Driving User Interfaces from FaCT

Sean Bechhofer and lan Horrocks
Department of Computer Science
University of Manchester, UK
Email: {seanb, horrockg@cs.man.ac.uk

Abstract

We describe a mechanism that can be used to drive interfaarasafdescrip-
tion logic (DL) model of the domain. A simple layer with linaid expressivity
sits on top of the DL, with the interface behaviour describisohg a collection
of application specific assertions. DL reasoning is thenleyegl to ensure that
the choices offered to the user in expression constructierfraasonable” as
well as valid.

1 Introduction

An approach for driving user interfaces from a Descriptiagic (DL) model of the
domain is described in [2, 4]. This uses a mechanism cab@dtioning which is an
integral part of ®AIL DL implementation [6]. As well as user interface generation
the GRAIL sanctioning mechanism has been used for a range of otheogmspin
particular as an aid to knowledge modellers.

Although suited to a number of applicationsR@L provides a limited expres-
siveness and uses structural subsumption algorithms veneknown to be incom-
plete. In addition, the multiple roles played by sanctioosetimes caused conflict
and confusion and led to compromise in the conceptual madeHowever, the abil-
ity to drive an interface which allows users to constructregpions without having to
explicitly deal with the underlying DL syntax has provedisgensable, particularly
in the context of projects such as TAMBIS [1].

In this paper, we describe a sanctioning-like mechanisnthvban be used with
a more expressive logic. The sanctions are no longer patteotibderlying logic,
but are implemented in a separate layer that makes use ok#s®ning services
provided by the underlying DL. This architecture providesl@aner separation of
application-specific information and functionality frommetlogical reasoning of the
DL. The separation also makes it clear exactly what the garare for, allows a

clearer specification of how the interfaces should behaw n@akes explicit the role
of the DL reasoner in the interface generation.

The mechanism described here is not intended to be equitalsanctioning as
it was defined in ®AIL, but is a (more flexible) substitute for sanctioning in user i
terface applications. To avoid confusion we will call theam@nisnreasonableness.

2 Interfaces

A DL model of a domain can be used to drive an interface whittwel a user to
form a (possibly new) description by navigating throughhierarchy to an existing
concept, and then (optionally) specialising that concépt. example, the TAMBIS
system [1] allows the user to phrase DB queries using a DL haddBoinformatics.
The query (a DL concept) is formed by navigating the modelnd & concept that
nearly expresses the query and then (optionally) furthecigfising this concept by
conjoining new existential restrictions (concepts of thenf 3R.C'). The query is
then rewritten to appropriate queries over distributednimiation sources. The query
interface relies on users being able to construct concgpesgions using a graphical
interface that helps to insulate the naive user from the wyidg representation.

Such an interface can be constructed by exploiting a meshmwhich is able to
answer the question “what might | want to say about this cpt®ethe answer to
this question can then be used to present possible spat@tiptions to the user.
For example, in a model concerned with costume and clothiegmay know that,
in general, items of clothing are worn on parts of the body ae may therefore
wish to prompt the user as to which part of the body an item iswvem. However,
it may not be the case that all items are worn on a part of thg,bmdthat items
can only be worn on parts of the body, in which case we wouldmsh to include
such restrictions in the model. Using reasonableness, weagature the fact thain
general it is reasonable to form new concepts by specialising itefriedothing with
information about the part of the body where they are worn.

3 Reasonableness

The basic purpose of reasonableness is to restrict the walkioh (naive) users can
form new concepts so that:

1. only “reasonable” concepts can be formed, and
2. only a “reasonable” number of specialisation choiceo#ered at any point.

In GRAIL, the sanctioning mechanism is used to restrict the possilgleialisation
choices to “sensible” existential restrictions. The notid sensibleness is defined by

sanctions and is inherited down the concept hierarchy. kamele, the existen-
tial restriction3worn-on.body-part may be sanctioned for the concegarment,
meaning that it is sensible to form new concepts by conjgir(sub-concepts of)
Jworn-on.body-part with (sub-concepts ofyjarment. In GRAIL, the expressive-
ness of the sanctioning mechanism more or less correspatidthe expressiveness
provided by the underlying language, but there is no pderaeason why this should
be the case.

