
Description Logics for the Semantic Web

Franz Baader, Ian Horrocks, Ulrike Sattler

2002

Abstract

The vision of a Semantic Web has recently drawn considerable at-
tention, both from academia and industry. Description Logics are often
named as one of the tools that can support the Semantic Web and thus
help to make this vision reality.

In this paper, we sketch what Description Logics are and what they can
do for the Semantic Web. Descriptions Logics are very useful for defining,
integrating, and maintaining ontologies, which provide the Semantic Web
with a common understanding of the basic semantic concepts used to
annotate Web pages. We also argue that, without the last decade of basic
research in this area, Description Logics could not play such an important
rôle in this domain.

The Semantic Web and Ontologies

For many people, the World Wide Web has become an indispensable means
of providing and searching for information. Searching the Web in its current
form is, however, often an infuriating experience since today’s search engines
usually provide a huge number of answers, many of which are completely ir-
relevant, whereas some of the more interesting answers are not found. One of
the reasons for this unsatisfactory state of affairs is that existing Web resources
are usually only human understandable: the mark-up (HTML) only provides
rendering information for textual and graphical information intended for human
consumption.

The Semantic Web [2] aims for machine-understandable Web resources,
whose information can then be shared and processed both by automated tools,
such as search engines, and by human users. In the following we will refer to con-
sumers of Web resources, whether automated tools or human users, as agents.
This sharing of information between different agents requires semantic mark-up,
i.e., an annotation of the Web page with information on its content that is un-
derstood by the agents searching the Web. To make sure that different agents
have a common understanding of this semantic mark-up, one needs ontologies
that establish a joint terminology between the agents. Basically, an ontology
[5] is a collection of definitions of concepts and the shared understanding comes
from the fact that all the agents interpret the concepts w.r.t. the same ontology.

1



The use of ontologies in this context requires a well-designed, well-defined,
and Web-compatible ontology language with supporting reasoning tools. The
syntax of this language should be both intuitive to human users and compatible
with existing Web standards (such as XML, RDF and RDFS). Its semantics
should be formally specified since otherwise it could not provide a shared un-
derstanding. Finally, its expressive power should be adequate, i.e., the language
should be expressive enough for defining the relevant concepts in enough detail,
but not too expressive to make reasoning infeasible. Reasoning is important to
ensure the quality of an ontology. It can be employed in different development
phases. During ontology design, it can be used to test whether concepts are
non-contradictory and to derive implied relations. In particular, one usually
wants to compute the concept hierarchy since information on which concept
is a specialization of another and which concepts are synonyms is very use-
ful when searching Web pages annotated with such concepts. Since it is not
reasonable to assume that there will be a single ontology for the whole Web,
interoperability and integration of different ontologies is also an important is-
sue. Integration can, for example, be supported by asserting inter-ontology
relationships and testing for consistency and computing the integrated concept
hierarchy. Finally, reasoning may also be used when the ontology is deployed,
i.e., with Web pages that are already annotated with its concepts. One can, for
example, determine the consistency of facts stated in the annotation with the
ontology or infer instance relationships. However, in the deployment phase, the
requirements on the efficiency of reasoning are much more stringent than in the
design and integration phases.

Before arguing why Description Logics are good candidates for such an on-
tology language, we provide a brief (and informal) introduction to and history
of Description Logics.

Description Logics

Description logics (DLs) [1, 3] are a family of knowledge representation lan-
guages that can be used to represent the knowledge of an application domain
in a structured and formally well-understood way. The name description logics
is motivated by the fact that, on the one hand, the important notions of the
domain are described by concept descriptions, i.e., expressions that are built
from atomic concepts (unary predicates) and atomic roles (binary predicates)
using the concept and role constructors provided by the particular DL. On the
other hand, DLs differ from their predecessors, such as semantic networks and
frames, in that they are equipped with a formal, logic-based semantics.

Instead of giving a formal definition of concept constructors and their seman-
tics, we illustrate some typical constructors by an example. Formal definitions
can, e.g., be found in [1, 3]. Assume that we want to define the concept of “A
man that is married to a doctor and has at least five children, all of whom are
professors.” This concept can be described with the following concept descrip-

2



tion:

Human u ¬Female u ∃married.Doctor u (≥ 5 child) u ∀child.Professor

This description employs the Boolean constructors conjunction (u), which is
interpreted as set intersection, and negation (¬), which is interpreted as set
complement, as well as the existential restriction constructor (∃R.C), the value
restriction constructor (∀R.C), and the number restriction constructor (≥nR).
An individual, say Bob, belongs to ∃married.Doctor iff there exists an individual
that is married to Bob (i.e., is related to Bob via the married role) and is a doctor
(i.e., belongs to the concept Doctor). Similarly, Bob belongs to (≥ 5 child) iff he
has at least five children, and he belongs to ∀child.Professor iff all his children
(i.e., all individuals related to Bob via the child role) are professors.

