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Abstract

Query containment under constraints is the problem of deréng whether
the result of one query is contained in the result of anotheryfor every database
satisfying a given set of constraints. This problem is ofipatar importance in
information integration and warehousing where, in additio the constraints de-
rived from the source schemas and the global schema, ichers constraints can
be used to specify relationships between objects in diffesehemas. A theoretical
framework for tackling this problem using ti2LR logic has been established,
and in this paper we show how the framework can be extendegnactical deci-
sion procedure. The proposed technique is to exfed® with an Abox (a set of
assertions about named individuals and tuples), and tefolan query subsump-
tion problems intdD LR Abox satisfiability problems. We then show how such
problems can be decided, via a reification transformatisimgua highly optimised
reasoner for th&HZ Q description logic.

1 Introduction

Query containment under constraints is the problem of deténg whether the result
of one query is contained in the result of another query fergdatabase satisfying
a given set of constraints (derived, for example, from a sw@)e This problem is of
particular importance in information integration (seé [@jd data warehousing where,
in addition to the constraints derived from the source saseand the global schema,
inter-schema constraints can be used to specify relatiosibletween objects in differ-
ent schemas (see [6]).

This problem has been studied by Calvanese et al. [4]; they éstablished a theo-
retical framework using the logie£LR,* presented several (un)decidability results, and
described a method for solving the decidable cases usinghaedgding in the propo-
sitional dynamic logic CPDJ.[12, 11]. However, this method does not lead directly
to a practical decision procedure as there is no (known)emghtation of a CPDJ
reasoner. Moreover, even if such an implementation wergig, esimilar embedding
techniques [10] have resulted in severe tractability protsl when used, for example,
to embed the&sHZ F description logic inSHF by eliminating inverse roles [13].

1Set semantics is assumed in this framework.



In this paper we present a practical decision procedurenfocase where neither
the queries nor the constraints contain regular expressidris represents a restriction
with respect to the framework described in Calvanese etwvalkere it was shown that
the problem is still decidable if regular expressions al@nadd in the schema and the
(possibly) containing query, but this seems to be acceptaben modelling classi-
cal relational information systems, where regular expoessare seldom used [7, 6].
Moreover, the use dDLR in both schema and queries still allows for relatively ex-
pressive queries, and by staying within a strictly first oghdting we are able to use a
decision procedure that has demonstrated good empirézzhtrility.

The procedure is based on the method described by Calvahabehait extends
DLR by defining anABox a set of axioms that assert facts about namedd/iduals
and tuples of named individuals (see [5]). This leads to ammore natural encoding
of queries (there is a direct correspondence between Vesiand individuals), and
allows the problem to be reduced to that of determining thisfsbility of a DLR
knowledge baséB), i.e., a combined schema and ABox. This problem caniin tu
be reduced to a KB satisfiability problem in t1§¢{ZQ description logic, withn-ary
relations reduced to binary ones by reification. In [16]naiksir approach is presented.
However, the underlying description logid CCAR) is less expressive thdnL R and
SHIQ (for example, it is not able to capture Entity-Relationsghemas).

We have good reasons to believe that this approach repses@nactical solution.
Inthe FaCT system [13] we already have an (optimised) implaation of the decision
procedure foSHZQ schema satisfiability described in [15], and using FaCT weha
been able to reason very efficiently with a realistic scheeradd from the integra-
tion of several Entity-Relationship schemas usIngR inter-schema constraintsln
Section 4 we show how this algorithm can be straightforwaedtended to deal with
ABox axioms. As the number of individuals generated by theoeing of realistic
problems will be relatively small, this extension should compromise the empirical
tractability.

2 Preliminaries

In this section we will (briefly) define the key components af &ramework, namely
the logicDLR, (conjunctive) queries, and the logfHZ Q.

2.1 The LogicDLR

We will begin withDLR as it is used in the definition of both schemas and queries.
DLR is a description logic (DL) extended with the ability to dele relations of any
arity.

Definition 2.1.1 Given a set of atomic concept nané§ and a set of atomic relation
names\R, everyC € NC is a concept and evely € NR is a relation, with everRR
having an associated arity. @f, D are conceptsR, S are relations of arity,, i is an

2The schemas and constraints were taken from a case studytakeieas part of the Esprit DWQ
project [7, 6].



integerl < i < n, andk is a non-negative integer, then

T,-C,CnND,3$iR, (< k[$i]R) areDLR conceptsand
Tp,"R,RMOS, ($i/n:C) areDLR relationswith arity n.

Relation expressions must be well typed in the sense thgtrelations with the same
arity can be conjoined, and in constructs |##&:]R the value ofi must be less than or
equal to the arity oR.

The semantics dDLR is given in terms ofnterpretationsZ = (AZ,-Z), where
A” is the domain (a non-empty set), arfdis an interpretation function that maps
every concept to a subsetAf and every:-ary relation to a subset ¢\ )" such that
the following equations are satisfied’('denotes set cardinality).

T = AT (cnbD)* =ctnp?
-0% = AT\ C* (ASiR) = {d € AT |3(dy,... ,d,) € RT.d; = d}
(< KSR = {d e AT | £{(d1,... ,dn) € R*.d; =d} <k}
TnZ g (AI)" RI g TnI
=T,2\R? (RNS)? =RINSt
($i/n:C)Y ={(di,... ,dy) € T,)F |di € CF}

Note thatT,, does not need to be interpreted as the set of all tuples gfartut
only as a subset of them, and that the negation of a rel&iwith arity n is relative to
Th.

In our framework, a schema consists of a set of logical incluaxioms expressed
in DLR. These axioms could be derived from the translation R of schemas
expressed in some other data modelling formalism (such &/fRelationship mod-
elling [3, 8]), or could directly stem from the use BXLR to express, for example,
inter-schema constraints to be used in data warehousig)[§$).

Definition 2.1.2 A DLR schemasS is a set ofaxiomsof the formC C D andRLC S,
whereC, D are DLR concepts andR, S are DLR relations of the same arity; an
interpretationZ satisfiesC' C D (writtenZ = C C D) iff C? C DZ?, and it satisfies
R C S(writtenZ = RC S) iff R C S’. An interpretatior? satisfiesa schemas iff

7 satisfies every axiom if.

Crucially, we extendDLR to assert properties ohdividuals names represent-
ing single elements of the domain. ABoxis a set of axioms asserting facts about
individuals and tuples of individuals.

Definition 2.1.3 Given a set of individualNll, aDLR ABoxA is a set obixiomsof the
form w:C andw:R, whereC is a conceptR is a relation of arityn, w is an individual
and is ann-tuple(ws, . .. ,w,) such thatw,, ... ,w, are individuals. We will often
write w; to refer to theith element of am-tuplew, wherel < i < n.

Additionally, the interpretation functiod maps every individual to an element of
AZ. An interpretatior? satisfiesan axiomw:C (writtenZ = w:C) iff w? € C%, and
it satisfiesan axiomw:R (writtenZ |= :R) iff w? € RZ. An interpretatior? satisfies
an ABox A iff 7 satisfies every axiom inl.

A knowledge basgKB) K is a pair(S, .A), whereS is a schema and is an ABox.
An interpretatior? satisfiesa KB K iff it satisfies bothS and.A.



If an interpretatior? satisfies a concept, schema, or AB¥xthen we say thaf is
amodelof X, call X satisfiableand writeZ = X.

Note that it is not assumed that individuals with differeatrres are mapped to
different elements in the domain (the so-called unique nassamption).

