
The FaCT System

Ian Horrocks

Medical Informatics Group, Department of Computer Science,
University of Manchester, Manchester M13 9PL, UK

horrocks@cs.man.ac.uk

http://www.cs.man.ac.uk/~horrocks

Abstract. FaCT is a Description Logic classifier which has been imple-
mented as a test-bed for a highly optimised tableaux satisfiability (sub-
sumption) testing algorithm. The correspondence between modal and
description logics also allows FaCT to be used as a theorem prover for
the propositional modal logics K, KT, K4 and S4. Empirical tests have
demonstrated the effectiveness of the optimised implementation and, in
particular, of the dependency directed backtracking optimisation.

1 Introduction

FaCT 1 is a Description Logic (DL) classifier which has been implemented as
a test-bed for a highly optimised tableaux satisfiability/subsumption testing al-
gorithm. The underlying logic, ALCHR+ , is a superset of the ALC DL, and
this means that FaCT can be used as a theorem prover for the propositional
modal logic K(m) (K with multiple modalities) by exploiting the well known
correspondence between the two logics [17]. Because ALCHR+ supports tran-
sitive relations, FaCT can also be used as a prover for K4(m), and it extends
the range of logics it can deal with to include KT(m) and S4(m) by embedding
formulae in K(m) and K4(m) respectively.

In order to make the FaCT system usable in realistic DL applications, a wide
range of optimisation techniques are used in the implementation of the ALCHR+

satisfiability testing algorithm. Although some of these techniques were designed
to take advantage of the structure of a DL knowledge base (KB), and the repet-
itive nature of the satisfiability problems encountered when classifying a KB,
some of the optimisations are also effective in improving FaCT’s performance
with respect to single satisfiability problems.

2 Description Logics and Modal Logics

Description Logics support the logical description of concepts and roles (rela-
tionships) and their combination, using a variety of operators, to form more
complex descriptions. The ALC DL [18] allows descriptions to be formed using

1 Fast Classification of Terminologies.

standard logical connectives as well as both universally and existentially quanti-
fied relational operators: if C is a concept and R is a role then an ALC concept
expression is of the form C | ⊤ | ⊥ | ¬C | C ⊓D | C ⊔D | ∃R.C | ∀R.C. A Tarski
style model theoretic semantics is used to interpret expressions [3].

Table 1 shows how propositional K(m) formulae correspond to ALC concept
expressions. Note that the modal operators � and ♦ correspond to ∃R.C and
∀R.C expressions, with different roles corresponding to distinct modalities or
accessibility relations. Standard modal K (K (1)) has only one modality, so
modal K formulae correspond to ALC concept expressions containing a single
role. The correspondence can be extended to K4(m) simply by making all roles
transitive.

Table 1. The correspondence between modal K(m) and ALC

K(m) ALC K(m) ALC

True ⊤ False ⊥

φ C ¬φ ¬C

φ ∧ ϕ C ⊓ D φ ∨ ϕ C ⊔ D

�iφ ∀Ri.C ♦iφ ∃Ri.C

FaCT also supports KT(m) and S4(m) by embedding formulae in K(m) and
K4(m): �iφ becomes φ ∧ �iφ and ♦iφ becomes φ ∨ ♦iφ.

3 The ALCHR+ Tableaux Algorithm

The tableau algorithm for ALCHR+ is extended from an algorithm for the
ALCR+ DL described in [16]. The full algorithm, along with a proof of its sound-
ness and correctness, is given in [14].

The main features of the algorithm are:

1. it uses a “single pass” tableau construction and search method as is usual in
DL tableaux algorithms where logics generally have the finite model prop-
erty;

2. transitive roles are dealt with simply by propagating �iφ terms along i

relations;
3. termination is ensured by “blocking”—checking for cycles in the tableau

construction [7, 1].

4 Optimisations

To improve the performance of the ALCHR+ satisfiability testing algorithm, a
range of optimisations have been employed. These include lexical normalisation
and encoding, semantic branching search and dependency directed backtracking.

4.1 Normalisation and Encoding

In DL terminologies, large and complex concepts are seldom described monolith-
ically, but are built up from a hierarchy of named concepts whose descriptions
are less complex. The tableaux algorithm can take advantage of this structure by
trying to find contradictions between concept names before substituting them
with their definitions and continuing with the tableau expansion: we will call this
strategy lazy unfolding. In fact it has been shown (in the Kris system) that a
significant improvement in performance can be obtained simply by not deleting
names when they are lazily unfolded [2]. This is because obvious contradictions
can often be detected earlier by comparing names rather than unfolded defini-
tions.