In addition to this description formalism, DLs are usually equipped with a
terminological and an assertional formalism. In its simplest form, terminological
axioms can be used to introduce names (abbreviations) for complex descriptions.
For example, we could introduce the abbreviation HappyMan for the concept
description from above. More expressive terminological formalisms allow the
statement of constraints such as

∃child.Human v Human,

which says that only humans can have human children. The assertional formal-
ism can be used to state properties of individuals. For example, the assertions

HappyMan(BOB), child(BOB,MARY)

state that Bob belongs to the concept HappyMan and that Mary is one of his
children.

Description Logic systems provide their users with various inference capabil-
ities that deduce implicit knowledge from the explicitly represented knowledge.
The subsumption algorithm determines subconcept-superconcept relationships:
C is subsumed by D iff all instances of C are necessarily instances of D, i.e., the
first description is always interpreted as a subset of the second description. For
example, given the definition of HappyMan from above, HappyMan is subsumed
by ∃child.Professor—since instances of HappyMan have at least five children, all
of whom are professors, they also have a child that is a professor. The instance
algorithm determines instance relationships: the individual i is an instance of
the concept description C iff i is always interpreted as an element of C. For ex-
ample, given the assertions from above and the definition of HappyMan, MARY
is an instance of Professor. The consistency algorithm determines whether a
knowledge base (consisting of a set of assertions and a set of terminological ax-
ioms) is non-contradictory. For example, if we add ¬Professor(MARY) to the
two assertions from above, then the knowledge base containing these assertions
together with the definition of HappyMan from above is inconsistent.

In order to ensure a reasonable and predictable behavior of a DL system,
these inference problems should at least be decidable for the DL employed by

3



the system, and preferably of low complexity. Consequently, the expressive
power of the DL in question must be restricted in an appropriate way. If the
imposed restrictions are too severe, however, then the important notions of
the application domain can no longer be expressed. Investigating this trade-off
between the expressivity of DLs and the complexity of their inference problems
has been one of the most important issues in DL research. Roughly, the research
related to this issue can be classified into the following four phases (see [1] for
references).

Phase 1 (1980-1990) was mainly concerned with implementation of systems,
such as Klone, K-Rep, Back, and Loom. These systems employed so-called
structural subsumption algorithms, which first normalize the concept descrip-
tions, and then recursively compare the syntactic structure of the normalized
descriptions. These algorithms are usually very efficient (polynomial), but they
have the disadvantage that they are complete only for very inexpressive DLs,
i.e., for more expressive DLs they cannot detect all the existing subsump-
tion/instance relationships. At the end of this phase, early formal investiga-
tions into the complexity of reasoning in DLs showed that most DLs do not
have polynomial-time inference problems. As a reaction, the implementors of
the Classic system (the first industrial-strength DL system) carefully restricted
the expressive power of their DL.

Phase 2 (1990-1995) started with the introduction of a new algorithmic paradigm
into DLs, so-called tableau-based algorithms. To decide the consistency of a
knowledge base, a tableau-based algorithm tries to construct a model of it by
breaking down the concepts in the knowledge base, thus inferring new con-
straints on the elements of this model. The algorithm either stops because all
attempts to build a model failed with obvious contradictions, or it stops with
a “canonical” model. Since subsumption and satisfiability can be reduced to
consistency, a consistency algorithm can solve all inference problems mentioned
above. In contrast to the structural algorithms of the first phase, tableau-based
algorithms work on propositionally closed DLs (i.e., with all the Boolean oper-
ators) and are complete also for expressive DLs. The first systems employing
such algorithms (Kris and Crack) demonstrated that optimized implementa-
tions of these algorithm lead to an acceptable behavior of the system, though
their worst-case is no longer polynomial-time. This phase also saw a thorough
analysis of the complexity of reasoning in various DLs. Another important
observation was that DLs are very closely related to modal logics.

Phase 3 (1995-2000) is characterized by the development of inference proce-
dures for very expressive DLs, either based on the tableau-approach or on a
translation into modal logics. Highly optimized systems (FaCT, Race, and
Dlp) showed that tableau-based algorithm for expressive DLs lead to a good
practical behavior of the system even on (some) large knowledge bases. In this
phase, the relationship to modal logics and to decidable fragments of first-order
logic was also studied in more detail, and applications in databases (like schema
reasoning, query optimization, and DB integration) were investigated.

4



We are now at the beginning of Phase 4, where industrial strength DL systems
employing very expressive DLs and tableau-based algorithms are being devel-
oped, with applications like the Semantic Web or knowledge representation and
integration in bio-informatics in mind.

Description Logics as Ontology Languages

As already mentioned above, high quality ontologies are crucial for the Semantic
Web, and their construction, integration, and evolution greatly depends on the
availability of a well-defined semantics and powerful reasoning tools. Since DLs
provide for both, they should be ideal candidates for ontology languages. That
much was already clear ten years ago, but at that time there was a fundamental
mismatch between the expressive power and the efficiency of reasoning that
DL systems provided, and the expressivity and the large knowledge bases that
ontologists needed. Through the basic research in DLs of the last 10–15 years
that we have summarized above, this gap between the needs of ontologist and
the systems that DL researchers provide has finally become narrow enough to
build stable bridges.

