesis are:

• the design of the ALCHR+ and ALCHf R+ satisfiability testing algorithms
and the soundness and completeness proof for ALCHR+ ;

137
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• the development of a range of optimisation techniques which dramatically
improve the performance of the ALCHf R+ algorithm;

• the evaluation of the optimised algorithm through extensive empirical test-
ing, including a detailed comparison with the Kris DL classifier and the
Ksat K(m) theorem prover.

The FaCT system, which was implemented as a test-bed for the optimised
ALCHf R+ algorithm, is also of significant interest in its own right, both as a
DL knowledge representation tool and as a propositional modal logic theorem
prover.

8.2.1 Satisfiability Testing Algorithms

A tableaux satisfiability testing algorithm has been designed for ALCHR+ , a DL
which supports transitive roles, a role hierarchy and GCIs, and a proof of the
soundness and completeness of this algorithm has been presented. An extension
to the ALCHR+ algorithm has also been designed, which allows it to be used for
satisfiability testing in ALCHf R+ , a DL which augments ALCHR+ with support
for functional roles.

These theoretical results generalise and extend those already available for the
ALCR+ and ALC⊕ DLs [Sat96]. Instead of the restricted form of role inclusions
provided by ALC⊕, ALCHR+ supports general role inclusion axioms, allowing a
complete role hierarchy to be defined. The soundness and completeness proof
for the ALCHR+ satisfiability testing algorithm also provides implicit proof of
the soundness and completeness of the ALC⊕ algorithm, which can be seen as a
special case of the ALCHR+ algorithm. The soundness and completeness of the
ALC⊕ algorithm had not previously been demonstrated.

8.2.2 Optimisation Techniques

A range of novel and adapted optimisation techniques have been developed which
dramatically improve the performance of the ALCHf R+ algorithm. Absorption
and backjumping are the most effective of these techniques, but normalisation
and encoding, semantic branching and caching are also valuable: quantitative
results from the empirical testing of FaCT are summarised in Section 8.2.3.

Many of the optimisation techniques developed for ALCHf R+ could be used with
other tableaux satisfiability testing algorithms and should become standard in
future tableaux based DL implementations. Some of these techniques have been
shown to be applicable to propositional modal logic theorem proving and may
also be relevant to automated deduction in other logics, for example temporal
logics, where tableaux methods are widely used [Gou84].
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Absorption Absorption could be used with any DL which supports full nega-
tion in concept descriptions and is independent of the subsumption testing al-
gorithm employed. It could even be performed as a pre-processing step: this
was demonstrated in the derivation of TKB1, one of the test TKBs used to
compare FaCT with Kris (see Section 7.1.2 on page 109). The only caveat is
that absorption of GCIs can introduce cycles into primitive concept introduction
axioms, resulting in a TKB which can not be classified using an algorithm which
is restricted to unfoldable terminologies (such cycles had to be eliminated from
TKB1 before attempting to classify it using Kris).

Normalisation and Encoding Normalisation and encoding performed as a
pre-processing step could be applied to any DL, including existing implementa-
tions. Used in this way the technique is also independent of the subsumption
testing algorithm, although its effect on performance may not be. Integrating
normalisation and encoding with the classifier is preferable, however, in order to
avoid the classification of system generated concepts and to facilitate the use of
more efficient data structures.

Semantic Branching Semantic branching search and boolean constraint prop-
agation could be used with any tableaux algorithm, although it calls for a signif-
icant change in the way algorithms are implemented.

Backjumping Backjumping could easily be used with other tableaux algo-
rithms, although some minor adaptions may be necessary to deal with the de-
pendencies caused by different kinds of concept expression (or formula in logics
other than DLs).

Caching Caching could also be used with other tableaux algorithms, but the
adaptions required to deal with different kinds of concept expression (or formula)
may be more complex: it may be necessary to change both the information which
is cached and the algorithm which decides when cached models can be merged.

8.2.3 Empirical Evaluation

The FaCT system was implemented as a test-bed for the optimised ALCHf R+

algorithm and has been used to perform extensive empirical testing, including
a detailed comparison with the Kris DL classifier and the Ksat K(m) theorem
prover. These experiments demonstrate that:
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1. Although the satisfiability problem for ALCHf R+ is Exptime-complete,
FaCT can provide tractable performance when used to classify a large re-
alistic TKB: a 2,740 concept TKB developed as part of the Galen project
was classified by FaCT in approximately 380s (see Table 7.4 on page 113).

2. Absorption and backjumping are the most effective of the investigated opti-
misation techniques: with either of these optimisations disabled it was im-
possible to classify the Galen TKB in a reasonable time (see Section 7.3.1
on page 115). Encoding and caching are also of significant value: the time
taken to classify the Galen TKB increased by a factor of approximately
158 when encoding was disabled (see Table 7.5 on page 116) and by a
factor of approximately 177 when caching was disabled (see Table 7.6 on
page 118). Guided search using MOMS heuristic proved to be ineffective:
its use actually degraded performance by a factor of approximately 4 (See
Table 7.7 on page 120).

