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Abstract Currently computers are changing from single isolated devices to entry points into
a worldwide network of information exchange and business transactions. Therefore,
support in the exchange of data, information, and knowledge is becoming the key issue in
computer technology today. Ontologies provide a shared and common understanding of a
domain that can be communicated between people and across application systems.
Ontologies will play a major role in supporting information exchange processes in various
areas. A prerequisite for such a role is the development of a joint standard for specifying
and exchanging ontologies. This paper deals with precisely this necessity. We will present
OIL which is a proposal for such a standard. It is based on existing proposals such as
OKBC, XOL and RDF, and enriches them with necessary features for expressing rich
ontologies. The paper presents the motivation, underlying rationale, modeling primitives,
syntax, semantics, and tool environment of OIL. With OIL, we want to make a proposal
that initiates a discussion leading to a useful and well defined consensus amongst a large
community which could use such an approach. 
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1 Introduction and Motivation

Ontologies are a popular research topic in various communities such as knowledge engineering,
natural language processing, cooperative information systems, intelligent information integration, and
knowledge management. They provide a shared and common understanding of a domain that can be
communicated between people and across application systems. They have been developed in
Artificial Intelligence to facilitate knowledge sharing and reuse. Recent articles covering various
aspects of ontologies can be found in [Uschold & Grüninger, 1996], [van Heijst et al., 1997], [Studer
et al., 1998], [Benjamins et al., 1999 (a)], [Gomez Perez & Benjamins, 1999], [Fensel, 2000]. An
ontology provides an explicit conceptualization (i.e., meta information) that describes the semantics of
the data. They have a function similar to a database schema. Some differences are:1

• A language for defining ontologies is syntactically and semantically richer than common
approaches for databases.

• An ontology must be a shared and consensual terminology because it is used for information
sharing and exchange.

• An ontology provides a domain theory and not the structure of a data container.

Currently computers are shifting from being single isolated devices to becoming entry points into a
worldwide network of information exchange and business transactions. Given the exponential growth
of on-line information available, an automatic processing of this information becomes necessary for
keeping things maintainable and accessible. Automatic processing of information requires a machine-
understandable representation of its semantics. Providing shared and common domain structures
becomes essential and ontologies will therefore become a key asset in information exchange -- being
used to describe the structure and semantics of information exchange. Such technologies will play a
key role in areas such as knowledge management and electronic commerce, which are market areas
with incredible growth potential.

In the area of information systems and intelligent information integration, we can distinguish different
integration tasks that have to be solved in order to achieve a completely integrated access to
information [Stuckenschmidt, submitted]:

• Technical Integration: This task is concerned with network technology and communication
protocols, ensuring that the different information sources can communicate at the physical level.
In the last decade, the Internet and the World Wide Web have established a stable infrastructure
for exchanging large amounts of information from all over the world. A widely shared and stable
set of protocols (TCP/IP, HTTP, FTP etc.) now make it possible that information from web-pages,
web-connected data-bases, and web-enabled programs can, in principle, be readily accessed.

• Syntactic Integration: Once information sources can exchange information “in principle”, they
must agree on a common syntax for exchanging such information. In the WWW, HTML has been
serving this purpose rather well up to now. XML is rapidly gaining importance in this area.

• Semantic integration: A problem that goes beyond syntactic integration is the mapping of the
semantics of terms from different information sources, even when these terms have been
expressed using the same syntactic structures: e.g. even when two applications use XML as their
interchange format, how can we be sure that they use the same vocabulary, and that the words in

1.  See [Klein et al., 2000], for an elaborated comparison of database schemes and ontologies.
2
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this vocabulary mean the same thing?2

As we already pointed out, ontologies are good candidates for providing the shared and common
domain structures which are required for a truly semantic integration of information sources. The
question then becomes: how will we describe such ontologies? A prerequisite for such a widespread
use of ontologies for information integration and exchange is the achievement of a joint standard for
describing ontologies. Take the area of databases as an example. The huge success of the relational
model would never have been possible without the SQL standard that provided an implementation-
independent way for storing and accessing data. Any approach that tries to achieve such a standard for
the areas of ontologies has to answer these questions: What are the appropriate modeling primitives
for representing ontologies? How can we define their semantics? and What is the appropriate syntax
for representing ontologies? In the US, research funding agencies have already recognized the
importance of such issues in setting up the DAML program3, which aims at a machine processable
semantics of information sources which are accessible to agents.

In this paper we present a proposal for such a standard way of expressing ontologies based on using
new web standards like XML schemas and RDF schemas: the Ontology Inference Layer. It is
important to note that we intend OIL to be extensible, and that only the core language is described in
this paper. This language has been designed so that:

• It provides most of the modeling primitives commonly used in frame-based Ontologies.

• It has a simple, clean, and well defined semantics based on Description Logic.

• Automated reasoning support (e.g., class consistency and subsumption checking) can be provided.

It is envisaged that this core language will be extended in the future with sets of additional primitives
covering areas such as concrete data types (e.g., numbers and strings) and extensional class
definitions, with the proviso that full reasoning support may not be available for ontologies using such
primitives. A further level of extension could include modelling primitives such as defaults, fuzzy/
probabilistic definitions, additional collection types (e.g., bags and lists), and a more expressive
axiomatic language. In a nutshell, we do not want to present the final version of OIL in this paper. We
want to make a proposal opening the discussion process that may finally lead to a useful and well
defined consensus amongst a large community making use of such an approach.

This paper is organized as follows. Section 2 provides the general background for the discussion on
OIL (i.e., our position). Section 3 provides the language primitives of OIL and discusses technical
support for OIL. We also sketch possible directions for extending OIL. Section 4 compares OIL with
other ontology languages and web standards such as XML and RDF. Finally, a short summary is
provided in Section 5. The appendix provides syntax definitions of OIL in XML and RDF plus a
formal semantics of OIL.

2.  More precisely, ontologies are used for the semantic integration of information sources. The language we provide for ontology
interchange is not for semantic integration of ontologies but for ontology interchange via reuse (i.e., reusing an ontology written in
another language). We do not deal with the integration of heterogeneous ontologies in this paper.
3.  http://www.darpa.mil/iso/ABC/BAA0007PIP.htm.
3
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2 The Three Roots of OIL

In this Section, we will first explain the three roots upon which OIL is based. Then we will show why
we believe that the existing proposal for an ontology interchange language (Ontolingua, [Gruber,
1993], [Farquhar et al., 1997]) is not appropriate as a standard ontology language for the web. Then
the relationships of OIL with OKBC and RDF are sketched out. These will be discussed further in
Section 4.

2.1 The three roots of OIL

OIL unifies three important aspects provided by different communities (see Figure 1): formal
semantics and efficient reasoning support as provided by Description Logics, epistemologically rich
modeling primitives as provided by the Frame community, and a standard proposal for syntactical
exchange notations as provided by the Web community.

Description Logics (DL). DLs describe knowledge in terms of concepts and role restrictions that are
used to automatically derive classification taxonomies. The main effort of the research in knowledge
representation is in providing theories and systems for expressing structured knowledge and for
accessing and reasoning with it in a principled way. DLs (cf. [Brachman & Schmolze, 1985], [Baader
et al., 1991]), also known as terminological logics, form an important and powerful class of logic-
based knowledge representation languages.1 They result from early work on semantic networks, and
defined a formal semantics for them. DLs attempt to find a fragment of first-order logic with high
expressive power which still has a decidable and efficient inference procedure (cf. [Nebel, 1996]).
Implemented systems include BACK, CLASSIC, CRACK, FLEX, K-REP, KL-ONE, KRIS, LOOM,

1.  http://dl.kr.org/. Links to most papers, project, and research events in this area can be found here.

Fig. 1    The three roots of OIL.

OIL

Description Logics:
Formal Semantics &
Reasoning Support

Frame-based systems:
Epistemological Modeling
Primitives

Web languages:
XML- and RDF-based syntax
4
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and YAK.2 A distinguishing feature of DLs is that classes (usually called concepts) can be defined
intensionally in terms of descriptions that specify the properties that objects must satisfy to belong to
the concept. These descriptions are expressed using a language that allows the construction of
composite descriptions, including restrictions on the binary relationships (usually called roles)
connecting objects. Various studies have examined extensions of the expressive power for such
languages and the trade-off in computational complexity for deriving is-a relationships between
concepts in such a logic (and also, although less commonly, the complexity of deriving instance-of
relationships between individuals and concepts). Despite the discouraging theoretical complexity
which results, there are now efficient implementations for DL languages (cf. [Borgida & Patel-
Schneider, 1994], [MacGregor, 1994], [Horrocks & Patel-Schneider, 1999]), see for example DLP3

and the FaCT system.4 OIL inherits from Description Logic its formal semantics and the efficient
reasoning support developed for these languages. In OIL, subsumption is decidable and with FaCT we
can provide an efficient reasoner for this. In general, subsumption is only one of several reasoning
tasks for working with an ontology. Other reasoning tasks are, for example, instance classification,
query subsumption and query answering over classes and instances, navigation through ontologies,
etc. However, many of them can be reformulated in terms of subsumption checking. Others may lead
to different super- and subsets of the current OIL language version. The current version of OIL can be
seen as a starting point for exploring the space of possible choices in designing Ontology languages
and characterizing them in terms of their pros and cons.

Frame-based systems. The central modeling primitives of predicate logic are predicates. Frame-
based and object-oriented approaches take a different point of view. Their central modeling primitives
are classes (i.e., frames) with certain properties called attributes. These attributes do not have a global
scope but are only applicable to the classes they are defined for (they are typed) and the ”same”
attribute (i.e., the same attribute name) may be associated with different value restrictions when
defined for different classes. A frame provides a certain context for modeling one aspect of a domain.
Many additional refinements of these modeling constructs have been developed and have led to the
incredible success of this modeling paradigm. Many frame-based systems and languages have been
developed, and under the name object-orientation the paradigm has also conquered the software
engineering community. Therefore, OIL incorporates the essential modeling primitives of frame-
based systems into its language. OIL is based on the notion of a concept and the definition of its
superclasses and attributes. Relations can also be defined not as attributes of a class, but as
independent entities having a certain domain and range. Like classes, relations can be arranged in a
hierarchy. We will explain the difference between OIL and pure Description Logics using their
different treatments of attributes. In DLs, roles are not defined for concepts. Actually, concepts are
defined as subclasses of role restriction. One could rephrase this in a frame context as follows: a class
is a subclass of its attribute definitions (i.e., all instances of the class must fulfil the restrictions defined
for the attributes). However, asking which roles could be applied to a class does not make much sense
for a DL, as nearly all slots can be applied to a class. With frame-based modeling we make the implicit
assumption that only those attributes can be applied to a class that are defined for this class.

Web standards: XML and RDF. Modeling primitives and their semantics are one aspect of an
Ontology Exchange Language. In addition we have to decide about its syntax. Given the current
dominance and importance of the WWW, a syntax of an ontology exchange language must be
formulated using existing web standards for information representation. As already shown with XOL5

2.  http://www.research.att.com/sw/tools/classic/imp-systems.html
3.  http://www.bell-labs.com/user/pfps/
4.  http://www.cs.man.ac.uk/˜horrocks/software.html We will discuss later in the paper the use of FaCT as an inference engine for OIL.
5
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(cf. [Karp et al., 1999], [McEntire et al., 1999]), XML can be used as a serial syntax definition
language for an ontology exchange language. The BioOntology Core Group6 recommends the use of a
frame-based language with an XML syntax for the exchange of ontologies for molecular biology. The
proposed language is called XOL. The ontology definitions that XOL is designed to encode include
both schema information (meta-data), such as class definitions from object databases, as well as non-
schema information (ground facts), such as object definitions from object databases. The syntax of
XOL is based on XML and the modeling primitives and semantics of XOL are based on OKBC-Lite.
OIL is closely related to XOL and can be seen as an extension of XOL. For example, XOL allows only
necessary but not sufficient class definitions (i.e., a new class is always a sub-class of and not exactly
equal to its specification) and only class names but not class expressions (except for the limited form
of expression provided by slots and their facets) can be used in defining classes. The XML syntax of
OIL was primarily defined as an extension of XOL, although, as we said above for OKBC, we omit
some of the original language primitives. Further candidates for a web-based syntax for OIL are RDF
and RDFS. The Resource Description Framework (RDF)7 (cf. [Miller, 1998], [Lassila &
Swick,1999]) provides a means for adding semantics to a document without making any assumptions
about the structure of the document. RDF is an infrastructure that enables the encoding, exchange and
reuse of structured meta data. RDF schema (RDFS) [Brickley & Guha, 2000] provides a basic type
schema for RDF. Objects, Classes, and Properties can be described. Predefined properties can be used
to model instance of and subclass of relationships as well as domain restrictions and range restrictions
of attributes. In relation to ontologies, RDF provides two important contributions: a standardized
syntax for writing ontologies, and a standard set of modeling primitives like instance of and subclass
of relationships.