3.1 Restricted Concept Language

In contrast to ®AIL sanctions, the reasonableness mechanism uses two differen
cept languages. The complete language will be availablepbisticated users (for
example knowledge engineers) when designing the conceparbhy! A simpler
(subset) language will be available to naive users whergaging the hierarchy and
forming new queries/concept descriptions. Reasonaldesygslies to this restricted
language, and guides and restricts the way that naive uger®om composite con-
cepts. In our initial implementation, this restricted qu&nguage consists only of
conjunction and existential restriction (a concept of vaf3R.C').

In order to further restrict the way in which the query langeaan be used,
only concepts that are “reasonable” can be formed. This pogad by having, for
each concept namé in the Knowledge Base (KB), a list of those concepts that may
reasonably be conjoined with. The reasonableness mechanism is not part of the un-
derlying DL (FaCT in this case), but uses the concept hiesaas a “hanger” for rea-
sonableness information and the DL's reasoning servicemtotain this information
(the reasonableness layer is a client of the CORBA-FaCTes¢8}). Reasonable-
ness information consists of a detof assertions of the formeasonabl e(C, D)
orr easonabl e(C,3R.D), whereC and D are concept names occurring in the KB
andR is a role name occurring in the KB. A concepti D’ is said to beeasonable
iff there is an assertioneasonabl e(C, D) € R such thatC’ C C'andD’ C D.

In order to restrict the number of possible ways in which aterface might
prompt a user to specialise a concéfjtwe will define the minimal non-redundant
setR ¢ of concepts that might reasonably be conjoined Witlsuch thatD € R iff:

1. C 1D isreasonable,
2. ¢ Dis satisfiable (i.eC 1 D £ 1),
3. ¢ Disnotequivalentt@’ (i.e.,C Z C 11 D) and

4. D is not tautological (i.e.D is not subsumed by some othef € R..

These sets can be pre-calculated for concepts in the higrdmat must be calculated
on the fly for new concepts created by the application.

LIn the current implementation, this languag&®ZQ [5].

Note that, while a restricted language is being used in gisemgulation, the full
power of the underlying logic is available to knowledge e®girs when constructing
the knowledge base. One could envisage further “layerskpfessivity that could
be supplied, depending on the sophistication of the useoseer, although reason-
ableness guides the specialisation and query constrymtimess, but is not intended
to be a hard and fast restriction on the expressive powereofjtlery language—
experienced users may be able to “break out” of the intelifaceder to use some or
all of the richer expressive power of the underlying DL.

4 Comparison with GRAIL

It is useful to compare and contrast the functionality of $tembleness with that
provided by QRAIL’s sanctioning.

e Reasonableness has the advantage that it supports coojunith other named
concepts, not just existential restrictionsRi@&L attribute-value pairs), and ex-
tending the mechanism to deal with other deterministic ttants (e.g., num-
ber restrictions) does not appear difficult. Moreover, aso@ableness does
not have any semantic significance w.r.t. the underlying iDivould be easy
to allow more sophisticated users to override the restnstit imposes.

e Reasonableness interacts in a natural way with value ¢getrs {fR.C' con-
cepts) in the KB, potentially reducing the number of chom#sred as concepts
become highly specialised and more value restrictionsyafjtlis also allows
“reasonable” assertions to be cancelled in a clean way (ithen re-applied,
as is possible in &AIL).

e As described above, reasonableness has no built in mean&miguiding the
knowledge engineer, such ag®&L’s grammatical sanctioning—reasonableness
assertions can be added as and where the knowledge engjeseHowever,
it would be easy to add authoring extensions that warned sdtisfiable, non-
specialising or tautological assertions.

5 Prototype |l mplementation

A prototype of thereasonablenesdayer has been implemented, and is being in-
cluded in the latest release of the TAMBIS system (which neesUFaCT rather than
GRAIL). The prototype provides a layer that sits between the CORBE&T server
and the application as shown in Figure 1. The application canourse, still com-
municate directly with the server.