3. When used to classify a TKB containing large numbers of disjunctive con-
cept expressions, FaCT was at least 1,900 times faster than Kris (see Ta-
ble 7.8 on page 122); the actual performance difference is probably much
greater than this, as Kris had only classified approximately 10% of the
test TKB when the experiment was terminated. Even when used with a
simplified TKB containing no disjunctive concept expressions, FaCT was
still more than 6 times faster than Kris overall (see Table 7.9 on page 124)
and more than 100 times faster for the concepts which took Kris longest
to classify (see Figure 7.9 on page 124). As Kris’s performance has been
shown to compare favourably with that of other DL classifiers, including
Back, Classic and Loom [BHNP92], it seems reasonable to assume that
FaCT would also outperform these systems by a similar or greater margin.

4. When used to solve the hardest of the randomly generated K(m) satisfiabil-
ity problems, FaCT was at least 500 times faster than Ksat (see Figure 7.16
on page 132) and in some cases more than 1,000 times faster than Ksat

(see Figure 7.11 on page 128). Although it has not been possible to re-
peat all the experiments performed in a recent evaluation of K(m) theorem
provers [HS97], it would appear that FaCT compares favourably with the
other systems evaluated including FLOTTER/SPASS, the best performing
system.

8.2.4 The FaCT System

Although primarily intended as a test-bed for the optimised ALCHf R+ algo-
rithm, the FaCT system is of significant interest as a practical DL knowledge
representation tool: FaCT is the only available system which supports transitive
roles and GCIs, it provides sound and complete reasoning, it is able to handle
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large TKBs and it has a simple but comprehensive functional interface which is
compatible with that of the Kris system. A detailed user manual is available for
the FaCT system (see Appendix A).

FaCT is also of interest as a propositional modal logic theorem prover. FaCT’s
performance has been shown to compare favourably with that of other K(m)

theorem provers, and as it can reason with transitive roles, FaCT can also be used
for theorem proving in propositional modal K4(m) and S4(m). K4(m) is equivalent
to K(m) with a transitive accessibility relation and is dealt with by transposing
formulae into ALC concept expressions as for K(m) (see Table 7.10 on page 125),
but using transitive roles. S4(m) is equivalent to K(m) with a transitive reflexive
accessibility relation and is also dealt with by transposing formulae into ALC
concept expressions as for K(m), but using transitive reflexive roles; identities 2.3
(see Section 2.2.2 on page 30) can then be used to transpose expressions using
transitive reflexive roles into equivalent expressions using transitive roles.

FaCT has been made available via the world wide web1 and copies of FaCT have
already been obtained by researchers in Colombia, France, Germany, Holland,
Israel, Italy, Switzerland and the U.S.A.

8.3 Outstanding Issues

This thesis does not, of course, represent a complete answer to the problems
associated with the use of expressive DLs. There remain a number of outstanding
issues, several of which are discussed below.

8.3.1 The Spectre of Intractability

The complexity of the subsumption reasoning problem in ALCHf R+ , and other
expressive DLs, is immutable: regardless of the optimisation techniques employed,
the spectre of intractability will always be present. In a complete DLKRS, there
would need to be some mechanism for specifying the maximum acceptable time
to be spent on any single subsumption or classification problem and for dealing
with exceptions should they arise.

What constitutes an acceptable time for the system to spend on a single problem
would depend very much on the application: clearly it would be relatively short
if the TKB were being queried and updated interactively, as is anticipated in
some applications of the Galen ontology [RSNR94]. However, regardless of the
time limit which is imposed, it will always be possible to generate subsumption
problems which take too long to solve and which can only be dealt with by
accepting a degree of incompleteness.

1The FaCT home page is: http://www.cs.man.ac.uk/∼horrocks/FaCT
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Even in applications where this circumstance arises, a theoretically complete but
intractable algorithm is at least able to inform the user when its reasoning is
incomplete: in response to the question “does C subsume D?” it can answer
“yes”, “no” or “don’t know”. In response to the same question, the incomplete
structural algorithms used in most implemented systems can only answer “yes” or
“don’t know”, as their failure to find a subsumption relationship is no guarantee
that one does not exist.

8.3.2 GALEN and GRAIL

The use of DLs in ontological engineering, in particular the construction of a
large medical terminology ontology as part of the Galen project, was one of the
primary motivations for investigating the tractability of sound and complete rea-
soning for an expressive DL. However, before FaCT, or some future development
of FaCT, could be used in place of Grail, there are a number of outstanding
issues which would need to be resolved:

• The semantics of the Grail specialisedBy statement need to be clarified
(see Section 7.1.1 on page 106) and a method devised for representing them
in the FaCT system. This may require a logic which is more expressive
than ALCHf R+ .