2.2 Why not Ontolingua?

Ontolingua8 (cf. [Gruber, 1993], [Farquhar et al., 1997]) is an existing proposal for a Ontology
Interchange Language. It was designed to support the design and specification of ontologies with a
clear logical semantics based on KIF9. Ontolingua extends KIF with additional syntax to capture the
intuitive bundling of axioms into definitional forms with ontological significance and a Frame
Ontology to define object-oriented and frame-language terms.10 The set of KIF expressions that
Ontolingua allows is defined in an ontology, called the Frame Ontology. The Frame Ontology
specifies, in a declarative form, the representation primitives that are often supported with special-
purpose syntax and code in object-centered representation systems (e.g., classes, instances, slot
constraints, etc.). Ontolingua definitions are Lisp-style forms that associate a symbol with an

5.  http://www.ai.sri.com/pkarp/xol/
6.  http://smi-web.stanford.edu/projects/bio-ontology/
7.  http://www.w3c.org/Metadata/
8.  http://ontolingua.stanford.edu/
9.  The Knowledge Interchange Format KIF ([Genesereth, 1991], [Genesereth & Fikes, 1992]) is a language designed for use in the
interchange of knowledge among disparate computer systems. KIF is based on predicate logic but provides a Lisp-oriented syntax for it.
Semantically, there are four categories of constants in KIF: object constants, function constants, relation constants, and logical constants.
Object constants are used to denote individual objects. Function constants denote functions on those objects. Relation constants denote
relations. Logical constants express conditions about the world and are either true or false. KIF is unusual among logical languages in
that there is no syntactic distinction among these four types of constants; any constant can be used where any other constant can be used.
This feature allows the reification of formulas as terms used in other formulas, making it possible to make statements over statements.
This introduces second-order features in KIF, which provides an important extension of first-order logic.
10.  The Ontolingua Server as described in [Farquhar et al., 1997] has extended the original language by providing explicit support for
building ontological modules that can be assembled, extended, and refined in a new ontology.
6
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argument list, a documentation string, and a set of KIF sentences labeled by keywords. An Ontolingua
ontology is made up of definitions of classes, relations, functions, objects distinguished, and axioms
that relate these terms.

The problem with Ontolingua is its high expressive power, which is provided without any means to
control it. Not surprisingly, no reasoning support is provided with Ontolingua.11 OIL takes the
opposite approach. We start with a very simple and limited core language. The web has proven that
restriction of initial complexity and controlled extension when required is a very successful strategy.
OIL takes this lesson to heart. We already mentioned that the focus on different reasoning tasks may
lead to different extensions. We have already shown in [Klein et al., 2000] that the current
expressiveness of OIL is not sufficient for some purposes (see also Section 3.4). This may lead to a
family of controlled extensions to the language. This will give us versions with different expressive
power which can be applied in different cases as required. We believe that this approach is preferable
to the definition of one single, large and unmanageable language.

In general there are two strategies for achieving a standard: Defining a “small” set of modeling
primitives that are common across the community, and defining a proper semantics for them; or
defining a “large” set of modeling primitives that are present in some of the approaches in a
community and glue them together. Both may lead to success. The first approach can be illustrated
with HTML. Its first version was very simple and limited but therefore allowed the Web to catch on
and become a worldwide standard. Meanwhile we have HTML version 5, XHTML, and XML. So,
beginning with a core set, and successively refining and extending it, has proven to be a successful
strategy. The second approach has been taken by the UML community by designing a model that is
broad enough to cover all its modeling concepts. This leads to ambiguity and redundancy in modeling
primitives and sometimes a precise semantic definition is lacking. However, UML has been adopted
by the software industry as one of the major approaches in the meantime and is therefore also a
success. Obviously, these two opposite approaches to standardization may both work successfully.
We have chosen the first approach in developing OIL. This stems from the purpose for which OIL is
designed. It should provide machine understandable semantics of domain theories. This will be used
in the Web context to provide machine processable semantics of information sources helping to make
Tim Berners-Lee’s vision of a semantic web come true. Therefore, clear definitions of semantics and
reasoning support are essential.

2.3 OIL and OKBC

A simple and well-defined semantics is of great importance for an ontology interchange language
because it is used to transfer knowledge from one context to another. An ontology exchange standard
already exists for frame-based systems: the Open Knowledge Base Connectivity (OKBC)12

([Chaudhri et al., 1997], [Chaudhri et al., 1998]). OKBC is an API (application program interface) for
accessing frame-based knowledge representation systems. Its knowledge model supports features
most commonly found in frame-based knowledge representation systems, object databases, and
relational databases. OKBC-Lite extracts most of the essential features of OKBC, while not including
some of its more complex aspects. OKBC has also been chosen by FIPA13 as an exchange standard

11.  It may be possible to provide reasoning support for Ontolingua using ATP (see http://www.ksl.Stanford.EDU/software/ATP/), but
neither the system nor any proof of its correctness is available.
12.  http://www.ai.sri.com/˜okbc/
7
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for ontologies (cf. FIPA 98 Specification, Part 12: Ontology Service [FIPA, 1998]). OIL shares many
features with OKBC and defines a clear semantics and XML-oriented syntax for them. A detailed
comparison is made in Section 4 of this paper.

2.4 OIL and RDF

In the same way as OIL provides an extension of OKBC (and is therefore downwards compatible with
OKBC), OIL provides an extension of RDF and RDFS. Based on its RDF syntax, ontologies written
in OIL are valid RDF documents. OIL extends the schema definition of RDFS with additional
language primitives not yet present in RDFS. Based on these extensions, an ontology in OIL can be
expressed in RDFS. A detailed comparison is made in Section 4 of this paper.

13.  http://www.fipa.org
8
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3 The OIL Language

This section provides an informal description of the modeling primitives, an example in OIL, its tool
environment, and a discussion of future extensions of OIL.

3.1 An informal description of OIL

In this section we will give an informal description of the OIL language. An example is provided in
Section 3.2 and a formal specification and semantics (both of the language and of the common
inference problems) will be given in Appendix C. To improve readability we will use a more compact
pseudo XML syntax where opening tags are indicated by bold faced text, grouping of sub-content is
indicated by indentation and closing tags are omitted.

An OIL ontology is a structure made up of several components, some of which may themselves be
structures, some of which are optional, and some of which may be repeated. We will write
component? to indicate an optional component, component+ to indicate a component that may be
repeated one or more times (i.e., that must occur at least once) and component* to indicate a
component that may be repeated zero or more times (i.e., that may be completely omitted). 

When describing ontologies in OIL we have to distinguish three different layers:

• The object level, where concrete instances of an ontology are described. We do not deal with this
level in this paper. The exchange of application-specific information about instances is currently
beyond the scope of OIL. We describe an XML syntax based on an XML schema derived from
OIL in [Klein et al., 2000].

• The first meta level, where the actual ontological definitions are provided. Here we define the
terminology that may be instantiated at the object level. OIL is mainly concerned with this level. It
is a means for describing structured vocabulary with well-defined semantics. The main
contribution of OIL is with regard to this level.

• The second meta-level (i.e., the meta-meta level) is concerned with describing features of such an
ontology, like author, name, subject, etc. For representing metadata of ontologies, we make use of
the Dublin Core Metadata Element Set (Version 1.1) [Dublin Core] standard. The Dublin Core is
a meta-data element set intended to facilitate the discovery of electronic resources. It consists of
15 metadata elements (Title, Creator, Subject, Description, Publisher, Contributor, Date, Type,
Format, Identifier, Source, Language, Relation, Coverage, and Rights) and is the result of
international efforts consisting of an ongoing series of workshops. Originally conceived for
author-generated descriptions of web resources, it is now widely used and has attracted the
attention of resource description communities such as museums, libraries, government agencies,
and commercial organizations.

OIL is concerned with the first and second meta-levels. The former is called the ontology definition
and the latter is called the ontology container. We will discuss both elements of an ontology
specification in OIL. We start with the ontology container and will then discuss the backbone of OIL,
the ontology definition.
9
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3.1.1 Ontology Container

We adopt the components as defined by the Dublin Core Metadata Element Set, Version 1.1 for the
ontology container part of OIL. Although every element in the Dublin Core set is optional and
repeatable, in OIL some elements are required or have a predefined value. Required elements are
written as element+. Some of the elements can be specialized with a qualifier which refines the
meaning of that element. In our shorthand notation we will write element.qualifier. The precise
syntax based on RDF is given in [Miller et al., 1999], and in the appendix. Here we provide our
pseudo-XML syntax explained above.

title+ The name of the ontology, e.g., “African animals”.

creator+ The name of an agent (i.e., a person, a group of persons, or a software agent) that created
the ontology.

subject* Keywords or classification code describing the subject the ontology deals with.

description Natural language text describing the content of the ontology, e.g., “A didactic example
ontology describing African animals”. Besides this description, there is one special description
element required, which has the release qualifier:

description.release The version of the ontology (a number), e.g, 1.01.

publisher* Defining the entity that is responsible for making the resource available.

contributor* The name of an agent (i.e., a person, a group of persons, or a software agent) that
helped to create the ontology.

date* The date the ontology has been created, modified, or made available (see ISO 8601 for
format instructions).

type+ The nature of the resource. A predefined and required value is ontology, although this value
is not yet in the Working Draft of the resource types [Guenther, 1999].

format* The digital manifestation of the resource, recommended as a value is the MIME type of
the resource, i.e. “text/xml”.

identifier+ The URI of the ontology.

source* Optional references (URI) to sources from which the ontology is derived. E.g., a reference
to a plain text description of the domain on which the ontology is based.

language+ The language of the ontology. Obviously, one predefined and required value is “OIL”.
Other elements can contain the language of the content of the ontology, according to RFC 1766.

relation* A list of references to other OIL ontologies. It is recommended to list all ontologies that
are imported in the definition section with a hasPart qualifier. Other possible and meaningful
qualifiers are replaces, isReplacedBy, requires and isRequiredBy. For example, to list an
10
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imported ontology, we write: relation.hasPart “http://www.ontosRus.com/animals/
jungle.onto”. 

rights* Information about rights held in and over the ontology.

3.1.2 An Ontology specified in OIL

Apart from various header fields encapsulated in its container, an OIL ontology consists of a set of
definitions: 

import? A list of references to other OIL modules that are to be included in this ontology. Each
reference consists of a URI specifying where the module is to be imported from, e.g., “http:/
/www.ontosRus.com/animals/jungle.onto”. XML schemas and OIL provide the
same (limited) means for composing specifications. Specifications can be included and the
underlying assumption is that names of different specifications are different (via different
prefixes).1

rule-base? A list of rules (sometimes called axioms or global constraints) that apply to the
ontology. At present, the structure of these rules is not defined (they can be Horn clauses, DL
style axioms etc.), and they have no semantic significance. The rule base consists simply of a
type (a string) followed by the unstructured rules (a string).2

definition* Zero or more class definitions (class-def) and slot definitions (slot-def), the structure
of which will be described below.

A class definition (class-def) associates a class name with a class description. A class-def consists of
the following components:

type? The type of definition. This can be either primitive or defined; if omitted, the type defaults
to primitive. When a class is primitive, its definition (i.e., the combination of the following
subclass-of and slot-constraint components) is taken to be a necessary but not sufficient
condition for membership in the class. For example, if the primitive class elephant is defined to
be a sub-class of animal with a slot constraint stating that skin-color must be grey, then all
instances of elephant must necessarily be animals with grey skin, but there may be grey-
skinned animals that are not instances of elephant. When a class is defined, its definition is
taken to be a necessary and sufficient condition for membership of the class. For example, if the
defined class carnivore is defined to be a sub-class of animal with a slot constraint stating that
it eats meat, then as all instances of carnivore are necessarily meat eating animals, and every
meat eating animal is also an instance of carnivore.

name The name of the class (a string).

documentation? Some documentation describing the class (a string).

1.  This definition is embryonal. See Section 3.4 for more details.
2.  This definition is embryonal. See Section 3.4 for more details.
11
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subclass-of? A list of one or more class-expressions, the structure of which will be described
below. The class being defined in this class-def must be a sub-class of each of the class-
expressions in the list.

slot-constraint* Zero or more slot-constraints, a special kind of class-expression, the structure of
which will be described below (note that a slot-constraint defines a class). The class being
defined in this class-def must be a subclass of each slot-constraint.