Definition 2.1.4 If K isaKB,Z is a model ofC, andA is an ABox, ther?' is called an
extensiorof Z to A iff 7' satisfies4, AZ = AZ', and all concepts, roles and individuals
occuring inkC are interpreted identically by andZ'.

Given two ABoxesA4, A" and a schem&, A is includedin A’ w.r.t. S (written
(S, Ay A") iff every modelZ of (S, A) can be extended td'.

2.2 Queries

In this extended abstract we will consider only conjunctjueries (see [1, chap. 4]).
A conjunctive query is an expression

q(Z) < termy(Z,7,E) A ... Aterm,(Z,, )

whereZ, i, and¢c are tuples ofdistinguishedvariables, variables, and constants, re-
spectively (distinguished variables appear in the ansteedjnary” variables are used
only in the query expression, and constants are fixed val&esh termterm;(Z, ¥, )
is called an atom iy and is in one of the form€'(w) or R(w), wherew (resp.w) is
a variable or constant (resp. tuple of variables and cotstamz, i/, ¢, C is aDLR
concept and is aDLR relation?

For example, a query designed to return the bus number oftsheuses travelling
in both directions between two stops is:

BUS(nr) < busroute nr, stop, , stop,) A busroutgnr, stop,, stop,) A city_bugnr)

wherenr is a distinguished variable (it appears in the answeésh, andstop, are non-
distinguished variables, citius is aDLR concept and busoute is aDLR relation.

In this framework, thevaluationof a queryg with n distinguished variables w.r.t.
aDLR interpretatiof Z (written ¢(Z)) is the set ofv-tuplesd € (AZ)" such that

7 = Jyj.term, (d; TON...A termn(d: 7, ©).

A query g, () is containedin a queryg, () w.r.t. a schema (writtenS = ¢ C
q2), iff, for every possible modef of S, ¢1(Z) C q2(Z).
For example, the schema containing the axioms

(busrouter ($1/3 : city_bus)) C city_busroute and
city_busrouteCC (busrouter ($1/3 : city_bug),

states that the relation cifyusroute contains exactly the hueute information that
concerns city buses. It is easy to see that the following CBUYS query

CITY_BUS(nr) « city_busroutgnr, stop,, stop,) A city_busroutenr, stop,, stop;)

3The fact that these concepts and relations can also app¢ae sthema is one of the distinguishing
features of this approach.
4Here perceived as standard FO interpretation.



is equivalent to the previous BUS query w.r.t. the given stheln an information inte-
gration scenario, for example, this could be exploited igrraulating the BUS query
as a CITY.BUS query ranging over a smaller database without any losgaimation.

2.3 The LogicSHIQ

SHIQ is a standard DL, in the sense that it deals with concepts amig)(binary
relations (calledoles), but it is unusually expressive in that it supports reasgniith
inverse roles, qualifying number restrictions on roleansitive roles, and role inclusion
axioms.

Definition 2.3.1 Given a set of atomic concept nami€ and a set of atomic role
namesNR with transitive role nameNR,. C NR, everyC' € NC is a concept, every
R € NRisarole, and everR € NR, is a transitive role. IR is a role, therR~ is also
arole (and ifR € NRy thenR~ is also a transitive role). I is a (possibly inverse)
role,C, D are concepts, anidis a non-negative integer, then

T,-C,CnND,35.C, <kS.C are alsaSHZQ concepts.

The semantics a§HZ Q is given in terms ofnterpretationsZ = (A%, 1), whereAZ

is the domain (a non-empty set), arfdis an interpretation function that maps every
concept to a subset dfZ and every role to a subset @h%)? such that the following
equations are satisfied.

T = AT (35.0)f = {d | 3d'.(d,d") € ST andd' € CT}
0T = AT\ CT  (<kS.C)T ={d | t{d'.(d,d') € ST andd' € CT} < k}
(cnD)" =cZnpt RT = (R%)* forall R € NR,.

(R ={(d,d) | (d,d') € R*}

SHIQ schemas, ABoxes, and KBs are defined similarly to thoseX6iR: if
C, D are conceptsi, S are roles, ana, w are individuals, then a schensaconsists
of axioms of the formrC’ C D andR C S, and an ABoxA consists of axioms of the
form w:C and(v,w):R. Again, a KBK is a pair(S, A), whereS is a schema andl
is an ABox.

The definitions of interpretations, satisfiability, and ralsdalso parallel those for
DLR, and there is again no unique name assumption.

Note that, in order to maintain decidability, the roles tbah appear in number
restrictions are restricted [15]: if a rofe occurs in a number restrictiogkS.C, then
neitherS nor any of its sub roles may be transitive (i.e., if the scheorgains a--path
from S’ to S, thenS’ is not transitive).

3 Determining Query Containment

In this section we will describe how the problem of decidingether one query is
contained in another one w.r.t. a schema can be reduced podhkem of deciding KB
satisfiability in theSHZ Q description logic. There are three steps to this reduction.



Firstly, the queries are transformed iffoCR ABoxes . 4; and A, such thatS =
@1 C g2 iff (S, A;)|rA2 (see Definition 2.1.4). Secondly, the ABox inclusion prable
is transformed into one or more KB satisfiability probleménafly, we show how a
DLR KB can be transformed into an equisatisfiaB#Z Q KB.

3.1 Transforming Query Containment into ABox Inclusion

We will first show how a query can be transformed inteanonical DLR ABox.
Such an ABox represents a generic pattern that must be naalbghall tuples in the
evaluation of the query.

Definition 3.1.1 Let ¢ be a conjunctive query. Thmnonical ABoxor ¢ is defined by
Ay = {W:R | R(w) is an atom iy} U {w:C | C(w) is an atom ing}.

We introduce a new atomic concep, for every individualw in A and define the
completeccanonical ABox forg by

ﬁq = A, U{w:P, | woccursind,} U {w;:=P,, | w;,w; are constants ipandi # j}.

The axiomaw: P, in ﬁq introducerepresentative concepfsr each individuaty in
Aqy. They are used (in the axioms:—P,;) to ensure that individuals corresponding
to different constants in cannot have the same interpretatfoand will also be useful
in the transformation to KB satisfiability.

By abuse of notation we will say that an interpretatigrand an assignmeptof
distinguished variables, non-distinguished variables$ enstants to elements in the
domain ofZ such thatZ = p(q), define a model ford,, with the interpretation of the
individuals corresponding with and the interpretatiof?? = {w?}.

We can use this definition to transform the query containmesttlem into a (very
similar) problem involvingDLR ABoxes. We can assume that the names of the non-
distinguished variables i, differ from those ing; (arbitrary names can be chosen
without affecting the evaluation of the query), and thatrthees of distinguished vari-
ables and constants appear in both queries (if a name ismgigsone of the queries,
it can be simply added using a term likgv)).

The following Theorem shows that a canonical ABox reallytaags the structure
of a query, allowing the query containment problem to beatestas an ABox inclusion
problem.

Theorem 3.1.2Given a schema and two queriesy; and g2, S E ¢1 C ¢ iff
<Sv AthzAlh'

PROOFE For the if direction, assum& [~ ¢; C ¢2. Then there exists a modélof S
and atupled,, ... ,d,) € (AT)" suchthatd,,... ,d,) € ¢:(Z) and(d,, ... ,d,) ¢
g2(Z). T and the assignment of variables leadindde, . . . , d,,) define a model for
qu. If -~ could be extended to satisf§,,, then the extension would correspond with
an assignment of the non-distinguished variableg isuch thatd, . .. ,d,) € ¢2(Z),
thus contradicting the assumption.

5A standard assumption in the database setting.