• Grail has an integrated sanctioning mechanism: as well as classifying con-
cepts and checking that they are logically coherent, it also uses sanctioning
information to check that descriptions are “sensible” [RBG+97]. This is
considered to be an important part of the Grail system and before FaCT
could be used instead of Grail it would need to be equipped with an
equivalent mechanism.

• Although FaCT’s more expressive concept description language addresses
some of Grail’s shortcomings, for example its lack of negation, require-
ments for additional constructs have already been identified in the Galen

project: number restrictions, attribute value maps and inverse roles would
be particularly useful [RBG+97].

8.3.3 Tools and Environments

The way in which knowledge is represented can have a major impact on the
tractability of reasoning. The effectiveness of many of the optimisations depends
on the structure of the TKB: absorption is most effective when the antecedents
of GCIs are made as specific as possible and the ability of caching to isolate
expensive subsumption testing in sub-hierarchies depends on there being a well
designed primitive hierarchy at the “top” of the TKB.
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Ideally, users of knowledge representation systems in general, and of expressive
description logics in particular, should be aware of these issues and understand
the impact their design choices may have on the likely tractability of the re-
sulting TKB. However, as users are typically domain experts and not knowledge
engineers, it is essential for a complete DLKRS to include tools and environ-
ments, such as those provided with the Grail system [GBS+94, ST97, Sol97],
which can insulate unsophisticated users from the complexity of the underly-
ing representation (e.g., ALCHf R+) and help them to represent knowledge more
efficiently. The system should detect constructs which are likely to cause in-
tractability, and where possible, automatically modify them to give an equivalent
but more tractable representation: the absorption optimisation can be seen as an
example of such a modification.

8.4 Future Work

Development of the FaCT system has suggested several promising avenues for
further research:

• Extending the optimisation techniques to deal with a variety of different
concept description languages. Adding number restrictions and attribute
value maps to FaCT would be particularly useful.

• Investigating new optimisation techniques and improving the the existing
techniques. Dependency directed backtracking is one of the most effective
of the existing techniques and it may be worthwhile investigating more so-
phisticated backtracking procedures, such as dynamic backtracking [Gin93],
which try to preserve useful work while returning to the source of the dis-
covered contradiction. Heuristic guided search, on the other hand, proved
ineffective or even counter productive and more work is required in order to
ascertain if this problem can be remedied by the use of improved heuristics.

• Investigating the potential of parallelism. The time taken to solve hard
satisfiability problems can depend heavily on early branching choices made
by the algorithm. One possible approach to this problem is to explore mul-
tiple branching choices simultaneously by using coarse grained parallelism
to run the algorithm on multiple processors or machines. Using parallelism
to improve the performance Grail’s structural subsumption algorithm has
already been investigated with some success in the Paepr project [RN95].

• FaCT has only been tested with the Galen TKB. More extensive testing
with realistic TKBs from other application domains is required in order to
demonstrate the general effectiveness of the optimisation techniques and
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FaCT’s ability to provide tractable reasoning in a range of application do-
mains. Due to its unique expressiveness (among implemented systems) this
may have to wait for the development of applications which use FaCT.

• Building a complete DLKRS based on FaCT. The existing FaCT system
has a number of shortcomings: it has been implemented as an experimental
prototype; it only supports a single concept description language, which is
designed to accommodate the Galen medical terminology application (but
see Section 8.3.2 on page 142); and it does not provide any support for rea-
soning about individuals (an ABox). A project has already been funded2

which proposes to address these issues by developing a more robustly engi-
neered modular system, which will be able to support a number of different
concept description languages. The design of this system includes a data-
base interface module, which will allow the classifier to be coupled to an
Object Oriented Database instead of a traditional ABox, and an environ-
ment interface module, which will allow the classifier to be used with a
range of knowledge engineering tools and user environments [HGG+97].

Demonstrating that an expressive DL with a sound and complete subsumption
testing algorithm can provide acceptable performance in a realistic application
is an encouraging result for the DL community: it suggests that the substantial
body of theoretical work which has emerged in recent years may have more direct
practical applicability than had previously been realised. It is hoped that the
design of the FaCT system will provide a firm foundation for ongoing research,
leading to the development of DL knowledge representation systems which are
useful in a wide range of application domains.

2EPSRC Grant reference GR/L54516.



Appendix A

FaCT Reference Manual

A.1 Introduction

FaCT is a prototype description logic knowledge representation system which uses
an optimised tableaux subsumption algorithm to provide complete inference for a
relatively expressive concept description language. In particular, FaCT supports
transitively closed roles, a role/attribute hierarchy and general concept inclusion
axioms (implications of the form C ⇒ D where C and D are arbitrary concept
descriptions).