A class-expression can be either a class name, a slot-constraint, or a boolean combination of class
expressions using the operators AND, OR or NOT. The structure of these boolean combinations is as
follows:

AND: A list of two or more class expressions that is to be treated as a conjunction. For example:
Meat AND Fish

defines the class whose instances are all those individuals that are instances of both the class
Meat and the class Fish.

OR: A list of two or more class expressions that is to be treated as a disjunction. For example:
 Meat OR Fish

defines the class whose instances are all those individuals that are instances of either the class
Meat or the class Fish.

NOT: An expression taking as a parameter a single class expression that is to be negated. For
example, 

NOT Meat 
defines the class whose instances are all those individuals that are not instances of the class
Meat.

Note that class expressions are recursively defined, so that arbitrarily complex expressions can be
formed. For example

NOT (Meat OR Fish)
defines the class whose instances are all those individuals that are not an instances of either the class
Meat or the class Fish.

A slot-constraint (a slot may also be called a role or an attribute) is a list of one or more constraints
(restrictions) applied to a slot. A slot is a binary relation (i.e., its instances are pairs of individuals), but
a slot-constraint is actually a class definition — its instances are those individuals that satisfy the
constraint(s). For example, if the pair (Leo, Willie) is an instance of the slot eats, Leo is an instance
of the class lion and Willie is an instance of the class wildebeest, then Leo is also an instance of the
value constraint wildebeest applied to the slot eats. A slot-constraint consists of the following
components:

name A slot name (a string). The slot is a binary relation that may or may not be defined in the
ontology. If it is not defined, then it is assumed to be a binary relation with no globally
applicable constraints, i.e., any pair of individuals could be an instance of the slot.

has-value? A list of one or more class-expressions. Every instance of the class defined by the slot-
constraint must be related via the slot relation to an instance of each class-expression in the list.
For example, the has-value constraint:
12



12. August 2000
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

13.10
13.11
13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22
13.23
13.24
13.25
13.26
13.27
13.28
13.29
13.30
13.31
13.32
13.33
13.34
13.35
13.36
13.37
13.38
13.39
13.40
13.41
13.42
13.43
13.44

slot-constraint eats
has-value zebra, wildebeest

defines the class each instance of which eats some instance of the class zebra and some
instance of the class wildebeest. Note that this does not mean that instances of the slot-
constraint eat only zebra and wildebeest: they may also be partial to a little gazelle when they
can get it. has-value expresses the existential quantifier of Predicate logic: for each instance of
the class, there exists at least one value for this slot that fulfils the range restriction.

value-type? A list of one or more class-expressions. If an instance of the class defined by the slot-
constraint is related via the slot relation to some individual x, then x must be an instance of each
class-expression in the list. For example, the value-type constraint:

slot-constraint eats
value-type meat

defines the class each instance of which eats nothing that is not meat. Note that this does not
not mean that instances of the slot-constraint eat anything at all. value-type expresses the
universal (for-all) quantifier of Predicate logic: for each instance of the class, every value for
this slot must fulfill the range restriction.

max-cardinality? A non-negative integer n followed by a class-expression. An instance of the
class defined by the slot-constraint can be related to at most n distinct instances of the class-
expression via the slot relation. The class expression can be omitted, in which case an instance
of the class defined by the slot-constraint can be related to at most n distinct individuals
(regardless of their class) via the slot relation. For example, the max-cardinality constraint:

slot-constraint friend
max-cardinality 2 antelope

defines the class, each instance of which has at most 2 friends that are antelopes.

min-cardinality? A non-negative integer n followed by a class-expression. An instance of the
class defined by the slot-constraint must be related to at least n distinct instances of the class-
expression via the slot relation. The class expression can be omitted, in which case an instance
of the class defined by the slot-constraint must be related to at least n distinct individuals
(regardless of their class) via the slot relation. For example, the min-cardinality constraint:

slot-constraint friend
min-cardinality 3 wildebeest

defines the class, each instance of which has at least 3 friends that are wildebeests. Note that
conflicting cardinality constraints is one way in which logical inconsistencies can arise in an
ontology. For example, a class to which both the above min-cardinality and max-cardinality
constraints applied would be logically inconsistent (could have no instances) if the ontology
correctly represented the fact that a wildebeest is a kind of antelope.

cardinality? A non-negative integer n followed (optionally) by a class-expression. This is simply
shorthand for a pair of min-cardinality and min-cardinality constraints, both with the same n
and class-expression. For example,

slot-constraint friend
cardinality 1 zebra

is equivalent to
slot-constraint friend

max-cardinality 1 zebra
13
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min-cardinality 1 zebra
and defines the class, each instance of which has exactly 1 friend that is a zebra.

A slot definition (slot-def) associates a slot name with a slot description. A slot description specifies
global constraints that apply to the slot relation, for example that it is a transitive relation. A slot-def
consists of the following components:

name The name of the slot (a string).

documentation? Some documentation describing the slot (a string).

subslot-of? A list of one or more slots. The slot being defined in this slot-def must be a sub-slot of
each of the slots in the list. For example,

slot-def daughter-of
subslot-of child-of

defines a slot daughter-of that is a subslot of child-of, i.e., every pair (x,y) that is an instance of
daughter-of must also be an instance of child-of.

domain? A list of one or more class-expressions. If the pair (x,y) is an instance of the slot relation,
then x must be an instance of each class-expression in the list. For example,

slot-def eats
domain animal

defines a slot eats such that any individual that eats another individual must be an instance of
animal.

range? A list of one or more class-expressions. If the pair (x,y) is an instance of the slot relation,
then y must be an instance of each class-expression in the list. For example,

slot-def friend
range animal

defines a slot friend such that any individual that is a friend of another individual must be an
instance of animal. Note that this is shorthand for adding a value-type slot-restriction to the list
of classes in the domain of the slot.

inverse? The name of a slot S that is the inverse of the slot being defined. If the pair (x,y) is an
instance of the slot S, then (y,x) must be an instance of the slot being defined. For example,

slot-def eats
inverse eaten-by

defines the inverse of the slot eats to be the slot eaten-by, i.e., if x eats y then y is eaten-by x.

properties? A list of one or more properties of the slot. Valid properties are:

transitive The slot is transitive, i.e., if both (x,y) and (y,z) are instances of the slot, then (x,z)
must also be an instance of the slot. For example,

slot-def bigger-than
properties transitive

defines the slot bigger-than to be transitive, so if Jumbo the elephant is bigger-than
Robbie the rhino, and Robbie the rhino is bigger-than Walter the warthog, then Jumbo
must be bigger-than Walter.
14
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symmetric The slot is symmetric, i.e., if (x,y) is an instance of the slot, then (y,x) must also be
an instance of the slot. For example,

slot-def lives-with
properties symmetric

defines the slot lives-with to be symmetric, so if Zoe the zebra lives-with Willie the
wildebeest, then Willie also lives-with Zoe.

3.2 An example OIL ontology

The following example of an OIL ontology illustrates some of the key features of the language. The
ontology is intended purely for didactic purposes and is not to be taken as an example of good
modeling practice.

ontology-container
title “African animals”
creator “Ian Horrocks”
subject “animal, food, vegetarians”
description “A didactic example ontology describing African animals”
description.release “1.01”
publisher “I. Horrocks”
type “ontology”
format “pseudo-xml”
format “pdf”
identifier “http://www.cs.vu.nl/~dieter/oil/TR/oil.pdf”
source “http://www.africa.com/nature/animals.html”
language “OIL”
language “en-uk”
relation.hasPart “http://www.ontosRus.com/animals/jungle.onto”

ontology-definitions
slot-def eats

inverse is-eaten-by
slot-def has-part

inverse is-part-of
properties transitive

class-def animal
class-def plant

subclass-of NOT animal
class-def tree

subclass-of plant
class-def branch

slot-constraint is-part-of
has-value tree

class-def leaf
slot-constraint is-part-of
15
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has-value branch
class-def defined carnivore

subclass-of animal
slot-constraint eats

value-type animal
class-def defined herbivore

subclass-of animal
slot-constraint eats

value-type plant OR (slot-constraint is-part-of has-value plant)
class-def herbivore

subclass-of NOT carnivore
class-def giraffe

subclass-of animal
slot-constraint eats

value-type leaf
class-def lion

subclass-of animal
slot-constraint eats

value-type herbivore
class-def tasty-plant

subclass-of plant
slot-constraint eaten-by

has-value herbivore, carnivore

Some points to note in the above ontology are:

• The classes plant and animal are made disjoint by defining plant to be a subclass of NOT
animal.

• The class carnivore is a defined class, and lion can be recognized as a sub-class of carnivore
because of its definition.

• The class herbivore is a defined class, and giraffe can be recognized as a sub-class of herbivore
because of its definition. However, in this case the inference is a little more complex and is only
valid because has-part is transitive and is-part-of is the inverse of has-part.

• The classes herbivore and carnivore are made disjoint using a second class definition for
herbivore (OIL supports multiple class definitions). Note that if “subclass-of NOT carnivore”
were included in the first definition, then giraffe would not be recognized as a sub-class of
herbivore (because it is not declared to be sub-class of NOT carnivore).

• The class tasty-plant is inconsistent. This is because tasty-plant is a kind of plant that is eaten by
both herbivores and carnivores, but we have already stated that carnivore eat only animals,
and that animal and plant are disjoint.

3.3 Tools

One of the major benefits of OIL is that it comes with a range of tools to support ontology design,
exchange, integration and verification. In particular, it is possible to use the FaCT reasoner to check
16
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the consistency of all the class definitions in an ontology, and to discover sub-class/super-class
(subsumption) relations that are implied by the definitions in the ontology but not explicitly stated.
FaCT (Fast Classification of Terminologies) is a Description Logic (DL) classifier that can also be
used for consistency checking in modal and other similar logics. The FaCT system includes two
reasoners, one for the logic SHF and the other for the logic SHIQ, both of which use optimized
implementations of sound and complete tableaux algorithms. FaCT’s most interesting features are its
expressive logic (in particular the SHIQ reasoner), its optimized tableaux implementation (which has
now become the standard for DL systems), and its CORBA based client-server architecture.

3.3.1 Background

The logic implemented in FaCT is based on ALCR+, an extension of ALC to include transitive roles
[Sattler, 1996]. For compactness, this logic has be called S (due to its relationship with the proposition
multi-modal logic S4(m) [Schild, 1991a]). SHF extends S with a hierarchy of roles and functional roles
(attributes), while SHIQ adds inverse roles and fully qualified number restrictions.

The SHIQ reasoner is of particular interest, both from a theoretical and a practical viewpoint. Adding
inverse roles to SHF (resulting in SHIF) leads to the loss of the finite model property, and this has
necessitated the development of a more sophisticated double dynamic blocking strategy that allows
the algorithm to find finite representations of infinite models while still guaranteeing termination
[Horrocks & Sattler, 1999]. Moreover, when SHIF is generalized to SHIQ, it is necessary to restrict
the use of transitive roles in number restrictions in order to maintain decidability [Horrocks et al.,
1999]. SHIQ is also of great practical interest as it is powerful enough to encode the logic DLR, and
can thus be used for reasoning about a wide range of conceptual data models, e.g., Extended Entity-
Relationship (EER) schemas [Calvanese et al., 1998a].

3.3.2 Implementation

FaCT is implemented in Common Lisp, and has been run successfully with several commercial and
free Lisps, including Allegro, Liquid (formerly Lucid), Lisp works and GNU. Binaries (executable
code) are now available (in addition to the source code) for Linux and Windows systems, allowing
FaCT to be used without a locally available Lisp. In order to make the FaCT system usable in realistic
applications, a wide range of optimization techniques are used to implement the satisfiability testing
algorithms. These include axiom absorption, lexical normalization, semantic branching search,
simplification, dependency directed backtracking, heuristic guided search and caching [Horrocks &
Patel-Schneider, 1999]. The use of these (and other) optimization techniques has now become
standard in tableaux-based DL implementations [Patel-Schneider, 1998], [Haarslev et al., 1998].
Work is underway on the development of Abox reasoning for the FaCT system (reasoning with
individuals): a SHF Abox has recently been released [Tessaris & Gough, 1999] and a full SHIQ Abox
is being developed [Horrocks et al., submitted].