FaCT takes this optimisation to its logical conclusion by lexically normalising
and encoding all formulae and, recursively, their sub-formulae, so that:

1. All formulae are named; e.g., ♦i(φ ∧ ϕ) would be encoded as ♦iΦ, where
Φ = φ ∧ ϕ.

2. All formulae are in a standard form; e.g., all ♦ formulae are converted to �

formulae, so ♦iφ would be normalised to ¬�i¬φ. The encoded sub-formulae
in conjunctions and disjunctions are also sorted.

Adding normalisation (step 2) allows lexically equivalent formulae to be
recognised and identically encoded; it can also lead to the detection of formulae
which are trivially satisfiable or unsatisfiable.

4.2 Semantic Branching Search

Standard tableaux algorithms use an inherently inefficient search technique for
the non-deterministic expansion of disjunctive formulae—they choose an unex-
panded disjunction and check the different tableaux obtained by adding each
of the disjuncts [11]. As the alternative branches of the search are not disjoint,
there is nothing to prevent the recurrence of unsatisfiable disjuncts.

FaCT deals with this problem by using a semantic branching technique
adapted from the Davis-Putnam-Logemann-Loveland procedure (DPL) com-
monly used to solve propositional satisfiability (SAT) problems [8, 10]. Instead
of choosing an unexpanded disjunction, a single disjunct φ is chosen from the set
of unexpanded disjunctions, and the two possible tableaux obtained by adding
either φ or ¬φ are then searched.

During the DPL search, FaCT also performs boolean constraint propagation
(BCP) [9], a technique which maximises deterministic expansion, and thus prun-
ing of the search via contradiction detection, before performing non-deterministic
expansion. BCP works by deterministically expanding disjunctions which present
only one expansion possibility, and detecting a contradiction when there is a dis-
junction which no longer has any expansion possibilities. In effect, BCP applies
the inference rule ¬φ,φ∧ϕ

ϕ
to disjunctive formulae encountered in the tableau

expansion, or in other words, performs some localised propositional resolution.

4.3 Dependency Directed Backtracking

Inherent unsatisfiability concealed in sub-formulae can lead to large amounts of
unproductive backtracking search known as thrashing. For example, expanding
the formula (φ1 ∨ ϕ1) ∧ . . . ∧ (φn ∨ ϕn) ∧ ♦i(φ ∧ ϕ) ∧ �i¬φ could lead to the
fruitless exploration of 2n possible expansions of (φ1∨ϕ1)∧ . . .∧(φn∨ϕn) before
the inherent unsatisfiability of ♦i(φ ∧ ϕ) ∧ �i¬φ is discovered.

This problem is addressed by adapting a form of dependency directed back-
tracking called backjumping, which has been used in solving constraint satisfia-
bility problems [5]. Backjumping works by labeling formulae with a dependency
set indicating the branching choices on which they depend. When a contradic-
tion is discovered, the dependency sets of the contradictory formulae can be
used to identify the most recent branching point where exploring an alternative
branch might alleviate the cause of the contradiction. The algorithm can then
jump back over intervening branching points without exploring any alternative
branches. A similar technique was employed in the HARP theorem prover [15].

5 Performance

FaCT’s performance as a modal logic theorem prover has been tested using both
randomly generated formulae, a test method described in [12] and derived from
a widely used procedure for testing SAT decision procedures [10], and a corpus
of carefully designed benchmark formulae [13].

FaCT performs well in tests using randomly generated formulae [14], but
its advantages are more clearly demonstrated by the benchmark formulae, and
in particular by the provable formulae.2 This is because the hardness of these
formulae often derives from hidden unsatisfiability, a phenomenon which rarely
occurs in the randomly generated formulae where hardness is simply a feature
of the problem size. Figure 1, for example, shows CPU time plotted against
problem size for 2 classes of formulae from the K benchmark suite, k-dum-p

and k-grz-p. FaCT’s performance is compared with that of the Crack DL [6],
the KSAT K(m) theorem prover [11] and the Kris DL [4]. The performance of
FaCT with the backjumping optimisation disabled is also shown, indicated in
the graphs by FaCT∗. All the systems use compiled Lisp code (Allegro CL 4.3),
and the tests were performed on a Sun Ultra 1 with a 147 MHz CPU and 64MB
of RAM.