For the only if direction, assume there is a moflef bothS andﬁq1 that cannot
be extended to a model of,,. Hence there is a tuplély,... ,d,) € ¢.(Z) and a
corresponding assignment of variables that defindf there is an assignment of the
non-distinguished variables in such tha{dy, ... ,d,) € ¢2(Z), then this assignment
would define the extension @fsuch that4,, is also satisfied. "

The representative concepis in a completed canonical ABax have the useful
property that, without loss of generality, we can oftenniesbur attention to interpre-
tations in which, for every occurring inA, PZ = {w’}.

Lemma 3.1.3 LetS be a schemad a canonical ABox and! the completed version
of A. If Z is an interpretation such thaf = (S, A), then there exists an interpretation
7' where AT = AZ', PZ' = {w’} for all individualsw occuring in.4 and their
corresponding representative concepts, Z' is the same a€ in every other respect,
andZ’ = (S, A).

PrROOF From the semantics it is clear that the interpretation odrceptC depends
only on the interpretations of the atomic concepts and riblasappear syntactically
in C, and from Definition 3.1.1P,,, appears only in axioms of the form;:P,,, and
w;im Py, in ﬁ\A. Thereforel’ satisfies all the axiom@ C D andR C Sin S and all
the axiomaw:C' in A, becaus€ |= (S, A) and all theC, D, R, Sandw are identically
interpreted byZ andZ’. ~

Moreover,Z’ also satisfies both kinds of axiom i \ A. It obviously satisfies the
axioms of the formw:P,, becausev” = w” andPZ’ = {w”}, sow” € PI'. Italso
satisfies the axioms of the form;:—= P, ., wherew; # w;, because fromlujZ € Plf]_

va z va va ' _ ya ' Al
andw; ¢ P, we havew; # wyj, andP, = {wj}, sow; ¢ P, . "

3.2 Transforming ABox Inclusion into ABox Satisfiability

Next, we will show how to transform the ABox inclusion profsliénto one or more KB
satisfiability problems. In order to do this, there are twdmtfficulties that must be
overcome. The first is that, in order to transform inclusiuto isatisfiability, we would
like to be able to “negate” axioms. This is easy for axiomsefformw:C, because an
interpretation satisfies: —C' iff it does not satisfyw:C'. However, we cannot deal with
axioms of the formu:R in this way, becaus®LR only has a weak form of negation
for relations relative ta,,. Our solution is to transform all axioms i#,, into the form
w:C.

The second difficulty is thatd,, may contain individuals corresponding to non-
distinguished variables ig; (given the symmetry between queries and ABoxes, we
will refer to them from now on as non-distinguished indivédis). These individuals
introduce an extra level of quantification that we cannot et using our standard
reasoning procedure§S, A,, YA, iff for all modelsZ of (S, Ay, ) there existsome
extension of to A,,. We deal with this problem by eliminating the non-distirged
individuals fromA,, .

We will begin by exploiting some general properties of ABsxhat allow us to
compact4,, so that it contains only one axioR for each tupled, and one axiom



w:C for each individualy that is not an element in any tuple. Itis obvious from the se-
mantics that we can combine all ABox axioms relating to threesandividual or tuple:

T = {w:C,w:D} (resp{uw:R, w:S}) iff Z = {w:(C D)} (resp{w:(RMS)}). The
following lemma shows that we can also absesbC' into w:R whenw; is an element

of .

Lemma 3.2.1 Let 4 be aDLR ABox with{w;:C,w:R} C A, wherew; is theith
elementing. ThenZ E Aiff Z = {w:(RMN$i: C)} U A\ {w;:C,W:R}.

PROOF. From the semantics, iiZ € (R $i : C)Z, thenw? € RT andw? € C7,
and ifw? € C% andw? € RZ, thenw? € (RM$i: C)Z. .

The ABox resulting from exhaustive application of Lemma B@an be represented
as a graph, with a node for each tuple, a node for each indiljidnd edges connecting
tuples with the individuals that compose them. The graphasihsist of one or more
connected components, where each component is eitherla sidiyidual (represent-
ing an axiomw:C, wherew is not an element in any tuple) or a set of tuples linked
by common elements (representing axioms of the fatiR). As they do not have any
individuals in common, we can deal independently with tredsion problem for each
connected set of axiomsS, Ay A’ iff (S, A)G for every connected set of axioms
GCA.

Returning to our original problem, we will now show how we cailapsea con-
nected component o4,

g = {11712R1, e ,u'in:Rn}

into a single axiom of the formy:C, wherew (the “root” individual) is an element of
one of the tuplesd; ... @), occurring ing, C is a concept that describgsfrom the
point of view ofw, and(S, Ay, )G iff (S, Aq, )R{w:C}. The collapsing procedure
works by replacing each axiom;:R; with an axiom of the formw:C (wherew is an
element ofw;), which can then be absorbed into another axionR; (wherew is an
element of;) using Lemma 3.2.1. A recursive traversal of the graphieptesenta-
tion of G is used to choose the order in which to apply the replacena@tabsorptions
so thatg is collapsed into a single axiom (a similar technique is usédl] to transform
queries into concepts). During the collapsing procedwre, concepts),,, may be in-
troduced to represent non-distinguished individugl$hat occur inG. These concepts
serve only as “place-holders”, and will be replaced wida completely collapsed.

A traversal starts at an (arbitrary) individual nogdethe “root”) and proceeds as
follows.

¢ At an individual noder, the node is first marked as visited. Then, while there
remains an unmarked tuple node connected,tone of thesew, is selected,
visited, and the axion¥:R is replaced with the axiom

ISR [ (8i/n: Cu,)),
1<j<n.j#i

wherew = (w, ... ,wy), ¢ iS theith element of, w; is thejth element otw,
andC,;, is either the representative concéfy, , if w; is an individual occurring



in ﬁql, or a concepf).,; otherwise. Finally, any axiomaCy, ... ,z:C,, result-
ing from visiting the unmarked tuples connectedrtare merged into a single
axiomz:(Cy M ...MCy).

e At atuple noded, the node is first marked as visited. Then, while there remain
an unmarked individual node connecteditoone of theseg, is selected, visited,
and any axiomx:C' that results from the visit is merged into the axiaiR using
Lemma 3.2.1.

After the traversalg has been reduced to a single axianC', but it may contain
conceptsy),,, that were introduced during the collapsing procedure aesemtatives
for non-distinguished individuals. As these concepts dbawaur in (S,ﬁm), they
must be eliminated if the inclusion relationship is to besgrged. This is easy for
conceptsy,,, that occur only once i€, and wherew; is not the root individual (i.e.,
w # w;): asw; is “referred to” only once in the collapsed axiom, and canreelf/
interpreted when a mod#lof (S, A, ) is extended t@/, @,,, can simply be replaced
with T (this will be shown more formally in Lemma 3.2.2).

This solution cannot be adopted for a conc@pt that occurs more than once in
C, or that occurs at least once (h whenw = w;, becausev; must have the same
interpretation everywhere it is “referred to” in the cokkaal axiom. However, in this
case we can deal witfy,,, by exploiting the fact that the individual; must occur in
a cycle in the graph representigg An individualw is in a cycle in the graph if there
is a path leading from the node representingack to itself in which the same edge is
never traversed (in either direction) more than once. Asriaeking of nodes during
the traversal ensures that the same edge is never traversedtiman oncew; must
have been in such a cycle.