3.3.3 CORBA Interface

In addition to the standard KRSS functional interface [Patel-Schneider & Swartout, 1993], FaCT can
17
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also be configured as a classification and reasoning server using the Object Management Group’s
Common Object Request Broker Architecture (CORBA) [Bechhofer et al., 1999]. This approach has
several advantages: it facilitates the use of FaCT by non-Lisp client applications; the API is defined
using CORBA’s Interface Definition Language (IDL), which can be mapped to various target
languages; a mechanism is provided for applications to communicate with the DL system, either
locally or remotely; and server components can be added/substituted without client applications even
being aware of the change. This has allowed, for example, the successful use of FaCT’s reasoning
services in a (Java based) prototype EER schema integration tool developed as part of the DWQ
project [Calvanese et al., 1999].

3.3.4 Performance

FaCT’s optimizations are aimed specifically at improving the system’s performance when classifying
realistic ontologies and this results in a performance improvement of several orders of magnitude
when compared with older DL systems. This performance improvement is often so great that it is
impossible to measure precisely, as unoptimised systems are effectively non-terminating with
ontologies that FaCT is easily able to deal with [Horrocks & Patel-Schneider, 1999]. Taking a large
medical terminology ontology developed in the GALEN project [Rector et al., 1993] as an example,
FaCT is able to check the consistency of all 2,740 classes and determine the complete class hierarchy
in about 60 seconds of (450MHz Pentium III) CPU time.3 In contrast, the KRIS system [Baader &
Hollunder, 1991] was unable to complete the same task after several weeks of CPU time.

3.4 Current Limitations of OIL

Our starting point was to define a core language with the intention that additional (and possibly
important) features be defined as a set of extensions (still with clearly defined semantics). Modelers
will be free to use these language extensions, but it must be clear that this may compromise reasoning
support. This seems to us a better solution than trying to define a single “all things to all men”
language like Ontolingua. In this section we briefly discuss a number of features which are available
in other ontology modeling languages and which are not, or not yet, included in OIL. For each of these
features we briefly explain why we chose them, and mention future prospects where relevant.

Default reasoning: Although OIL does provide a mechanism for inheriting values from super-
classes, such values cannot be overwritten. As a result, such values cannot be used for the
purpose of modeling default values. If an attempt is made at “overwriting” an inherited attribute
value, this will simply result in inconsistent class definitions which have an empty extension.
For example, if we define the class “CS professor” with attribute “gender” and value “male”,
and we subsequently define a subclass for which we define the gender attribute as “female”, this
subclass will be inconsistent and have an empty extension (assuming that “male” and “female”
are disjoint).

Rules/Axioms: As discussed above, only a fixed number of algebraic properties of slots can be
expressed in OIL. There is no facility for describing arbitrary axioms that must hold for the

3.  Adding single classes and checking both their consistency and their position in the class hierarchy is virtually instantaneous.
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items in the ontology. Such a powerful feature is undoubtedly useful. The use of OIL as an
exchange language further justifies a more powerful axiom-language as you might need such
axioms to enforce the correct interpretation of the source ontology when mapping into OIL. The
lack of such an axiom-language is somewhat mitigated in OIL by the fact that we have a
powerful concept and slot definition language. The main limitation is that we do not have
composite definitions of relations. However, there is currently no broad support for any
particular choice in this matter. The main problems in this area are first, that it is difficult to
identify a common set of rule/axiom expressions that can be standardized, and second, that you
have to define properly how these axioms can be integrated with the other modeling primitives
of OIL.

Further algebraic properties: The lack of an axiom language can also be compensated for some-
what by extending the set of properties that can be specified for relations in OIL. Currently this
set contains inverse, transitivity and symmetry. Other reasonable candidates are reflexivity,
irreflexivity, antisymmetry, asymmetry, linearity (aRb bRa for any pair a,b), connectivity (aRb
or a=b or bRa for any pair a,b), partial order and total order. (Notice that some of these can be
defined in terms of each other), cf. [Staab & Mädche, 2000].

Modules: Section 3.1 presented a very simple construction to modularize ontologies in OIL. In
fact, this mechanism is identical to the namespace mechanism in XML and XML schema. It
amounts to a textual inclusion of the imported module, where name-clashes are avoided by
prefixing every imported symbol with a unique prefix indicating its original location. However,
much more elaborate mechanisms would be required for the structured representation of large
ontologies. Means of renaming, restructuring, and redefining imported ontologies must be
available. Future extensions will cover parameterized modules, signature mappings between
modules, and restricted export interfaces for modules. We will use the generic adapter concept
of UPML (cf. [Fensel et al., 1999a]) specialized to the fixed set of language primitives of OIL as
[Gennari et al., 1994], [Park et al., 1997] have developed for the fixed set of language primitives
of Protégé.

Using instances in class definitions: Results from research in description and modal logics show
that the computational complexity of such logics changes dramatically for the worse when
domain-instances are allowed in class definitions [Schaerf, 1994], [Blackburn & Seligman,
1998], [Areces et al., 1999]. For this reason, OIL currently does not allow the use of instances in
slot-values, or extensional definitions of classes (i.e., class definitions by enumerating the class
instances). It is not clear how serious a restriction this is for an ontology language, as ontologies
should, in general, be independent of specific instantiations—it may be that in many cases,
“individuals” can more correctly be replaced with a primitive class or classes.

Concrete domains: OIL currently does not support concrete domains (e.g., integers, strings, etc.).
This would seem to be a serious limitation for a realistic ontology language, and extensions of
OIL in this direction are probably required. The theory of concrete domains is well understood
[Baader & Hanschke, 1991], and it should be possible to add some restricted form of concrete
domains (but still with greater expressive power than XOL's numeric-minimum and numeric-
maximum slot constraints) to OIL's core language without compromising its decidability (but a
corresponding extension to the FaCT system would also be required if reasoning support is to be
provided).
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Limited Second-order expressivity: Many existing languages for ontologies (KIF, CycL [Lenat
& Guha, 1990], Ontolingua) include some form of reification mechanism, which allows the
treatment of statements of the language as objects in their own right, thereby making it possible
to express statements over these statements. A full second order extension would be clearly
undesirable (even unification is un-decidable in full 2nd order logic). However, much weaker
second order constructions already provide much if not all of the required expressivity without
causing any computational problems (in effect, they are simply 2nd order syntactic sugar for
what are essentially first order constructions). A precise characterization of such expressivity is
required in a future extension of OIL. OIL is currently very restricted. Only classes are provided,
not meta-classes or individuals.
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4 Comparing OIL with other approaches

This section compares OIL with other frame-based approaches and with emerging web standards such
as XML and RDF.

4.1 OIL and other frame-oriented approaches

As discussed in Section 2, the modeling primitives of OIL are based on those of XOL. OIL extends
XOL so as to make it more suitable for capturing ontologies defined using a logic-based approach
(such as used in DLs) in addition to the frame-based ontologies for which XOL (and OKBC) were
designed. The extensions are designed so that most valid XOL ontologies should also be valid OIL
ontologies. The exceptions are due to the omission of constructs in OIL for which reasoning support
(e.g., for class consistency and subsumption checking) could not be provided, either because their
semantics are unclear or because their inclusion would lead to the undecidability of the language.
However, it is envisaged that this core OIL will be extended in the future with sets of additional
primitives covering areas such as concrete data types (e.g., numbers and strings) and extensional class
definitions, with the proviso that full reasoning support may not be available for ontologies using such
primitives.

4.1.1 Frame-based versus logic-based

OIL is fundamentally frame based, partly for reasons of upward compatibility with XOL (as discussed
before), and partly because frame-based modeling is very intuitive for many users. Moreover, DL
approaches can be seen as an extension and generalization of the frame idea, with frames being
closely related to DL concepts and slots being very closely related to DL roles. The main differences
stem from the fact that frames generally provide quite a rich set of primitives, but impose very
restrictive syntactic constraints on how primitives can be combined and on how they can be used to
define a class. DLs on the other hand generally have a more restricted set of primitives (they are
constrained by requirements for clear semantics, decidability and the provision of practical reasoning
procedures), but allow primitives to be combined in arbitrary boolean expression and used to define
different kinds of class (in particular primitive classes, where the definition is taken to be a necessary
condition for membership of the class, and non-primitive classes, where the definition is taken to be
both a necessary and sufficient condition for membership of the class).

A central difference between frame-based approaches and approaches based on Description Logics
are that the former rely solely on explicit statements of class-subsumption, whereas the latter are able
to efficiently compute the subsumption relationship between classes on the basis of the intensional
definition of these classes. Other relations between classes such as disjointness, consistency etc., can
all be expressed in terms of the same subsumption relationship. The ability to automatically compute
these relations is important for verification of ontologies. This may be less important with small local
ontologies that are probably designed by one expert person. However, our intention is to exchange,
share, reuse and merge ontologies. In such a case, reasoning support can be very valuable tool. This
has been demonstrated even for database schema integration, which should be much easier than
integrating ontologies.
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4.1.2 How OIL extends XOL

It is the frame structure itself that restricts the way language primitives can be combined to define a
class. In XOL, class definitions consist of the specification of zero or more parent classes (from which
characteristics are inherited) and zero or more slots—binary relations whose characteristics can be
additionally restricted using slot facets (e.g., the range of the relation can be restricted using the value-
type facet). Viewed from a logical perspective, each slot (with its associated facets) defines a class
(e.g., a slot eats with the value-type junk-food defines the class of individuals who eat nothing but
junk food), and the frame is implicitly1 the class formed from the conjunction of all the slots and all
the parent classes. Consequently, each class must be defined by a conjunction of slots (which
themselves have a very restricted form) and other named classes. In contrast, DLs usually allow
language primitives to be combined in arbitrary boolean expressions (i.e., using conjunction,
disjunction and negation), as well as allowing class definitions to be used recursively wherever a class
name might appear. Moreover, XOL only provides one form of class definition statement. It is not
clear whether the resulting class is meant to be primitive or non-primitive: we will assume that it is
primitive.2

In our opinion, this very restricted form of class definition makes XOL (and indeed OKBC) unsuitable
as a standard ontology language: it makes it impossible to capture even quite basic DL ontologies and
precludes some very simple and intuitive kinds of class definition. For example, it is impossible to
define the class of vegetarian as the subclass of person such that everything they eat is neither meat
nor fish. On the one hand, the value of the value-type facet of the slot eats cannot be an expression
such as “not (meat or fish)”. On the other hand, because vegetarian must be primitive, there could
be individuals of type person who eat neither meat nor fish but who are not classified as
vegetarians.3 Another serious weakness of XOL class definitions (and those of OKBC) is that there is
no mechanism for specifying disjointness of classes, a basic modeling primitive that can be captured
even by many conceptual modeling formalisms used for database schema design.4 This makes it
impossible to capture the fact that the class male is disjoint from the class female. This is easy for a
DL, where the class female can simply be made a subclass of “not male”.

Another weakness of XOL (and OKBC) is that slots (relations) are very much second class citizens
when compared to classes. In particular, there is no support for a slot hierarchy and only restricted
kinds of properties that can be specified for relations. For example, it is not possible to define the slot
has-parent as a subslot of the has-ancestor, nor is it possible to specify that has-ancestor is a
transitive relation. The specification of this kind of slot hierarchy including transitive and non-
transitive relations is essential in ontologies dealing with complex physically composed domains such
as human anatomy [Rector et al., 1997] and engineering [Sattler, 1995].

Finally, the semantics of OKBC (on which XOL relies) are relatively informally specified, and have
idiosyncrasies that are difficult to either formalize or justify.

In OIL we propose to solve these problems by providing the language with a well defined semantics
and by extending XOL in the following ways.

• Arbitrary boolean expressions (called class expressions) are allowed wherever a class name can
appear.

1.  The OKBC semantics (on which XOL relies) are less than clear on this point, and on several other important points.
2.  In contrast, OKBC supports the definition of both primitive and non-primitive classes.
3.  This aspect of the definition can be captured in OKBC as non-primitive classes are supported.
4.  For example extended entity relationship (EER) modeling [Calvanese et al., 1998b].
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• A slot definition can be treated as a class and can be used in class expressions.

• Class definitions have an (optional) additional field that specifies whether the class is primitive or
non-primitive (the default is primitive).

• A class can be used as a slot has-value and is taken to specify that the slot must have at least one
filler that is an instance of the given class.

• Global slot definitions are extended to allow the specification of parent slots and of relation
properties such as transitive, and symmetrical.

• The additional rules governing XOL documents (see [Karp et al., 1999], Appendix 2]) are not
required in OIL (e.g., there is no restriction on the ordering of class and slot definitions).

4.1.3 How OIL restricts XOL

As mentioned above, OIL also restricts XOL in some respects.