FaCT is primarily intended as a tool for conceptual schema design and ontological
engineering and thus provides only concept based reasoning services: there is
a TBox but no ABox. The interface to the TBox is designed to be broadly
compatible with that of the Kris system [BH91c].

The correspondence between ALC and the propositional modal logic K(m)

means that FaCT can also be used as a highly efficient decision procedure for
K(m) [GS96b, HS97]. FaCT’s support for transitively closed roles means that it
can also be used as a decision procedure for modal K4(m) and S4(m).

A.1.1 Obtaining FaCT

FaCT can be obtained from the following world wide web site:

http://www.cs.man.ac.uk/∼horrocks/FaCT

After downloading the file FaCT.tar.gz use the command:

gunzip FaCT.tar.gz ; tar xvf FaCT.tar

145
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to create a directory FaCT containing the distribution files and directories.

To install FaCT follow the instructions in the file FaCT/README.

FaCT has been written in Common LISP and has been tested with Allegro Com-
mon Lisp, Harlequin LispWorks and Gnu Common Lisp.

A.2 Concept Descriptions

FaCT uses the same list based concept description syntax as the Kris system.
If CN is the name of a defined concept, R is the name of a defined role, A is the
name of a defined attribute and C,C1, . . . , Cn are concept descriptions, then the
following are also valid concept descriptions:

*TOP*

*BOTTOM*

CN

(and C1 . . . Cn)
(or C1 . . . Cn)
(not C)
(some R C)
(all R C)
(some A C)
(all A C)

The correspondence between this form and the standard infix notation is shown
in Table A.1.

FaCT syntax Standard notation
*TOP* >
*BOTTOM* ⊥
(and C1 . . .Cn) C1 u . . . u Cn

(or C1 . . .Cn) C1 t . . . t Cn

(not C) ¬C
(some R C) ∃R.C
(all R C) ∀R.C
(some A C) ∃A.C
(all A C) ∀A.C

Table A.1: FaCT concept expressions
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A.3 Function and Macro Interface

This section describes the built-in concepts, macros and functions which provide
the user interface to the TBox.

A.3.1 Built-in Concepts

*TOP* concept

Description: The name of the top concept (>).

Remarks: Every concept in the TBox is subsumed by *TOP*.

*BOTTOM* concept

Description: The name of the bottom concept (⊥).

Remarks: Every concept in the TBox subsumes *BOTTOM*. Note that unsat-
isfiable concepts become synonyms for *BOTTOM*.

A.3.2 Knowledge Base Management

init-tkb function

Description: Initialises the TBox.

Syntax: (init-tkb)

Remarks: All user defined concepts, roles, attributes and implications are
deleted from the TBox leaving only *TOP* and *BOTTOM*.

Examples: (init-tkb)

load-tkb function

Description: Loads a TBox from a file.

Syntax: (load-tkb name &key (verbose T) (overwrite nil))

Arguments: name - Name of the TBox file (a character string).
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verbose - Keyword which, if non-nil, causes the classifier to
print symbols indicating the progress of the load op-
eration: P for each primitive concept, C for each
non-primitive concept, R for each role, R+ for each
transitive role, A for each attribute and I for each
implication. If omitted, verbose defaults to T.

overwrite - Keyword which, if non-nil, causes the classifier to
clear the existing TBox from memory (by perform-
ing an init-tkb) before loading the new TBox. If
omitted, overwrite defaults to nil.

Return: T if the TBox is successfully loaded; nil otherwise.

Examples: (load-tkb "demo.kb" :verbose T)

A.3.3 TBox Definitions

defprimconcept macro

Description: Defines a primitive concept.

Syntax: (defprimconcept name &optional (description *TOP*))

Arguments: name - Name of the new concept.

description - Optional description of the new concept. If omitted
it defaults to *TOP*.

Return: A concept structure c[name] is returned.

Remarks: The new concept is not classified until a call is made to classify-

tkb. It is an error if a concept name has already been defined.

Examples: (defprimconcept ANIMAL)

(defprimconcept MALE)

(defprimconcept FEMALE)

(defprimconcept BIPED)

(defprimconcept HUMAN (and ANIMAL BIPED))

defprimconcept-f function

Description: Functional equivalent of defprimconcept.

Remarks: Note that all arguments have to be quoted.
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Examples: (defprimconcept-f ’ANIMAL)

(defprimconcept-f ’MALE)

(defprimconcept-f ’FEMALE)

(defprimconcept-f ’BIPED)

(defprimconcept-f ’HUMAN ’(and ANIMAL BIPED))
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defconcept macro

Description: Defines a non-primitive concept.

Syntax: (defconcept name description)

Arguments: name - Name of the new concept.

description - Description of the new concept.

Return: A concept structure c[name] is returned.