Given the correspondence between the graph and the axigmé is obvious that
G can only be satisfied by an interpretatibin whichw? is also in a relational cycle
(the cycle is explicitly asserted by the axiomsih Moreover, given tha{S, ﬁ)hg,
and that extending an interpretation(d¥, ﬁ) to G cannot extend the interpretation of
any relation, then such a cycle must already exist in evasrnetation of(S,,éT).
Finally, the properties 0DLR mean that an interpretatiah of (S, ﬁ) can only be
guaranteed to contain a relational cycle if the cycle isieitpl asserted in axioms of
the formw:R in A, so that each element in the cycle must be the interpretafione
of the individuals forming the tuples in these axioms. We tarefore conclude that
the individuahu; must have the same interpretation as some indivigyalccurring in
A, and thaiQ).,; can be replaced with the representative conégpt(and that ifw; is
the root individual, the axiorw; : C' can be replaced by; : C).

Of course we do not know which individual occurringihcorresponds to a given
Quw;, but we can simply try all possible replacements (of whicéréhcan only be
finitely many), so tha{s, ,Aqu Y@ iff, for one of these replacements, ,Aqu Yre{w:C}.
An extra level of non-determinism is thus added to the prapedbut this should be
manageable as the numbers of sl will typically be very smalf These replace-

6This represents a useful refinement over the procedureibledan [4], where alk; that occur in cycles
are non-deterministically replaced with one of thg regardless of whether or not they are used to enforce
a co-reference.



ments can obviously be performed either before or afterdfiamsing procedure with-
out affecting the the result. In practice, it will be more@ént to delay the replacement
as long as possible, but in the following Lemma (Lemma 3.2@)will assume that
the replacements have been performed before the collapsicgdure.

The correctness of the collapsing procedure does not depethé traversal (whose
purpose is simply to choose a suitable ordering), but onlthercorrectness of the in-
dividual transformations. We have already shown that thepacting and absorbing
transformations preserve (un)satisfiability, and so obslip preserve the implication
relationship; it only remains to show that the implicatietationship is also preserved
by each replacement of an axiom of the fafR with one of the formw:C.

Lemma 3.2.2LetS be a schemaﬁ a completed canonical ABox andl, an ABox
wherew:R € A, @ = (wy,... ,w,), w; is theith element off, and every other
element ofi is either an individual that occurs il or an individual that occurs
nowhere else in eithed or A;. LetC be the concept

JFI(RN |_| ($5/n ij)):

1<G<n i

whereC,, is the representative concept,, whenw; is individual that occurs ind,
andT otherwise. I{4; is the ABox that results from the replacementidR € A; with
the axiomw;:C, then(S, A) A, iff (S, A)rAs.
PROOF It is only necessary to show thé&s, A)r{uw:R} iff (S, A){w;:C}: if Ay
contains other axioms, then any interpretation that sasisfiese axioms will still sat-
isfy them after the replacement. For the only if directidnisieasy to show that if
T |= (S, A), andZ’ is an extension of that satisfiesi:R, thenZ’ also satisfies;:C.
Obviously,w?" is theith element ofs?’, andw? € RZ'. For each component
(8j/n : Cy,) in C there are two possible cases

1. Whenw; is an individual occurring ind, Cu; is P,;, the representative concept
for w;. In this casew;:P,,; is an axiomin4, sow?" € P andw?’ € ($;/n :
Py,

2. Otherwise(', is T, and as §j/n : T) is equivalent toT ,,, obviouslyw?' ¢
($5/n: T)T.

Therefore, we also havé” € ;<. iz (8i/n: Cu,)*' and saw? € CT'.

The converse direction is more complicated. Lebe an interpretation such that
T = (S, Ag, ), andZ cannot be extended to satisfyR. From Lemma 3.1.3 we can
assume, without loss of generality, tﬂafl_ = {w?} for every representative concept
P,,, occurring inA. Assume thaf can be extended to an interpretatifrthat satisfies
w;:C. Then there must be sonfé,, ... ,d,) € RY" such that; = wZ', and for each
d; with j # i, d; € ($8j/n : C’wj)z'. Again, for each componeii$;/n : Cy,) in C
there are two possible cases.

1. Whenw; is an individual occurring ind, Cu; is P,;, the representative concept

for w;. In this caseP?, = {w?'}, sod; = w?".
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2. Otherwise(,; is T. In this casew; occurs nowhere else in either or Az,
so whenZ was extended t@’, w; could have been interpreted as any element
in AZ without affecting the satisfiability of any other axiom. Wenctherefore
assume, without loss of generality, that in this particinmrpretationujz' =d;

(obviously,d; € TZ).

We therefore haver” = (dy,...,d,) and(dy,... ,d,) € RY, soZ' |= @R, in
contradiction of the assumption. n

Having collapsed;, and (non-deterministically) replaced t&e,,, we finally have
a problem that we can decide using KB satisfiability.

Lemma 3.2.31f Sis a schemad is a completed canonical ABox aidis a concept
composed only of relations and concepts occurringior A, then(S, A)r{w:C}
iff w is an individual in4 and (S, (A U {w:~C})) is not satisfiable, ow is not an
individual in 4 and ((S U {T C =C}), A) is not satisfiable.

PROOF. In the case where is an individual inA, there are no longer any non-
distinguished individuals im:C, so(S, A)r{w:C} iff every model of(S, A) is also
a model ofw:C. This is obviously true iff there are no models(a¥, A){w:C} that
are also models ab:~C, i.e., iff (S, (A U {w:=C})) is not satisfiable.

Inthe case where is notan individual in4, (S, A)r{w:C'} iff for every modelZ
of (S, ﬁ), 7 can be extended thw:C'}. Asw is the only remaining non-distinguished
individual in {w:C}, T can be extended thw:C} iff CT # () (equivalently(-~C)% #
AT), ie., iff (SU{T C ~C}), A) is not satisfiable. .

To illustrate the inclusion to satisfiability transfornaatj we will refer to the ex-
ample given in Section 2.2. The containment of BUS in CIBYS w.r.t. the schema
is demonstrated by the inclusid®, A; ) r.A», whereS, A; and A, are the schema
and two canonical ABoxes (completed in the caselgf corresponding to the given
queries:

s - { (busrouter ($1/3 : city_bug) C city_busroute }
o city_busrouteC (busrouten ($1/3 : city_bus)
A = { (n,y1,y2):busroute (n,y,,y,):busroute n:city_bus n:P,,y,:Py,, y2:P,, }
Ay = { (n, z1, z2):City_busroute <n,z2,z1):city_busroute}

The two axioms in4, are connected, and can be collapsed into a single axiom using
the described procedure.df is chosen as the root, and the traversal vigits , z»),

z2, @and(n, z4, 1), in that order, then the resulting axiom (describiigfrom the point

of view of z1) is z1:C, whereC is the concept

3[$2](city_busrouter ($3 : (P,, M 3[$2](city_busrouter1 $1: P, M$3: P,,))) M $1: P,),

andP.,, P., are “place-holders” fog; , z,.” As z, is referred to only once?., can be
replaced withT. However, ag; is referred to twice (a#’,, and as the root), it must be

"The reader will recall that, in practice, we use such “plaokgers” during the collapsing procedure and
then make appropriate substitutions.

11



replaced (non-deterministically) with one of the individsiin Ay, and(S,fTﬁF%Az
iff (8,ﬁ1>|%{z1:0} for one of these replacements. Substitutihg with T, z; with
y1 and P, with P,, results in an axiony,:C", and(S, A, ) {y1:C"} holds because
(S, (A; U {y1:~C"})) is not satisfiable.

Summing up, we thus have:

Theorem 3.2.4For a DLR KB K = (S, A) and aDLR ABox A', the problem
whetherA is included inA’ w.r.t. S can be reduced to (possibly sever@lLR ABox
satisfiability problems.