Regarding an ontology language for the Semantic Web, there is a joint
US/EU initiative for a W3C ontology standard, for historical reasons called
DAML+OIL [7, 4]. This language has a syntax based on RDF Schema (and
thus is Web compatible), and it is based on common ontological primitives from
Frame Languages (which supports human understandability). Its semantics can
be defined via by a translation into the expressive DL SHIQ [8],1 and the de-
velopers have tried to find a good compromise between expressiveness and the
complexity of reasoning. Although reasoning in SHIQ is decidable, it has a
rather high worst-case complexity (ExpTime). Nevertheless, there is a highly
optimized SHIQ reasoner (FaCT) available, which behaves quite well in prac-
tice.

Let us point out some of the features of SHIQ that make reasoning hard.
First, SHIQ provides number restrictions that are far more expressive than
the ones introduced above (and employed be earlier DL systems). With the
qualified number restrictions available in SHIQ, as well as being able to say
that a person has at most two children (without mentioning the properties of
these children):

(≤ 2 child),

one can also specify that there is at most one son and at most one daughter:

(≤ 1 child.¬Female) u (≤ 1 child.Female)

Such concepts introduce additional non-determinism into reasoning since, given
an individual for which the tableau-based algorithm has generated 3 children,
one must guess which of them are female and which are not before one can
detect the contradiction (see [6] for details).

1To be exact, the translation is into an extension of SHIQ.

5



Second, SHIQ allows the formulation of complex terminological axioms like
“humans have human parents”:

Human v ∃parent.Human.

To test consistency of the assertion Human(BOB) under this constraint, a naive
tableau-based algorithm would not terminate since it would generate an infinite
chain of ancestors of Bob. To obtain a terminating procedure, one must check
the computation for cycles by blocking the generation of role successors under
certain conditions (see, e.g., [1]).

Third, SHIQ also allows for inverse roles; for example, in addition to child
one can also use its inverse parent, with the connection between a role and its
inverse being taken into account during reasoning. The combination of number
restrictions, terminological axioms, and inverse roles is responsible for the fact
that SHIQ no longer has the finite model property, i.e., there are subsumption
relationships that do not hold, but for which the only counter-models are infinite
models. To reason in such an expressive DL with a tableau-based algorithm,
one must employ very sophisticated blocking techniques [8].

Conclusion

The emphasis in DL research on a formal, logic-based semantics and a thorough
investigation of the basic reasoning problems, together with the availability of
highly optimized systems for very expressive DLs, makes this family of knowl-
edge representation formalisms an ideal starting point for defining ontology lan-
guages for the Semantic Web. The above mentioned reasoning services required
to enable the construction, integration, and evolution of high quality ontologies
are provided by state-of-the-are DL systems for very expressive languages.

To be used in practice, these languages will, however, also need DL-based
tools that further support knowledge acquisition, maintenance, and other as-
pects of integration. First steps in this direction have already been taken. For
example, OILEd is a tool that supports the development of OIL ontologies, and
ICom is a tool that supports the integration of entity-relationship and UML
diagrams. On a more fundamental level, so-called non-standard inferences that
support building and maintaining knowledge bases (like computing least com-
mon subsumers, unification, and matching) are now an important topic of DL
research [9]. All these efforts aim at supporting users that are not DL-experts
in building and maintaining DL knowledge bases.

References

[1] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69(1):5–40, October 2001.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic Web.
Scientific American, 284(5):34–43, May 2001.

6



[3] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele
Nardi. Reasoning in expressive description logics. In Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, chapter 23,
pages 1581–1634. Elsevier Science Publishers (North-Holland), Amsterdam,
2001.

[4] DAML language home page (http://www.daml.org/language/).

[5] Nicola Guarino. Formal ontology, conceptual analysis and knowledge repre-
sentation. Int. Journal of Human-Computer Studies, 43(5/6):625–640, 1995.

[6] Bernhard Hollunder and Franz Baader. Qualifying number restrictions in
concept languages. Technical Report RR-91-03, Deutsches Forschungszen-
trum fr Knstliche Intelligenz (DFKI), Kaiserslautern (Germany), 1991. An
abridged version appeared in Proc. of the 2nd Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR’91).

[7] I. Horrocks and P. Patel-Schneider. The generation of DAML+OIL. In
Working Notes of the 2001 Int. Description Logics Workshop (DL-2001),
pages 30–35. CEUR (http://ceur-ws.org/), volume 49, 2001.

[8] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for
very expressive description logics. Logic Journal of the IGPL, 8(3):239–264,
2000.

[9] Ralf Küsters. Non-standard Inferences in Description Logics, volume 2100
of Lecture Notes in Artificial Intelligence. Springer, 2001.

7