Remarks: The new concept is not classified until a call is made to classify-

tkb. It is an error if a concept name has already been defined.
Note that in contrast to defprimconcept it is also an error if
description is omitted.

Examples: (defconcept MAN (and MALE HUMAN))

(defconcept WOMAN (and FEMALE HUMAN))

defconcept-f function

Description: Functional equivalent of defconcept.

Remarks: Note that all arguments have to be quoted.

Examples: (defconcept-f ’MAN ’(and MALE HUMAN))

(defconcept-f ’WOMAN ’(and FEMALE HUMAN))
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defprimrole macro

Description: Defines a primitive role.

Syntax: (defprimrole name &key (supers nil) (transitive nil))

Arguments: name - Name of the new primitive role.

supers - Keyword list of super-roles. If omitted it defaults to
nil.

transitive - Keyword which, if non-nil, makes the role transi-
tive. If omitted it defaults to nil.

Return: A role structure r[name] is returned.

Remarks: It is an error if a role or attribute name has already been defined.

Examples: (defprimrole Relation :transitive T)

(defprimrole Close-relation :supers (Relation))

(defprimrole Ancestor :supers (Relation)

:transitive T)

(defprimrole Parent :supers (Close-relation Ancestor))

defprimrole-f function

Description: Functional equivalent of defprimrole.

Remarks: Note that all arguments have to be quoted.

Examples: (defprimrole-f ’Relation :transitive T)

(defprimrole-f ’Close-relation :supers ’(Relation))

(defprimrole-f ’Ancestor :supers ’(Relation)

:transitive T)

(defprimrole-f ’Parent :supers ’(Close-relation

Ancestor))

defprimattribute macro

Description: Defines a primitive attribute (functional role).

Syntax: (defprimattribute name &key (supers nil))

Arguments: name - Name of the new primitive attribute.
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supers - Keyword list of super-attributes or super-roles. If
omitted it defaults to nil.

Return: A role structure r[name] is returned.

Remarks: It is an error if a role or attribute name has already been defined.
Note that unlike roles, attributes cannot be transitive.

Examples: (defprimattribute Best-friend)

(defprimattribute Father :supers (Parent))

(defprimattribute Mother :supers (Parent))

defprimattribute-f function

Description: Functional equivalent of defprimattribute.

Remarks: Note that all arguments have to be quoted.

Examples: (defprimattribute-f ’Best-friend)

(defprimattribute-f ’Father :supers ’(Parent))

(defprimattribute-f ’Mother :supers ’(Parent))

implies macro

Description: An implication/subsumption axiom between two concept descrip-
tions.

Syntax: (implies antecedent consequent)

Arguments: antecedent - Description of the antecedent concept.

consequent - Description of the consequent concept.

Return: antecedent is returned.

Remarks: Asserts that antecedent implies consequent (antecedent ⇒
consequent) or, equivalently, that the antecedent is subsumed by
consequent (antecedent v consequent). Note that adding implica-
tions after the TBox has been classified may cause strange and
unpredictable results.

Examples: (implies (and POLYGON ((some Angles 3)))

(some Sides 3))

implies-f function
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Description: Functional equivalent of implies.

Remarks: Note that all arguments have to be quoted.

Examples: (implies-f ’(and POLYGON ((some Angles 3)))

’(some Sides 3))

disjoint macro

Description: A disjointness axiom between concept descriptions.

Syntax: (disjoint description-1 . . . description-n)

Arguments: description-i - A concept description.

Remarks: Asserts that the extensions of description-1,. . . ,description-n are
disjoint.

Examples: (disjoint MALE FEMALE)

(disjoint CAT DOG RABBIT HAMSTER)

disjoint-f function

Description: Functional equivalent of disjoint.

Remarks: Note that all arguments have to be quoted.

Examples: (disjoint-f ’MALE ’FEMALE)

(disjoint ’CAT ’DOG ’RABBIT ’HAMSTER)

A.3.4 TBox Inferences

classify-tkb function

Description: Classifies the TBox.

Syntax: (classify-tkb &key (mode :nothing))

Arguments: mode - Keyword which controls the output from the classi-
fier:

:nothing - None;
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:stars - A symbol for each concept classified:
P for a primitive concept, C for a non-
primitive concept and S for a synonym;

:names - The name of each concept classified
followed by -P for a primitive concept,
-C for an non-primitive concept and -S
for a synonym;

:count - The number of subsumption and sat-
isfiability tests.

Warnings are always output regardless of the setting
of mode. If mode is either :stars or :names then
symbols are also output during the pre-processing
of roles (r for each role a for each attribute), im-
plications (p for each implication absorbed into a
primitive concept, i for each non-absorbed implica-
tion) and concept terms (c for each concept term).
If omitted, mode defaults to :nothing.