3.3 Dealing with disjunctive queries

In this section we will show how the technique can be extendedder to decide the
containment of disjunctive queries.

Definition 3.3.1 A disjunctive query; is an expression

-

q(Z) < termy 1 (Z,91,6) A ... ANtermy g, (Z, 71, €)
Vv

\%
termu 1 (L, §m, €) A ... Ntermp, i, (%, ¥m, ©),
where all the terms are defined exactly as in the conjunciivgigs of Section 2.2.
The query evaluation is defined as the union of all the eviaoatfor any disjunct.

Given a queryy with n distinguished variables, its evaluation w.r.t. the intetation
T = (A%, 1) is the set ofi-tuples:

de (AT | 3 .termy (d, i1, &) A ... Atermy g, (d, i1, )

\
q(1) = :
\%
A termpm 1(d, §m, €) A ... Atermp, .. (d, §m, €)
Without loss of generality we can assume that all the vagiabmes iy, . . . , ¥,

are distinct, and that distinguished variables and cohstames appear in every dis-
junct (see Section 3.1). The query containment problemfineldas in the conjunctive
case.

The basic idea is to consider each conjunctive subexpreasia canonical ABox,
and to extend the inclusion relation of Section 2.1 to take&ecount the “disjunction”
of ABoxes. We will first extend the definition LR ABoxes todisjunctiveDLR
ABoxes (in order to avoid ambiguity, we will sometimes referthe kind of ABox
defined in Section 2.1 as a conjunctive ABox).

Definition 3.3.2 A disjunctiveDLR ABox is a finite set of conjunctive ABoxgs4 , ... , A }.
The definition of interpretation and satisfiability for eazdnjunctive ABoxA4; is the
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same as that given in Section 2.1. An interpretaficsatisfies a disjunctive ABox
(writtenZ = A) iff Z satisfies at least one of the conjunctive ABoxeslin

On top of the definition of a disjunctive ABoX, is built the fat of a disjunctive KB
and its satisfiability. All the definitions given in SectiorlZan be naturally extended
to the disjunctive case; in particular the fundamentalarbdf the inclusion relation
between ABoxes.

To simplify the notation, we define the operatox -) which adds a set of axioms to
each element of a disjunctive KB. The meaning of the opersitgiven by the following
equations:

(S, 1AL . A} x {w:CY} (S, 1A U {w:C}, ..., Ay U {w:C}})
(S, {AL, ..., An}) x {C C D} (SU{CC D}, {A1,..., An})

with the natural extension to finite sets of axioms:
Kx{ay,...,an}=(..(Kx{a1}) x...) x {a,}.

Now we will proceed as in Sections 3.1 and 3.2 by first showing to reduce the
query containment problem to ABox inclusion, and then to ABatisfiability.

First, we will extend the definition of canonical ABox to deaith disjunctive
queries.

Definition 3.3.3 Let ¢ be a disjunctive query. Theanonical disjunctive ABofor ¢ is
defined by

Aq - {Al,... ,Am}
where eacld; describes a single conjunctin the query:

A; = {W:R | R(W) = term,; ; (&, ¥;, €) is an atom ing for somej} U
{w:C'| C(w) = term; ; (&, €) is an atom ing for someyj }

The completed canonical disjunctive ABox pis defined in a similar way to the non-
disjunctive case (see Definition 3.1.1), the differencenppehat the new axioms are
added to each of the conjunctive ABoxes making up the disjoinc Given the dis-
junctive ABox A, = {A1,..., Ay}, its completed version (written a4,) is defined
as:

ﬁq = Ay x {w:P, | wocecursind,} U
{wi:= Py, | wi, w; are constants ip andi # j})

As in the non-disjunctive case, there is a natural corredpoce between database
instances and interpretations of disjunctive KBs. Eacmela of a query evaluation
corresponds to an interpretation satisfying the canoriBalx and vice vers4.

Proposition 3.3.4 Given a databas# = (A7, -7) and a disjunctive query(Z), then
the tuplecfis in the evaluatiorg(7) iff there is an extensio’ of Z satisfying.A, such
thatz,Z = d; for each; in Z.

8We will consider a database as a standBi@R interpretation in which an individuals corresponding to
a constant is taken to be interpreted as the actual constant.

13



PROOF. For the “only if” direction, letd be inq(Z), then it satisfies at least one of the
disjuncts ing:

3g;.termi (d, 7, &) A ... A term i, (d, §:, @)

for 1 < i < m, which means that there is an assignment for the variablg’s timat
makes the expression true Af, € A, is the corresponding conjunctive ABox, then an
extensiorZ’ of Z can be defined by adding t& a mapping from each individual id;
to the corresponding elementdfltis easy to see that satisfies4; and thus satisfies
A,

For the “if” direction, letZ’ be an extension ¢f satisfyingﬁ such that;Z' = d;
for eachx; in #. Then, from the definition of satisfiability of a disjunctivdox, there
is somed; € A such thatZ’ = A;. Note thatZ' must interpret all the individual
appearing in4;; it therefore defines an assignment for the varialjle the corre-
sponding disjunct of. It is easy to see that this assignment satisfies the formula

Hyl term, 1( ’ z 5) Ao Ntermy g, (d_: gia 6)

Given the Proposition 3.3.4 above, we can extend Theorer & the disjunctive
case.

Theorem 3.3.5Given a schem& and two disjunctive querieg andg, S = ¢1 C g2
iff (S, Agy )R Ay, -
PROOF. The same as for Theorem 3.1.2. m

The next step consists of reducing ABox inclusion to ABoxs$itbility. As in the
conjunctive case, we only consider a particular kind of ABoxhe r.h.s. of the inclu-
sion, namely those containing only axioms of the fara€’. This assumption can be
made without loss of generality because the connected coemp®of each conjunctive
ABox can be collapsed into a single concept assertion, agrshoSection 3.2.

Proposition 3.3.6 LetS be a schAema,,éT a completed canonical disjunctive ABox and
A’ a disjunctive ABox. The(s, A) A’ iff there is a disjunctive ABox" containing
only axioms of the formv:C, such thatS, A)r.A"

PROOF. (SKETCHED) The same considerations set out in Section 3.2, which enabl
to “collapse” connected components into single axioms efthmw:C, also apply in
the disjunctive case, and can be used to transform eachragiviet ABox in 4’ so that
it contains only such axioms. n

In the following Lemma (Lemma 3.3.7), which provides theuetibn to ABox
satisfiability, we use the notatian+C to describe the axiom which forces the inter-
pretation of the individuab not to be in the extension @. If w is a non-distinguished
individual, thenitis the schema axiomC —C'; otherwise itis the ABox axiom:—C'.

Lemma 3.3.7 LetS be a schemad a disjunctive ABox, anfl4,, ... , Ay} adisjunc-
tive ABox, where eacH; contains only axioms of the formC'. Then(S, A)r{ A1, ..., A}
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iff for every possible KB
K=(S,A)yx |J {w=C} for some(w:C) € A;,

1<i<m
K is unsatisfiable.
PrROOE

e For the “only if” direction, assume thdsS, A){ A, ... , A} and that there
issomeA; € {A;,...,A,}suchthatthe KB

K'=(S,A)x |J {w=C} for some(w:C) € A;

1<i<m

is satisfiable. Lef be an interpretation satisfying’, andZ’ the restriction of
this interpretation to exclude the non-distinguishedvittials in{ A, ... , A,;, }.
ObviouslyZ' satisfiesS, A). Therefore there is an extensidh of 7' satisfying
{A1,...,A,}. Let Ay € {A,,...,A,,} be a conjunctive ABox satisfied by
7", By construction of<’, there must be an assertianC' € A, such that if
K' = (&', A'), then eithew+C) is in §’ or (w+C) is in every conjunctive
ABox in A'. ThereforeZ = w+C, andZ” = w:C. Moreover, as botlf and
7" are extensions df’ (see 2.1.4), they differ only in the interpretation of non-
distinguished variables. There are two cases, dependinghether or notw is

a non-distinguished individual.