• Initially, only conceptual modeling will be supported, i.e., individuals are not supported directly
within OIL. Allowing individuals to occur in class definitions is equivalent to having
extensionally defined classes, and this soon leads to very hard reasoning problems and even
undecidability [Schaerf, 1994], [Blackburn & Seligman, 1998], [Areces et al., 1999]. This means
that slot values in OIL can only be classes. Future extensions of OIL may support the specification
of individuals as instances of one or more classes. Currently, we provide an XML schema
definition for capturing instances of an ontology in OIL (cf. [Klein et al., 2000]).

• The slot constraints numeric-minimum and numeric-maximum are not supported. Again, future
extensions of OIL may support concrete data types (including numbers and numeric ranges).

• Collection types other than set are not supported.

• Slot inverse can only be specified in global slot definitions: naming the inverse of a relation only
seems to make sense when applied globally.

4.2 OIL and Web Standards

When discussing the relationship between OIL and web standards mainly two interesting candidates
come into mind: XML and RDF. In this section, we will discuss possible ways to relate OIL with
them.

4.2.1 XML

XML can be used as a serial syntax for OIL. Such a syntax is very useful because it puts OIL in the
mainstream of tools that are currently being developed for supporting XML-based documents.
Validation and rendering techniques developed for XML can directly be used for ontologies specified
in OIL. Therefore, the appendix of this paper provides the definition of a DTD that defines constraints
on valid documents in OIL.
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Meanwhile a successor of DTDs called XML schemas have been published as a proposal by the W3C
(cf. [Biron & Malhotra, 1999], [Thompson et al., 1999], [Walsh, 1999]). The main improvements of
XML schemas compared to DTDs are:

• XML schemas definitions are themselves XML documents.

• XML schemas provide a rich set of datatypes that can be used to define the values of elementary
tags.

• XML schemas provide much richer means for defining nested tags (i.e., tags with subtags).

• XML schemas provide the namespace mechanism to combine XML documents with
heterogeneous vocabulary.

Therefore, it was natural to also define the XML syntax of OIL by using the XML schema mechanism
(see the appendix).5 However, a more significant question is whether XML schemas also allow the
capturing of some of the semantics of ontologies specified in OIL. Central to an ontology is the is-a
relationship, and XML schemas incorporate the notion of inheritance. In addition to the direct XML
schema syntax of OIL we provide in the appendix, we discuss in [Klein et al., 2000] a more complex
translation procedure that leads to XML documents capturing more aspects of the semantics of an
ontology in OIL. This includes the use of type refinement as present in XML schemas to model the
subsumption relationship between concepts in OIL.

4.2.2 RDF

The Resource Description Framework (RDF) [Lassila & Swick,1999] is a recommendation of the
World Wide Web Consortium (W3C) for representing meta-data in the web. RDF data represents
resources and attached attribute/value pairs. A resource represents anything representable through a
URI. Attributes are named properties of the resources, and their values are either atomic entities (text
strings, numbers, etc.) or other resources represented by a URI. The resources, properties, and values
build up the RDF data model that can be seen as a labeled directed graphs.

Besides defining the data model, RDF needs a serialization syntax to make actual data available in the
web. XML was chosen for this purpose. RDF and XML are complementary as RDF represents the
abstract model and XML provides the concrete textual representation of the model. There are several
ways to represent the same RDF data model in XML. 

A third component in the RDF-context has to be introduced: since RDF does not define any particular
vocabularies for authoring data, a schema language with appropriate primitives is needed. The RDF-
schema specification was created for this purpose. RDF-schema is a simple ontology language able to
define basic vocabularies. This language covers the simplest parts of a knowledge model like OKBC
(classes, properties, domain and range restrictions, instance-of, subclass-of and subproperty-of
relationships). RDF-Schema is itself defined in RDF, and an RDF-schema defining the RDF-schema
language itself is also available [Brickley & Guha, 2000].

The relationship between OIL and RDF/RDFS is much closer than that between OIL and XML
Schemas. This is not surprising, since XML-schema was meant to generalize the way of defining the
structure of valid XML-documents and RDF/RDFS was meant to capture meaning in the manner of

5.  We also provide the definition via a DTD because XML schemas are still a proposal and may change in the near future and currently
do not provide much tool support.
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semantic nets. In the same way as RDF-Schema is used to define itself it can also be used to define
other ontology languages. We have therefore defined a syntax for OIL by giving an RDF-schema for
the core of OIL, and proposing related RDF-schemas that could complement this core by covering
further aspects. To ensure maximal compatibility with existing RDF/RDFS-applications and
vocabularies, the integration of OIL with the resources defined in RDF-schema has been a main focus
in designing the RDF-model for OIL.

• The major integration points of RDF/RDFS and OIL are defined by the abstract OIL class
ClassExpression which is a subclass of rdfs:Resource (the most general class in RDFS) and by
the abstract OIL class OntologyConstraint which is a subclass of rdfs:ConstraintResource.

• Since rdfs:Class is a specific case of a class expression, its definition is extended to make it a
subclass of ClassExpression.

• Furthermore, OIL-slots are realized as instances of rdf:Property or of subproperties of the
original rdf:Property. The subslot relationship is also expressed by original RDF-means, namely
the rdfs:subPropertyOf relationship. rdf:Property is enriched by a number of classes that
specify inverse and transitive roles and cardinality constraints, not originally possible in RDF/
RDFS.

• The way class expressions are defined in RDF is nearly literally equivalent to the abstract syntax
defined in Section 3.

The "Appendix B: OIL Syntax in RDF" provides the RDF-Schema specification of OIL. In [Broekstra
et al., to appear] the relation between OIL and RDF is examined in more detail.
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5 Summary

In this paper, we have proposed both a syntax and a semantics of an ontology inference layer for the
WWW based on XML and RDF schemas called OIL. One of our main motivations has been to try to
ensure that such a proposed standard had a clear and well defined semantics—a common syntax is
useless without an agreement as to what it all means. 

The core we have currently defined can be justified from both a pragmatic and a theoretical point of
view. From a pragmatic point of view, OIL covers consensual modeling primitives of Frame systems
and Description Logics. From a theoretical point of view it appears quite natural to us to limit the
expressiveness of this version so as to make subsumption decidable. This defines a well-understood
subfragment of first-order logic. However, it is important to note that we are open for further
discussions that may influence the final design of the language. Clearly future versions will provide
variants with more expressive power which lack this reasoning support. Connecting OIL with Horn
logic is probably the most challenging question and we will see how far we can get there.

We are currently evaluating the use of OIL in the two running IST projects, On-to-knowledge1 and
Ibrow2. In On-to-knowledge OIL will be extended to a full-fledged environment for knowledge
management in large intranets. Unstructured and semi-structured data will be annotated automatically
and agent-based user interface techniques and visualization tools will help user in navigate and query
the information space. Here On-to-knowledge continues a line of research that was set up with SHOE
(cf. [Luke et al., 1996], [Heflin et al., 1999]) and Ontobroker (cf. [Fensel et al., 1998], [Fensel et al.,
1999b]): using ontologies to model and annotate the semantics of information in a machine
processable manner.
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(IST) project under the 5th European Framework Program since February 2000. Results of its initial phase are described in [Benjamins
et al., 1999 (b)], [Fensel & Benjamins, 1998], and [Fensel et al., 1999a]. Project partners are the University of Amsterdam; the Open
University, UK; the Spanish Council of Scientific Research (IIIA) in Barcelona, Spain; the Institute AIFB, University of Karlsruhe,
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Appendix A: OIL Syntax in XML

This appendix provides an XML-based syntax definition of OIL. First we define a DTD for OIL. Then
we use XML schemas to define the syntax of OIL. Finally we provide the example of Section 3 in
XML syntax.

Appendix A.1 A DTD for OIL

The XML syntax of OIL ontologies is defined by the following DTD.

<!-- DTD for Ontology Integration Language OIL -->

<!ELEMENT ontology (ontology-container, ontology-definitions)>

<!-- Ontology container -->
<!ELEMENT ontology-container(rdf:RDF)>
<!-- This part contains meta-data about the ontology.
     It is formatted according [Miller et al., 1999] -->
  <!ELEMENT rdf:RDF (rdf:Description)>
  <!ATTLIST rdf:RDF

xmlns:rdf CDATA #FIXED "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc  CDATA #FIXED "http://purl.oclc.org/dc#"
xmlns:dcq CDATA #FIXED "http://purl.org/dc/qualifiers/1.0/"

  >
  <!ELEMENT rdf:Description ((dc:Title+, dc:Creator+, dc:Subject*, dc:Description+,
                              dc:Publisher*, dc:Contributor*, dc:Date*, dc:Type+,

      dc:Format*, dc:Identifier+, dc:Source*,
      dc:Language+, dc:Relation*, dc:Rights*) |
     (dcq:descriptionType, rdf:value) |
     (dcq:relationType, rdf:value) )>

    <!ATTLIST rdf:Description about CDATA #IMPLIED >
    <!ELEMENT dc:Title (#PCDATA)>
    <!ELEMENT dc:Creator (#PCDATA)>
    <!ELEMENT dc:Subject (#PCDATA)>
    <!ELEMENT dc:Description (#PCDATA | rdf:Description)*>
    <!ELEMENT dc:Publisher (#PCDATA)>
    <!ELEMENT dc:Contributor (#PCDATA)>
    <!ELEMENT dc:Date (#PCDATA)>
    <!ELEMENT dc:Type (#PCDATA)>
    <!ELEMENT dc:Format (#PCDATA)>
    <!ELEMENT dc:Identifier (#PCDATA)>
    <!ELEMENT dc:Source (#PCDATA)>
    <!ELEMENT dc:Language (#PCDATA)>
    <!ELEMENT dc:Relation (#PCDATA | rdf:Description)*>
    <!ELEMENT dc:Rights (#PCDATA)>
    <!ELEMENT dcq:descriptionType (#PCDATA)>
    <!ELEMENT dcq:relationType (#PCDATA)>
    <!ELEMENT rdf:value (#PCDATA)>

<!-- Ontology-definitions -->
<!ELEMENT ontology-definitions (imports?, rule-base?,
                                (class-def | slot-def)* )>
  <!-- Import-section with URI’s to other ontology-files -->
  <!ELEMENT imports(URI)+>
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  <!ELEMENT URI (#PCDATA)>
  <!-- Rules with URL to definition -->
  <!ELEMENT rule-base (#PCDATA)>
    <!ATTLIST rule-base type CDATA #REQUIRED>

<!-- Class-expressions -->
<!ENTITY % class-expr "( class | slot-constraint | AND | OR | NOT)">
  <!ELEMENT AND ((%class-expr;), (%class-expr;)+)>
  <!ELEMENT OR ((%class-expr;), (%class-expr;)+)>
  <!ELEMENT NOT (%class-expr;)>

<!-- Class-definition -->
<!ELEMENT class-def (class, documentation?,

     subclass-of?, slot-constraint*)>
  <!ATTLIST class-def type ( primitive | defined ) "primitive">
  <!-- Class-name -->
  <!ELEMENT class EMPTY>
    <!ATTLIST classname CDATA #REQUIRED>
  <!ELEMENT documentation (#PCDATA)>
  <!ELEMENT subclass-of(%class-expr;)+>

<!-- Slot-definition -->
<!ELEMENT slot-def (slot, documentation?, subslot-of?,

    domain?, range?, inverse?, properties?)>
  <!-- Slot-name -->
  <!ELEMENT slot EMPTY>
    <!ATTLIST slot name CDATA #REQUIRED>
  <!ELEMENT subslot-of (slot)+>
  <!ELEMENT domain (%class-expr;)+>
  <!ELEMENT range (%class-expr;)+>
  <!ELEMENT inverse (slot)>
  <!-- Slot-properties -->
  <!ELEMENT properties( transitive | symmetric | other )*>
    <!ELEMENT transitive EMPTY>

<!ELEMENT symmetric EMPTY>
    <!ELEMENT other (#PCDATA)>

<!-- Slot-constraint -->
<!ELEMENT slot-constraint (slot, (has-value | value-type | cardinality |

          max-cardinality | min-cardinality )+ )>
  <!ELEMENT has-value (%class-expr;)+>
  <!ELEMENT value-type (%class-expr;)+>
  <!ELEMENT cardinality (number, %class-expr;)+>
  <!ELEMENT max-cardinality (number, %class-expr;)+>

<!ELEMENT min-cardinality(number, %class-expr;)+>
<!ELEMENT number (#PCDATA)>

According to http://www.w3.org/DesignIssues/Syntax and http://www-db.stanford.edu/~melnik/rdf/
syntax.html a more comprehensible RDF serialization in XML will be coming. Our oil-container
would become much more simple and intuitive: 

<?xml version="1.0" encoding="UTF-8"?>
<ontology>
  <ontology-container rdf:for="http://www.cs.vu.nl/~dieter/oil/"
       xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
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       xmlns:dc="http://purl.oclc.org/dc#" 
       xmlns:dcq="http://purl.org/dc/qualifiers/1.0/">
    <dc:Title>African animals</dc:Title>
    <dc:Creator>Ian Horrocks</dc:Creator>
    <dc:Subject>animal, food, vegetarians</dc:Subject>
    <dc:Description>A didactic example ontology describing African animals</dc:Description>
    <dc:Description dcq:descriptionType="Release">1.01</dc:Description>
    <dc:Publisher>I. Horrocks</dc:Publisher>
    <dc:Type>ontology</dc:Type>
    <dc:Format>pdf</dc:Format>
    <dc:Identifier>http://www.cs.vu.nl/~dieter/oil/TR/oil.pdf</dc:Identifier>
    <dc:Source>http://www.africa.com/nature/animals.html</dc:Source>
    <dc:Language>OIL</dc:Language>
    <dc:Language>en-uk</dc:Language>
    <dc:Relation dcq:relationType="hasPart">
        http://www.ontosRus.com/animals/jungle.onto
    </dc:Relation>
  </ontology-container>
</ontology>

Appendix A.2 An XML schema definition of OIL

This section provides the OIL-syntax defined by an XML-Schema definition. It is equivalent to the
DTD definition of OIL.