In the TAMBIS application, all the reasonableness assestioust be of the form
reasonabl e(C,3R.D) (i.e., there are no assertiongasonabl e(C, D) where

Application

Reasonable Reasonable
Layer Statements

API

CORBA-FaCT

Figure 1: Architecture

D is not an existential restriction). The reasonablenessnmdtion is used by the
interface in order to generate data entry forms which allpacgalisation of a query
concept by offering relevant role-concept pairs as possbdditional existential re-
strictions (see [2] for further details). This representslight restriction w.r.t. the
language supported by the reasonableness mechanism,sethean only generate
“frame-concepts” of the forlW'M3R,.D;MN3Ry.D5MM. . .M3R,.D,,, whereC is a con-
cept name and each of tey, . .., D,, are, in turn, “frame-concepts”. However, the
resultis a simple “framelike” language that correspondsost directly with the form
of GRAIL expressions, thereby allowing us to reuse our originallyjcap interface’

In addition, the prototype allows the specification of a @picas “invisible”,
which prevents it appearing directly on a form—its diredb-swwncepts will appear
instead. This is simply “syntactic sugar”, allowing us toluee the number of rea-
sonableness assertions by applying them at a more genezhl le

51 An Example

As an illustration of reasonableness in action, considem@ls model of costume.
We have items of clothing (e.qg., shirts, hats, boots and $catong with parts of the
body that these things can be worn on (e.g., leg, arm) andopagpto which they
can be put (e.g., decoration, protection, support). Intamdiwe have regions of
the body such as above or below the waist. Axioms are usedstrtaacts about
articles (e.g.,Hat = JwornOn.Head), to define how parts of the body relate to

2There is no theoretical reason for not extending the interfa support (at least) the full expressive
power of the reasonableness mechanism, but providingesffigraphical renderings for arbitrary
conjunctions (or further expressivity) is an issue thatsderther investigation.

regions (e.g.Head T dpartO f.AboveW aist) and to add general knowledge about
the domain (e.g.3wornOn.Head = Jworn.AboveW aist).> We can now add the
following reasonableness assertions:

r easonabl e(Item, JwornOn.BodyPart)

r easonabl e(Item, Jworn.BodyRegion)
reasonabl e(Item, JhasPurpose. Purpose)
i nvi si bl e(BodyPart)

i nvi si bl e(BodyRegion)

i nvi si bl e(Purpose)

E%_%Query Builder | O]
TEM

‘ Undo ‘ Bookmark guery |

a i
ITE
—— Restrict by a relationship...

Replace with a Kind of this...

Incorporate
Dismantle

Explore...

‘ Explore...... H Submit... H Cancel || Help |

Cione.

Figure 2: Initial Query

Figure 2 shows the initial query builder window for a quergéa on the concept
Item. The user has clicked aftem, indicating that they wish to specialise the query.
This results in the form shown in Figure 3, where the user haady made their spe-
cialisation selections. The result will be the new querywamo Figure 4. This query
corresponds to the concefern M 3hasPurpose. Protection N JwornOn. Head.

In order to illustrate the interaction of the reasoner aralitiierface, consider
the case where the model contains an axiamn M 3hasPurpose. Decoration T

3The modelling here is not really of interest, but it is usefutlescribe some of the model in order
to illustrate the behaviour of reasonableness.

Eﬁf’g" Restrict by a relationship... ITEM

worn
|| ABOVE_WAIST
|| BELOW \WAIST

haSJﬂurpﬂSE

|| CARE

I_| DECORATION
¥l PROTECTION
|| SAFETY

I_] SUPPORT

worn_on
I_] ARM
|1 CHEST
|_| EAR
|| FACE
Il FOOT
I_1HAIR
|| HAND
¥l HEAD

4]

Accept Cancel Help

Figure 3: Initial Restrictions

Yworn.—~BelowW aist, i.e., an assertion that decorative items cannot be woowbel
the waist? If we now take the query shown in Figure 5, and attempt to sjlisei
the options provided are as shown in Figure 6. The importaimtgere is that
BelowW aist is no longer offered as a possible specialisation (and eedhe any
of the possible subconcepts Bbdy Part which are said to be below the waist, such
asFoot).