— If wis a non-distinguished individual, thesw¥ ' € CZ" andA” C (-C)7.
As CT" = C7Z, this implies thatwZ" € (), an obvious contradiction.

— Otherwisew? = w?", w? € (-C)% andw?" € CT". AsCZ" = C7, this
implies that(—=C)Z N C% # (), again an obvious contradiction.

e For the “if” direction, assume that there is an interpretaff satisfying(s, ﬁ)
which cannot be extended to one satisfyifid;, ... , A, }. For eachA; €
{A1,...,Ap} there must be at least one axidm;:C;) € A; thatZ cannot be
extended to satisfy. Therefore, there is a KB

K'=(S,A)x |J {w=C} for some(w:C) € A;

1<i<m

such that the interpretatidh cannot be extended to satisfy any of the selected
axiomsw:C € A;. The interpretatiorY satisfies(S,.4), and it also satisfies
all the axioms{w-+C'} added inK'. Again, there are two cases, depending on
whether or notw is a non-distinguished individual.

— If w is a distinguished variable, then” ¢ C” otherwise any extension
will satisfy w:C'. ThereforeZ |= w:-C.

— If w is a non-distinguished variable, th€¥ must be empty, otherwise
an extension satisfying:C can be defined by mapping to one of the
element ofCZ. ThereforeZ = T C —C. .
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Figure 1: Reification oD LR concepts and relations

Lemma 3.3.7 shows how the problem can be reduced from ABdxsion to ABox
satisfiability. Unfortunately, the resulting KB is still sjunctive, and Section 3.4.1
only shows how to solve satisfiability problems for conjivetKBs. However, we
can reduce the problem to conjunctive KB satisfiability biyoducing one more non-
deterministic step.

Lemma 3.3.8 A disjunctive KB(S, {A1,..., A, }) is satisfiable iff for somed €
{A1,..., An}, (S, A) is satisfiable.

ProOOF. Obviously, ifZ = (S, A), thenT = (S,{A:,...,Ap}), and ifZ =
(S,{Ai,...,An}), then from Definition 3.3.27 must satisfy at least on of the con-
junctive ABoxes in{ A1, ..., An}. "

3.4 Transforming DLR satisfiability into SHZQ satisfiability

We decide satisfiability db LR knowledge bases by means of a satisfiability-preserving
translations () from DLR KBs to SHZQ KBs. This translation deals with the fact
thatDLR allows for arbitraryn-ary relations whileSHZ Q only allows for unary pred-
icates and binary relations; this is achieved by a procds=daification The main
idea behind this is easily described: eachry tuple in aDLR-interpretation is rep-
resented by an individual in &HZ Q-interpretation that is linked via the dedicated
functional relationsfy, . . ., f,, to the elements of the tuple.

For DLR without regular expressions, the mappirng) shown in Figure 1 (given
by Calvanese et al. [4]) reifi@LR expressions int&H7Z Q-concepts. This mapping
can be extended to a knowledge base as follows.

Definition 3.4.1 Let £ = (S, .A) be aDLR knowledge base. The reification &fis
given by

{(¢(R1) Eo(Ry)) [ (Ri ERy) € S}U{(0(C1) Eo(Ch)) | (CL ECr) € S}

To reify the ABox.4, we have to reify all tuples appearing in the axioms. For
each distinct tupled = (wy, ..., w,) occurring in.A we chose a distinct individua);
(called the “reification of”) and define:

o(W:R) = {tz:0(R)} U {{tg,w;):fi |1 <i<n} and
= J{o@R) | @R € A} U {w:o(C) | w:C € A}.

16



We need a few additional inclusion and ABox axioms to guaitihat any model
of (¢(S),o(A)) can be “un-reified” into a model dfS, A). Let nyax denote the max-
imum arity of theDLR relations appearing ifC. We definef(S) to consist of the
following axioms (wherer = y is an abbreviation for C y andy C z):

T=TiU---UTpm
TE(S]‘fl)l_ll_l(S]‘fnmax)

VfZJ_ E Vf,'+1.J_ for 2 S 1< Tmax
T, = Hfl.Tl [1e--T1 Hfi."l’l M Vf,'+1.J_ for 2 < ) < Nmax
PC T, for each atomic relatioP of arity n
ACT, for each atomic concept

These are the standard axioms needed for reification in stheasoning, and can
already be found in [4].

We introduce a new atomic conceft, for every individualw in A and define
f(A) to consist of the following axioms:

f(A) = {w:Q, | woccursinAd} U
{wi:< 1y (TN 3f2.Qu, N ... M 3fr.Qu,) | (wi,...,wy) 0occursind}

These axioms are crucial when dealing with the problem oetagimissibility (see
below) in the presence of ABoxes.
Finally, we defines () = ((a(S) U f(S)), (c(A) U f(A))).

Theorem 3.4.2Let £ = (S, A) be aDLR knowledge-basel is satisfiable iff the
SHIQ-KB o(K) is satisfiable.

The proof of Theorem 3.4.2 is rather involved and technié first give a sketch
of the proof.

PROOF (sketch): The same techniques that were used in [2] can et the DL
SHZQ, and extended to deal with ABox axioms. The only-if direntis straightfor-
ward. A modelZ of K can be transformed into a model ®fX) by introducing, for
every arityn with 2 < n < nmax and everyn-tuple of elementsl € (AT)", a new
element ; that is linked to the elements d?by the functional relationg, . . ., f,. If

we interpretT; by AZ, T,, by the reifications of all elements iiZ, and, for everyw

that occurs in4, Q,, by w?, then it is easy to show that we have constructed a model
of o(K).

The converse direction is more complicated since a mode{& is not necessar-
ily tuple-admissiblgi.e., in general there may be distinct elementSthat are reifica-
tions of the same tuplé. In the “un-reification” of such a modef,would only appear
once which may conflict with assertions in theR KB about the number of tuples
in certain relations. However, it can be shown that everigable KB o (K) also has
a tuple-admissible model. It is easy to show that such a mdgelun-reification”,
induces a model for the original KB. n

Theorem 3.4.2 will be an immediate consequence of the faliglwvemmata 3.4.3
and 3.4.5.
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Lemma 3.4.3 LetK = (S, .A) be aDLR knowledge-base. K is satisfiable, then the
SHIQ-KB o(K) is satisfiable.

PROOF. Let Z be a model ofS,.4). We will reify it into a modelZ for (o(S) U
1K), o(A). o

Letnmax denote the maximum arity of relationsdhand.A. The set of individuals
of 7 is the set of individuals of plus a distinct individual for each possibletuple
with 2 S n S Nmax-

AT = AT Uty | d = (dy,...,dy) € (AT)",2 < 0 < nimax}

We have to fix the interpretation of the atondi¢{Z Q-concepts and roles. The only
roles that occur ifo(S) U f(K,0(A)) are thef,, with 1 < n < nmax. For each role
fn we set

fg = {{tpdn) | d € (AT)" andd,, is then-th component ofl}
For every atomid@LR-conceptd, we set
AL = AT
For every atomiSHZ Q-concepP that corresponds to anrary atomicDLR-relation
with n > 2 we define
PT = {t;| d e (AT)" andd € P’}

Finally, we have to define the interpretation of the newlydduced atomic concepts
T, forl <n < mnmax Thisis done as follows:

T = AT

TL={t;|deTL} for2<n < nma
Itis easy to see that = f(S).