Remarks: If any new implications have been added to the TBox (implies

or f-implies) since the last TBox classification (classify-tkb),
all concepts will be reclassified; otherwise classification will be
incremental.

Examples: (classify-tkb :mode :stars)

direct-supers function

Description: Finds the direct super-concepts of a classified concept.

Syntax: (direct-supers name)

Arguments: name - A concept name.

Return: Returns a list of the direct subsumers (super-concepts) of the con-
cept name.

Remarks: The TBox must have been classified using classify-tkb. Note
that name must be quoted.

Examples: (direct-supers ’MAN) ⇒ (c[HUMAN] c[MALE])

all-supers function
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Description: Finds all the super-concepts of a classified concept.

Syntax: (all-supers name)

Arguments: name - A concept name.

Return: Returns a list of all the subsumers (super-concepts) of the concept
name.

Remarks: The TBox must have been classified using classify-tkb. Note
that name must be quoted.

Examples: (all-supers ’MAN) ⇒ (c[ANIMAL] c[HUMAN] c[BIPED]

c[MALE] c[*TOP*])

direct-subs function

Description: Finds the direct sub-concepts of a classified concept.

Syntax: (direct-subs name)

Arguments: name - A concept name.

Return: Returns a list of the direct subsumees (sub-concepts) of the con-
cept name.

Remarks: The TBox must have been classified using classify-tkb. Note
that name must be quoted.

Examples: (direct-subs ’MALE) ⇒ (c[MAN])

all-subs function

Description: Finds all the sub-concepts of a classified concept.

Syntax: (all-subs name)

Arguments: name - A concept name.

Return: Returns a list of all the subsumees (sub-concepts) of the concept
name.

Remarks: The TBox must have been classified using classify-tkb. Note
that name must be quoted.

Examples: (all-subs ’MALE) ⇒ (c[MAN] c[*BOTTOM*])
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equivalences function

Description: Finds those concepts which are equivalent to a classified concept.

Syntax: (equivalences name)

Arguments: name - A concept name.

Return: Returns a list of all the concepts which are equivalent to (synonyms
for) name.

Remarks: The TBox must have been classified using classify-tkb. Note
that name must be quoted.

satisfiable function

Description: Tests if a concept description is satisfiable.

Syntax: (satisfiable description)

Arguments: description - A concept description.

Return: Returns T if description is satisfiable w.r.t. the current TBox, nil
otherwise.

Remarks: The TBox must have been classified using classify-tkb. Note
that description must be quoted.

Examples: (satisfiable ’(and MALE FEMALE)) ⇒ nil

(satisfiable ’(and MALE ANIMAL)) ⇒ T

subsumes function

Description: Tests if one concept description subsumes another.

Syntax: (subsumes description-1 description-2 )

Arguments: description-1 - A concept description.

description-2 - A concept description.

Return: Returns T if description-1 subsumes description-2 w.r.t. the cur-
rent TBox, nil otherwise.
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Remarks: The TBox must have been classified using classify-tkb. Note
that description-1 and description-2 must be quoted.

Examples: (subsumes ’(and MALE ANIMAL) ’MAN) ⇒ T

equivalent-concepts function

Description: Tests if two concept descriptions are equivalent.

Syntax: (equivalent-concepts description-1 description-2 )

Arguments: description-1 - A concept description.

description-2 - A concept description.

Return: Returns T if description-1 is equivalent to description-2 w.r.t. the
current TBox, nil otherwise.

Remarks: The TBox must have been classified using classify-tkb. Note
that description-1 and description-2 must be quoted.

Examples: (equivalent-concepts ’(and MALE HUMAN) ’MAN) ⇒ T

(equivalent-concepts ’HUMAN ’(and ANIMAL BIPED)) ⇒ nil

disjoint-concepts function

Description: Tests if two concept descriptions are disjoint.

Syntax: (disjoint-concepts description-1 description-2 )

Arguments: description-1 - A concept description.

description-2 - A concept description.

Return: Returns T if description-1 is disjoint from description-2 w.r.t. the
current TBox, nil otherwise.

Remarks: The TBox must have been classified using classify-tkb. Note
that description-1 and description-2 must be quoted.

Examples: (disjoint-concepts ’MALE ’FEMALE) ⇒ T
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classify-concept function

Description: Finds where a concept description would classify without adding
it to the TBox.

Syntax: (classify-concept description)

Arguments: description - A concept description.

Return: Returns three values: a list of all the direct-supers of description;
a list of all the direct-subs of description; a list of all the concepts
which are equivalent to description.

Remarks: The TBox must have been classified using classify-tkb. Note
that description must be quoted.

Examples: (classify-concept ’(and MALE ANIMAL)) ⇒ (c[MALE]

c[ANIMAL]) (c[MAN]) nil

add-concept macro

Description: Defines a new concept and classifies the TBox using classify-tkb.