Itis important to note that the use made of the reasonaldenfgmation is under
the control of the application. The interface shown hereahfasrly loosecoupling to
the reasonableness layer. The application uses the rddspaess layer to calculate
R¢ for the focus concept’, and then generates the form. However, once the form
has been generated, the interface does not communicattheiitbasonableness layer
until all choices have been confirmed. A tighter coupling ldoallow the form to
change dynamicallyR could be recalculated after each selection and used to gtey o
those options no longer applicable (or add new options wiésie become available).
In the example above, if the user first selected Purpose—Decoration on the

4Again, this is possibly a strange assertion to make, buesahe purpose of illustrating the mech-
anism’s behaviour.

[3 Query Builder | O]
ITEM [has_purpose;PROTECTION] forn_on:HEALD]
Undo Bookmark query |
ITEM which
has_purpose
PROTECTION
worn_on
HEAD
Exzplore...... Submit... Cancel Help
Dione.

Figure 4. Refined Query

form, the options referring to body parts below the waist iddben be disabled.

6 Conclusion

We have described a reasonableness mechanism consistingsificted query lan-
guage (a subset of the underlying DL language) and a tecarayuexploiting ad-
ditional domain knowledge, in the form of reasonablenesgréisns, to constrain
the way in which new query concepts can be formed. The usasfitechanism has
been illustrated by a user interface application, the psggor which it was originally
conceived. However, the mechanism could also be usefuhier atpplications, e.g.,
supporting/constraining the extension of an existing KBd®sg sophisticated users.
A prototype has been implemented and has already been uedTAMBIS sys-

tem. This implementation uses a modular architecture, inglCORBA-FaCT server
providing the DL reasoning services. As well as cleanly ssjirag reasonableness
from the underlying DL, this architecture would make it telaly simple to use the
mechanism with other DL implementations.

23 Query Builder | |O]
DECORATIVE _ITEM

‘ Undo ‘ Bookmark guery |
] ITEM |whi|:h

has_purpose

—| DECORATION

‘ Explore...... H Submit... H Cancel || Help |

Dione.

Figure 5: Query

Acknowledgement

This work greatly benefited from discussions with Franz Baatlring a visit he
made to Manchester University. The work was supported ih lpaEPSRC grant
GR/L71216.

References

[1] P.G. Baker, A. Brass, S. Bechhofer, C.A. Goble, N.W. Ratand R Stevens.
Tambis: Transparent access to multiple bioinformaticermftion sources. an
overview. InProceedings of ISMB’98, 6th International Conference otellih
gent Systems for Molecular Biologh998.

[2] Sean Bechhofer and Carole A. Goble. Using Descriptiogit®to Drive Query
Interfaces. IlProceedings of DL'97, International Workshop on Descoptiog-
ics, 1997.

[3] Sean Bechhofer, lan Horrocks, Peter F. Patel-Schnedaer Sergio Tessaris. A
Proposal for a Description Logic Interface. Rroceedings of DL'99, Interna-
tional Workshop on Description Logicgages 33—-36, 1999.

Egj Restrict by a relationship... DECORATIVE _ITEM

Worn
|_| ABOVE WAIST |

has_purpose
|_| CARE

"1 PROTECTION
|| SAFETY

I_1 SUPPORT

Worn_on
|_| ARM -
I_| GHEST
|| EAR
|_| FACE
|1 HAIR
|| HAND
|| HEAD
|1 MECK

<]

Accept Cancel Help

Figure 6: Restrictions

[4] Sean Bechhofer, Stevens Robert, Gary Ng, Alex Jacohy,Garole A. Goble.
Guiding the user: An ontology driven interface. Pnoceedings of UIDIS, Work-
shop on User Interfaces to Data Intensive Sysigrages 158-161. IEEE Com-
puter Society Press, 1999.

[5] I. Horrocks, U. Sattler, and S. Tobies. Practical reasgifor expressive descrip-
tion logics. InProceedingsof LPAR’99, 6th International Conference ogit.éor
Programming and Automated Reasoningmber 1705 in LNAI, pages 161-180.
Springer, 1999.

[6] A.L. Rector, Bechhofer S.K., C.A. Goble, I. Horrocks, Wan W.A., and
Solomon W.D. The grail concept modelling language for maidierminology.
Artificial Intelligence in Medicing9:139-171, 1997.