By induction of the structure dDLR-concepts and relations one can show, for

everyDLR-conceptC, everyDLR-relationR, everyd € AZ, and everyf € (AT
for 2 < n < nmay that

d € C7 implies d € o(C)% and

d € R% implies t ; € o(R).

From this it immediately follows thal = S impliesZ = o(S) and hencel |=
o(S) U f(K). It remains to show that alsb = o (A).
We fix the interpretation of the auxiliary conceg}g, that have been introduced in
f(A) by
Qj: — ’U}I
At first, we have to define the interpreta}tion of the individuia o (S). For any
individual w that appears also inl we setw? = w’. For each newly introduced
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individual ¢ with @ = (wy, ..., w,) we sett], = t;whered = (w,...,wZ). With
this definition it is easy to see that= o (A).

It remains to show that |= f(A). 7 & w:Q,, follows by construction of)Z,
for every individualw that occurs inA. Let (w,...,w,) be a tuple that occurs in
A. We have to show that? € (S 1f (TpN3fo.Qu, M. M Efn.an))f. By
construction we have that

(ToM3f2-Quy M. .M 3fnQu )t = {t;| de TL andd = (z,w?,. .., wk) for somer € AT}
and hence
(LA (TaN3fQu, N N3fnQu))’ = {z e AT |3Slze T d=(z,uf, .. ,wl)}

Trivially, for everyz € AZ, there is at most one-tuple that starts witlr and continues
with w}, ..., w}. Hence, we get, for every tuplev,, ..., w,) that occurs in4, that
ITlEw:Llff (TpMN3fa.Qu, M...MN3fn.Qu,). [

The proof of the converse direction of Lemma 3.4.3 is morelwed. The problem
arises from the fact that a modglof ¢(X) may not betuple-admissiblei.e., there
may be two distinct elementst’ € AZ that are reifications of the same tuple=
(dy,...,d,). Thismeansthatbotht' € TZ and(t,d;) € f aswell ast’,d;) € f
for 1 < i < n. The next lemma shows that any consist8#ZQ knowledge base
always has a tuple-admissible model.

Lemma3.4.4LetK = (S, A) be DLR-KB ando(K) = ((S) U f(K),o(A)) its
reified SHZQ-counterpart. Ifo(K) is consistent, then there existdugple-admissible
modelZ for o(K), i.e., a model where, for evey< n < nmaxandt,t' € TZ it holds
that

( N\ Fd.((td)y e fFnE,d) e f,-I)) >t=t (%)

1<i<n

PROOF. LetZ be a model of(K). We will transformZ into a tuple-admissible model
7 for o(K). SinceZ = o(K), we have thaf |= f(K) and hence? is the graph of a
partial function. To this function we will refer byZ(-).

For2 < n < nmax andn—tupIeJ: (dy,...,d,) € (TF)", we define the set of all
reifications of this tuple by

Ty;={te AT | (t,di) € ff A+ A(t,dn) € fE}

Each sefl’; which contains more than one element violates For any such set we
pick an arbitrary elemerit; € T'; and say that the other elements are conflicting with
t 7 With Confwe denote the set of all elements that are conflicting witleogfements.
We will now transforniZ into an interpretatiod that contains no conflicts.

We start by describing this transformation for the simplgsecthat we have only a
single conflicting element. This conflict can be resolved as follows. LEtbe the
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interpretation consisting of two disjoint copies®{we will forget about the interpre-
tation of individuals at the momentY’ contains the conflicting elementnd a copy
t' of t. We defineZ from Z' by setting

= GE N FE @) 7 @D UL A ), ¢ 7 ),

and preserving the interpretation of all other atomic cptEand roles. The result is
an interpretation that contains no more conflicting element

The construction in the general case is a little bit more darated because in
generalConfmay be of arbitrary cardinality and we have to take care ofABex
axioms. To prevent interference of the later constructith the ABox axioms we will
use a little bit more care when choosi@gnf Firstly, we show that the interpretation
of two different ABox individuals may never conflict.

CLAIM 1: Letty, t be two distinct ABox individuals. There is no conflict betwe%
andtZ.

PROOF OFCLAIM 1: If tZ = tZ then there cannot be a conflict because no element
i i i VA 7 : T(+I\ — +£I(4Z

confllct§ with |_tself. Assume; # t- but, for eachl < i < n, f{(t;) = f; (t3)

(a conflict). SinceZ = o(A) we have, for each < i < n, v = w’ and hence

vt € QL. Thisimplies

{tE LY C (TN 3fo.Quy M. .M 3f0.Qu, )Y,

which yieldsw? ¢ (< 1 (Tn N 3f2.Qu, M- ..M 3f0.Qu, ) because? appears
as the first component of two distinct reified tuples thats$ati , M 3f2.Qw, M ... 1
3fn-Qw, - Thisis a contradiction to the assumption that f(A).

Using Claim 1, we make sure that we do not have any conflictiements that
appear in the interpretation of ABox individuals. There acetwo ABox individuals
ts,,ta, such that’ .t are conflicting. From this it follows that, in each $gf,
there is at most one element that appears as the image of ax iABwidual of the
interpretatior (it may appear as the image of several ABox individuals). ¢éemve
can choos&€onfin a way that it contains no elements that appear as image8ok A
individuals ofZ.

Let Z' denote the disjoint union df{2°°™ copies ofZ. For a setZ C Confwe
denote the copy of € AZ in the Z-th copy ofZ by d. For two distinct setsZ, Z'
and elementd;, d, we callexchangingfZ'(dz) with fZ'(dz/) the operation of’
which changes the interpretation ifunderZ’ as follows:

=\ {dz, 1F (d2)), (o, fE (da))) U {ldz, £ (d2)), (dar, £E (d2))}

We defineZ from Z' as the result o§imultaneouslgxchanging, for eact € Confand
eachZ C Confwith d € Z, fi(dz) with f1(dz\ (43)-

CLAIM 2: 7 does not contain any conflicts.

PROOF OFCLAIM 2: A conflict in Z may either origin fronZ’ or may be created
during the exchange.
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e A conflict in Z' can only involve two elements in the same disjoint copy. Let
dz, ez denote the conflicting elements which reside in fh¢h copy. W.o.l.g.,
we can assumé € Confn Z. From the fact thatlz, e are still in a conflict

originating fromZ’ we havefZ (dy) = fZ (ez) andfZ(dy) = fL(ey).

— If e € Conf, then we have changed the relatiirfor e ;. Strictly speaking,
we have to distinguish the two caseg Z ande ¢ Z but these are dual.
In the first case we have exchanggfd(e) by f£ (e (.}). in the latter
case we have exchanggd’ (e zu¢.}) with I (ez).

— If e ¢ Conf then we have not changed the relatjarfor e, and hence we
havefl(ey) = fT (ez). Atthe same time, we have exchangkdi) by
fi(dz\(ay) and henceff (dz) # f (dz) which is a contradiction.

In both cases, we haﬁ(dz) # flj(ez) because these elements are in different
disjoint copies. Hencel; andeyz cannot be conflicting.

e Now assume that we have created a new conflict between eleagnt, in
7. This implies that, w.l.0.g., the functiofi has been modified fat; during
the exchange (otherwise the conflict would already be ptésefi). Since we
only change the interpretation of the rglg dz andez must havefl-f (dz) =
fif (ez) for 2 < i < n, and hence; andez must reside in the same disjoint
copy because we do not hayielinks between the disjoint copiesif fori > 2.
Hence we haveZ = Z'. Sincedz andez do not conflict inZ’, we must have

T'(dz) # L (ez).