<!DOCTYPE schema PUBLIC "-//W3C//DTD XMLSCHEMA 19991216//EN" 
"WD-xmlschema-1-19991217/structures.dtd" [

          <!ATTLIST schema xmlns:x CDATA #IMPLIED> <!-- keep this schema XML1.0 valid -->
]>
<schema targetNamespace="oil.dtd">

<type name="ontology" content="elementOnly">
<group order="seq">

<element name="ontology-container"/>
<element name="ontology-definitions"/>

</group>
</type>
<type name="ontology-container" content="elementOnly">

<element name="rdf:RDF"/>
</type>
<type name="rdf:RDF" content="elementOnly">

<element name="rdf:Description"/>
<attribute name="xmlns:dcq" type="string" minOccurs="1" fixed="http://purl.org/dc/qualifiers/1.0/"/>
<attribute name="xmlns:rdf" type="string" minOccurs="1" 

fixed="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
<attribute name="xmlns:dc" type="string" minOccurs="1" fixed="http://purl.oclc.org/dc#"/>

</type>
<type name="rdf:Description" content="elementOnly">

<group order="choice">
<group order="seq">

<group maxOccurs="*">
<element name="dc:Title"/>

</group>
<group maxOccurs="*">

<element name="dc:Creator"/>
</group>
<group maxOccurs="*" minOccurs="0">

<element name="dc:Subject"/>
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</group>
<group maxOccurs="*">

<element name="dc:Description"/>
</group>
<group maxOccurs="*" minOccurs="0">

<element name="dc:Publisher"/>
</group>
<group maxOccurs="*" minOccurs="0">

<element name="dc:Contributor"/>
</group>
<group maxOccurs="*" minOccurs="0">

<element name="dc:Date"/>
</group>
<group maxOccurs="*">

<element name="dc:Type"/>
</group>
<group maxOccurs="*" minOccurs="0">

<element name="dc:Format"/>
</group>
<group maxOccurs="*">

<element name="dc:Identifier"/>
</group>
<group maxOccurs="*" minOccurs="0">

<element name="dc:Source"/>
</group>
<group maxOccurs="*">

<element name="dc:Language"/>
</group>
<group maxOccurs="*" minOccurs="0">

<element name="dc:Relation"/>
</group>
<group maxOccurs="*" minOccurs="0">

<element name="dc:Rights"/>
</group>

</group>
<group order="seq">

<element name="dcq:descriptionType"/>
<element name="rdf:value"/>

</group>
<group order="seq">

<element name="dcq:relationType"/>
<element name="rdf:value"/>

</group>
</group>
<attribute name="about" type="string" minOccurs="0"/>

</type>
<type name="dc:Title" content="textOnly"/>
<type name="dc:Creator" content="textOnly"/>
<type name="dc:Subject" content="textOnly"/>
<type name="dc:Description" content="mixed">

<group maxOccurs="*" minOccurs="0">
<group order="choice">

<element name="rdf:Description"/>
</group>

</group>
</type>
<type name="dc:Publisher" content="textOnly"/>
<type name="dc:Contributor" content="textOnly"/>
<type name="dc:Date" content="textOnly"/>
<type name="dc:Type" content="textOnly"/>
<type name="dc:Format" content="textOnly"/>
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<type name="dc:Identifier" content="textOnly"/>
<type name="dc:Source" content="textOnly"/>
<type name="dc:Language" content="textOnly"/>
<type name="dc:Relation" content="mixed">

<group maxOccurs="*" minOccurs="0">
<group order="choice">

<element name="rdf:Description"/>
</group>

</group>
</type>
<type name="dc:Rights" content="textOnly"/>
<type name="dcq:descriptionType" content="textOnly"/>
<type name="dcq:relationType" content="textOnly"/>
<type name="rdf:value" content="textOnly"/>
<type name="ontology-definitions" content="elementOnly">

<group order="seq">
<group minOccurs="0" maxOccurs="1">

<element name="imports"/>
</group>
<group minOccurs="0" maxOccurs="1">

<element name="rule-base"/>
</group>
<group maxOccurs="*" minOccurs="0">

<group order="choice">
<element name="class-def"/>
<element name="slot-def"/>

</group>
</group>

</group>
</type>
<type name="imports" content="elementOnly">

<group maxOccurs="*">
<element name="URI"/>

</group>
</type>
<type name="URI" content="textOnly"/>
<type name="rule-base" content="textOnly">

<attribute name="type" type="string" minOccurs="1"/>
</type>
<type name="AND" content="elementOnly">

<group order="seq">
<group order="choice">

<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
<group maxOccurs="*">

<group order="choice">
<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</group>
</type>
<type name="OR" content="elementOnly">

<group order="seq">
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<group order="choice">
<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
<group maxOccurs="*">

<group order="choice">
<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</group>
</type>
<type name="NOT" content="elementOnly">

<group order="choice">
<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</type>
<type name="class-def" content="elementOnly">

<group order="seq">
<element name="class"/>
<group minOccurs="0" maxOccurs="1">

<element name="documentation"/>
</group>
<group minOccurs="0" maxOccurs="1">

<element name="subclass-of"/>
</group>
<group maxOccurs="*" minOccurs="0">

<element name="slot-constraint"/>
</group>

</group>
<attribute name="type" type="NMTOKEN" minOccurs="0" default="primitive">

<datatype source="string">
<enumeration value="primitive|defined"/>

</datatype>
</attribute>

</type>
<type name="class" content="empty">

<attribute name="name" type="string" minOccurs="1"/>
</type>
<type name="documentation" content="textOnly"/>
<type name="subclass-of" content="elementOnly">

<group maxOccurs="*">
<group order="choice">

<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</type>
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<type name="slot-def" content="elementOnly">
<group order="seq">

<element name="slot"/>
<group minOccurs="0" maxOccurs="1">

<element name="documentation"/>
</group>
<group minOccurs="0" maxOccurs="1">

<element name="subslot-of"/>
</group>
<group minOccurs="0" maxOccurs="1">

<element name="domain"/>
</group>
<group minOccurs="0" maxOccurs="1">

<element name="range"/>
</group>
<group minOccurs="0" maxOccurs="1">

<element name="inverse"/>
</group>
<group minOccurs="0" maxOccurs="1">

<element name="properties"/>
</group>

</group>
</type>
<type name="slot" content="empty">

<attribute name="name" type="string" minOccurs="1"/>
</type>
<type name="subslot-of" content="elementOnly">

<group maxOccurs="*">
<element name="slot"/>

</group>
</type>
<type name="domain" content="elementOnly">

<group maxOccurs="*">
<group order="choice">

<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</type>
<type name="range" content="elementOnly">

<group maxOccurs="*">
<group order="choice">

<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</type>
<type name="inverse" content="elementOnly">

<element name="slot"/>
</type>
<type name="properties" content="elementOnly">

<group maxOccurs="*" minOccurs="0">
<group order="choice">

<element name="transitive"/>
<element name="symmetric"/>
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<element name="other"/>
</group>

</group>
</type>
<type name="transitive" content="empty"/>
<type name="symmetric" content="empty"/>
<type name="other" content="textOnly"/>
<type name="slot-constraint" content="elementOnly">

<group order="seq">
<element name="slot"/>
<group maxOccurs="*">

<group order="choice">
<element name="has-value"/>
<element name="value-type"/>
<element name="cardinality"/>
<element name="max-cardinality"/>
<element name="min-cardinality"/>

</group>
</group>

</group>
</type>
<type name="-has-value" content="elementOnly">

<group maxOccurs="*">
<group order="choice">

<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</type>
<type name="value-type" content="elementOnly">

<group maxOccurs="*">
<group order="choice">

<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</type>
<type name="cardinality" content="elementOnly">

<group maxOccurs="*">
<group order="seq">

<element name="number"/>
<group order="choice">

<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</group>
</type>
<type name="max-cardinality" content="elementOnly">

<group maxOccurs="*">
<group order="seq">

<element name="number"/>
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<group order="choice">
<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</group>
</type>
<type name="min-cardinality" content="elementOnly">

<group maxOccurs="*">
<group order="seq">

<element name="number"/>
<group order="choice">

<element name="class"/>
<element name="slot-constraint"/>
<element name="AND"/>
<element name="OR"/>
<element name="NOT"/>

</group>
</group>

</group>
</type>
<type name="number" content="textOnly"/>

</schema>
<?xml version="1.0" encoding="UTF-8"?>

Appendix A.3 The Example in XML syntax

The following is an example of an OIL ontology that conforms to the above DTD. It is the same
ontology that was presented in Section 3.2.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ontology SYSTEM "oil.dtd">
<ontology>

<ontology-container>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.oclc.org/dc#"
xmlns:dcq = "http://purl.org/dc/qualifiers/1.0/">
<rdf:Description about = "">

<dc:Title>African animals</dc:Title>
<dc:Creator>Ian Horrocks</dc:Creator>
<dc:Subject>animal, food, vegetarians</dc:Subject>
<dc:Description>A didactic example ontology describing African animals</dc:Description>
<dc:Description>

<rdf:Description>
<dcq:descriptionType>Release</dcq:descriptionType>
<rdf:value>1.01</rdf:value>

</rdf:Description>
</dc:Description>
<dc:Publisher>I. Horrocks</dc:Publisher>
<dc:Type>ontology</dc:Type>
<dc:Format>pdf</dc:Format>
<dc:Indentifier>http://www.cs.vu.nl/~dieter/oil/TR/oil.pdf</dc:Indentifier>
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<dc:Source>http://www.africa.com/nature/animals.html</dc:Source>
<dc:Language>OIL</dc:Language>
<dc:Language>en-uk</dc:Language>
<dc:Relation>

<rdf:Description>
<dcq:descriptionType>hasPart</dcq:descriptionType>
 <rdf:value>http://www.ontosRus.com/animals/jungle.onto</rdf:value>

</rdf:Description>
</dc:Relation>

</rdf:Description>
</rdf:RDF>

</ontology-container>
<ontology-definitions>

 <imports>
 <URI>http://www.ontosRus.com/animals/jungle.onto</URI>

</imports>
<slot-def>

<slot name="eats"/>
<inverse>

<slot name="is-eaten-by"/>
</inverse>

</slot-def>
<slot-def>

<slot name="has-part"/>
<inverse>

<slot name="is-part-of"/>
</inverse>
<properties>

<transitive/>
</properties>

</slot-def>
<class-def>

<class name="animal"/>
</class-def>
<class-def>

<class name="plant"/>
<subclass-of>

<NOT>
<class name="animal"/>

</NOT>
</subclass-of>

</class-def>
<class-def>

<class name="tree"/>
<subclass-of>

<class name="plant"/>
</subclass-of>

</class-def>
<class-def>

<class name="branch"/>
<slot-constraint>
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<slot name="is-part-of"/>
<has-value>

<class name="tree"/>
</has-value>

</slot-constraint>
</class-def>
<class-def>
<class name="leaf"/>
<slot-constraint>