Syntax: (add-concept name description &key (primitive nil))

Arguments: name - Name of the new concept.

description - Description of the new concept.

primitive - Keyword which, if non-nil, makes the concept prim-
itive. If omitted it defaults to nil.

Return: A concept structure c[name] is returned.

Remarks: It is an error if a concept name has already been defined.

Examples: (add-concept VEGETABLE *TOP*:primitive T)

(add-concept WOMAN (and FEMALE HUMAN))

add-concept-f function

Description: Functional equivalent of add-concept.

Remarks: Note that all arguments have to be quoted.

Examples: (add-concept-f ’VEGETABLE ’*TOP* :primitive T)

(add-concept-f ’WOMAN ’(and FEMALE HUMAN))
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A.3.5 TBox Queries

get-concept function

Description: Retrieves a concept from the TBox.

Syntax: (get-concept name)

Arguments: name - Concept name (a LISP atom).

Return: A concept structure c[name] if a concept name is defined in the
TBox; nil otherwise.
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get-role function

Description: Retrieves a role or attribute from the TBox.

Syntax: (get-role name)

Arguments: name - Role or attribute name (a LISP atom).

Return: A role structure r[name] if a role or attribute name is defined in
the TBox; nil otherwise.

get-all-concepts function

Description: Retrieves all concepts from the TBox.

Syntax: (get-all-concepts)

Return: A list of all the concepts defined in the TBox.

get-all-roles function

Description: Retrieves all roles and attributes from the TBox.

Syntax: (get-all-roles)

Return: A list of all the roles and attributes defined in the TBox.
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classified-tkb? function

Description: Tests if the TBox is classified.

Syntax: (classified-tkb?)

Return: T if the TBox is classified; nil otherwise.

what-is? function

Description: Determines the type of a concept, or role structure.

Syntax: (what-is? structure)

Arguments: structure - Concept or role structure.

Return: The type of structure, one of CONCEPT, PRIMITIVE, ROLE or
FEATURE.

Remarks: Returns FEATURE if structure is an attribute.

is-primitive? function

Description: Determines if a structure is a primitive concept (of type
PRIMITIVE).

Syntax: (is-primitive? structure)

Arguments: structure - Concept structure.

Return: T if structure is a primitive concept (of type PRIMITIVE); nil oth-
erwise.

is-concept? function

Description: Determines if a structure is a non-primitive concept (of type
CONCEPT).

Syntax: (is-concept? structure)

Arguments: structure - Concept structure.
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Return: T if structure is a non-primitive concept (of type CONCEPT); nil
otherwise.

is-role? function

Description: Determines if a structure is a role (of type ROLE).

Syntax: (is-role? structure)

Arguments: structure - Role structure.

Return: T if structure is a role (of type ROLE); nil otherwise.

is-feature? function

Description: Determines if a structure is an attribute (of type FEATURE).

Syntax: (is-feature? structure)

Arguments: structure - Role structure.

Return: T if structure is an attribute (of type FEATURE); nil otherwise.

name function

Description: Retrieves the name of a concept or role structure.

Syntax: (name structure)

Arguments: structure - Concept or role structure.

Return: The name of structure if it is a concept or role structure; nil

otherwise.

description function

Description: Retrieves the description of a concept or role structure.

Syntax: (description structure)

Arguments: structure - Concept or role structure.
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Return: The description of structure if it is a concept or role structure; nil
otherwise. The format of the description depends on the type of
structure:

PRIMITIVE - The description given in the defprimconcept or
defprimconcept-f definition, possibly extended by
the absorption of implies axioms.

CONCEPT - The description given in the defconcept or
defconcept-f definition.

ROLE - A list consisting of the role’s name, the keyword
:supers followed by a list of the role’s supers given
in the defprimrole or defprimrole-f definition and
the keyword :transitive followed by T if the role
is transitive (the last 2 items will be omitted if their
values are nil).

FEATURE - A list consisting of the attribute’s name and the
keyword :supers followed by a list of the at-
tribute’s supers given in the defprimattribute or
defprimattribute-f definition (the last item will be
omitted if its value is nil).

A.4 Controlling FaCT’s Behavior

This section describes functions and macros which allow FaCT’s features to be
customised and which control performance profiling.

set-features function

Description: Enables classifier features.

Syntax: (set-features &rest features)

Arguments: features - Zero or more keywords. The feature associated with
each supplied keyword is enabled. The available key-
words are as follows:

:transitivity :concept-eqn

:subset-s-equivalent :backjumping

:obvious-subs :top-level-caching

:full-caching :blocking :taxonomic-encoding

:gci-absorption :cyclical-definitions

:auto-configure :moms-heuristic
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:prefer-pos-lits :minimise-clashes

:auto-install-primitives

:auto-install-transitive

By default all features are enabled except:

:moms-heuristic, :auto-install-primitives
:auto-install-transitive

Return: A list of all enabled features.