— Ifboth d,e ¢ Conf thenf{ (dz) = f (dz) # ¥ (ez) = fl(ez), and
dyz, ez cannot conflict irZ.

- If d € Confande ¢ Conf then we have thaflj(dz) lies in theY-th
disjoint copy forY # Z, while f{(ez) lies in the Z-th disjoint copy.
Thus, we cannot have a conflict betweBnande.

— Finally, if d,e € Conf then we have to distinguish between the following
cases:

* if d,e € Z thenflj(dz) = flI’(dZ\{d}) = flj(ez) = flf(ez\{e}).
Hence Z\ {d} andZ\ {e} refer to the same disjoint copy and we have
d = e and thusiz ande; are the same element and can not conflict.

x if d,e & Z, thend = e follows analogously and henceg; andez
cannot conflict.

CLAIM 3: LetC be aSHZQ-conceptd € CT andZ C Conf Thend; € ct.

PROOF OFCLAIM 3. We use a simple induction over the stucturé&afZ Q-concepts.
The claim obviously holds for all atomic concepts. Also, petuction, it immedi-
ately holds for the boolean combination of concepts. Foretkistential, value, and
number restrictions it follows from the fact that we startiwilisjoint copies and only
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change the interpretation of roles by exchanging eleméatsare copies of the same
element. Hence, we do not changes the number of success@acto element, and,
we also exchange only links to elements which, by the indadtiypothesis, cannot be
distinguished by “smaller” concepts.

From Claim 3 it follows thatZ = S. It remains to show that we can fix the
interpretation of the ABox individuals inl underZ such thatZ = A. This can be
done by interpreting all individuals in a single copy, elgy,setting, for every ABox
individualw, w? = w?

Again, from Claim 3, we get that, for every ABox assertiorC’ € .4 we have that
w? € CT impliesw? € CZ. Furthermore, since, for every individualthat appears
in A, we havew’ ¢ Confand hence the interpretation ffis not changed fow%. For
any assertiorfwy , w,):f;, we have(w? , wf) € fZ and hencéw?, wi) € f. Thus,
we also havd |= A and thus = K. A A

Together with Claim 2, which yields thdtsatisfies(x), we have that is a tuple-
admissible interpretation with = o (K). n

Once we have solved the problem of tuple admissibility itisly straightforward
to show the following lemma.

Lemma 3.4.5Let = (S, .A) be aDLR knowledge-base. If th8HZ Q-KB o (K) is
satisfiable, ther is satisfiable.

ProOFE If o(K) is consistent, then, by Lemma 3.4.4 we have that there isla tup
admissible modef for a(K). We will “un-reify” the reified tuples irZ into ordinary
tuples. We use the auxiliary functiam that maps a reified tuple to its un-reified
counterpart. Ift € TZ and fZ(t) = d; for 1 < i < n, then we definewr(t) =
(di,...,dp).

The atomic concepts and relations will be defined as follows:

AT =T7
AT = AT for each atomic concept
PZ = {ur(t) | t € PZ} for each atomic relatioR of arity n

We also have to define the interpretation of the ABox indiaiduin .4. For every
individual w that appears il we setw? = w’. Please note that, alsozif appears
inside a tuple of a relation assertion iy w will appear ino(A) and hencev? is
defined.

SinceZ = f(K) we have thaf is indeed a well defined interpretation. The fol-
lowing can easily be shown:

CLAIM : For everyDLR-conceptC andDLR-relationR,

d € o(C)L implies d € C*
t € o(R)T implies ur(t) € RZ
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PROOF oF THECLAIM . The claim is obvious for atomic concepts and relations ley th
definition ofZ. By induction it follows easily also for complex conceptslanles. We
need the fact thak is tuple admissible to ensure that the claim holds for cotscapd
relations involving counting expressions.

From this it follows thatZ = S and alsdZ |= A, hence we have shown thitis
consistent. n

We now have the machinery to transform a query containmesitl@m into one
or moreSHZQ schema and ABox satisfiability problems. In the next sectierwill
present a decision procedure that will enable us to solve gtablems.

4 Deciding Satisfiability of SHZ Q Knowledge Bases

To test satisfiability of a knowledge bake= (S, A), we firstinternalisethe schem&
into the ABox A, i.e, we add, for each individual that occurs ind, an axiomw:C's,
where
Cs := |_| -(CN-D)NVvuU. |_| =(C' N =D),
CCDeS CCDeS

for U € NRy a new transitive role wittkR C U for all rolesR occurring inkC. Sincel/
functions as a universal role, the ABox resulting from thirnalisation is satisfiable
iff K is satisfiable. Thus it only remains to decide satisfiabditys 7 Q-ABoxes.

Satisfiability of SHZ Q-ABoxes can be decided by a tableaux algorithm that tries
to construct a model for the input ABax® by breaking down concepts occurring in
A into sub-concepts, possibly introducing new individuaiables, and thus making
explicit the constraints imposed on individuals in moddis4 To this purpose, it
works on a completion forest (i.e., a collection of trees ségooot nodes are possibly
connected to each other) some of whose nodes correspondivalirals in a model.
The forest’s edges denote role-successorships, and edehqlabelled with concepts
it must be an instance of. This algorithm is similar to the tra decides satisfiability
of SHZQ-concepts presented in Horrocks et al. [15]. Due to lack efcspwe can
neither describe the algorithm in detail nor prove its sowess$ and completeness, and
refer the reader to [14], pages 38—49. Instead, we will sirppint out the differences
between the concept- and the ABox-satisfiability algorithm

Firstly, instead of working on a completidree, it works on a completioffiorest
that is, a collection of completion trees whose nodes cpaed to individuals of a
model of the input ABox and whose root nodes correspond teethiedividuals that
occur explicitly in the ABox. Secondly, the rules of the aligfom had to be modified
to correctly handle completion forests. This mainly inwesvthe rule that identifies
some of the neighbours of a nodavhenever it hag:n neighbour nodes with respect
to aroleR, and we learn that, due to an at-most number restrictionyst only have at
mostn — 1 of these ‘R-successors”. Here, we must take special care when roosnode
are involved in this identification. Thirdly, thielocking conditiorwhich guarantees
termination had to be modified in order to deal properly witbtrnodes. Basically,
this means that root nodes can never be blocked.
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5 Discussion

In this paper we have shown how the problem of query contaimmneder constraints
can be decided using a KB (schema plus ABox) satisfiabilisyetefor theSHZQ
description logic, and we have indicated hoW#HZ Q schema satisfiability testing al-
gorithm can be extended to deal with an ABox. We have onlyethibout conjunctive
queries, but extending the procedure to deal with disjonstiof conjunctive queries
should be straightforward. Although there is some loss pfessive power with re-
spect to the framework presented in [4], this seems to bepéaioie when modelling
classical relational information systems, where reguaressions are seldom used.

Given that the FaCT implementation of t§8{Z Q schema satisfiability algorithm
has been shown to work well with realistic problems, and thatnumber of individ-
uals generated by query containment problems will be vatismall, there is good
reason to believe that a combination of the ABox encodingthe@xtended algorithm
will lead to a practical decision procedure for query comtaént problems. Work is
underway to test this hypothesis by extending the FaCT systedeal withSHZQ
ABoxes.
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