<slot name="is-part-of"/>
<has-value>

<class name="branch"/>
</has-value>

</slot-constraint>
</class-def>
<class-def type="defined">

<class name="carnivore"/>
<subclass-of>

<class name="animal"/>
</subclass-of>
<slot-constraint>

<slot name="eats"/>
<value-type>

<class name="animal"/>
</value-type>

</slot-constraint>
</class-def>
<class-def type="defined">

<class name="herbivore"/>
<subclass-of>

<class name="animal"/>
<NOT>

<class name="carnivore"/>
</NOT>

</subclass-of>
<slot-constraint>

<slot name="eats"/>
<value-type>

<OR>
<class name="plant"/>
<slot-constraint>

<slot name="is-part-of"/>
<has-value>

<class name="plant"/>
</has-value>

</slot-constraint>
</OR>

</value-type>
</slot-constraint>

</class-def>
<class-def>
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<class name="giraffe"/>
<subclass-of>

<class name="animal"/>
</subclass-of>
<slot-constraint>

<slot name="eats"/>
<value-type>

<class name="leaf"/>
</value-type>
</slot-constraint>

</class-def>
<class-def>

<class name="lion"/>
<subclass-of>

<class name="animal"/>
</subclass-of>
<slot-constraint>

<slot name="eats"/>
<value-type>

<class name="herbivore"/>
</value-type>

</slot-constraint>
</class-def>
<class-def>

<class name="tasty-plant"/>
<subclass-of>

<class name="plant"/>
</subclass-of>
<slot-constraint>

<slot name="eaten-by"/>
<has-value>

<class name="herbivore"/>
<class name="carnivore"/>

</has-value>
</slot-constraint>

</class-def>
</definitions>

</ontology>
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Appendix B: OIL Syntax in RDF

This appendix provides an RDF-Schema definition for OIL. RDF relies on Namespaces and
Namespace prefixes: RDF-vocabulary is prefixed with a Namespace prefix, which is resolved to a
complete URI by an RDF processor. We are using the following namespace prefixes: “oil:” for
OIL,“rdf:” and “rdfs:” for RDF and RDF-Schema, “dc:” and “dcq:” for Dublin Core Vocabulary and
Qualifiers, respectively. The usual RDF-Dublin Core encoding, which can be obtained at [Dublin
Core] is used for Dublin Core. OIL relies heavily on RDF-Schema itself, since OIL is defined as an
extension of RDF-Schema and reuses concepts of RDF-Schema as much as possible. This strategy
was taken to facilitate the reuse of existing RDF-Schema-based applications and tools. However,
certain extensions of RDF-schema were required. For example, OIL allows implicit definitions of
classes in the form of boolean operators (AND, OR, NOT) as value of the subclass-of relation,
whereas in RDFS the value of the subClassOf statement is always an explicit class. We introduced
oil:ClassExpression as a placeholder class for the three boolean operators, which are also modeled as
classes, to allow their use as value for the subClassOf statement. 

Several extensions in this vein have been made, a full listing can be found in Table 1 and Table 2 and
in [Broekstra et al., to appear] a detailed analysis is made of this extension. The resulting RDF Schema
for OIL can be found in appendix B.1 and an example ontology in RDFS syntax is presented in
appendix B.2.

Table 1: Class-definitions in OIL and the corresponding RDF(S) constructs

OIL primitive RDFS syntax type

class-def rdfs:Class class

subclass-of rdfs:subClassOf property

class-expression oil:ClassExpression
(placeholder only)

class

AND oil:AND
(subclass of ClassExpression)

class

OR oil:OR
(subclass of ClassExpression)

class

NOT oil:NOT
(subclass of ClassExpression)

class

slot-constraint oil:SlotConstraint
(placeholder only)

oil:hasSlotConstraint
(rdf:type of rdfs:ConstraintProperty)

oil:NumberRestriction
(placeholder only)
(subclass of oil:SlotConstraint)

class

property

class
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Table 2: Slot definitions in OIL and the corresponding RDFS constructs

Appendix B.1 RDF-Schema for OIL

<?xml version=’1.0’?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="RuleBase">
<rdfs:comment>A user-defined rulebase possibly described by an external RDF-Schema</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdfs:Class>

<!-- Begin Class & Properties Expressions Ontology -->

<rdfs:Class rdf:ID="ClassExpression">
<rdfs:comment>An ontology class expression</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdfs:Class>

has-value oil:HasValue
(subclass of oil:SlotConstraint)

class

value-type oil:ValueType
(subclass of oil:SlotConstraint)

class

max-cardinality oil:MaxCardinality
(subclass of oil:NumberRestriction)

class

min-cardinality oil:MinCardinality
(subclass of oil:NumberRestriction)

class

cardinality oil:Cardinality
(subclass of oil:NumberRestriction)

class

OIL primitive RDFS syntax type

slot-def rdf:Property class

subslot-of rdfs:subPropertyOf property

domain rdfs:domain property

range rdfs:range property

inverse oil:inverseRelationOf property

transitive oil:TransitiveRelation class

symmetric oil:SymmetricRelation class

OIL primitive RDFS syntax type
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<rdf:Description rdf:about="http://www.w3.org/2000/01/rdf-schema#Class">
<rdfs:comment>An additional statement about rdfs:Class</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ClassExpression"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.w3.org/2000/01/rdf-schema#subClassOf">
<rdfs:comment>An extension of the range of rdfs:subClassOf.</rdfs:comment>
<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Description>

<rdfs:Class rdf:ID="SlotConstraint">
<rdfs:comment>An ontology slot constraint</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ClassExpression"/>

</rdfs:Class>

<rdfs:Class rdf:ID="NumberRestriction">
<rdfs:comment>A generic number restriction expression.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#SlotConstraint"/>

</rdfs:Class>

<rdfs:Class rdf:ID="ClassType">
<rdfs:comment> an abstract class of class types </rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

<rdfs:Class rdf:ID="PrimitiveClass">
<rdfs:comment> The class of primitive classes</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ClassType"/>

</rdfs:Class>

<rdfs:Class rdf:ID="DefinedClass">
<rdfs:comment>The class of defined classes</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ClassType"/>

</rdfs:Class>

<!-- End Class & Properties Expressions Ontology -->

<!-- Begin Helper Properties -->

<rdf:Property rdf:ID="hasClass">
<rdfs:comment>A property connection between a slot constraint and a class expressions</rdfs:comment>
<rdfs:domain rdf:resource="#SlotConstraint"/>
<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Property>

<rdf:Property rdf:ID="hasSlotConstraint">
<rdfs:comment>A property connection between a class definition and a slot constraint </rdfs:comment>
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#ConstraintProperty"/>
<rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:range rdf:resource="#SlotConstraint"/>

</rdf:Property>

<rdf:Property rdf:ID="hasOperand">
<rdfs:comment>A property connection between an operator class expression and 

an operand class expression</rdfs:comment>
<rdfs:domain rdf:resource="#AND"/>
<rdfs:domain rdf:resource="#OR"/>
<rdfs:domain rdf:resource="#NOT"/>
<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Property>

<rdf:Property rdf:ID="hasProperty">
<rdfs:comment>A property connection between a class expression and a slot expression</rdfs:comment>
<rdfs:domain rdf:resource="#SlotConstraint"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdf:Property rdf:ID="number">
<rdfs:comment>A property connection between a class expression and a cardinality (integer)</rdfs:comment>
<rdfs:domain rdf:resource="#NumberRestriction"/>
<rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
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<rdfs:range rdf:resource="http://www.w3c.org/xml/xmlschema#integer"/>
</rdf:Property>

<!-- End Helper Properties -->

<!-- Begin Class Expressions -->

<rdfs:Class rdf:ID="AND">
<rdfs:comment>An expression corresponding to the conjunction of (two) class expressions</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ClassExpression"/>

</rdfs:Class>

<rdfs:Class rdf:ID="OR">
<rdfs:comment>An expression corresponding to the disjunction of (two) class expressions</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ClassExpression"/>

</rdfs:Class>

<rdfs:Class rdf:ID="NOT">
<rdfs:comment>An expression corresponding to the negation of a class expression</rdfs:comment>
<rdfs:subClassOf rdf:resource="#ClassExpression"/>

</rdfs:Class>

<rdfs:Class rdf:ID="HasValue">
<rdfs:comment>An expression corresponding to an existential slot constraint</rdfs:comment>
<rdfs:subClassOf rdf:resource="#SlotConstraint"/>

</rdfs:Class>

<rdfs:Class rdf:ID="ValueType">
<rdfs:comment>An expression corresponding to a universally quantified value restriction</rdfs:comment>
<rdfs:subClassOf rdf:resource="#SlotConstraint"/>
</rdfs:Class>

<rdfs:Class rdf:ID="MaxCardinality">
<rdfs:comment>An ontology property expression corresponding to a (qualified) number restriction.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#NumberRestriction"/>

</rdfs:Class>

<rdfs:Class rdf:ID="MinCardinality">
<rdfs:comment>An ontology property expression corresponding to a (qualified) number restriction.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#NumberRestriction"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Cardinality">
<rdfs:comment>An ontology property expression corresponding to a (qualified) number restriction.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#NumberRestriction"/>

</rdfs:Class>

<!-- End Class Expressions -->

<!--Begin Property Qualities-->

<rdf:Property rdf:ID="inverseRelationOf">
<rdfs:comment>A property connection between a property and the inverse property</rdfs:comment>
<rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Property>

<rdfs:Class rdf:ID="TransitiveProperty">
<rdfs:comment>The class of all transitive relations.</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdfs:Class>

<rdfs:Class rdf:ID="SymmetricProperty">
<rdfs:comment>The class of all symmetric relations.</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdfs:Class>

<!--End Property Qualities-->

</rdf:RDF>
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Appendix B.2 The Example in RDF syntax

<?xml version=”1.0”?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:rdfs=”http://www.w3.org/TR/1999/PR-rdf-schema-19990303#”
 xmlns:oil=”http://www.ontoknowledge.org/oil/rdf-schema”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”
 xmlns:dcq=”http://purl.org/dc/qualifiers/1.1/”>

<rdf:Description about=””>
<dc:Title>African Animals</dc:Title>
<dc:Creator>Ian Horrocks</dc:Creator>
<dc:subject>animal, food, vegetarians</dc:subject>
<dc:Description>A didactic example ontology describing African animals</dc:Description>
<dcq:description.release>1.04</dcq:description.release>
<dc:publisher>I. Horrocks</dc:publisher>
<dc:type>ontology</dc:type>
<dc:format>rdf</dc:format>
<dc:identifier>http://www.ontoknowledge.org/oil/animals.rdfs</dc:identifier>
<dc:source>http://www.africa.com/nature/animals.html</dc:source>
<dc:language>OIL</dc:language>
<dc:language>en-uk</dc:language>

</rdf:Description>

<rdf:Description xmlns:syllogism=”http://old.greece/syllogism/”>
<rdf:type resource=”http://www.ontoknowledge.org/oil//rdfschema#RuleBase”/>
<syllogism:premise>if it rains, you get wet</syllogism:premise>
<syllogism:fact>it rains</syllogism:fact>
<syllogism:conclusion>you get wet</syllogism:conclusion>

</rdf:Description>

<rdf:Property rdf:ID=”eats”>
<oil:inverseRelationOf rdf:resource=”#is-eaten-by”/>

</rdf:Property>

<rdf:Property rdf:ID=”is-eaten-by”/>

<rdf:Property rdf:ID=”has-part”>
<oil:inverseRelationOf rdf:resource=”#is-part-of”/>

</rdf:Property>

<rdf:Property rdf:ID=”is-part-of”/>

<rdfs:Class rdf:ID=”animal”/>

<rdfs:Class rdf:ID=”plant”>
<rdfs:subClassOf>

<oil:NOT>
<oil:hasOperand rdf:resource=”#animal”/>

</oil:NOT>
</rdfs:subClassOf>

</rdfs:Class>

<rdfs:Class rdf:ID=”tree”>
<rdfs:subClassOf rdf:resource=”#plant”/>

</rdfs:Class>

<rdfs:Class rdf:ID=”branch”>
<oil:hasSlotConstraint>

<oil:HasValue>
<oil:hasProperty rdf:resource=”#is-part-of”/>
<oil:hasClass rdf:resource=”#tree”/>

</oil:HasValue>
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</oil:hasSlotConstraint>
</rdfs:Class>

<rdfs:Class rdf:ID=”leaf”>
<oil:hasSlotConstraint>

<oil:HasValue>
<oil:hasProperty rdf:resource=”#is-part-of”/>
<oil:hasClass rdf:resource=”#branch”/>