Remarks: See source code for details of the effect of each feature.

Examples: (set-features)

(set-features :transitivity :backjumping)

reset-features function

Description: Disables classifier features.

Syntax: (reset-features &rest features)

Arguments: features - Zero or more keywords. The feature associated with
each supplied keyword is disabled.

Return: A list of all enabled features.

Remarks: See set-features for a list of features. See source code for details
of the effect of each feature.

Examples: (reset-features :transitivity :backjumping)

features function

Description: Prints information about feature settings.

Syntax: (features &optional (stream T))

Arguments: stream - Optional output stream; default is T, which writes
output to the *terminal-io* stream.

Examples: (features)

set-profiling function



A.4. CONTROLLING FACT’S BEHAVIOR 165

Description: Controls performance profiling.

Syntax: (set-profiling &key (level 1) (file “profile.out”))

Arguments: level - Keyword which controls the amount of profiling data
which is output:

0 - Disables profiling.

1 - Outputs profiling data for each con-
cept classification.

2 - Outputs profiling data for each sub-
sumption test.

3 - Outputs profiling data for each satisfi-
ability test.

If omitted, level defaults to 1.

file - Keyword specifying the name of a file to which the
profiling data is to be written. If explicitly nil, it is
written to the *terminal-io* stream. If omitted,
file defaults to “profile.out”.

Remarks: Note that profiling can generate a large amount of data, particu-
larly if level is >1. For each satisfiability test the profiler outputs
the number of backtracks, the maximum model size, the maximum
model depth, the number of cache accesses, the number of cache
hits, the CPU time used, the result (T or nil) and whether block-
ing was triggered (T or nil). See source code for more details.

Examples: (set-profiling)

(set-profiling :level 2 :file nil)

reset-profiling function

Description: Disables performance profiling.

Syntax: (reset-profiling)

Remarks: Equivalent to (set-profiling :level 0).

Examples: (reset-profiling)
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set-verbosity function

Description: Increases the verbosity of the classifier.

Syntax: (set-verbosity &rest features)

Arguments: features - Zero or more keywords. The verbosity feature asso-
ciated with each supplied keyword is enabled. The
available keywords are as follows:

:warnings :notes :synonyms :reclassifying

:features :rc-counts :test-counts

:cache-counts :classify-1 :classify-2

By default, the of enabled verbosity features are:

:warnings :synonyms :reclassifying

:rc-counts :test-counts :cache-counts

Return: A list of all enabled verbosity features.

Remarks: The verbosity setting is temporarily overridden by the verbose ar-
gument to load-tkb and the mode argument to classify-tkb. See
source code for details of the effect of each verbosity feature.

Examples: (set-verbosity)

(set-verbosity :notes :classify-2)

reset-verbosity function

Description: Reduces the verbosity of the classifier.

Syntax: (reset-verbosity &rest features)

Arguments: features - Zero or more keywords. The feature associated with
each supplied keyword is disabled. If no keywords
are supplied, all verbosity features are disabled.

Return: A list of all enabled verbosity features.

Remarks: See set-features for a list of verbosity features. See source code
for details of the effect of each feature.

Examples: (reset-verbosity)

(reset-verbosity :notes :classify-2)
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A.5 Modal Logic Theorem Proving

FaCT can also be used as a decision procedure for the propositional modal log-
ics K(m), K4(m) and S4(m). Although the functions and macros described in
Section A.3 could be used for this purpose, FaCT provides a more convenient
functional interface for performing single satisfiability tests on K(m), K4(m) and
S4(m) formulae encoded as ALC concept descriptions.

alc-concept-coherent function

Description: Tests the satisfiability of a K(m), K4(m) or S4(m) formula encoded
as an ALC concept description.

Syntax: (alc-concept-coherent description &key (logic ’K))

Arguments: description - K(m), K4(m) or S4(m) formula encoded as an ALC
concept description.

logic - Keyword which specifies the logic to be used:

’K - modal K(m);

’K4 - modal K4(m) (all roles are transitive);

’S4 - modal S4(m) (all roles are transitive re-
flexive).

If omitted, logic defaults to ’K.

Return: Returns four values: T if description is satisfiable, nil otherwise;
run time (seconds) excluding concept encoding; number of back-
tracks; maximum model size (nodes).

Remarks: All user defined concepts, roles, attributes and implications are
deleted from the TBox (using init-tkb); some or all of the con-
cepts and roles occuring in description are then automatically in-
stalled in the TBox. The verbosity setting is temporarily overrid-
den and set to nil. Profiling is temporarily disabled.

Examples: (alc-concept-coherent ’(and (some R (some R C1))

(all R (not C1)))) ⇒ T

(alc-concept-coherent ’(and (some R (some R C1))

(all R (not C1))) :logic ’k4) ⇒ nil
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