It can be seen from the graphs that FaCT not only outperforms the other sys-
tems, but that it exhibits a completely different qualitative performance: solution
times for all the other systems increase exponentially with increasing formula
size, whereas those for FaCT increase only very slowly. Extrapolating the results
for the other systems suggests that FaCT would be several orders of magnitude
faster for the largest problems in the test sets. The results for FaCT∗ demon-
strate that, for these formulae, backjumping accounts for FaCT’s performance
advantage.

2 Note that a formula is proved by showing that its negation is unsatisfiable.

0.01

0.1

1

10

100

0 5 10 15 20

C
P

U
 ti

m
e

(s
)

k-dum-p problem size

FaCT
FaCT*
Crack
KSAT

Kris

0.01

0.1

1

10

100

0 5 10 15 20

C
P

U
 ti

m
e

(s
)

k-grz-p problem size

FaCT
FaCT*
Crack
KSAT

Kris

Fig. 1. Solving K satisfiability problems

6 Conclusion

Although it was designed for subsumption testing in a DL classifier, FaCT’s op-
timised ALCHR+ satisfiability testing algorithm also performs well as a propo-
sitional modal logic theorem prover, and enables FaCT to outperform the other
systems with which it has been compared. Backjumping has been shown to be
particularly effective, changing both the quantitative and the qualitative perfor-
mance of the algorithm for some classes of hard unsatisfiable formulae.

References

1. F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on concepts.
Artificial Intelligence, 88(1–2):195–213, 1996.

2. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. In B. Nebel, C. Rich, and W. Swartout, editors,
Principals of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR’92), pages 270–281. Morgan-Kaufmann, 1992. Also
available as DFKI RR-93-03.

3. F. Baader, H.-J. Heinsohn, B. Hollunder, J. Muller, B. Nebel, W. Nutt, and H.-J.
Profitlich. Terminological knowledge representation: A proposal for a terminologi-
cal logic. Technical Memo TM-90-04, Deutsches Forschungszentrum für Künstliche
Intelligenz GmbH (DFKI), 1991.

4. F. Baader and B. Hollunder. Kris: Knowledge representation and inference system.
SIGART Bulletin, 2(3):8–14, 1991.

5. A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Exper-
imental and Theoretical Results. PhD thesis, University of Oregon, 1995.

6. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: a preliminary report. In Gerard Ellis, Robert A. Levinson,
Andrew Fall, and Veronica Dahl, editors, Knowledge Retrieval, Use and Storage
for Efficiency: Proceedings of the First International KRUSE Symposium, pages
28–39, 1995.

7. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminologi-
cal knowledge representation systems. Journal of Artificial Intelligence Research,
1:109–138, 1993.

8. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

9. J. W. Freeman. Improvements to propositional satisfiability search algorithms. PhD
thesis, Department of Computer and Information Science, University of Pennsyl-
vania, Philadelphia, PA, USA, 1995.

10. J. W. Freeman. Hard random 3-SAT problems and the Davis-Putnam procedure.
Artificial Intelligence, 81:183–198, 1996.

11. F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics
from propositional decision procedures—the case study of modal K. In Michael
McRobbie and John Slaney, editors, Proceedings of the Thirteenth International
Conference on Automated Deduction (CADE-13), number 1104 in Lecture Notes
in Artificial Intelligence, pages 583–597. Springer, 1996.

12. F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for ALC. In
L. C. Aiello, J. Doyle, and S. Shapiro, editors, Principals of Knowledge Represen-
tation and Reasoning: Proceedings of the Fifth International Conference (KR’96),
pages 304–314. Morgan Kaufmann, November 1996.

13. A. Heuerding and S. Schwendimann. A benchmark method for the propositional
modal logics k, kt, s4. Technical report IAM-96-015, University of Bern, Switzer-
land, October 1996.

14. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

15. F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. Journal of
Automated Reasoning, 4:69–100, 1988.

16. U. Sattler. A concept language extended with different kinds of transitive roles.
In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche
Intelligenz, number 1137 in Lecture Notes in Artificial Intelligence, pages 333–345.
Springer Verlag, 1996.

17. K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI-91), pages 466–471, 1991.

18. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48:1–26, 1991.