</oil:HasValue>
</oil:hasSlotConstraint>

</rdfs:Class>

<rdfs:Class rdf:ID=”carnivore”>
<rdfs:subClassOf rdf:resource=”#animal”/>
<oil:hasSlotConstraint>

<oil:ValueType>
<oil:hasProperty rdf:resource=”#eats”/>
<oil:hasClass rdf:resource=”#animal”/>

</oil:ValueType>
</oil:hasSlotConstraint>

</rdfs:Class>

<rdfs:Class rdf:ID=”herbivore”>
<rdf:type rdf:resource=”http://www.ontoknowledge.org/oil/rdf-schema/#DefinedClass”/>
<rdfs:subClassOf rdf:resource=”#animal”/>
<rdfs:subClassOf>

<oil:NOT>
<oil:hasOperand rdf:resource=”#carnivore”/>

</oil:NOT>
</rdfs:subClassOf>
<oil:hasSlotConstraint>

<oil:ValueType>
<oil:hasProperty rdf:resource=”#eats”/>
<oil:hasClass>

<oil:OR>
<oil:hasOperand rdf:resource=”#plant”/>
<oil:hasOperand>

<oil:HasValue>
<oil:hasProperty rdf:resource=”#is-part-of”/>
<oil:hasClass rdf:resource=”#plant”/>

</oil:HasValue>
</oil:hasOperand>

</oil:OR>
</oil:hasClass>

</oil:ValueType>
</oil:hasSlotConstraint>

</rdfs:Class>

<rdfs:Class rdf:ID=”giraffe”>
<rdfs:subClassOf rdf:resouce=”#herbivore”/>
<oil:hasSlotConstraint>

<oil:ValueType>
<oil:hasProperty rdf:resource=”#eats”/>
<oil:hasClass rdf:resource=”#leaf”/>

</oil:ValueType>
</oil:hasSlotConstraint>

</rdfs:Class>

<rdfs:Class rdf:ID=”lion”>
<rdfs:subClassOf rdf:resource=”#animal”/>
<oil:hasSlotConstraint>

<oil:ValueType>
<oil:hasProperty rdf:resource=”#eats”/>
<oil:hasClass rdf:resource=”#herbivore”/>

</oil:ValueType>
</oil:hasSlotConstraint>

</rdfs:Class>

<rdfs:Class rdf:ID=”tasty-plant”>
<rdfs:subClassOf rdf:resource=”#plant”/>
<oil:hasSlotConstraint>

<oil:HasValue>
<oil:hasProperty rdf:resource=”#eaten-by”/>
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<oil:hasClass>
<oil:AND>

<oil:hasOperand rdf:resource=”#herbivore”/>
<oil:hasOperand rdf:resource=”#carnivore”/>

</oil:AND>
</oil:hasClass>

</oil:HasValue>
</oil:hasSlotConstraint>

</rdfs:Class>

</rdf:RDF>
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Appendix C: First order semantics of OIL

In this section we will give a formal specification and semantics for OIL as well as for the common
inference problems (class consistency and inferred subclass relations) performed with respect to an
OIL ontology. We will only consider thedefinitions part of the ontology and we will ignore fields
such asdocumentationthat have no semantic significance.

The semantics of OIL rely on a translation into theSHIQ description logic.SHIQ has a highly
expressive concept language that is able to fully capture the OIL core language, and we will define
a satisfiability preserving translationσ(·) that maps OIL ontologies intoSHIQ terminologies. This
has the added benefit that an existingSHIQ reasoner implemented in the FaCT system can be used
to reason with OIL ontologies.

The translation is quite straightforward and follows directly from the informal specification given
in Section 3.1. An OIL ontologyO consists of a listd1, . . . , dn, where eachdi is either a class
definition or a slot definition. This list of definitions is translated into aSHIQ terminologyT (a set
of axioms) as follows:

σ(d1, . . . , dn) =
⋃

i=1,... ,n

σ(di)

A class definition is either a pair〈CN, D〉 or a triple〈CN, P,D〉, whereCN is a class name,D is
a class description andP is eitherprimitive or defined; 〈CN, D〉 is equivalent to〈CN,primitive , D〉.
A class definition〈CN,primitive , D〉 is writtenCN v D (it states thatCN is a subclass of the class
described byD) and a class definition〈CN,defined, D〉 is written CN .= D (it states thatCN is
equivalent to the class described byD).

A class descriptionD consists of an optionalsubclass-ofcomponent, itself a list of one or more
class-expressionsC1, . . . , Cn, followed by a list of zero or moreslot-constraintsA1, . . . , Am. We
will write such a class description as

[C1, . . . , Cn, A1, . . . , Am].

A class-expressionis either a class nameCN, a slot-constraint, a conjunction of class expres-
sions, writtenC1 u . . . u Cn, a disjunction of class expressions, writtenC1 t . . . t Cn or a negated
class expression, written¬C. A slot-constraint consists of a slot nameSN followed by one or more
constraints that apply to the slot, writtenSN[a1, . . . , an]. Each constraint can be either:

• A valueconstraint with a list of one or more class-expressions, written∃C1, . . . , Cn.

• A value-typeconstraint with a list of one or more class-expressions, written∀C1, . . . , Cn.

• A max-cardinality constraint with a non-negative integern followed (optionally) by a class
expressionC, written6n,C (6n,> if the class expression is omitted).

• A min-cardinality constraint with a non-negative integern followed (optionally) by a class
expressionC, written>n,C (>n,> if the class expression is omitted).

• A cardinality constraint with a non-negative integern followed (optionally) by a class expres-
sionC, written=n,C (=n,> if the class expression is omitted).

In order to maintain the decidability of the language, cardinality constraints can only be applied
to simpleslots. A simple slot is one that is neither transitive nor has any transitive subslots. However,
as the transitivity of a slot can be inferred (e.g., from the fact that the inverse of the slot is a transitive
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σ(CN v D) = {σ(CN) v σ(D)}
σ(CN .= D) = {σ(CN) v σ(D), σ(D) v σ(CN)}

σ([C1, . . . , Cn, A1, . . . , Am]) = > u σ(C1) u . . . u σ(Cn) u σ(A1) u . . . u σ(Am)
σ(CN) = CN
σ(>) = >

σ(C1 u . . . u Cn) = σ(C1) u . . . u σ(Cn)
σ(C1 t . . . t Cn) = σ(C1) t . . . t σ(Cn)

σ(¬C) = ¬σ(C)
σ(SN[a1, . . . , an]) = σ(SN(a1)) u . . . u σ(SN(an))

σ(SN(∃C1, . . . , Cn)) = ∃SN.σ(C1) u . . . u ∃SN.σ(Cn)
σ(SN(∀C1, . . . , Cn)) = ∀SN.σ(C1) u . . . u ∀SN.σ(Cn)

σ(SN(6 n,C)) = 6nSN.σ(C)
σ(SN(> n,C)) = >nSN.σ(C)
σ(SN(= n,C)) = 6nSN.σ(C) u>nSN.σ(C)

Figure C-1: Translation of OIL class definitions intoSHIQ

slot), simple slot is defined in terms of the translation intoSHIQ: a slotSN in an ontologyO is a
simple slot iffσ(SN) is a simple role in theSHIQ terminologyσ(O).

We can now define how the functionσ(·) maps an OIL class definition into a set ofSHIQ
axioms. The definition is given in Figure C-1, whereCN is a class name (or aSHIQ concept name),
SN is a slot name (orSHIQ role name),D is a class description,C (possibly subscripted) is a
class expression,A (possibly subscripted) is a slot constraint,ai is a constraint (on a slot) andn is a
non-negative integer.

A slot definition is a pair〈SN, D〉, whereSN is a slot name andD is a slot description. A slot
descriptionD consists of an optionalsubslot-of component, itself a list of one or more slot names
RN1, . . . ,RNn, followed by a list of zero or more global slot constraints (e.g.,inverse) S1, . . . , Sm.
We will write such a slot definition as:

SN[RN1, . . . ,RNn, S1, . . . , Sm]

Each global constraintSi onSN can be either:

• A domain constraint with a list of one or more class-expressions, written↓ [C1, . . . , Cn].

• A rangeconstraint with a list of one or more class-expressions, written↑ [C1, . . . , Cn].

• An inverseconstraint with a slot nameRN, written−RN.

• A properties constraint with a list of one or more properties, written[P1, . . . , Pn]. Valid prop-
erties aretransitive, written+ andsymmetrical, written↔.

We can now define how the functionσ(·) maps an OIL slot definition into a set ofSHIQ axioms.
The definition is given in Figure C-2, whereRN andSN are slot names (orSHIQ role names),Ci
is a class expression,Si is a global slot constraint andPi is a property.

The meaning of aSHIQ terminology, and of the common inference problems, is given in terms
of a Tarski style model theoretic semantics usinginterpretations. An interpretationI = (∆I , ·I)
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σ(SN[RN1, . . . ,RNn, S1, . . . , Sm]) = σ(SN[RN1, . . . ,RNn] ∪ σ(SN[S1, . . . , Sm])
σ(SN[RN1, . . . ,RNn] =

⋃
i=1,... ,n σ(SN v RNi)

σ(SN[S1, . . . , Sm]) =
⋃
i=1,... ,m σ(SN(Si))

σ(SN v RN) = {SN v RN}
σ(SN(↓ [C1, . . . , Cn])) =

⋃
i=1,... ,n{∃SN.> v σ(Ci)}

σ(SN(↑ [C1, . . . , Cn])) =
⋃
i=1,... ,n{> v ∀SN.σ(Ci)}

σ(SN(−RN)) = {SN− v RN,RN v SN−}
σ(SN([P1, . . . , Pn])) =

⋃
i=1,... ,n{σ(SN(Pi))}

σ(SN(+)) = {SN ∈ S+}
σ(SN(↔)) = {SN− v SN,SN v SN−}

Figure C-2: Translation of OIL slot definitions intoSHIQ

consists of a set∆I , called thedomainof I, and avaluation·I which maps every concept to a subset
of ∆I and every role to a subset of∆I ×∆I such that, for all conceptsC, D, rolesR, S, and non-
negative integersn, the following equations are satisfied, where]M denotes the cardinality of a set
M :

(R−)I = {〈x, y〉 | 〈y, x〉 ∈ RI} (inverse roles)
(C uD)I = CI ∩DI (conjunction)
(C tD)I = CI ∪DI (disjunction)

(¬C)I = ∆I \ CI (negation)
(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI andy ∈ CI} (value constraint)
(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI impliesy ∈ CI} (value-type constraint)

(>nR.C)I = {x | ]{y.〈x, y〉 ∈ RI andy ∈ CI} > n} (minimum cardinality)
(6nR.C)I = {x | ]{y.〈x, y〉 ∈ RI andy ∈ CI} 6 n} (maximum cardinality)

In order to avoid considering roles such asR−− (i.e., the inverse of an inverse) we will define a
function Inv such thatInv(R) is R− andInv(R−) is R. A roleR is directly subsumedby a roleS
w.r.t. a terminologyT iff either {R v S} ⊆ T or {Inv(R) v Inv(S)} ⊆ T . A roleR is subsumed
by a roleS w.r.t. T (writtenT |= R v S) iff R is directly subsumed by aS or there is a roleS′ such
thatR is directly subsumed by aS′ andT |= S′ v S. A role R is equivalentto a roleS w.r.t. T
(writtenT |= R

.= S) iff T |= R v S andT |= S v R. A roleR is transitive inT iff {S ∈ S+} ⊆ T
for some roleS such thatR

.= S or Inv(R) .= S (this definesS+, the set of transitive role names). A
roleR is asimplerole inT iff there is no roleS such thatS is transitive inT andT |= S v R.

An interpretationI satisfiesaSHIQ terminologyT iff for every axiomR v S in T , RI ⊆ SI ,
for every axiomC v D in T , CI ⊆ DI and for every transitive roleS in T , SI = (SI)+. Such an
interpretation is called amodelof T (writtenI |= T ).

A conceptC is satisfiable with respect to aSHIQ terminologyT (written T |= C 6= ⊥) iff
there a modelI of T with CI 6= ∅. A conceptC is subsumed by a conceptD w.r.t. T (written
T |= C v D) CI ⊆ DI holds for each modelI of T .

An OIL ontologyO is calledconsistentiff σ(O) |= > 6= ⊥. A classCN in an ontologyO is
calledconsistentiff σ(O) |= σ(CN) 6= ⊥. A classCN is asubclassof a classDN in an ontologyO
iff σ(O) |= σ(CN) v σ(DN).
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